| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for the Analog Devices AXI-DMAC core |
| * |
| * Copyright 2013-2019 Analog Devices Inc. |
| * Author: Lars-Peter Clausen <lars@metafoo.de> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_dma.h> |
| #include <linux/of_address.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| #include <linux/fpga/adi-axi-common.h> |
| |
| #include <dt-bindings/dma/axi-dmac.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| /* |
| * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has |
| * various instantiation parameters which decided the exact feature set support |
| * by the core. |
| * |
| * Each channel of the core has a source interface and a destination interface. |
| * The number of channels and the type of the channel interfaces is selected at |
| * configuration time. A interface can either be a connected to a central memory |
| * interconnect, which allows access to system memory, or it can be connected to |
| * a dedicated bus which is directly connected to a data port on a peripheral. |
| * Given that those are configuration options of the core that are selected when |
| * it is instantiated this means that they can not be changed by software at |
| * runtime. By extension this means that each channel is uni-directional. It can |
| * either be device to memory or memory to device, but not both. Also since the |
| * device side is a dedicated data bus only connected to a single peripheral |
| * there is no address than can or needs to be configured for the device side. |
| */ |
| |
| #define AXI_DMAC_REG_INTERFACE_DESC 0x10 |
| #define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12) |
| #define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x) |
| #define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8) |
| #define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x) |
| #define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4) |
| #define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x) |
| #define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0) |
| #define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x) |
| #define AXI_DMAC_REG_COHERENCY_DESC 0x14 |
| #define AXI_DMAC_DST_COHERENT_MSK BIT(0) |
| #define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x) |
| |
| #define AXI_DMAC_REG_IRQ_MASK 0x80 |
| #define AXI_DMAC_REG_IRQ_PENDING 0x84 |
| #define AXI_DMAC_REG_IRQ_SOURCE 0x88 |
| |
| #define AXI_DMAC_REG_CTRL 0x400 |
| #define AXI_DMAC_REG_TRANSFER_ID 0x404 |
| #define AXI_DMAC_REG_START_TRANSFER 0x408 |
| #define AXI_DMAC_REG_FLAGS 0x40c |
| #define AXI_DMAC_REG_DEST_ADDRESS 0x410 |
| #define AXI_DMAC_REG_SRC_ADDRESS 0x414 |
| #define AXI_DMAC_REG_X_LENGTH 0x418 |
| #define AXI_DMAC_REG_Y_LENGTH 0x41c |
| #define AXI_DMAC_REG_DEST_STRIDE 0x420 |
| #define AXI_DMAC_REG_SRC_STRIDE 0x424 |
| #define AXI_DMAC_REG_TRANSFER_DONE 0x428 |
| #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c |
| #define AXI_DMAC_REG_STATUS 0x430 |
| #define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434 |
| #define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438 |
| #define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c |
| #define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450 |
| #define AXI_DMAC_REG_CURRENT_SG_ID 0x454 |
| #define AXI_DMAC_REG_SG_ADDRESS 0x47c |
| #define AXI_DMAC_REG_SG_ADDRESS_HIGH 0x4bc |
| |
| #define AXI_DMAC_CTRL_ENABLE BIT(0) |
| #define AXI_DMAC_CTRL_PAUSE BIT(1) |
| #define AXI_DMAC_CTRL_ENABLE_SG BIT(2) |
| |
| #define AXI_DMAC_IRQ_SOT BIT(0) |
| #define AXI_DMAC_IRQ_EOT BIT(1) |
| |
| #define AXI_DMAC_FLAG_CYCLIC BIT(0) |
| #define AXI_DMAC_FLAG_LAST BIT(1) |
| #define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2) |
| |
| #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31) |
| |
| /* The maximum ID allocated by the hardware is 31 */ |
| #define AXI_DMAC_SG_UNUSED 32U |
| |
| /* Flags for axi_dmac_hw_desc.flags */ |
| #define AXI_DMAC_HW_FLAG_LAST BIT(0) |
| #define AXI_DMAC_HW_FLAG_IRQ BIT(1) |
| |
| struct axi_dmac_hw_desc { |
| u32 flags; |
| u32 id; |
| u64 dest_addr; |
| u64 src_addr; |
| u64 next_sg_addr; |
| u32 y_len; |
| u32 x_len; |
| u32 src_stride; |
| u32 dst_stride; |
| u64 __pad[2]; |
| }; |
| |
| struct axi_dmac_sg { |
| unsigned int partial_len; |
| bool schedule_when_free; |
| |
| struct axi_dmac_hw_desc *hw; |
| dma_addr_t hw_phys; |
| }; |
| |
| struct axi_dmac_desc { |
| struct virt_dma_desc vdesc; |
| struct axi_dmac_chan *chan; |
| |
| bool cyclic; |
| bool have_partial_xfer; |
| |
| unsigned int num_submitted; |
| unsigned int num_completed; |
| unsigned int num_sgs; |
| struct axi_dmac_sg sg[] __counted_by(num_sgs); |
| }; |
| |
| struct axi_dmac_chan { |
| struct virt_dma_chan vchan; |
| |
| struct axi_dmac_desc *next_desc; |
| struct list_head active_descs; |
| enum dma_transfer_direction direction; |
| |
| unsigned int src_width; |
| unsigned int dest_width; |
| unsigned int src_type; |
| unsigned int dest_type; |
| |
| unsigned int max_length; |
| unsigned int address_align_mask; |
| unsigned int length_align_mask; |
| |
| bool hw_partial_xfer; |
| bool hw_cyclic; |
| bool hw_2d; |
| bool hw_sg; |
| }; |
| |
| struct axi_dmac { |
| void __iomem *base; |
| int irq; |
| |
| struct clk *clk; |
| |
| struct dma_device dma_dev; |
| struct axi_dmac_chan chan; |
| }; |
| |
| static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan) |
| { |
| return container_of(chan->vchan.chan.device, struct axi_dmac, |
| dma_dev); |
| } |
| |
| static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c) |
| { |
| return container_of(c, struct axi_dmac_chan, vchan.chan); |
| } |
| |
| static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc) |
| { |
| return container_of(vdesc, struct axi_dmac_desc, vdesc); |
| } |
| |
| static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg, |
| unsigned int val) |
| { |
| writel(val, axi_dmac->base + reg); |
| } |
| |
| static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg) |
| { |
| return readl(axi_dmac->base + reg); |
| } |
| |
| static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan) |
| { |
| return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM; |
| } |
| |
| static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan) |
| { |
| return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM; |
| } |
| |
| static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len) |
| { |
| if (len == 0) |
| return false; |
| if ((len & chan->length_align_mask) != 0) /* Not aligned */ |
| return false; |
| return true; |
| } |
| |
| static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr) |
| { |
| if ((addr & chan->address_align_mask) != 0) /* Not aligned */ |
| return false; |
| return true; |
| } |
| |
| static void axi_dmac_start_transfer(struct axi_dmac_chan *chan) |
| { |
| struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| struct virt_dma_desc *vdesc; |
| struct axi_dmac_desc *desc; |
| struct axi_dmac_sg *sg; |
| unsigned int flags = 0; |
| unsigned int val; |
| |
| if (!chan->hw_sg) { |
| val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER); |
| if (val) /* Queue is full, wait for the next SOT IRQ */ |
| return; |
| } |
| |
| desc = chan->next_desc; |
| |
| if (!desc) { |
| vdesc = vchan_next_desc(&chan->vchan); |
| if (!vdesc) |
| return; |
| list_move_tail(&vdesc->node, &chan->active_descs); |
| desc = to_axi_dmac_desc(vdesc); |
| } |
| sg = &desc->sg[desc->num_submitted]; |
| |
| /* Already queued in cyclic mode. Wait for it to finish */ |
| if (sg->hw->id != AXI_DMAC_SG_UNUSED) { |
| sg->schedule_when_free = true; |
| return; |
| } |
| |
| if (chan->hw_sg) { |
| chan->next_desc = NULL; |
| } else if (++desc->num_submitted == desc->num_sgs || |
| desc->have_partial_xfer) { |
| if (desc->cyclic) |
| desc->num_submitted = 0; /* Start again */ |
| else |
| chan->next_desc = NULL; |
| flags |= AXI_DMAC_FLAG_LAST; |
| } else { |
| chan->next_desc = desc; |
| } |
| |
| sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID); |
| |
| if (!chan->hw_sg) { |
| if (axi_dmac_dest_is_mem(chan)) { |
| axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr); |
| axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride); |
| } |
| |
| if (axi_dmac_src_is_mem(chan)) { |
| axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr); |
| axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride); |
| } |
| } |
| |
| /* |
| * If the hardware supports cyclic transfers and there is no callback to |
| * call, enable hw cyclic mode to avoid unnecessary interrupts. |
| */ |
| if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) { |
| if (chan->hw_sg) |
| desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ; |
| else if (desc->num_sgs == 1) |
| flags |= AXI_DMAC_FLAG_CYCLIC; |
| } |
| |
| if (chan->hw_partial_xfer) |
| flags |= AXI_DMAC_FLAG_PARTIAL_REPORT; |
| |
| if (chan->hw_sg) { |
| axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys); |
| axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH, |
| (u64)sg->hw_phys >> 32); |
| } else { |
| axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len); |
| axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len); |
| } |
| axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags); |
| axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1); |
| } |
| |
| static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan) |
| { |
| return list_first_entry_or_null(&chan->active_descs, |
| struct axi_dmac_desc, vdesc.node); |
| } |
| |
| static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan, |
| struct axi_dmac_sg *sg) |
| { |
| if (chan->hw_2d) |
| return (sg->hw->x_len + 1) * (sg->hw->y_len + 1); |
| else |
| return (sg->hw->x_len + 1); |
| } |
| |
| static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan) |
| { |
| struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| struct axi_dmac_desc *desc; |
| struct axi_dmac_sg *sg; |
| u32 xfer_done, len, id, i; |
| bool found_sg; |
| |
| do { |
| len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN); |
| id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID); |
| |
| found_sg = false; |
| list_for_each_entry(desc, &chan->active_descs, vdesc.node) { |
| for (i = 0; i < desc->num_sgs; i++) { |
| sg = &desc->sg[i]; |
| if (sg->hw->id == AXI_DMAC_SG_UNUSED) |
| continue; |
| if (sg->hw->id == id) { |
| desc->have_partial_xfer = true; |
| sg->partial_len = len; |
| found_sg = true; |
| break; |
| } |
| } |
| if (found_sg) |
| break; |
| } |
| |
| if (found_sg) { |
| dev_dbg(dmac->dma_dev.dev, |
| "Found partial segment id=%u, len=%u\n", |
| id, len); |
| } else { |
| dev_warn(dmac->dma_dev.dev, |
| "Not found partial segment id=%u, len=%u\n", |
| id, len); |
| } |
| |
| /* Check if we have any more partial transfers */ |
| xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); |
| xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE); |
| |
| } while (!xfer_done); |
| } |
| |
| static void axi_dmac_compute_residue(struct axi_dmac_chan *chan, |
| struct axi_dmac_desc *active) |
| { |
| struct dmaengine_result *rslt = &active->vdesc.tx_result; |
| unsigned int start = active->num_completed - 1; |
| struct axi_dmac_sg *sg; |
| unsigned int i, total; |
| |
| rslt->result = DMA_TRANS_NOERROR; |
| rslt->residue = 0; |
| |
| if (chan->hw_sg) |
| return; |
| |
| /* |
| * We get here if the last completed segment is partial, which |
| * means we can compute the residue from that segment onwards |
| */ |
| for (i = start; i < active->num_sgs; i++) { |
| sg = &active->sg[i]; |
| total = axi_dmac_total_sg_bytes(chan, sg); |
| rslt->residue += (total - sg->partial_len); |
| } |
| } |
| |
| static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan, |
| unsigned int completed_transfers) |
| { |
| struct axi_dmac_desc *active; |
| struct axi_dmac_sg *sg; |
| bool start_next = false; |
| |
| active = axi_dmac_active_desc(chan); |
| if (!active) |
| return false; |
| |
| if (chan->hw_partial_xfer && |
| (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE)) |
| axi_dmac_dequeue_partial_xfers(chan); |
| |
| if (chan->hw_sg) { |
| if (active->cyclic) { |
| vchan_cyclic_callback(&active->vdesc); |
| } else { |
| list_del(&active->vdesc.node); |
| vchan_cookie_complete(&active->vdesc); |
| active = axi_dmac_active_desc(chan); |
| start_next = !!active; |
| } |
| } else { |
| do { |
| sg = &active->sg[active->num_completed]; |
| if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */ |
| break; |
| if (!(BIT(sg->hw->id) & completed_transfers)) |
| break; |
| active->num_completed++; |
| sg->hw->id = AXI_DMAC_SG_UNUSED; |
| if (sg->schedule_when_free) { |
| sg->schedule_when_free = false; |
| start_next = true; |
| } |
| |
| if (sg->partial_len) |
| axi_dmac_compute_residue(chan, active); |
| |
| if (active->cyclic) |
| vchan_cyclic_callback(&active->vdesc); |
| |
| if (active->num_completed == active->num_sgs || |
| sg->partial_len) { |
| if (active->cyclic) { |
| active->num_completed = 0; /* wrap around */ |
| } else { |
| list_del(&active->vdesc.node); |
| vchan_cookie_complete(&active->vdesc); |
| active = axi_dmac_active_desc(chan); |
| } |
| } |
| } while (active); |
| } |
| |
| return start_next; |
| } |
| |
| static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid) |
| { |
| struct axi_dmac *dmac = devid; |
| unsigned int pending; |
| bool start_next = false; |
| |
| pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING); |
| if (!pending) |
| return IRQ_NONE; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending); |
| |
| spin_lock(&dmac->chan.vchan.lock); |
| /* One or more transfers have finished */ |
| if (pending & AXI_DMAC_IRQ_EOT) { |
| unsigned int completed; |
| |
| completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); |
| start_next = axi_dmac_transfer_done(&dmac->chan, completed); |
| } |
| /* Space has become available in the descriptor queue */ |
| if ((pending & AXI_DMAC_IRQ_SOT) || start_next) |
| axi_dmac_start_transfer(&dmac->chan); |
| spin_unlock(&dmac->chan.vchan.lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int axi_dmac_terminate_all(struct dma_chan *c) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0); |
| chan->next_desc = NULL; |
| vchan_get_all_descriptors(&chan->vchan, &head); |
| list_splice_tail_init(&chan->active_descs, &head); |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| |
| vchan_dma_desc_free_list(&chan->vchan, &head); |
| |
| return 0; |
| } |
| |
| static void axi_dmac_synchronize(struct dma_chan *c) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| |
| vchan_synchronize(&chan->vchan); |
| } |
| |
| static void axi_dmac_issue_pending(struct dma_chan *c) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| unsigned long flags; |
| u32 ctrl = AXI_DMAC_CTRL_ENABLE; |
| |
| if (chan->hw_sg) |
| ctrl |= AXI_DMAC_CTRL_ENABLE_SG; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl); |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| if (vchan_issue_pending(&chan->vchan)) |
| axi_dmac_start_transfer(chan); |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| } |
| |
| static struct axi_dmac_desc * |
| axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs) |
| { |
| struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| struct device *dev = dmac->dma_dev.dev; |
| struct axi_dmac_hw_desc *hws; |
| struct axi_dmac_desc *desc; |
| dma_addr_t hw_phys; |
| unsigned int i; |
| |
| desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT); |
| if (!desc) |
| return NULL; |
| desc->num_sgs = num_sgs; |
| desc->chan = chan; |
| |
| hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)), |
| &hw_phys, GFP_ATOMIC); |
| if (!hws) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| for (i = 0; i < num_sgs; i++) { |
| desc->sg[i].hw = &hws[i]; |
| desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws); |
| |
| hws[i].id = AXI_DMAC_SG_UNUSED; |
| hws[i].flags = 0; |
| |
| /* Link hardware descriptors */ |
| hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws); |
| } |
| |
| /* The last hardware descriptor will trigger an interrupt */ |
| desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ; |
| |
| return desc; |
| } |
| |
| static void axi_dmac_free_desc(struct axi_dmac_desc *desc) |
| { |
| struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan); |
| struct device *dev = dmac->dma_dev.dev; |
| struct axi_dmac_hw_desc *hw = desc->sg[0].hw; |
| dma_addr_t hw_phys = desc->sg[0].hw_phys; |
| |
| dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)), |
| hw, hw_phys); |
| kfree(desc); |
| } |
| |
| static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan, |
| enum dma_transfer_direction direction, dma_addr_t addr, |
| unsigned int num_periods, unsigned int period_len, |
| struct axi_dmac_sg *sg) |
| { |
| unsigned int num_segments, i; |
| unsigned int segment_size; |
| unsigned int len; |
| |
| /* Split into multiple equally sized segments if necessary */ |
| num_segments = DIV_ROUND_UP(period_len, chan->max_length); |
| segment_size = DIV_ROUND_UP(period_len, num_segments); |
| /* Take care of alignment */ |
| segment_size = ((segment_size - 1) | chan->length_align_mask) + 1; |
| |
| for (i = 0; i < num_periods; i++) { |
| for (len = period_len; len > segment_size; sg++) { |
| if (direction == DMA_DEV_TO_MEM) |
| sg->hw->dest_addr = addr; |
| else |
| sg->hw->src_addr = addr; |
| sg->hw->x_len = segment_size - 1; |
| sg->hw->y_len = 0; |
| sg->hw->flags = 0; |
| addr += segment_size; |
| len -= segment_size; |
| } |
| |
| if (direction == DMA_DEV_TO_MEM) |
| sg->hw->dest_addr = addr; |
| else |
| sg->hw->src_addr = addr; |
| sg->hw->x_len = len - 1; |
| sg->hw->y_len = 0; |
| sg++; |
| addr += len; |
| } |
| |
| return sg; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| axi_dmac_prep_peripheral_dma_vec(struct dma_chan *c, const struct dma_vec *vecs, |
| size_t nb, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac_desc *desc; |
| unsigned int num_sgs = 0; |
| struct axi_dmac_sg *dsg; |
| size_t i; |
| |
| if (direction != chan->direction) |
| return NULL; |
| |
| for (i = 0; i < nb; i++) |
| num_sgs += DIV_ROUND_UP(vecs[i].len, chan->max_length); |
| |
| desc = axi_dmac_alloc_desc(chan, num_sgs); |
| if (!desc) |
| return NULL; |
| |
| dsg = desc->sg; |
| |
| for (i = 0; i < nb; i++) { |
| if (!axi_dmac_check_addr(chan, vecs[i].addr) || |
| !axi_dmac_check_len(chan, vecs[i].len)) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| dsg = axi_dmac_fill_linear_sg(chan, direction, vecs[i].addr, 1, |
| vecs[i].len, dsg); |
| } |
| |
| desc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg( |
| struct dma_chan *c, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac_desc *desc; |
| struct axi_dmac_sg *dsg; |
| struct scatterlist *sg; |
| unsigned int num_sgs; |
| unsigned int i; |
| |
| if (direction != chan->direction) |
| return NULL; |
| |
| num_sgs = 0; |
| for_each_sg(sgl, sg, sg_len, i) |
| num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length); |
| |
| desc = axi_dmac_alloc_desc(chan, num_sgs); |
| if (!desc) |
| return NULL; |
| |
| dsg = desc->sg; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) || |
| !axi_dmac_check_len(chan, sg_dma_len(sg))) { |
| axi_dmac_free_desc(desc); |
| return NULL; |
| } |
| |
| dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1, |
| sg_dma_len(sg), dsg); |
| } |
| |
| desc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic( |
| struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac_desc *desc; |
| unsigned int num_periods, num_segments, num_sgs; |
| |
| if (direction != chan->direction) |
| return NULL; |
| |
| if (!axi_dmac_check_len(chan, buf_len) || |
| !axi_dmac_check_addr(chan, buf_addr)) |
| return NULL; |
| |
| if (period_len == 0 || buf_len % period_len) |
| return NULL; |
| |
| num_periods = buf_len / period_len; |
| num_segments = DIV_ROUND_UP(period_len, chan->max_length); |
| num_sgs = num_periods * num_segments; |
| |
| desc = axi_dmac_alloc_desc(chan, num_sgs); |
| if (!desc) |
| return NULL; |
| |
| /* Chain the last descriptor to the first, and remove its "last" flag */ |
| desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys; |
| desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST; |
| |
| axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods, |
| period_len, desc->sg); |
| |
| desc->cyclic = true; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved( |
| struct dma_chan *c, struct dma_interleaved_template *xt, |
| unsigned long flags) |
| { |
| struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| struct axi_dmac_desc *desc; |
| size_t dst_icg, src_icg; |
| |
| if (xt->frame_size != 1) |
| return NULL; |
| |
| if (xt->dir != chan->direction) |
| return NULL; |
| |
| if (axi_dmac_src_is_mem(chan)) { |
| if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start)) |
| return NULL; |
| } |
| |
| if (axi_dmac_dest_is_mem(chan)) { |
| if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start)) |
| return NULL; |
| } |
| |
| dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); |
| src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); |
| |
| if (chan->hw_2d) { |
| if (!axi_dmac_check_len(chan, xt->sgl[0].size) || |
| xt->numf == 0) |
| return NULL; |
| if (xt->sgl[0].size + dst_icg > chan->max_length || |
| xt->sgl[0].size + src_icg > chan->max_length) |
| return NULL; |
| } else { |
| if (dst_icg != 0 || src_icg != 0) |
| return NULL; |
| if (chan->max_length / xt->sgl[0].size < xt->numf) |
| return NULL; |
| if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf)) |
| return NULL; |
| } |
| |
| desc = axi_dmac_alloc_desc(chan, 1); |
| if (!desc) |
| return NULL; |
| |
| if (axi_dmac_src_is_mem(chan)) { |
| desc->sg[0].hw->src_addr = xt->src_start; |
| desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg; |
| } |
| |
| if (axi_dmac_dest_is_mem(chan)) { |
| desc->sg[0].hw->dest_addr = xt->dst_start; |
| desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg; |
| } |
| |
| if (chan->hw_2d) { |
| desc->sg[0].hw->x_len = xt->sgl[0].size - 1; |
| desc->sg[0].hw->y_len = xt->numf - 1; |
| } else { |
| desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1; |
| desc->sg[0].hw->y_len = 0; |
| } |
| |
| if (flags & DMA_CYCLIC) |
| desc->cyclic = true; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static void axi_dmac_free_chan_resources(struct dma_chan *c) |
| { |
| vchan_free_chan_resources(to_virt_chan(c)); |
| } |
| |
| static void axi_dmac_desc_free(struct virt_dma_desc *vdesc) |
| { |
| axi_dmac_free_desc(to_axi_dmac_desc(vdesc)); |
| } |
| |
| static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg) |
| { |
| switch (reg) { |
| case AXI_DMAC_REG_IRQ_MASK: |
| case AXI_DMAC_REG_IRQ_SOURCE: |
| case AXI_DMAC_REG_IRQ_PENDING: |
| case AXI_DMAC_REG_CTRL: |
| case AXI_DMAC_REG_TRANSFER_ID: |
| case AXI_DMAC_REG_START_TRANSFER: |
| case AXI_DMAC_REG_FLAGS: |
| case AXI_DMAC_REG_DEST_ADDRESS: |
| case AXI_DMAC_REG_SRC_ADDRESS: |
| case AXI_DMAC_REG_X_LENGTH: |
| case AXI_DMAC_REG_Y_LENGTH: |
| case AXI_DMAC_REG_DEST_STRIDE: |
| case AXI_DMAC_REG_SRC_STRIDE: |
| case AXI_DMAC_REG_TRANSFER_DONE: |
| case AXI_DMAC_REG_ACTIVE_TRANSFER_ID: |
| case AXI_DMAC_REG_STATUS: |
| case AXI_DMAC_REG_CURRENT_SRC_ADDR: |
| case AXI_DMAC_REG_CURRENT_DEST_ADDR: |
| case AXI_DMAC_REG_PARTIAL_XFER_LEN: |
| case AXI_DMAC_REG_PARTIAL_XFER_ID: |
| case AXI_DMAC_REG_CURRENT_SG_ID: |
| case AXI_DMAC_REG_SG_ADDRESS: |
| case AXI_DMAC_REG_SG_ADDRESS_HIGH: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static const struct regmap_config axi_dmac_regmap_config = { |
| .reg_bits = 32, |
| .val_bits = 32, |
| .reg_stride = 4, |
| .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID, |
| .readable_reg = axi_dmac_regmap_rdwr, |
| .writeable_reg = axi_dmac_regmap_rdwr, |
| }; |
| |
| static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan) |
| { |
| chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1; |
| |
| if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) |
| chan->direction = DMA_MEM_TO_MEM; |
| else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) |
| chan->direction = DMA_MEM_TO_DEV; |
| else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan)) |
| chan->direction = DMA_DEV_TO_MEM; |
| else |
| chan->direction = DMA_DEV_TO_DEV; |
| } |
| |
| /* |
| * The configuration stored in the devicetree matches the configuration |
| * parameters of the peripheral instance and allows the driver to know which |
| * features are implemented and how it should behave. |
| */ |
| static int axi_dmac_parse_chan_dt(struct device_node *of_chan, |
| struct axi_dmac_chan *chan) |
| { |
| u32 val; |
| int ret; |
| |
| ret = of_property_read_u32(of_chan, "reg", &val); |
| if (ret) |
| return ret; |
| |
| /* We only support 1 channel for now */ |
| if (val != 0) |
| return -EINVAL; |
| |
| ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val); |
| if (ret) |
| return ret; |
| if (val > AXI_DMAC_BUS_TYPE_FIFO) |
| return -EINVAL; |
| chan->src_type = val; |
| |
| ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val); |
| if (ret) |
| return ret; |
| if (val > AXI_DMAC_BUS_TYPE_FIFO) |
| return -EINVAL; |
| chan->dest_type = val; |
| |
| ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val); |
| if (ret) |
| return ret; |
| chan->src_width = val / 8; |
| |
| ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val); |
| if (ret) |
| return ret; |
| chan->dest_width = val / 8; |
| |
| axi_dmac_adjust_chan_params(chan); |
| |
| return 0; |
| } |
| |
| static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac) |
| { |
| struct device_node *of_channels, *of_chan; |
| int ret; |
| |
| of_channels = of_get_child_by_name(dev->of_node, "adi,channels"); |
| if (of_channels == NULL) |
| return -ENODEV; |
| |
| for_each_child_of_node(of_channels, of_chan) { |
| ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan); |
| if (ret) { |
| of_node_put(of_chan); |
| of_node_put(of_channels); |
| return -EINVAL; |
| } |
| } |
| of_node_put(of_channels); |
| |
| return 0; |
| } |
| |
| static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac) |
| { |
| struct axi_dmac_chan *chan = &dmac->chan; |
| unsigned int val, desc; |
| |
| desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC); |
| if (desc == 0) { |
| dev_err(dev, "DMA interface register reads zero\n"); |
| return -EFAULT; |
| } |
| |
| val = AXI_DMAC_DMA_SRC_TYPE_GET(desc); |
| if (val > AXI_DMAC_BUS_TYPE_FIFO) { |
| dev_err(dev, "Invalid source bus type read: %d\n", val); |
| return -EINVAL; |
| } |
| chan->src_type = val; |
| |
| val = AXI_DMAC_DMA_DST_TYPE_GET(desc); |
| if (val > AXI_DMAC_BUS_TYPE_FIFO) { |
| dev_err(dev, "Invalid destination bus type read: %d\n", val); |
| return -EINVAL; |
| } |
| chan->dest_type = val; |
| |
| val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc); |
| if (val == 0) { |
| dev_err(dev, "Source bus width is zero\n"); |
| return -EINVAL; |
| } |
| /* widths are stored in log2 */ |
| chan->src_width = 1 << val; |
| |
| val = AXI_DMAC_DMA_DST_WIDTH_GET(desc); |
| if (val == 0) { |
| dev_err(dev, "Destination bus width is zero\n"); |
| return -EINVAL; |
| } |
| chan->dest_width = 1 << val; |
| |
| axi_dmac_adjust_chan_params(chan); |
| |
| return 0; |
| } |
| |
| static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version) |
| { |
| struct axi_dmac_chan *chan = &dmac->chan; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC); |
| if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC) |
| chan->hw_cyclic = true; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff); |
| if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS)) |
| chan->hw_sg = true; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1); |
| if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1) |
| chan->hw_2d = true; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff); |
| chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); |
| if (chan->max_length != UINT_MAX) |
| chan->max_length++; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff); |
| if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 && |
| chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) { |
| dev_err(dmac->dma_dev.dev, |
| "Destination memory-mapped interface not supported."); |
| return -ENODEV; |
| } |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff); |
| if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 && |
| chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) { |
| dev_err(dmac->dma_dev.dev, |
| "Source memory-mapped interface not supported."); |
| return -ENODEV; |
| } |
| |
| if (version >= ADI_AXI_PCORE_VER(4, 2, 'a')) |
| chan->hw_partial_xfer = true; |
| |
| if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) { |
| axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00); |
| chan->length_align_mask = |
| axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); |
| } else { |
| chan->length_align_mask = chan->address_align_mask; |
| } |
| |
| return 0; |
| } |
| |
| static void axi_dmac_tasklet_kill(void *task) |
| { |
| tasklet_kill(task); |
| } |
| |
| static void axi_dmac_free_dma_controller(void *of_node) |
| { |
| of_dma_controller_free(of_node); |
| } |
| |
| static int axi_dmac_probe(struct platform_device *pdev) |
| { |
| struct dma_device *dma_dev; |
| struct axi_dmac *dmac; |
| struct regmap *regmap; |
| unsigned int version; |
| u32 irq_mask = 0; |
| int ret; |
| |
| dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); |
| if (!dmac) |
| return -ENOMEM; |
| |
| dmac->irq = platform_get_irq(pdev, 0); |
| if (dmac->irq < 0) |
| return dmac->irq; |
| if (dmac->irq == 0) |
| return -EINVAL; |
| |
| dmac->base = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(dmac->base)) |
| return PTR_ERR(dmac->base); |
| |
| dmac->clk = devm_clk_get_enabled(&pdev->dev, NULL); |
| if (IS_ERR(dmac->clk)) |
| return PTR_ERR(dmac->clk); |
| |
| version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION); |
| |
| if (version >= ADI_AXI_PCORE_VER(4, 3, 'a')) |
| ret = axi_dmac_read_chan_config(&pdev->dev, dmac); |
| else |
| ret = axi_dmac_parse_dt(&pdev->dev, dmac); |
| |
| if (ret < 0) |
| return ret; |
| |
| INIT_LIST_HEAD(&dmac->chan.active_descs); |
| |
| dma_set_max_seg_size(&pdev->dev, UINT_MAX); |
| |
| dma_dev = &dmac->dma_dev; |
| dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); |
| dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask); |
| dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources; |
| dma_dev->device_tx_status = dma_cookie_status; |
| dma_dev->device_issue_pending = axi_dmac_issue_pending; |
| dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg; |
| dma_dev->device_prep_peripheral_dma_vec = axi_dmac_prep_peripheral_dma_vec; |
| dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic; |
| dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved; |
| dma_dev->device_terminate_all = axi_dmac_terminate_all; |
| dma_dev->device_synchronize = axi_dmac_synchronize; |
| dma_dev->dev = &pdev->dev; |
| dma_dev->src_addr_widths = BIT(dmac->chan.src_width); |
| dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width); |
| dma_dev->directions = BIT(dmac->chan.direction); |
| dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; |
| dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */ |
| INIT_LIST_HEAD(&dma_dev->channels); |
| |
| dmac->chan.vchan.desc_free = axi_dmac_desc_free; |
| vchan_init(&dmac->chan.vchan, dma_dev); |
| |
| ret = axi_dmac_detect_caps(dmac, version); |
| if (ret) |
| return ret; |
| |
| dma_dev->copy_align = (dmac->chan.address_align_mask + 1); |
| |
| if (dmac->chan.hw_sg) |
| irq_mask |= AXI_DMAC_IRQ_SOT; |
| |
| axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask); |
| |
| if (of_dma_is_coherent(pdev->dev.of_node)) { |
| ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC); |
| |
| if (version < ADI_AXI_PCORE_VER(4, 4, 'a') || |
| !AXI_DMAC_DST_COHERENT_GET(ret)) { |
| dev_err(dmac->dma_dev.dev, |
| "Coherent DMA not supported in hardware"); |
| return -EINVAL; |
| } |
| } |
| |
| ret = dmaenginem_async_device_register(dma_dev); |
| if (ret) |
| return ret; |
| |
| /* |
| * Put the action in here so it get's done before unregistering the DMA |
| * device. |
| */ |
| ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_tasklet_kill, |
| &dmac->chan.vchan.task); |
| if (ret) |
| return ret; |
| |
| ret = of_dma_controller_register(pdev->dev.of_node, |
| of_dma_xlate_by_chan_id, dma_dev); |
| if (ret) |
| return ret; |
| |
| ret = devm_add_action_or_reset(&pdev->dev, axi_dmac_free_dma_controller, |
| pdev->dev.of_node); |
| if (ret) |
| return ret; |
| |
| ret = devm_request_irq(&pdev->dev, dmac->irq, axi_dmac_interrupt_handler, |
| IRQF_SHARED, dev_name(&pdev->dev), dmac); |
| if (ret) |
| return ret; |
| |
| regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base, |
| &axi_dmac_regmap_config); |
| |
| return PTR_ERR_OR_ZERO(regmap); |
| } |
| |
| static const struct of_device_id axi_dmac_of_match_table[] = { |
| { .compatible = "adi,axi-dmac-1.00.a" }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table); |
| |
| static struct platform_driver axi_dmac_driver = { |
| .driver = { |
| .name = "dma-axi-dmac", |
| .of_match_table = axi_dmac_of_match_table, |
| }, |
| .probe = axi_dmac_probe, |
| }; |
| module_platform_driver(axi_dmac_driver); |
| |
| MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); |
| MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller"); |
| MODULE_LICENSE("GPL v2"); |