blob: d3e8be82a1727a7839040bb82291a742de4409e8 [file] [log] [blame]
/*
* Copyright 2021 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_psp.h"
#include "amdgpu_smu.h"
#include "amdgpu_atomfirmware.h"
#include "imu_v11_0.h"
#include "soc21.h"
#include "nvd.h"
#include "gc/gc_11_0_0_offset.h"
#include "gc/gc_11_0_0_sh_mask.h"
#include "smuio/smuio_13_0_6_offset.h"
#include "smuio/smuio_13_0_6_sh_mask.h"
#include "navi10_enum.h"
#include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h"
#include "soc15.h"
#include "soc15d.h"
#include "clearstate_gfx11.h"
#include "v11_structs.h"
#include "gfx_v11_0.h"
#include "gfx_v11_0_3.h"
#include "nbio_v4_3.h"
#include "mes_v11_0.h"
#define GFX11_NUM_GFX_RINGS 1
#define GFX11_MEC_HPD_SIZE 2048
#define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L
#define RLC_PG_DELAY_3_DEFAULT_GC_11_0_1 0x1388
#define regCGTT_WD_CLK_CTRL 0x5086
#define regCGTT_WD_CLK_CTRL_BASE_IDX 1
#define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1 0x4e7e
#define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1_BASE_IDX 1
#define regPC_CONFIG_CNTL_1 0x194d
#define regPC_CONFIG_CNTL_1_BASE_IDX 1
MODULE_FIRMWARE("amdgpu/gc_11_0_0_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_rlc_1.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_0_toc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_1_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_2_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_3_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_0_4_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_0_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_1_rlc.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_pfp.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_me.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_mec.bin");
MODULE_FIRMWARE("amdgpu/gc_11_5_2_rlc.bin");
static const struct amdgpu_hwip_reg_entry gc_reg_list_11_0[] = {
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS2),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS3),
SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT1),
SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT2),
SOC15_REG_ENTRY_STR(GC, 0, regCP_STALLED_STAT3),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_STALLED_STAT1),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_STALLED_STAT1),
SOC15_REG_ENTRY_STR(GC, 0, regCP_BUSY_STAT),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_BUSY_STAT),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_BUSY_STAT),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_BUSY_STAT2),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_BUSY_STAT2),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPF_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_ERROR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HPD_STATUS0),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_BASE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_BASE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB0_WPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_BASE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB1_WPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_CMD_BUFSZ),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_CMD_BUFSZ),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BUFSZ),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BASE_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BASE_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB2_BUFSZ),
SOC15_REG_ENTRY_STR(GC, 0, regCPF_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regCPC_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regCPG_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regGDS_PROTECTION_FAULT),
SOC15_REG_ENTRY_STR(GC, 0, regGDS_VM_PROTECTION_FAULT),
SOC15_REG_ENTRY_STR(GC, 0, regIA_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regIA_UTCL1_STATUS_2),
SOC15_REG_ENTRY_STR(GC, 0, regPA_CL_CNTL_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regRLC_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regRMI_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regSQC_CACHES),
SOC15_REG_ENTRY_STR(GC, 0, regSQG_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regWD_UTCL1_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regGCVM_L2_PROTECTION_FAULT_CNTL),
SOC15_REG_ENTRY_STR(GC, 0, regGCVM_L2_PROTECTION_FAULT_STATUS),
SOC15_REG_ENTRY_STR(GC, 0, regCP_DEBUG),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC_CNTL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_CNTL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC1_INSTR_PNTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_DEBUG_INTERRUPT_INSTR_PNTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_INSTR_PNTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_ME_INSTR_PNTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_PFP_INSTR_PNTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_CPC_STATUS),
/* cp header registers */
SOC15_REG_ENTRY_STR(GC, 0, regCP_MEC_ME1_HEADER_DUMP),
SOC15_REG_ENTRY_STR(GC, 0, regCP_PFP_HEADER_DUMP),
SOC15_REG_ENTRY_STR(GC, 0, regCP_ME_HEADER_DUMP),
SOC15_REG_ENTRY_STR(GC, 0, regCP_MES_HEADER_DUMP),
/* SE status registers */
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE0),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE1),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE2),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE3),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE4),
SOC15_REG_ENTRY_STR(GC, 0, regGRBM_STATUS_SE5)
};
static const struct amdgpu_hwip_reg_entry gc_cp_reg_list_11[] = {
/* compute registers */
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_VMID),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PERSISTENT_STATE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PIPE_PRIORITY),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_QUEUE_PRIORITY),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_QUANTUM),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_BASE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_BASE_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_BASE_ADDR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_BASE_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_IB_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_DEQUEUE_REQUEST),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_BASE_ADDR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_BASE_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_WPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_EVENTS),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_BASE_ADDR_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_BASE_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CNTL_STACK_OFFSET),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CNTL_STACK_SIZE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_WG_STATE_OFFSET),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_CTX_SAVE_SIZE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_GDS_RESOURCE_STATE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_ERROR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_EOP_WPTR_MEM),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_PQ_WPTR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_CNTL_STACK_OFFSET),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_CNTL_STACK_DW_CNT),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_SUSPEND_WG_STATE_OFFSET),
SOC15_REG_ENTRY_STR(GC, 0, regCP_HQD_DEQUEUE_STATUS)
};
static const struct amdgpu_hwip_reg_entry gc_gfx_queue_reg_list_11[] = {
/* gfx queue registers */
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_ACTIVE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_VMID),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUEUE_PRIORITY),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUANTUM),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_BASE),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_BASE_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_OFFSET),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_CNTL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_CSMD_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_WPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_WPTR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_DEQUEUE_REQUEST),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_MAPPED),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_QUE_MGR_CONTROL),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_HQ_CONTROL0),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_HQD_HQ_STATUS0),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_MQD_BASE_ADDR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_GFX_MQD_BASE_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_RB_RPTR),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_LO),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BASE_HI),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_CMD_BUFSZ),
SOC15_REG_ENTRY_STR(GC, 0, regCP_IB1_BUFSZ)
};
static const struct soc15_reg_golden golden_settings_gc_11_0[] = {
SOC15_REG_GOLDEN_VALUE(GC, 0, regTCP_CNTL, 0x20000000, 0x20000000)
};
static const struct soc15_reg_golden golden_settings_gc_11_0_1[] =
{
SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_GS_NGG_CLK_CTRL, 0x9fff8fff, 0x00000010),
SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_WD_CLK_CTRL, 0xffff8fff, 0x00000010),
SOC15_REG_GOLDEN_VALUE(GC, 0, regCPF_GCR_CNTL, 0x0007ffff, 0x0000c200),
SOC15_REG_GOLDEN_VALUE(GC, 0, regGL2C_CTRL3, 0xffff001b, 0x00f01988),
SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_CL_ENHANCE, 0xf0ffffff, 0x00880007),
SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_ENHANCE_3, 0xfffffffd, 0x00000008),
SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_VRS_SURFACE_CNTL_1, 0xfff891ff, 0x55480100),
SOC15_REG_GOLDEN_VALUE(GC, 0, regTA_CNTL_AUX, 0xf7f7ffff, 0x01030000),
SOC15_REG_GOLDEN_VALUE(GC, 0, regTCP_CNTL2, 0xfcffffff, 0x0000000a)
};
#define DEFAULT_SH_MEM_CONFIG \
((SH_MEM_ADDRESS_MODE_64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT) | \
(SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT) | \
(3 << SH_MEM_CONFIG__INITIAL_INST_PREFETCH__SHIFT))
static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev);
static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev);
static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev);
static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev);
static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev,
struct amdgpu_cu_info *cu_info);
static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev);
static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
u32 sh_num, u32 instance, int xcc_id);
static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev);
static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume);
static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start, bool secure);
static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val);
static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev);
static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring,
uint16_t pasid, uint32_t flush_type,
bool all_hub, uint8_t dst_sel);
static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id);
static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id);
static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev,
bool enable);
static void gfx11_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask)
{
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6));
amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) |
PACKET3_SET_RESOURCES_UNMAP_LATENTY(0xa) | /* unmap_latency: 0xa (~ 1s) */
PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); /* vmid_mask:0 queue_type:0 (KIQ) */
amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */
amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */
amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */
amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */
amdgpu_ring_write(kiq_ring, 0); /* oac mask */
amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */
}
static void gfx11_kiq_map_queues(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring)
{
uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj);
uint64_t wptr_addr = ring->wptr_gpu_addr;
uint32_t me = 0, eng_sel = 0;
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_COMPUTE:
me = 1;
eng_sel = 0;
break;
case AMDGPU_RING_TYPE_GFX:
me = 0;
eng_sel = 4;
break;
case AMDGPU_RING_TYPE_MES:
me = 2;
eng_sel = 5;
break;
default:
WARN_ON(1);
}
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
/* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
PACKET3_MAP_QUEUES_VMID(0) | /* VMID */
PACKET3_MAP_QUEUES_QUEUE(ring->queue) |
PACKET3_MAP_QUEUES_PIPE(ring->pipe) |
PACKET3_MAP_QUEUES_ME((me)) |
PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) |
PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index));
amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr));
amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr));
}
static void gfx11_kiq_unmap_queues(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring,
enum amdgpu_unmap_queues_action action,
u64 gpu_addr, u64 seq)
{
struct amdgpu_device *adev = kiq_ring->adev;
uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;
if (adev->enable_mes && !adev->gfx.kiq[0].ring.sched.ready) {
amdgpu_mes_unmap_legacy_queue(adev, ring, action, gpu_addr, seq);
return;
}
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4));
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_UNMAP_QUEUES_ACTION(action) |
PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) |
PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) |
PACKET3_UNMAP_QUEUES_NUM_QUEUES(1));
amdgpu_ring_write(kiq_ring,
PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index));
if (action == PREEMPT_QUEUES_NO_UNMAP) {
amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr));
amdgpu_ring_write(kiq_ring, seq);
} else {
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
amdgpu_ring_write(kiq_ring, 0);
}
}
static void gfx11_kiq_query_status(struct amdgpu_ring *kiq_ring,
struct amdgpu_ring *ring,
u64 addr,
u64 seq)
{
uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0;
amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5));
amdgpu_ring_write(kiq_ring,
PACKET3_QUERY_STATUS_CONTEXT_ID(0) |
PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) |
PACKET3_QUERY_STATUS_COMMAND(2));
amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */
PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) |
PACKET3_QUERY_STATUS_ENG_SEL(eng_sel));
amdgpu_ring_write(kiq_ring, lower_32_bits(addr));
amdgpu_ring_write(kiq_ring, upper_32_bits(addr));
amdgpu_ring_write(kiq_ring, lower_32_bits(seq));
amdgpu_ring_write(kiq_ring, upper_32_bits(seq));
}
static void gfx11_kiq_invalidate_tlbs(struct amdgpu_ring *kiq_ring,
uint16_t pasid, uint32_t flush_type,
bool all_hub)
{
gfx_v11_0_ring_invalidate_tlbs(kiq_ring, pasid, flush_type, all_hub, 1);
}
static const struct kiq_pm4_funcs gfx_v11_0_kiq_pm4_funcs = {
.kiq_set_resources = gfx11_kiq_set_resources,
.kiq_map_queues = gfx11_kiq_map_queues,
.kiq_unmap_queues = gfx11_kiq_unmap_queues,
.kiq_query_status = gfx11_kiq_query_status,
.kiq_invalidate_tlbs = gfx11_kiq_invalidate_tlbs,
.set_resources_size = 8,
.map_queues_size = 7,
.unmap_queues_size = 6,
.query_status_size = 7,
.invalidate_tlbs_size = 2,
};
static void gfx_v11_0_set_kiq_pm4_funcs(struct amdgpu_device *adev)
{
adev->gfx.kiq[0].pmf = &gfx_v11_0_kiq_pm4_funcs;
}
static void gfx_v11_0_init_golden_registers(struct amdgpu_device *adev)
{
if (amdgpu_sriov_vf(adev))
return;
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
soc15_program_register_sequence(adev,
golden_settings_gc_11_0_1,
(const u32)ARRAY_SIZE(golden_settings_gc_11_0_1));
break;
default:
break;
}
soc15_program_register_sequence(adev,
golden_settings_gc_11_0,
(const u32)ARRAY_SIZE(golden_settings_gc_11_0));
}
static void gfx_v11_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel,
bool wc, uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) |
WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0));
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val);
}
static void gfx_v11_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel,
int mem_space, int opt, uint32_t addr0,
uint32_t addr1, uint32_t ref, uint32_t mask,
uint32_t inv)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5));
amdgpu_ring_write(ring,
/* memory (1) or register (0) */
(WAIT_REG_MEM_MEM_SPACE(mem_space) |
WAIT_REG_MEM_OPERATION(opt) | /* wait */
WAIT_REG_MEM_FUNCTION(3) | /* equal */
WAIT_REG_MEM_ENGINE(eng_sel)));
if (mem_space)
BUG_ON(addr0 & 0x3); /* Dword align */
amdgpu_ring_write(ring, addr0);
amdgpu_ring_write(ring, addr1);
amdgpu_ring_write(ring, ref);
amdgpu_ring_write(ring, mask);
amdgpu_ring_write(ring, inv); /* poll interval */
}
static void gfx_v11_ring_insert_nop(struct amdgpu_ring *ring, uint32_t num_nop)
{
int i;
/* Header itself is a NOP packet */
if (num_nop == 1) {
amdgpu_ring_write(ring, ring->funcs->nop);
return;
}
/* Max HW optimization till 0x3ffe, followed by remaining one NOP at a time*/
amdgpu_ring_write(ring, PACKET3(PACKET3_NOP, min(num_nop - 2, 0x3ffe)));
/* Header is at index 0, followed by num_nops - 1 NOP packet's */
for (i = 1; i < num_nop; i++)
amdgpu_ring_write(ring, ring->funcs->nop);
}
static int gfx_v11_0_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
uint32_t scratch = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0);
uint32_t tmp = 0;
unsigned i;
int r;
WREG32(scratch, 0xCAFEDEAD);
r = amdgpu_ring_alloc(ring, 5);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n",
ring->idx, r);
return r;
}
if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ) {
gfx_v11_0_ring_emit_wreg(ring, scratch, 0xDEADBEEF);
} else {
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
amdgpu_ring_write(ring, scratch -
PACKET3_SET_UCONFIG_REG_START);
amdgpu_ring_write(ring, 0xDEADBEEF);
}
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(scratch);
if (tmp == 0xDEADBEEF)
break;
if (amdgpu_emu_mode == 1)
msleep(1);
else
udelay(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
return r;
}
static int gfx_v11_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
unsigned index;
uint64_t gpu_addr;
volatile uint32_t *cpu_ptr;
long r;
/* MES KIQ fw hasn't indirect buffer support for now */
if (adev->enable_mes_kiq &&
ring->funcs->type == AMDGPU_RING_TYPE_KIQ)
return 0;
memset(&ib, 0, sizeof(ib));
if (ring->is_mes_queue) {
uint32_t padding, offset;
offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS);
padding = amdgpu_mes_ctx_get_offs(ring,
AMDGPU_MES_CTX_PADDING_OFFS);
ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
ib.ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, padding);
cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, padding);
*cpu_ptr = cpu_to_le32(0xCAFEDEAD);
} else {
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD);
cpu_ptr = &adev->wb.wb[index];
r = amdgpu_ib_get(adev, NULL, 20, AMDGPU_IB_POOL_DIRECT, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
goto err1;
}
}
ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3);
ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM;
ib.ptr[2] = lower_32_bits(gpu_addr);
ib.ptr[3] = upper_32_bits(gpu_addr);
ib.ptr[4] = 0xDEADBEEF;
ib.length_dw = 5;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err2;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
r = -ETIMEDOUT;
goto err2;
} else if (r < 0) {
goto err2;
}
if (le32_to_cpu(*cpu_ptr) == 0xDEADBEEF)
r = 0;
else
r = -EINVAL;
err2:
if (!ring->is_mes_queue)
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err1:
if (!ring->is_mes_queue)
amdgpu_device_wb_free(adev, index);
return r;
}
static void gfx_v11_0_free_microcode(struct amdgpu_device *adev)
{
amdgpu_ucode_release(&adev->gfx.pfp_fw);
amdgpu_ucode_release(&adev->gfx.me_fw);
amdgpu_ucode_release(&adev->gfx.rlc_fw);
amdgpu_ucode_release(&adev->gfx.mec_fw);
kfree(adev->gfx.rlc.register_list_format);
}
static int gfx_v11_0_init_toc_microcode(struct amdgpu_device *adev, const char *ucode_prefix)
{
const struct psp_firmware_header_v1_0 *toc_hdr;
int err = 0;
err = amdgpu_ucode_request(adev, &adev->psp.toc_fw,
"amdgpu/%s_toc.bin", ucode_prefix);
if (err)
goto out;
toc_hdr = (const struct psp_firmware_header_v1_0 *)adev->psp.toc_fw->data;
adev->psp.toc.fw_version = le32_to_cpu(toc_hdr->header.ucode_version);
adev->psp.toc.feature_version = le32_to_cpu(toc_hdr->sos.fw_version);
adev->psp.toc.size_bytes = le32_to_cpu(toc_hdr->header.ucode_size_bytes);
adev->psp.toc.start_addr = (uint8_t *)toc_hdr +
le32_to_cpu(toc_hdr->header.ucode_array_offset_bytes);
return 0;
out:
amdgpu_ucode_release(&adev->psp.toc_fw);
return err;
}
static void gfx_v11_0_check_fw_cp_gfx_shadow(struct amdgpu_device *adev)
{
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
if ((adev->gfx.me_fw_version >= 1505) &&
(adev->gfx.pfp_fw_version >= 1600) &&
(adev->gfx.mec_fw_version >= 512)) {
if (amdgpu_sriov_vf(adev))
adev->gfx.cp_gfx_shadow = true;
else
adev->gfx.cp_gfx_shadow = false;
}
break;
default:
adev->gfx.cp_gfx_shadow = false;
break;
}
}
static int gfx_v11_0_init_microcode(struct amdgpu_device *adev)
{
char ucode_prefix[25];
int err;
const struct rlc_firmware_header_v2_0 *rlc_hdr;
uint16_t version_major;
uint16_t version_minor;
DRM_DEBUG("\n");
amdgpu_ucode_ip_version_decode(adev, GC_HWIP, ucode_prefix, sizeof(ucode_prefix));
err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw,
"amdgpu/%s_pfp.bin", ucode_prefix);
if (err)
goto out;
/* check pfp fw hdr version to decide if enable rs64 for gfx11.*/
adev->gfx.rs64_enable = amdgpu_ucode_hdr_version(
(union amdgpu_firmware_header *)
adev->gfx.pfp_fw->data, 2, 0);
if (adev->gfx.rs64_enable) {
dev_info(adev->dev, "CP RS64 enable\n");
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK);
} else {
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_PFP);
}
err = amdgpu_ucode_request(adev, &adev->gfx.me_fw,
"amdgpu/%s_me.bin", ucode_prefix);
if (err)
goto out;
if (adev->gfx.rs64_enable) {
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK);
} else {
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_ME);
}
if (!amdgpu_sriov_vf(adev)) {
if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 0, 0) &&
adev->pdev->revision == 0xCE)
err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw,
"amdgpu/gc_11_0_0_rlc_1.bin");
else
err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw,
"amdgpu/%s_rlc.bin", ucode_prefix);
if (err)
goto out;
rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
version_major = le16_to_cpu(rlc_hdr->header.header_version_major);
version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor);
err = amdgpu_gfx_rlc_init_microcode(adev, version_major, version_minor);
if (err)
goto out;
}
err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw,
"amdgpu/%s_mec.bin", ucode_prefix);
if (err)
goto out;
if (adev->gfx.rs64_enable) {
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK);
} else {
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1);
amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1_JT);
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO)
err = gfx_v11_0_init_toc_microcode(adev, ucode_prefix);
/* only one MEC for gfx 11.0.0. */
adev->gfx.mec2_fw = NULL;
gfx_v11_0_check_fw_cp_gfx_shadow(adev);
if (adev->gfx.imu.funcs && adev->gfx.imu.funcs->init_microcode) {
err = adev->gfx.imu.funcs->init_microcode(adev);
if (err)
DRM_ERROR("Failed to init imu firmware!\n");
return err;
}
out:
if (err) {
amdgpu_ucode_release(&adev->gfx.pfp_fw);
amdgpu_ucode_release(&adev->gfx.me_fw);
amdgpu_ucode_release(&adev->gfx.rlc_fw);
amdgpu_ucode_release(&adev->gfx.mec_fw);
}
return err;
}
static u32 gfx_v11_0_get_csb_size(struct amdgpu_device *adev)
{
u32 count = 0;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
/* begin clear state */
count += 2;
/* context control state */
count += 3;
for (sect = gfx11_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT)
count += 2 + ext->reg_count;
else
return 0;
}
}
/* set PA_SC_TILE_STEERING_OVERRIDE */
count += 3;
/* end clear state */
count += 2;
/* clear state */
count += 2;
return count;
}
static void gfx_v11_0_get_csb_buffer(struct amdgpu_device *adev,
volatile u32 *buffer)
{
u32 count = 0, i;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int ctx_reg_offset;
if (adev->gfx.rlc.cs_data == NULL)
return;
if (buffer == NULL)
return;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
buffer[count++] = cpu_to_le32(0x80000000);
buffer[count++] = cpu_to_le32(0x80000000);
for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
buffer[count++] =
cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
buffer[count++] = cpu_to_le32(ext->reg_index -
PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
buffer[count++] = cpu_to_le32(ext->extent[i]);
} else {
return;
}
}
}
ctx_reg_offset =
SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1));
buffer[count++] = cpu_to_le32(ctx_reg_offset);
buffer[count++] = cpu_to_le32(adev->gfx.config.pa_sc_tile_steering_override);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
buffer[count++] = cpu_to_le32(0);
}
static void gfx_v11_0_rlc_fini(struct amdgpu_device *adev)
{
/* clear state block */
amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj,
&adev->gfx.rlc.clear_state_gpu_addr,
(void **)&adev->gfx.rlc.cs_ptr);
/* jump table block */
amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj,
&adev->gfx.rlc.cp_table_gpu_addr,
(void **)&adev->gfx.rlc.cp_table_ptr);
}
static void gfx_v11_0_init_rlcg_reg_access_ctrl(struct amdgpu_device *adev)
{
struct amdgpu_rlcg_reg_access_ctrl *reg_access_ctrl;
reg_access_ctrl = &adev->gfx.rlc.reg_access_ctrl[0];
reg_access_ctrl->scratch_reg0 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0);
reg_access_ctrl->scratch_reg1 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG1);
reg_access_ctrl->scratch_reg2 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG2);
reg_access_ctrl->scratch_reg3 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG3);
reg_access_ctrl->grbm_cntl = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_CNTL);
reg_access_ctrl->grbm_idx = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX);
reg_access_ctrl->spare_int = SOC15_REG_OFFSET(GC, 0, regRLC_SPARE_INT_0);
adev->gfx.rlc.rlcg_reg_access_supported = true;
}
static int gfx_v11_0_rlc_init(struct amdgpu_device *adev)
{
const struct cs_section_def *cs_data;
int r;
adev->gfx.rlc.cs_data = gfx11_cs_data;
cs_data = adev->gfx.rlc.cs_data;
if (cs_data) {
/* init clear state block */
r = amdgpu_gfx_rlc_init_csb(adev);
if (r)
return r;
}
/* init spm vmid with 0xf */
if (adev->gfx.rlc.funcs->update_spm_vmid)
adev->gfx.rlc.funcs->update_spm_vmid(adev, NULL, 0xf);
return 0;
}
static void gfx_v11_0_mec_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL);
amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL);
amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_data_obj, NULL, NULL);
}
static void gfx_v11_0_me_init(struct amdgpu_device *adev)
{
bitmap_zero(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
amdgpu_gfx_graphics_queue_acquire(adev);
}
static int gfx_v11_0_mec_init(struct amdgpu_device *adev)
{
int r;
u32 *hpd;
size_t mec_hpd_size;
bitmap_zero(adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);
/* take ownership of the relevant compute queues */
amdgpu_gfx_compute_queue_acquire(adev);
mec_hpd_size = adev->gfx.num_compute_rings * GFX11_MEC_HPD_SIZE;
if (mec_hpd_size) {
r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.hpd_eop_obj,
&adev->gfx.mec.hpd_eop_gpu_addr,
(void **)&hpd);
if (r) {
dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r);
gfx_v11_0_mec_fini(adev);
return r;
}
memset(hpd, 0, mec_hpd_size);
amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj);
amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj);
}
return 0;
}
static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t wave, uint32_t address)
{
WREG32_SOC15(GC, 0, regSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(address << SQ_IND_INDEX__INDEX__SHIFT));
return RREG32_SOC15(GC, 0, regSQ_IND_DATA);
}
static void wave_read_regs(struct amdgpu_device *adev, uint32_t wave,
uint32_t thread, uint32_t regno,
uint32_t num, uint32_t *out)
{
WREG32_SOC15(GC, 0, regSQ_IND_INDEX,
(wave << SQ_IND_INDEX__WAVE_ID__SHIFT) |
(regno << SQ_IND_INDEX__INDEX__SHIFT) |
(thread << SQ_IND_INDEX__WORKITEM_ID__SHIFT) |
(SQ_IND_INDEX__AUTO_INCR_MASK));
while (num--)
*(out++) = RREG32_SOC15(GC, 0, regSQ_IND_DATA);
}
static void gfx_v11_0_read_wave_data(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields)
{
/* in gfx11 the SIMD_ID is specified as part of the INSTANCE
* field when performing a select_se_sh so it should be
* zero here */
WARN_ON(simd != 0);
/* type 3 wave data */
dst[(*no_fields)++] = 3;
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_STATUS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_LO);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_HI);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID1);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID2);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_GPR_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_LDS_ALLOC);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_TRAPSTS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS2);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_DBG1);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_M0);
dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_MODE);
}
static void gfx_v11_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd,
uint32_t wave, uint32_t start,
uint32_t size, uint32_t *dst)
{
WARN_ON(simd != 0);
wave_read_regs(
adev, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size,
dst);
}
static void gfx_v11_0_read_wave_vgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd,
uint32_t wave, uint32_t thread,
uint32_t start, uint32_t size,
uint32_t *dst)
{
wave_read_regs(
adev, wave, thread,
start + SQIND_WAVE_VGPRS_OFFSET, size, dst);
}
static void gfx_v11_0_select_me_pipe_q(struct amdgpu_device *adev,
u32 me, u32 pipe, u32 q, u32 vm, u32 xcc_id)
{
soc21_grbm_select(adev, me, pipe, q, vm);
}
/* all sizes are in bytes */
#define MQD_SHADOW_BASE_SIZE 73728
#define MQD_SHADOW_BASE_ALIGNMENT 256
#define MQD_FWWORKAREA_SIZE 484
#define MQD_FWWORKAREA_ALIGNMENT 256
static int gfx_v11_0_get_gfx_shadow_info(struct amdgpu_device *adev,
struct amdgpu_gfx_shadow_info *shadow_info)
{
if (adev->gfx.cp_gfx_shadow) {
shadow_info->shadow_size = MQD_SHADOW_BASE_SIZE;
shadow_info->shadow_alignment = MQD_SHADOW_BASE_ALIGNMENT;
shadow_info->csa_size = MQD_FWWORKAREA_SIZE;
shadow_info->csa_alignment = MQD_FWWORKAREA_ALIGNMENT;
return 0;
} else {
memset(shadow_info, 0, sizeof(struct amdgpu_gfx_shadow_info));
return -ENOTSUPP;
}
}
static const struct amdgpu_gfx_funcs gfx_v11_0_gfx_funcs = {
.get_gpu_clock_counter = &gfx_v11_0_get_gpu_clock_counter,
.select_se_sh = &gfx_v11_0_select_se_sh,
.read_wave_data = &gfx_v11_0_read_wave_data,
.read_wave_sgprs = &gfx_v11_0_read_wave_sgprs,
.read_wave_vgprs = &gfx_v11_0_read_wave_vgprs,
.select_me_pipe_q = &gfx_v11_0_select_me_pipe_q,
.update_perfmon_mgcg = &gfx_v11_0_update_perf_clk,
.get_gfx_shadow_info = &gfx_v11_0_get_gfx_shadow_info,
};
static int gfx_v11_0_gpu_early_init(struct amdgpu_device *adev)
{
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 2):
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0;
break;
case IP_VERSION(11, 0, 3):
adev->gfx.ras = &gfx_v11_0_3_ras;
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0;
break;
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
adev->gfx.config.max_hw_contexts = 8;
adev->gfx.config.sc_prim_fifo_size_frontend = 0x20;
adev->gfx.config.sc_prim_fifo_size_backend = 0x100;
adev->gfx.config.sc_hiz_tile_fifo_size = 0x80;
adev->gfx.config.sc_earlyz_tile_fifo_size = 0x300;
break;
default:
BUG();
break;
}
return 0;
}
static int gfx_v11_0_gfx_ring_init(struct amdgpu_device *adev, int ring_id,
int me, int pipe, int queue)
{
struct amdgpu_ring *ring;
unsigned int irq_type;
unsigned int hw_prio;
ring = &adev->gfx.gfx_ring[ring_id];
ring->me = me;
ring->pipe = pipe;
ring->queue = queue;
ring->ring_obj = NULL;
ring->use_doorbell = true;
if (!ring_id)
ring->doorbell_index = adev->doorbell_index.gfx_ring0 << 1;
else
ring->doorbell_index = adev->doorbell_index.gfx_ring1 << 1;
ring->vm_hub = AMDGPU_GFXHUB(0);
sprintf(ring->name, "gfx_%d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP + ring->pipe;
hw_prio = amdgpu_gfx_is_high_priority_graphics_queue(adev, ring) ?
AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL;
return amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type,
hw_prio, NULL);
}
static int gfx_v11_0_compute_ring_init(struct amdgpu_device *adev, int ring_id,
int mec, int pipe, int queue)
{
int r;
unsigned irq_type;
struct amdgpu_ring *ring;
unsigned int hw_prio;
ring = &adev->gfx.compute_ring[ring_id];
/* mec0 is me1 */
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1;
ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr
+ (ring_id * GFX11_MEC_HPD_SIZE);
ring->vm_hub = AMDGPU_GFXHUB(0);
sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue);
irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP
+ ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec)
+ ring->pipe;
hw_prio = amdgpu_gfx_is_high_priority_compute_queue(adev, ring) ?
AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL;
/* type-2 packets are deprecated on MEC, use type-3 instead */
r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type,
hw_prio, NULL);
if (r)
return r;
return 0;
}
static struct {
SOC21_FIRMWARE_ID id;
unsigned int offset;
unsigned int size;
} rlc_autoload_info[SOC21_FIRMWARE_ID_MAX];
static void gfx_v11_0_parse_rlc_toc(struct amdgpu_device *adev, void *rlc_toc)
{
RLC_TABLE_OF_CONTENT *ucode = rlc_toc;
while (ucode && (ucode->id > SOC21_FIRMWARE_ID_INVALID) &&
(ucode->id < SOC21_FIRMWARE_ID_MAX)) {
rlc_autoload_info[ucode->id].id = ucode->id;
rlc_autoload_info[ucode->id].offset = ucode->offset * 4;
rlc_autoload_info[ucode->id].size = ucode->size * 4;
ucode++;
}
}
static uint32_t gfx_v11_0_calc_toc_total_size(struct amdgpu_device *adev)
{
uint32_t total_size = 0;
SOC21_FIRMWARE_ID id;
gfx_v11_0_parse_rlc_toc(adev, adev->psp.toc.start_addr);
for (id = SOC21_FIRMWARE_ID_RLC_G_UCODE; id < SOC21_FIRMWARE_ID_MAX; id++)
total_size += rlc_autoload_info[id].size;
/* In case the offset in rlc toc ucode is aligned */
if (total_size < rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset)
total_size = rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset +
rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].size;
return total_size;
}
static int gfx_v11_0_rlc_autoload_buffer_init(struct amdgpu_device *adev)
{
int r;
uint32_t total_size;
total_size = gfx_v11_0_calc_toc_total_size(adev);
r = amdgpu_bo_create_reserved(adev, total_size, 64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.rlc.rlc_autoload_bo,
&adev->gfx.rlc.rlc_autoload_gpu_addr,
(void **)&adev->gfx.rlc.rlc_autoload_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create fw autoload bo\n", r);
return r;
}
return 0;
}
static void gfx_v11_0_rlc_backdoor_autoload_copy_ucode(struct amdgpu_device *adev,
SOC21_FIRMWARE_ID id,
const void *fw_data,
uint32_t fw_size,
uint32_t *fw_autoload_mask)
{
uint32_t toc_offset;
uint32_t toc_fw_size;
char *ptr = adev->gfx.rlc.rlc_autoload_ptr;
if (id <= SOC21_FIRMWARE_ID_INVALID || id >= SOC21_FIRMWARE_ID_MAX)
return;
toc_offset = rlc_autoload_info[id].offset;
toc_fw_size = rlc_autoload_info[id].size;
if (fw_size == 0)
fw_size = toc_fw_size;
if (fw_size > toc_fw_size)
fw_size = toc_fw_size;
memcpy(ptr + toc_offset, fw_data, fw_size);
if (fw_size < toc_fw_size)
memset(ptr + toc_offset + fw_size, 0, toc_fw_size - fw_size);
if ((id != SOC21_FIRMWARE_ID_RS64_PFP) && (id != SOC21_FIRMWARE_ID_RS64_ME))
*(uint64_t *)fw_autoload_mask |= 1ULL << id;
}
static void gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(struct amdgpu_device *adev,
uint32_t *fw_autoload_mask)
{
void *data;
uint32_t size;
uint64_t *toc_ptr;
*(uint64_t *)fw_autoload_mask |= 0x1;
DRM_DEBUG("rlc autoload enabled fw: 0x%llx\n", *(uint64_t *)fw_autoload_mask);
data = adev->psp.toc.start_addr;
size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_TOC].size;
toc_ptr = (uint64_t *)data + size / 8 - 1;
*toc_ptr = *(uint64_t *)fw_autoload_mask;
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_TOC,
data, size, fw_autoload_mask);
}
static void gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(struct amdgpu_device *adev,
uint32_t *fw_autoload_mask)
{
const __le32 *fw_data;
uint32_t fw_size;
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct gfx_firmware_header_v2_0 *cpv2_hdr;
const struct rlc_firmware_header_v2_0 *rlc_hdr;
const struct rlc_firmware_header_v2_2 *rlcv22_hdr;
uint16_t version_major, version_minor;
if (adev->gfx.rs64_enable) {
/* pfp ucode */
cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
/* instruction */
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP,
fw_data, fw_size, fw_autoload_mask);
/* data */
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(cpv2_hdr->data_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK,
fw_data, fw_size, fw_autoload_mask);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P1_STACK,
fw_data, fw_size, fw_autoload_mask);
/* me ucode */
cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
/* instruction */
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME,
fw_data, fw_size, fw_autoload_mask);
/* data */
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(cpv2_hdr->data_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P0_STACK,
fw_data, fw_size, fw_autoload_mask);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P1_STACK,
fw_data, fw_size, fw_autoload_mask);
/* mec ucode */
cpv2_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
/* instruction */
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(cpv2_hdr->ucode_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC,
fw_data, fw_size, fw_autoload_mask);
/* data */
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(cpv2_hdr->data_offset_bytes));
fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK,
fw_data, fw_size, fw_autoload_mask);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P1_STACK,
fw_data, fw_size, fw_autoload_mask);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P2_STACK,
fw_data, fw_size, fw_autoload_mask);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P3_STACK,
fw_data, fw_size, fw_autoload_mask);
} else {
/* pfp ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_PFP,
fw_data, fw_size, fw_autoload_mask);
/* me ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_ME,
fw_data, fw_size, fw_autoload_mask);
/* mec ucode */
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
cp_hdr->jt_size * 4;
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_MEC,
fw_data, fw_size, fw_autoload_mask);
}
/* rlc ucode */
rlc_hdr = (const struct rlc_firmware_header_v2_0 *)
adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(rlc_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(rlc_hdr->header.ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_G_UCODE,
fw_data, fw_size, fw_autoload_mask);
version_major = le16_to_cpu(rlc_hdr->header.header_version_major);
version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor);
if (version_major == 2) {
if (version_minor >= 2) {
rlcv22_hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_offset_bytes));
fw_size = le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_UCODE,
fw_data, fw_size, fw_autoload_mask);
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_offset_bytes));
fw_size = le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_DRAM_BOOT,
fw_data, fw_size, fw_autoload_mask);
}
}
}
static void gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(struct amdgpu_device *adev,
uint32_t *fw_autoload_mask)
{
const __le32 *fw_data;
uint32_t fw_size;
const struct sdma_firmware_header_v2_0 *sdma_hdr;
sdma_hdr = (const struct sdma_firmware_header_v2_0 *)
adev->sdma.instance[0].fw->data;
fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data +
le32_to_cpu(sdma_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(sdma_hdr->ctx_ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
SOC21_FIRMWARE_ID_SDMA_UCODE_TH0, fw_data, fw_size, fw_autoload_mask);
fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data +
le32_to_cpu(sdma_hdr->ctl_ucode_offset));
fw_size = le32_to_cpu(sdma_hdr->ctl_ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
SOC21_FIRMWARE_ID_SDMA_UCODE_TH1, fw_data, fw_size, fw_autoload_mask);
}
static void gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(struct amdgpu_device *adev,
uint32_t *fw_autoload_mask)
{
const __le32 *fw_data;
unsigned fw_size;
const struct mes_firmware_header_v1_0 *mes_hdr;
int pipe, ucode_id, data_id;
for (pipe = 0; pipe < 2; pipe++) {
if (pipe==0) {
ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P0;
data_id = SOC21_FIRMWARE_ID_RS64_MES_P0_STACK;
} else {
ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P1;
data_id = SOC21_FIRMWARE_ID_RS64_MES_P1_STACK;
}
mes_hdr = (const struct mes_firmware_header_v1_0 *)
adev->mes.fw[pipe]->data;
fw_data = (const __le32 *)(adev->mes.fw[pipe]->data +
le32_to_cpu(mes_hdr->mes_ucode_offset_bytes));
fw_size = le32_to_cpu(mes_hdr->mes_ucode_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
ucode_id, fw_data, fw_size, fw_autoload_mask);
fw_data = (const __le32 *)(adev->mes.fw[pipe]->data +
le32_to_cpu(mes_hdr->mes_ucode_data_offset_bytes));
fw_size = le32_to_cpu(mes_hdr->mes_ucode_data_size_bytes);
gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev,
data_id, fw_data, fw_size, fw_autoload_mask);
}
}
static int gfx_v11_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev)
{
uint32_t rlc_g_offset, rlc_g_size;
uint64_t gpu_addr;
uint32_t autoload_fw_id[2];
memset(autoload_fw_id, 0, sizeof(uint32_t) * 2);
/* RLC autoload sequence 2: copy ucode */
gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(adev, autoload_fw_id);
gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(adev, autoload_fw_id);
gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(adev, autoload_fw_id);
gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(adev, autoload_fw_id);
rlc_g_offset = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].offset;
rlc_g_size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].size;
gpu_addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_g_offset;
WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_HI, upper_32_bits(gpu_addr));
WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_LO, lower_32_bits(gpu_addr));
WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_SIZE, rlc_g_size);
/* RLC autoload sequence 3: load IMU fw */
if (adev->gfx.imu.funcs->load_microcode)
adev->gfx.imu.funcs->load_microcode(adev);
/* RLC autoload sequence 4 init IMU fw */
if (adev->gfx.imu.funcs->setup_imu)
adev->gfx.imu.funcs->setup_imu(adev);
if (adev->gfx.imu.funcs->start_imu)
adev->gfx.imu.funcs->start_imu(adev);
/* RLC autoload sequence 5 disable gpa mode */
gfx_v11_0_disable_gpa_mode(adev);
return 0;
}
static void gfx_v11_0_alloc_ip_dump(struct amdgpu_device *adev)
{
uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);
uint32_t *ptr;
uint32_t inst;
ptr = kcalloc(reg_count, sizeof(uint32_t), GFP_KERNEL);
if (!ptr) {
DRM_ERROR("Failed to allocate memory for GFX IP Dump\n");
adev->gfx.ip_dump_core = NULL;
} else {
adev->gfx.ip_dump_core = ptr;
}
/* Allocate memory for compute queue registers for all the instances */
reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
inst = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe_per_mec *
adev->gfx.mec.num_queue_per_pipe;
ptr = kcalloc(reg_count * inst, sizeof(uint32_t), GFP_KERNEL);
if (!ptr) {
DRM_ERROR("Failed to allocate memory for Compute Queues IP Dump\n");
adev->gfx.ip_dump_compute_queues = NULL;
} else {
adev->gfx.ip_dump_compute_queues = ptr;
}
/* Allocate memory for gfx queue registers for all the instances */
reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
inst = adev->gfx.me.num_me * adev->gfx.me.num_pipe_per_me *
adev->gfx.me.num_queue_per_pipe;
ptr = kcalloc(reg_count * inst, sizeof(uint32_t), GFP_KERNEL);
if (!ptr) {
DRM_ERROR("Failed to allocate memory for GFX Queues IP Dump\n");
adev->gfx.ip_dump_gfx_queues = NULL;
} else {
adev->gfx.ip_dump_gfx_queues = ptr;
}
}
static int gfx_v11_0_sw_init(void *handle)
{
int i, j, k, r, ring_id = 0;
int xcc_id = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
adev->gfx.me.num_me = 1;
adev->gfx.me.num_pipe_per_me = 1;
adev->gfx.me.num_queue_per_pipe = 1;
adev->gfx.mec.num_mec = 2;
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 4;
break;
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
adev->gfx.me.num_me = 1;
adev->gfx.me.num_pipe_per_me = 1;
adev->gfx.me.num_queue_per_pipe = 1;
adev->gfx.mec.num_mec = 1;
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 4;
break;
default:
adev->gfx.me.num_me = 1;
adev->gfx.me.num_pipe_per_me = 1;
adev->gfx.me.num_queue_per_pipe = 1;
adev->gfx.mec.num_mec = 1;
adev->gfx.mec.num_pipe_per_mec = 4;
adev->gfx.mec.num_queue_per_pipe = 8;
break;
}
/* Enable CG flag in one VF mode for enabling RLC safe mode enter/exit */
if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 0, 3) &&
amdgpu_sriov_is_pp_one_vf(adev))
adev->cg_flags = AMD_CG_SUPPORT_GFX_CGCG;
/* EOP Event */
r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
GFX_11_0_0__SRCID__CP_EOP_INTERRUPT,
&adev->gfx.eop_irq);
if (r)
return r;
/* Bad opcode Event */
r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
GFX_11_0_0__SRCID__CP_BAD_OPCODE_ERROR,
&adev->gfx.bad_op_irq);
if (r)
return r;
/* Privileged reg */
r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
GFX_11_0_0__SRCID__CP_PRIV_REG_FAULT,
&adev->gfx.priv_reg_irq);
if (r)
return r;
/* Privileged inst */
r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP,
GFX_11_0_0__SRCID__CP_PRIV_INSTR_FAULT,
&adev->gfx.priv_inst_irq);
if (r)
return r;
/* FED error */
r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX,
GFX_11_0_0__SRCID__RLC_GC_FED_INTERRUPT,
&adev->gfx.rlc_gc_fed_irq);
if (r)
return r;
adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE;
gfx_v11_0_me_init(adev);
r = gfx_v11_0_rlc_init(adev);
if (r) {
DRM_ERROR("Failed to init rlc BOs!\n");
return r;
}
r = gfx_v11_0_mec_init(adev);
if (r) {
DRM_ERROR("Failed to init MEC BOs!\n");
return r;
}
/* set up the gfx ring */
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) {
if (!amdgpu_gfx_is_me_queue_enabled(adev, i, k, j))
continue;
r = gfx_v11_0_gfx_ring_init(adev, ring_id,
i, k, j);
if (r)
return r;
ring_id++;
}
}
}
ring_id = 0;
/* set up the compute queues - allocate horizontally across pipes */
for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
if (!amdgpu_gfx_is_mec_queue_enabled(adev, 0, i,
k, j))
continue;
r = gfx_v11_0_compute_ring_init(adev, ring_id,
i, k, j);
if (r)
return r;
ring_id++;
}
}
}
if (!adev->enable_mes_kiq) {
r = amdgpu_gfx_kiq_init(adev, GFX11_MEC_HPD_SIZE, 0);
if (r) {
DRM_ERROR("Failed to init KIQ BOs!\n");
return r;
}
r = amdgpu_gfx_kiq_init_ring(adev, xcc_id);
if (r)
return r;
}
r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v11_compute_mqd), 0);
if (r)
return r;
/* allocate visible FB for rlc auto-loading fw */
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
r = gfx_v11_0_rlc_autoload_buffer_init(adev);
if (r)
return r;
}
r = gfx_v11_0_gpu_early_init(adev);
if (r)
return r;
if (amdgpu_gfx_ras_sw_init(adev)) {
dev_err(adev->dev, "Failed to initialize gfx ras block!\n");
return -EINVAL;
}
gfx_v11_0_alloc_ip_dump(adev);
return 0;
}
static void gfx_v11_0_pfp_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_obj,
&adev->gfx.pfp.pfp_fw_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_ptr);
amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_data_obj,
&adev->gfx.pfp.pfp_fw_data_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_data_ptr);
}
static void gfx_v11_0_me_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_obj,
&adev->gfx.me.me_fw_gpu_addr,
(void **)&adev->gfx.me.me_fw_ptr);
amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_data_obj,
&adev->gfx.me.me_fw_data_gpu_addr,
(void **)&adev->gfx.me.me_fw_data_ptr);
}
static void gfx_v11_0_rlc_autoload_buffer_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_autoload_bo,
&adev->gfx.rlc.rlc_autoload_gpu_addr,
(void **)&adev->gfx.rlc.rlc_autoload_ptr);
}
static int gfx_v11_0_sw_fini(void *handle)
{
int i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
amdgpu_ring_fini(&adev->gfx.gfx_ring[i]);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
amdgpu_ring_fini(&adev->gfx.compute_ring[i]);
amdgpu_gfx_mqd_sw_fini(adev, 0);
if (!adev->enable_mes_kiq) {
amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq[0].ring);
amdgpu_gfx_kiq_fini(adev, 0);
}
gfx_v11_0_pfp_fini(adev);
gfx_v11_0_me_fini(adev);
gfx_v11_0_rlc_fini(adev);
gfx_v11_0_mec_fini(adev);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO)
gfx_v11_0_rlc_autoload_buffer_fini(adev);
gfx_v11_0_free_microcode(adev);
kfree(adev->gfx.ip_dump_core);
kfree(adev->gfx.ip_dump_compute_queues);
kfree(adev->gfx.ip_dump_gfx_queues);
return 0;
}
static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num,
u32 sh_num, u32 instance, int xcc_id)
{
u32 data;
if (instance == 0xffffffff)
data = REG_SET_FIELD(0, GRBM_GFX_INDEX,
INSTANCE_BROADCAST_WRITES, 1);
else
data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX,
instance);
if (se_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES,
1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num);
if (sh_num == 0xffffffff)
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES,
1);
else
data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_INDEX, sh_num);
WREG32_SOC15(GC, 0, regGRBM_GFX_INDEX, data);
}
static u32 gfx_v11_0_get_sa_active_bitmap(struct amdgpu_device *adev)
{
u32 gc_disabled_sa_mask, gc_user_disabled_sa_mask, sa_mask;
gc_disabled_sa_mask = RREG32_SOC15(GC, 0, regCC_GC_SA_UNIT_DISABLE);
gc_disabled_sa_mask = REG_GET_FIELD(gc_disabled_sa_mask,
CC_GC_SA_UNIT_DISABLE,
SA_DISABLE);
gc_user_disabled_sa_mask = RREG32_SOC15(GC, 0, regGC_USER_SA_UNIT_DISABLE);
gc_user_disabled_sa_mask = REG_GET_FIELD(gc_user_disabled_sa_mask,
GC_USER_SA_UNIT_DISABLE,
SA_DISABLE);
sa_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_sh_per_se *
adev->gfx.config.max_shader_engines);
return sa_mask & (~(gc_disabled_sa_mask | gc_user_disabled_sa_mask));
}
static u32 gfx_v11_0_get_rb_active_bitmap(struct amdgpu_device *adev)
{
u32 gc_disabled_rb_mask, gc_user_disabled_rb_mask;
u32 rb_mask;
gc_disabled_rb_mask = RREG32_SOC15(GC, 0, regCC_RB_BACKEND_DISABLE);
gc_disabled_rb_mask = REG_GET_FIELD(gc_disabled_rb_mask,
CC_RB_BACKEND_DISABLE,
BACKEND_DISABLE);
gc_user_disabled_rb_mask = RREG32_SOC15(GC, 0, regGC_USER_RB_BACKEND_DISABLE);
gc_user_disabled_rb_mask = REG_GET_FIELD(gc_user_disabled_rb_mask,
GC_USER_RB_BACKEND_DISABLE,
BACKEND_DISABLE);
rb_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se *
adev->gfx.config.max_shader_engines);
return rb_mask & (~(gc_disabled_rb_mask | gc_user_disabled_rb_mask));
}
static void gfx_v11_0_setup_rb(struct amdgpu_device *adev)
{
u32 rb_bitmap_width_per_sa;
u32 max_sa;
u32 active_sa_bitmap;
u32 global_active_rb_bitmap;
u32 active_rb_bitmap = 0;
u32 i;
/* query sa bitmap from SA_UNIT_DISABLE registers */
active_sa_bitmap = gfx_v11_0_get_sa_active_bitmap(adev);
/* query rb bitmap from RB_BACKEND_DISABLE registers */
global_active_rb_bitmap = gfx_v11_0_get_rb_active_bitmap(adev);
/* generate active rb bitmap according to active sa bitmap */
max_sa = adev->gfx.config.max_shader_engines *
adev->gfx.config.max_sh_per_se;
rb_bitmap_width_per_sa = adev->gfx.config.max_backends_per_se /
adev->gfx.config.max_sh_per_se;
for (i = 0; i < max_sa; i++) {
if (active_sa_bitmap & (1 << i))
active_rb_bitmap |= (0x3 << (i * rb_bitmap_width_per_sa));
}
active_rb_bitmap &= global_active_rb_bitmap;
adev->gfx.config.backend_enable_mask = active_rb_bitmap;
adev->gfx.config.num_rbs = hweight32(active_rb_bitmap);
}
#define DEFAULT_SH_MEM_BASES (0x6000)
#define LDS_APP_BASE 0x1
#define SCRATCH_APP_BASE 0x2
static void gfx_v11_0_init_compute_vmid(struct amdgpu_device *adev)
{
int i;
uint32_t sh_mem_bases;
uint32_t data;
/*
* Configure apertures:
* LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB)
* Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB)
* GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB)
*/
sh_mem_bases = (LDS_APP_BASE << SH_MEM_BASES__SHARED_BASE__SHIFT) |
SCRATCH_APP_BASE;
mutex_lock(&adev->srbm_mutex);
for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) {
soc21_grbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
WREG32_SOC15(GC, 0, regSH_MEM_BASES, sh_mem_bases);
/* Enable trap for each kfd vmid. */
data = RREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL);
data = REG_SET_FIELD(data, SPI_GDBG_PER_VMID_CNTL, TRAP_EN, 1);
WREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL, data);
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
/* Initialize all compute VMIDs to have no GDS, GWS, or OA
acccess. These should be enabled by FW for target VMIDs. */
for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) {
WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * i, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * i, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, i, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, i, 0);
}
}
static void gfx_v11_0_init_gds_vmid(struct amdgpu_device *adev)
{
int vmid;
/*
* Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA
* access. Compute VMIDs should be enabled by FW for target VMIDs,
* the driver can enable them for graphics. VMID0 should maintain
* access so that HWS firmware can save/restore entries.
*/
for (vmid = 1; vmid < 16; vmid++) {
WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * vmid, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * vmid, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, vmid, 0);
WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, vmid, 0);
}
}
static void gfx_v11_0_tcp_harvest(struct amdgpu_device *adev)
{
/* TODO: harvest feature to be added later. */
}
static void gfx_v11_0_get_tcc_info(struct amdgpu_device *adev)
{
/* TCCs are global (not instanced). */
uint32_t tcc_disable = RREG32_SOC15(GC, 0, regCGTS_TCC_DISABLE) |
RREG32_SOC15(GC, 0, regCGTS_USER_TCC_DISABLE);
adev->gfx.config.tcc_disabled_mask =
REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, TCC_DISABLE) |
(REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, HI_TCC_DISABLE) << 16);
}
static void gfx_v11_0_constants_init(struct amdgpu_device *adev)
{
u32 tmp;
int i;
if (!amdgpu_sriov_vf(adev))
WREG32_FIELD15_PREREG(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff);
gfx_v11_0_setup_rb(adev);
gfx_v11_0_get_cu_info(adev, &adev->gfx.cu_info);
gfx_v11_0_get_tcc_info(adev);
adev->gfx.config.pa_sc_tile_steering_override = 0;
/* Set whether texture coordinate truncation is conformant. */
tmp = RREG32_SOC15(GC, 0, regTA_CNTL2);
adev->gfx.config.ta_cntl2_truncate_coord_mode =
REG_GET_FIELD(tmp, TA_CNTL2, TRUNCATE_COORD_MODE);
/* XXX SH_MEM regs */
/* where to put LDS, scratch, GPUVM in FSA64 space */
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB(0)].num_ids; i++) {
soc21_grbm_select(adev, 0, 0, 0, i);
/* CP and shaders */
WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG);
if (i != 0) {
tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE,
(adev->gmc.private_aperture_start >> 48));
tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE,
(adev->gmc.shared_aperture_start >> 48));
WREG32_SOC15(GC, 0, regSH_MEM_BASES, tmp);
}
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
gfx_v11_0_init_compute_vmid(adev);
gfx_v11_0_init_gds_vmid(adev);
}
static u32 gfx_v11_0_get_cpg_int_cntl(struct amdgpu_device *adev,
int me, int pipe)
{
if (me != 0)
return 0;
switch (pipe) {
case 0:
return SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING0);
case 1:
return SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING1);
default:
return 0;
}
}
static u32 gfx_v11_0_get_cpc_int_cntl(struct amdgpu_device *adev,
int me, int pipe)
{
/*
* amdgpu controls only the first MEC. That's why this function only
* handles the setting of interrupts for this specific MEC. All other
* pipes' interrupts are set by amdkfd.
*/
if (me != 1)
return 0;
switch (pipe) {
case 0:
return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
case 1:
return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE1_INT_CNTL);
case 2:
return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE2_INT_CNTL);
case 3:
return SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE3_INT_CNTL);
default:
return 0;
}
}
static void gfx_v11_0_enable_gui_idle_interrupt(struct amdgpu_device *adev,
bool enable)
{
u32 tmp, cp_int_cntl_reg;
int i, j;
if (amdgpu_sriov_vf(adev))
return;
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);
if (cp_int_cntl_reg) {
tmp = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE,
enable ? 1 : 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE,
enable ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, tmp);
}
}
}
}
static int gfx_v11_0_init_csb(struct amdgpu_device *adev)
{
adev->gfx.rlc.funcs->get_csb_buffer(adev, adev->gfx.rlc.cs_ptr);
WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_HI,
adev->gfx.rlc.clear_state_gpu_addr >> 32);
WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_LO,
adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc);
WREG32_SOC15(GC, 0, regRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size);
return 0;
}
static void gfx_v11_0_rlc_stop(struct amdgpu_device *adev)
{
u32 tmp = RREG32_SOC15(GC, 0, regRLC_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0);
WREG32_SOC15(GC, 0, regRLC_CNTL, tmp);
}
static void gfx_v11_0_rlc_reset(struct amdgpu_device *adev)
{
WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1);
udelay(50);
WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0);
udelay(50);
}
static void gfx_v11_0_rlc_smu_handshake_cntl(struct amdgpu_device *adev,
bool enable)
{
uint32_t rlc_pg_cntl;
rlc_pg_cntl = RREG32_SOC15(GC, 0, regRLC_PG_CNTL);
if (!enable) {
/* RLC_PG_CNTL[23] = 0 (default)
* RLC will wait for handshake acks with SMU
* GFXOFF will be enabled
* RLC_PG_CNTL[23] = 1
* RLC will not issue any message to SMU
* hence no handshake between SMU & RLC
* GFXOFF will be disabled
*/
rlc_pg_cntl |= RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK;
} else
rlc_pg_cntl &= ~RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK;
WREG32_SOC15(GC, 0, regRLC_PG_CNTL, rlc_pg_cntl);
}
static void gfx_v11_0_rlc_start(struct amdgpu_device *adev)
{
/* TODO: enable rlc & smu handshake until smu
* and gfxoff feature works as expected */
if (!(amdgpu_pp_feature_mask & PP_GFXOFF_MASK))
gfx_v11_0_rlc_smu_handshake_cntl(adev, false);
WREG32_FIELD15_PREREG(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1);
udelay(50);
}
static void gfx_v11_0_rlc_enable_srm(struct amdgpu_device *adev)
{
uint32_t tmp;
/* enable Save Restore Machine */
tmp = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL));
tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK;
tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK;
WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL), tmp);
}
static void gfx_v11_0_load_rlcg_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_0 *hdr;
const __le32 *fw_data;
unsigned i, fw_size;
hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR,
RLCG_UCODE_LOADING_START_ADDRESS);
for (i = 0; i < fw_size; i++)
WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_DATA,
le32_to_cpup(fw_data++));
WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version);
}
static void gfx_v11_0_load_rlc_iram_dram_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_2 *hdr;
const __le32 *fw_data;
unsigned i, fw_size;
u32 tmp;
hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->rlc_iram_ucode_offset_bytes));
fw_size = le32_to_cpu(hdr->rlc_iram_ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, 0);
for (i = 0; i < fw_size; i++) {
if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
msleep(1);
WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_DATA,
le32_to_cpup(fw_data++));
}
WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version);
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->rlc_dram_ucode_offset_bytes));
fw_size = le32_to_cpu(hdr->rlc_dram_ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_ADDR, 0);
for (i = 0; i < fw_size; i++) {
if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
msleep(1);
WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_DATA,
le32_to_cpup(fw_data++));
}
WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version);
tmp = RREG32_SOC15(GC, 0, regRLC_LX6_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, PDEBUG_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, BRESET, 0);
WREG32_SOC15(GC, 0, regRLC_LX6_CNTL, tmp);
}
static void gfx_v11_0_load_rlcp_rlcv_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_3 *hdr;
const __le32 *fw_data;
unsigned i, fw_size;
u32 tmp;
hdr = (const struct rlc_firmware_header_v2_3 *)adev->gfx.rlc_fw->data;
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->rlcp_ucode_offset_bytes));
fw_size = le32_to_cpu(hdr->rlcp_ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++) {
if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
msleep(1);
WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_DATA,
le32_to_cpup(fw_data++));
}
WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, adev->gfx.rlc_fw_version);
tmp = RREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE);
tmp = REG_SET_FIELD(tmp, RLC_GPM_THREAD_ENABLE, THREAD1_ENABLE, 1);
WREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE, tmp);
fw_data = (const __le32 *)(adev->gfx.rlc_fw->data +
le32_to_cpu(hdr->rlcv_ucode_offset_bytes));
fw_size = le32_to_cpu(hdr->rlcv_ucode_size_bytes) / 4;
WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, 0);
for (i = 0; i < fw_size; i++) {
if ((amdgpu_emu_mode == 1) && (i % 100 == 99))
msleep(1);
WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_DATA,
le32_to_cpup(fw_data++));
}
WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, adev->gfx.rlc_fw_version);
tmp = RREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL);
tmp = REG_SET_FIELD(tmp, RLC_GPU_IOV_F32_CNTL, ENABLE, 1);
WREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL, tmp);
}
static int gfx_v11_0_rlc_load_microcode(struct amdgpu_device *adev)
{
const struct rlc_firmware_header_v2_0 *hdr;
uint16_t version_major;
uint16_t version_minor;
if (!adev->gfx.rlc_fw)
return -EINVAL;
hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data;
amdgpu_ucode_print_rlc_hdr(&hdr->header);
version_major = le16_to_cpu(hdr->header.header_version_major);
version_minor = le16_to_cpu(hdr->header.header_version_minor);
if (version_major == 2) {
gfx_v11_0_load_rlcg_microcode(adev);
if (amdgpu_dpm == 1) {
if (version_minor >= 2)
gfx_v11_0_load_rlc_iram_dram_microcode(adev);
if (version_minor == 3)
gfx_v11_0_load_rlcp_rlcv_microcode(adev);
}
return 0;
}
return -EINVAL;
}
static int gfx_v11_0_rlc_resume(struct amdgpu_device *adev)
{
int r;
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
gfx_v11_0_init_csb(adev);
if (!amdgpu_sriov_vf(adev)) /* enable RLC SRM */
gfx_v11_0_rlc_enable_srm(adev);
} else {
if (amdgpu_sriov_vf(adev)) {
gfx_v11_0_init_csb(adev);
return 0;
}
adev->gfx.rlc.funcs->stop(adev);
/* disable CG */
WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, 0);
/* disable PG */
WREG32_SOC15(GC, 0, regRLC_PG_CNTL, 0);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
/* legacy rlc firmware loading */
r = gfx_v11_0_rlc_load_microcode(adev);
if (r)
return r;
}
gfx_v11_0_init_csb(adev);
adev->gfx.rlc.funcs->start(adev);
}
return 0;
}
static int gfx_v11_0_config_me_cache(struct amdgpu_device *adev, uint64_t addr)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->hdp.funcs->flush_hdp(adev, NULL);
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);
/* Program me ucode address into intruction cache address register */
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v11_0_config_pfp_cache(struct amdgpu_device *adev, uint64_t addr)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->hdp.funcs->flush_hdp(adev, NULL);
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);
/* Program pfp ucode address into intruction cache address register */
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v11_0_config_mec_cache(struct amdgpu_device *adev, uint64_t addr)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
int i;
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
if (amdgpu_emu_mode == 1)
adev->hdp.funcs->flush_hdp(adev, NULL);
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ADDRESS_CLAMP, 1);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);
/* Program mec1 ucode address into intruction cache address register */
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO,
lower_32_bits(addr) & 0xFFFFF000);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
upper_32_bits(addr));
return 0;
}
static int gfx_v11_0_config_pfp_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
unsigned i, pipe_id;
const struct gfx_firmware_header_v2_0 *pfp_hdr;
pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
lower_32_bits(addr));
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
upper_32_bits(addr));
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);
/*
* Programming any of the CP_PFP_IC_BASE registers
* forces invalidation of the ME L1 I$. Wait for the
* invalidation complete
*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Prime the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1);
WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);
/* Waiting for cache primed*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
ICACHE_PRIMED))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to prime instruction cache\n");
return -EINVAL;
}
mutex_lock(&adev->srbm_mutex);
for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
(pfp_hdr->ucode_start_addr_hi << 30) |
(pfp_hdr->ucode_start_addr_lo >> 2));
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
pfp_hdr->ucode_start_addr_hi >> 2);
/*
* Program CP_ME_CNTL to reset given PIPE to take
* effect of CP_PFP_PRGRM_CNTR_START.
*/
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE0_RESET, 1);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* Clear pfp pipe0 reset bit. */
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE0_RESET, 0);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO,
lower_32_bits(addr2));
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI,
upper_32_bits(addr2));
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);
/* Invalidate the data caches */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
return -EINVAL;
}
return 0;
}
static int gfx_v11_0_config_me_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
unsigned i, pipe_id;
const struct gfx_firmware_header_v2_0 *me_hdr;
me_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
lower_32_bits(addr));
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
upper_32_bits(addr));
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);
/*
* Programming any of the CP_ME_IC_BASE registers
* forces invalidation of the ME L1 I$. Wait for the
* invalidation complete
*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Prime the instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1);
WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);
/* Waiting for instruction cache primed*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
ICACHE_PRIMED))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to prime instruction cache\n");
return -EINVAL;
}
mutex_lock(&adev->srbm_mutex);
for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
(me_hdr->ucode_start_addr_hi << 30) |
(me_hdr->ucode_start_addr_lo >> 2) );
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
me_hdr->ucode_start_addr_hi>>2);
/*
* Program CP_ME_CNTL to reset given PIPE to take
* effect of CP_PFP_PRGRM_CNTR_START.
*/
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE0_RESET, 1);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* Clear pfp pipe0 reset bit. */
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE0_RESET, 0);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO,
lower_32_bits(addr2));
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI,
upper_32_bits(addr2));
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);
/* Invalidate the data caches */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
return -EINVAL;
}
return 0;
}
static int gfx_v11_0_config_mec_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2)
{
uint32_t usec_timeout = 50000; /* wait for 50ms */
uint32_t tmp;
unsigned i;
const struct gfx_firmware_header_v2_0 *mec_hdr;
mec_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) {
soc21_grbm_select(adev, 1, i, 0, 0);
WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, addr2);
WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI,
upper_32_bits(addr2));
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
mec_hdr->ucode_start_addr_lo >> 2 |
mec_hdr->ucode_start_addr_hi << 30);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
mec_hdr->ucode_start_addr_hi >> 2);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, addr);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
upper_32_bits(addr));
}
mutex_unlock(&adev->srbm_mutex);
soc21_grbm_select(adev, 0, 0, 0, 0);
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
return 0;
}
static void gfx_v11_0_config_gfx_rs64(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v2_0 *pfp_hdr;
const struct gfx_firmware_header_v2_0 *me_hdr;
const struct gfx_firmware_header_v2_0 *mec_hdr;
uint32_t pipe_id, tmp;
mec_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
me_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
/* config pfp program start addr */
for (pipe_id = 0; pipe_id < 2; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
(pfp_hdr->ucode_start_addr_hi << 30) |
(pfp_hdr->ucode_start_addr_lo >> 2));
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
pfp_hdr->ucode_start_addr_hi >> 2);
}
soc21_grbm_select(adev, 0, 0, 0, 0);
/* reset pfp pipe */
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* clear pfp pipe reset */
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* config me program start addr */
for (pipe_id = 0; pipe_id < 2; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
(me_hdr->ucode_start_addr_hi << 30) |
(me_hdr->ucode_start_addr_lo >> 2) );
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
me_hdr->ucode_start_addr_hi>>2);
}
soc21_grbm_select(adev, 0, 0, 0, 0);
/* reset me pipe */
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* clear me pipe reset */
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* config mec program start addr */
for (pipe_id = 0; pipe_id < 4; pipe_id++) {
soc21_grbm_select(adev, 1, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
mec_hdr->ucode_start_addr_lo >> 2 |
mec_hdr->ucode_start_addr_hi << 30);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
mec_hdr->ucode_start_addr_hi >> 2);
}
soc21_grbm_select(adev, 0, 0, 0, 0);
/* reset mec pipe */
tmp = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 1);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 1);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 1);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 1);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp);
/* clear mec pipe reset */
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 0);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 0);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 0);
tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 0);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp);
}
static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev)
{
uint32_t cp_status;
uint32_t bootload_status;
int i, r;
uint64_t addr, addr2;
for (i = 0; i < adev->usec_timeout; i++) {
cp_status = RREG32_SOC15(GC, 0, regCP_STAT);
if (amdgpu_ip_version(adev, GC_HWIP, 0) ==
IP_VERSION(11, 0, 1) ||
amdgpu_ip_version(adev, GC_HWIP, 0) ==
IP_VERSION(11, 0, 4) ||
amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 0) ||
amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 1) ||
amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(11, 5, 2))
bootload_status = RREG32_SOC15(GC, 0,
regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1);
else
bootload_status = RREG32_SOC15(GC, 0, regRLC_RLCS_BOOTLOAD_STATUS);
if ((cp_status == 0) &&
(REG_GET_FIELD(bootload_status,
RLC_RLCS_BOOTLOAD_STATUS, BOOTLOAD_COMPLETE) == 1)) {
break;
}
udelay(1);
}
if (i >= adev->usec_timeout) {
dev_err(adev->dev, "rlc autoload: gc ucode autoload timeout\n");
return -ETIMEDOUT;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
if (adev->gfx.rs64_enable) {
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME].offset;
addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME_P0_STACK].offset;
r = gfx_v11_0_config_me_cache_rs64(adev, addr, addr2);
if (r)
return r;
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP].offset;
addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK].offset;
r = gfx_v11_0_config_pfp_cache_rs64(adev, addr, addr2);
if (r)
return r;
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC].offset;
addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK].offset;
r = gfx_v11_0_config_mec_cache_rs64(adev, addr, addr2);
if (r)
return r;
} else {
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_CP_ME].offset;
r = gfx_v11_0_config_me_cache(adev, addr);
if (r)
return r;
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_CP_PFP].offset;
r = gfx_v11_0_config_pfp_cache(adev, addr);
if (r)
return r;
addr = adev->gfx.rlc.rlc_autoload_gpu_addr +
rlc_autoload_info[SOC21_FIRMWARE_ID_CP_MEC].offset;
r = gfx_v11_0_config_mec_cache(adev, addr);
if (r)
return r;
}
}
return 0;
}
static int gfx_v11_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable)
{
int i;
u32 tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1);
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
for (i = 0; i < adev->usec_timeout; i++) {
if (RREG32_SOC15(GC, 0, regCP_STAT) == 0)
break;
udelay(1);
}
if (i >= adev->usec_timeout)
DRM_ERROR("failed to %s cp gfx\n", enable ? "unhalt" : "halt");
return 0;
}
static int gfx_v11_0_cp_gfx_load_pfp_microcode(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v1_0 *pfp_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
pfp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, pfp_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.pfp.pfp_fw_obj,
&adev->gfx.pfp.pfp_fw_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create pfp fw bo\n", r);
gfx_v11_0_pfp_fini(adev);
return r;
}
memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj);
amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj);
gfx_v11_0_config_pfp_cache(adev, adev->gfx.pfp.pfp_fw_gpu_addr);
WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, 0);
for (i = 0; i < pfp_hdr->jt_size; i++)
WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_DATA,
le32_to_cpup(fw_data + pfp_hdr->jt_offset + i));
WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version);
return 0;
}
static int gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v2_0 *pfp_hdr;
const __le32 *fw_ucode, *fw_data;
unsigned i, pipe_id, fw_ucode_size, fw_data_size;
uint32_t tmp;
uint32_t usec_timeout = 50000; /* wait for 50ms */
pfp_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header);
/* instruction */
fw_ucode = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(pfp_hdr->ucode_offset_bytes));
fw_ucode_size = le32_to_cpu(pfp_hdr->ucode_size_bytes);
/* data */
fw_data = (const __le32 *)(adev->gfx.pfp_fw->data +
le32_to_cpu(pfp_hdr->data_offset_bytes));
fw_data_size = le32_to_cpu(pfp_hdr->data_size_bytes);
/* 64kb align */
r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.pfp.pfp_fw_obj,
&adev->gfx.pfp.pfp_fw_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create pfp ucode fw bo\n", r);
gfx_v11_0_pfp_fini(adev);
return r;
}
r = amdgpu_bo_create_reserved(adev, fw_data_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.pfp.pfp_fw_data_obj,
&adev->gfx.pfp.pfp_fw_data_gpu_addr,
(void **)&adev->gfx.pfp.pfp_fw_data_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create pfp data fw bo\n", r);
gfx_v11_0_pfp_fini(adev);
return r;
}
memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_ucode, fw_ucode_size);
memcpy(adev->gfx.pfp.pfp_fw_data_ptr, fw_data, fw_data_size);
amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj);
amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_data_obj);
amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj);
amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_data_obj);
if (amdgpu_emu_mode == 1)
adev->hdp.funcs->flush_hdp(adev, NULL);
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO,
lower_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr));
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI,
upper_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr));
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0);
WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp);
/*
* Programming any of the CP_PFP_IC_BASE registers
* forces invalidation of the ME L1 I$. Wait for the
* invalidation complete
*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Prime the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1);
WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp);
/* Waiting for cache primed*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL,
ICACHE_PRIMED))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to prime instruction cache\n");
return -EINVAL;
}
mutex_lock(&adev->srbm_mutex);
for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START,
(pfp_hdr->ucode_start_addr_hi << 30) |
(pfp_hdr->ucode_start_addr_lo >> 2) );
WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI,
pfp_hdr->ucode_start_addr_hi>>2);
/*
* Program CP_ME_CNTL to reset given PIPE to take
* effect of CP_PFP_PRGRM_CNTR_START.
*/
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE0_RESET, 1);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* Clear pfp pipe0 reset bit. */
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE0_RESET, 0);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
PFP_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO,
lower_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr));
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI,
upper_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr));
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);
/* Invalidate the data caches */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
return -EINVAL;
}
return 0;
}
static int gfx_v11_0_cp_gfx_load_me_microcode(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v1_0 *me_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
me_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(me_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, me_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.me.me_fw_obj,
&adev->gfx.me.me_fw_gpu_addr,
(void **)&adev->gfx.me.me_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create me fw bo\n", r);
gfx_v11_0_me_fini(adev);
return r;
}
memcpy(adev->gfx.me.me_fw_ptr, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj);
amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj);
gfx_v11_0_config_me_cache(adev, adev->gfx.me.me_fw_gpu_addr);
WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, 0);
for (i = 0; i < me_hdr->jt_size; i++)
WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_DATA,
le32_to_cpup(fw_data + me_hdr->jt_offset + i));
WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, adev->gfx.me_fw_version);
return 0;
}
static int gfx_v11_0_cp_gfx_load_me_microcode_rs64(struct amdgpu_device *adev)
{
int r;
const struct gfx_firmware_header_v2_0 *me_hdr;
const __le32 *fw_ucode, *fw_data;
unsigned i, pipe_id, fw_ucode_size, fw_data_size;
uint32_t tmp;
uint32_t usec_timeout = 50000; /* wait for 50ms */
me_hdr = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
amdgpu_ucode_print_gfx_hdr(&me_hdr->header);
/* instruction */
fw_ucode = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(me_hdr->ucode_offset_bytes));
fw_ucode_size = le32_to_cpu(me_hdr->ucode_size_bytes);
/* data */
fw_data = (const __le32 *)(adev->gfx.me_fw->data +
le32_to_cpu(me_hdr->data_offset_bytes));
fw_data_size = le32_to_cpu(me_hdr->data_size_bytes);
/* 64kb align*/
r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.me.me_fw_obj,
&adev->gfx.me.me_fw_gpu_addr,
(void **)&adev->gfx.me.me_fw_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create me ucode bo\n", r);
gfx_v11_0_me_fini(adev);
return r;
}
r = amdgpu_bo_create_reserved(adev, fw_data_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.me.me_fw_data_obj,
&adev->gfx.me.me_fw_data_gpu_addr,
(void **)&adev->gfx.me.me_fw_data_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create me data bo\n", r);
gfx_v11_0_pfp_fini(adev);
return r;
}
memcpy(adev->gfx.me.me_fw_ptr, fw_ucode, fw_ucode_size);
memcpy(adev->gfx.me.me_fw_data_ptr, fw_data, fw_data_size);
amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj);
amdgpu_bo_kunmap(adev->gfx.me.me_fw_data_obj);
amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj);
amdgpu_bo_unreserve(adev->gfx.me.me_fw_data_obj);
if (amdgpu_emu_mode == 1)
adev->hdp.funcs->flush_hdp(adev, NULL);
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO,
lower_32_bits(adev->gfx.me.me_fw_gpu_addr));
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI,
upper_32_bits(adev->gfx.me.me_fw_gpu_addr));
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0);
WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp);
/*
* Programming any of the CP_ME_IC_BASE registers
* forces invalidation of the ME L1 I$. Wait for the
* invalidation complete
*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Prime the instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1);
WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp);
/* Waiting for instruction cache primed*/
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL,
ICACHE_PRIMED))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to prime instruction cache\n");
return -EINVAL;
}
mutex_lock(&adev->srbm_mutex);
for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) {
soc21_grbm_select(adev, 0, pipe_id, 0, 0);
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START,
(me_hdr->ucode_start_addr_hi << 30) |
(me_hdr->ucode_start_addr_lo >> 2) );
WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI,
me_hdr->ucode_start_addr_hi>>2);
/*
* Program CP_ME_CNTL to reset given PIPE to take
* effect of CP_PFP_PRGRM_CNTR_START.
*/
tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL);
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE0_RESET, 1);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE1_RESET, 1);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
/* Clear pfp pipe0 reset bit. */
if (pipe_id == 0)
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE0_RESET, 0);
else
tmp = REG_SET_FIELD(tmp, CP_ME_CNTL,
ME_PIPE1_RESET, 0);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO,
lower_32_bits(adev->gfx.me.me_fw_data_gpu_addr));
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI,
upper_32_bits(adev->gfx.me.me_fw_data_gpu_addr));
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp);
/* Invalidate the data caches */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp);
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate RS64 data cache\n");
return -EINVAL;
}
return 0;
}
static int gfx_v11_0_cp_gfx_load_microcode(struct amdgpu_device *adev)
{
int r;
if (!adev->gfx.me_fw || !adev->gfx.pfp_fw)
return -EINVAL;
gfx_v11_0_cp_gfx_enable(adev, false);
if (adev->gfx.rs64_enable)
r = gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(adev);
else
r = gfx_v11_0_cp_gfx_load_pfp_microcode(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to load pfp fw\n", r);
return r;
}
if (adev->gfx.rs64_enable)
r = gfx_v11_0_cp_gfx_load_me_microcode_rs64(adev);
else
r = gfx_v11_0_cp_gfx_load_me_microcode(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to load me fw\n", r);
return r;
}
return 0;
}
static int gfx_v11_0_cp_gfx_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
const struct cs_section_def *sect = NULL;
const struct cs_extent_def *ext = NULL;
int r, i;
int ctx_reg_offset;
/* init the CP */
WREG32_SOC15(GC, 0, regCP_MAX_CONTEXT,
adev->gfx.config.max_hw_contexts - 1);
WREG32_SOC15(GC, 0, regCP_DEVICE_ID, 1);
if (!amdgpu_async_gfx_ring)
gfx_v11_0_cp_gfx_enable(adev, true);
ring = &adev->gfx.gfx_ring[0];
r = amdgpu_ring_alloc(ring, gfx_v11_0_get_csb_size(adev));
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, 0x80000000);
amdgpu_ring_write(ring, 0x80000000);
for (sect = gfx11_cs_data; sect->section != NULL; ++sect) {
for (ext = sect->section; ext->extent != NULL; ++ext) {
if (sect->id == SECT_CONTEXT) {
amdgpu_ring_write(ring,
PACKET3(PACKET3_SET_CONTEXT_REG,
ext->reg_count));
amdgpu_ring_write(ring, ext->reg_index -
PACKET3_SET_CONTEXT_REG_START);
for (i = 0; i < ext->reg_count; i++)
amdgpu_ring_write(ring, ext->extent[i]);
}
}
}
ctx_reg_offset =
SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START;
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 1));
amdgpu_ring_write(ring, ctx_reg_offset);
amdgpu_ring_write(ring, adev->gfx.config.pa_sc_tile_steering_override);
amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_commit(ring);
/* submit cs packet to copy state 0 to next available state */
if (adev->gfx.num_gfx_rings > 1) {
/* maximum supported gfx ring is 2 */
ring = &adev->gfx.gfx_ring[1];
r = amdgpu_ring_alloc(ring, 2);
if (r) {
DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r);
return r;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
amdgpu_ring_write(ring, 0);
amdgpu_ring_commit(ring);
}
return 0;
}
static void gfx_v11_0_cp_gfx_switch_pipe(struct amdgpu_device *adev,
CP_PIPE_ID pipe)
{
u32 tmp;
tmp = RREG32_SOC15(GC, 0, regGRBM_GFX_CNTL);
tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, pipe);
WREG32_SOC15(GC, 0, regGRBM_GFX_CNTL, tmp);
}
static void gfx_v11_0_cp_gfx_set_doorbell(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
u32 tmp;
tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL);
if (ring->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, ring->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 0);
}
WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL, tmp);
tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER,
DOORBELL_RANGE_LOWER, ring->doorbell_index);
WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER, tmp);
WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER,
CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK);
}
static int gfx_v11_0_cp_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 tmp;
u32 rb_bufsz;
u64 rb_addr, rptr_addr, wptr_gpu_addr;
/* Set the write pointer delay */
WREG32_SOC15(GC, 0, regCP_RB_WPTR_DELAY, 0);
/* set the RB to use vmid 0 */
WREG32_SOC15(GC, 0, regCP_RB_VMID, 0);
/* Init gfx ring 0 for pipe 0 */
mutex_lock(&adev->srbm_mutex);
gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0);
/* Set ring buffer size */
ring = &adev->gfx.gfx_ring[0];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2);
WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp);
/* Initialize the ring buffer's write pointers */
ring->wptr = 0;
WREG32_SOC15(GC, 0, regCP_RB0_WPTR, lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI, upper_32_bits(ring->wptr));
/* set the wb address wether it's enabled or not */
rptr_addr = ring->rptr_gpu_addr;
WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);
wptr_gpu_addr = ring->wptr_gpu_addr;
WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
mdelay(1);
WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32_SOC15(GC, 0, regCP_RB0_BASE, rb_addr);
WREG32_SOC15(GC, 0, regCP_RB0_BASE_HI, upper_32_bits(rb_addr));
WREG32_SOC15(GC, 0, regCP_RB_ACTIVE, 1);
gfx_v11_0_cp_gfx_set_doorbell(adev, ring);
mutex_unlock(&adev->srbm_mutex);
/* Init gfx ring 1 for pipe 1 */
if (adev->gfx.num_gfx_rings > 1) {
mutex_lock(&adev->srbm_mutex);
gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID1);
/* maximum supported gfx ring is 2 */
ring = &adev->gfx.gfx_ring[1];
rb_bufsz = order_base_2(ring->ring_size / 8);
tmp = REG_SET_FIELD(0, CP_RB1_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_RB1_CNTL, RB_BLKSZ, rb_bufsz - 2);
WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp);
/* Initialize the ring buffer's write pointers */
ring->wptr = 0;
WREG32_SOC15(GC, 0, regCP_RB1_WPTR, lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, regCP_RB1_WPTR_HI, upper_32_bits(ring->wptr));
/* Set the wb address wether it's enabled or not */
rptr_addr = ring->rptr_gpu_addr;
WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr));
WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) &
CP_RB1_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK);
wptr_gpu_addr = ring->wptr_gpu_addr;
WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
mdelay(1);
WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp);
rb_addr = ring->gpu_addr >> 8;
WREG32_SOC15(GC, 0, regCP_RB1_BASE, rb_addr);
WREG32_SOC15(GC, 0, regCP_RB1_BASE_HI, upper_32_bits(rb_addr));
WREG32_SOC15(GC, 0, regCP_RB1_ACTIVE, 1);
gfx_v11_0_cp_gfx_set_doorbell(adev, ring);
mutex_unlock(&adev->srbm_mutex);
}
/* Switch to pipe 0 */
mutex_lock(&adev->srbm_mutex);
gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0);
mutex_unlock(&adev->srbm_mutex);
/* start the ring */
gfx_v11_0_cp_gfx_start(adev);
return 0;
}
static void gfx_v11_0_cp_compute_enable(struct amdgpu_device *adev, bool enable)
{
u32 data;
if (adev->gfx.rs64_enable) {
data = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_INVALIDATE_ICACHE,
enable ? 0 : 1);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET,
enable ? 0 : 1);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET,
enable ? 0 : 1);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET,
enable ? 0 : 1);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET,
enable ? 0 : 1);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_ACTIVE,
enable ? 1 : 0);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_ACTIVE,
enable ? 1 : 0);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_ACTIVE,
enable ? 1 : 0);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_ACTIVE,
enable ? 1 : 0);
data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_HALT,
enable ? 0 : 1);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, data);
} else {
data = RREG32_SOC15(GC, 0, regCP_MEC_CNTL);
if (enable) {
data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 0);
if (!adev->enable_mes_kiq)
data = REG_SET_FIELD(data, CP_MEC_CNTL,
MEC_ME2_HALT, 0);
} else {
data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 1);
data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME2_HALT, 1);
}
WREG32_SOC15(GC, 0, regCP_MEC_CNTL, data);
}
udelay(50);
}
static int gfx_v11_0_cp_compute_load_microcode(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v1_0 *mec_hdr;
const __le32 *fw_data;
unsigned i, fw_size;
u32 *fw = NULL;
int r;
if (!adev->gfx.mec_fw)
return -EINVAL;
gfx_v11_0_cp_compute_enable(adev, false);
mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data;
amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);
fw_data = (const __le32 *)
(adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes));
fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes);
r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.mec_fw_obj,
&adev->gfx.mec.mec_fw_gpu_addr,
(void **)&fw);
if (r) {
dev_err(adev->dev, "(%d) failed to create mec fw bo\n", r);
gfx_v11_0_mec_fini(adev);
return r;
}
memcpy(fw, fw_data, fw_size);
amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj);
amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj);
gfx_v11_0_config_mec_cache(adev, adev->gfx.mec.mec_fw_gpu_addr);
/* MEC1 */
WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, 0);
for (i = 0; i < mec_hdr->jt_size; i++)
WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_DATA,
le32_to_cpup(fw_data + mec_hdr->jt_offset + i));
WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version);
return 0;
}
static int gfx_v11_0_cp_compute_load_microcode_rs64(struct amdgpu_device *adev)
{
const struct gfx_firmware_header_v2_0 *mec_hdr;
const __le32 *fw_ucode, *fw_data;
u32 tmp, fw_ucode_size, fw_data_size;
u32 i, usec_timeout = 50000; /* Wait for 50 ms */
u32 *fw_ucode_ptr, *fw_data_ptr;
int r;
if (!adev->gfx.mec_fw)
return -EINVAL;
gfx_v11_0_cp_compute_enable(adev, false);
mec_hdr = (const struct gfx_firmware_header_v2_0 *)adev->gfx.mec_fw->data;
amdgpu_ucode_print_gfx_hdr(&mec_hdr->header);
fw_ucode = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->ucode_offset_bytes));
fw_ucode_size = le32_to_cpu(mec_hdr->ucode_size_bytes);
fw_data = (const __le32 *) (adev->gfx.mec_fw->data +
le32_to_cpu(mec_hdr->data_offset_bytes));
fw_data_size = le32_to_cpu(mec_hdr->data_size_bytes);
r = amdgpu_bo_create_reserved(adev, fw_ucode_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.mec_fw_obj,
&adev->gfx.mec.mec_fw_gpu_addr,
(void **)&fw_ucode_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r);
gfx_v11_0_mec_fini(adev);
return r;
}
r = amdgpu_bo_create_reserved(adev, fw_data_size,
64 * 1024,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&adev->gfx.mec.mec_fw_data_obj,
&adev->gfx.mec.mec_fw_data_gpu_addr,
(void **)&fw_data_ptr);
if (r) {
dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r);
gfx_v11_0_mec_fini(adev);
return r;
}
memcpy(fw_ucode_ptr, fw_ucode, fw_ucode_size);
memcpy(fw_data_ptr, fw_data, fw_data_size);
amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj);
amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_data_obj);
amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj);
amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_data_obj);
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp);
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0);
WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) {
soc21_grbm_select(adev, 1, i, 0, 0);
WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, adev->gfx.mec.mec_fw_data_gpu_addr);
WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI,
upper_32_bits(adev->gfx.mec.mec_fw_data_gpu_addr));
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START,
mec_hdr->ucode_start_addr_lo >> 2 |
mec_hdr->ucode_start_addr_hi << 30);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI,
mec_hdr->ucode_start_addr_hi >> 2);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr);
WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI,
upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr));
}
mutex_unlock(&adev->srbm_mutex);
soc21_grbm_select(adev, 0, 0, 0, 0);
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1);
WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL,
INVALIDATE_DCACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
/* Trigger an invalidation of the L1 instruction caches */
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1);
WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp);
/* Wait for invalidation complete */
for (i = 0; i < usec_timeout; i++) {
tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL);
if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL,
INVALIDATE_CACHE_COMPLETE))
break;
udelay(1);
}
if (i >= usec_timeout) {
dev_err(adev->dev, "failed to invalidate instruction cache\n");
return -EINVAL;
}
return 0;
}
static void gfx_v11_0_kiq_setting(struct amdgpu_ring *ring)
{
uint32_t tmp;
struct amdgpu_device *adev = ring->adev;
/* tell RLC which is KIQ queue */
tmp = RREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS);
tmp &= 0xffffff00;
tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue);
WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp);
tmp |= 0x80;
WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp);
}
static void gfx_v11_0_cp_set_doorbell_range(struct amdgpu_device *adev)
{
/* set graphics engine doorbell range */
WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER,
(adev->doorbell_index.gfx_ring0 * 2) << 2);
WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER,
(adev->doorbell_index.gfx_userqueue_end * 2) << 2);
/* set compute engine doorbell range */
WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER,
(adev->doorbell_index.kiq * 2) << 2);
WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER,
(adev->doorbell_index.userqueue_end * 2) << 2);
}
static void gfx_v11_0_gfx_mqd_set_priority(struct amdgpu_device *adev,
struct v11_gfx_mqd *mqd,
struct amdgpu_mqd_prop *prop)
{
bool priority = 0;
u32 tmp;
/* set up default queue priority level
* 0x0 = low priority, 0x1 = high priority
*/
if (prop->hqd_pipe_priority == AMDGPU_GFX_PIPE_PRIO_HIGH)
priority = 1;
tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUEUE_PRIORITY);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUEUE_PRIORITY, PRIORITY_LEVEL, priority);
mqd->cp_gfx_hqd_queue_priority = tmp;
}
static int gfx_v11_0_gfx_mqd_init(struct amdgpu_device *adev, void *m,
struct amdgpu_mqd_prop *prop)
{
struct v11_gfx_mqd *mqd = m;
uint64_t hqd_gpu_addr, wb_gpu_addr;
uint32_t tmp;
uint32_t rb_bufsz;
/* set up gfx hqd wptr */
mqd->cp_gfx_hqd_wptr = 0;
mqd->cp_gfx_hqd_wptr_hi = 0;
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr = prop->mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr);
/* set up mqd control */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, VMID, 0);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, CACHE_POLICY, 0);
mqd->cp_gfx_mqd_control = tmp;
/* set up gfx_hqd_vimd with 0x0 to indicate the ring buffer's vmid */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_VMID);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_VMID, VMID, 0);
mqd->cp_gfx_hqd_vmid = 0;
/* set up gfx queue priority */
gfx_v11_0_gfx_mqd_set_priority(adev, mqd, prop);
/* set up time quantum */
tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUANTUM);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUANTUM, QUANTUM_EN, 1);
mqd->cp_gfx_hqd_quantum = tmp;
/* set up gfx hqd base. this is similar as CP_RB_BASE */
hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8;
mqd->cp_gfx_hqd_base = hqd_gpu_addr;
mqd->cp_gfx_hqd_base_hi = upper_32_bits(hqd_gpu_addr);
/* set up hqd_rptr_addr/_hi, similar as CP_RB_RPTR */
wb_gpu_addr = prop->rptr_gpu_addr;
mqd->cp_gfx_hqd_rptr_addr = wb_gpu_addr & 0xfffffffc;
mqd->cp_gfx_hqd_rptr_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
/* set up rb_wptr_poll addr */
wb_gpu_addr = prop->wptr_gpu_addr;
mqd->cp_rb_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
/* set up the gfx_hqd_control, similar as CP_RB0_CNTL */
rb_bufsz = order_base_2(prop->queue_size / 4) - 1;
tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BUFSZ, rb_bufsz);
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BLKSZ, rb_bufsz - 2);
#ifdef __BIG_ENDIAN
tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, BUF_SWAP, 1);
#endif
mqd->cp_gfx_hqd_cntl = tmp;
/* set up cp_doorbell_control */
tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL);
if (prop->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_OFFSET, prop->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 1);
} else
tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL,
DOORBELL_EN, 0);
mqd->cp_rb_doorbell_control = tmp;
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
mqd->cp_gfx_hqd_rptr = RREG32_SOC15(GC, 0, regCP_GFX_HQD_RPTR);
/* active the queue */
mqd->cp_gfx_hqd_active = 1;
return 0;
}
static int gfx_v11_0_kgq_init_queue(struct amdgpu_ring *ring, bool reset)
{
struct amdgpu_device *adev = ring->adev;
struct v11_gfx_mqd *mqd = ring->mqd_ptr;
int mqd_idx = ring - &adev->gfx.gfx_ring[0];
if (!reset && !amdgpu_in_reset(adev) && !adev->in_suspend) {
memset((void *)mqd, 0, sizeof(*mqd));
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
amdgpu_ring_init_mqd(ring);
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.me.mqd_backup[mqd_idx])
memcpy_fromio(adev->gfx.me.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
} else {
/* restore mqd with the backup copy */
if (adev->gfx.me.mqd_backup[mqd_idx])
memcpy_toio(mqd, adev->gfx.me.mqd_backup[mqd_idx], sizeof(*mqd));
/* reset the ring */
ring->wptr = 0;
*ring->wptr_cpu_addr = 0;
amdgpu_ring_clear_ring(ring);
}
return 0;
}
static int gfx_v11_0_cp_async_gfx_ring_resume(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *ring;
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v11_0_kgq_init_queue(ring, false);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r)
return r;
}
r = amdgpu_gfx_enable_kgq(adev, 0);
if (r)
return r;
return gfx_v11_0_cp_gfx_start(adev);
}
static int gfx_v11_0_compute_mqd_init(struct amdgpu_device *adev, void *m,
struct amdgpu_mqd_prop *prop)
{
struct v11_compute_mqd *mqd = m;
uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr;
uint32_t tmp;
mqd->header = 0xC0310800;
mqd->compute_pipelinestat_enable = 0x00000001;
mqd->compute_static_thread_mgmt_se0 = 0xffffffff;
mqd->compute_static_thread_mgmt_se1 = 0xffffffff;
mqd->compute_static_thread_mgmt_se2 = 0xffffffff;
mqd->compute_static_thread_mgmt_se3 = 0xffffffff;
mqd->compute_misc_reserved = 0x00000007;
eop_base_addr = prop->eop_gpu_addr >> 8;
mqd->cp_hqd_eop_base_addr_lo = eop_base_addr;
mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
tmp = RREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE,
(order_base_2(GFX11_MEC_HPD_SIZE / 4) - 1));
mqd->cp_hqd_eop_control = tmp;
/* enable doorbell? */
tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL);
if (prop->use_doorbell) {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, prop->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
} else {
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 0);
}
mqd->cp_hqd_pq_doorbell_control = tmp;
/* disable the queue if it's active */
mqd->cp_hqd_dequeue_request = 0;
mqd->cp_hqd_pq_rptr = 0;
mqd->cp_hqd_pq_wptr_lo = 0;
mqd->cp_hqd_pq_wptr_hi = 0;
/* set the pointer to the MQD */
mqd->cp_mqd_base_addr_lo = prop->mqd_gpu_addr & 0xfffffffc;
mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr);
/* set MQD vmid to 0 */
tmp = RREG32_SOC15(GC, 0, regCP_MQD_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0);
mqd->cp_mqd_control = tmp;
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8;
mqd->cp_hqd_pq_base_lo = hqd_gpu_addr;
mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr);
/* set up the HQD, this is similar to CP_RB0_CNTL */
tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE,
(order_base_2(prop->queue_size / 4) - 1));
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE,
(order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1));
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, TUNNEL_DISPATCH,
prop->allow_tunneling);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1);
mqd->cp_hqd_pq_control = tmp;
/* set the wb address whether it's enabled or not */
wb_gpu_addr = prop->rptr_gpu_addr;
mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_rptr_report_addr_hi =
upper_32_bits(wb_gpu_addr) & 0xffff;
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
wb_gpu_addr = prop->wptr_gpu_addr;
mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc;
mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff;
tmp = 0;
/* enable the doorbell if requested */
if (prop->use_doorbell) {
tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_OFFSET, prop->doorbell_index);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_EN, 1);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_SOURCE, 0);
tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL,
DOORBELL_HIT, 0);
}
mqd->cp_hqd_pq_doorbell_control = tmp;
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR);
/* set the vmid for the queue */
mqd->cp_hqd_vmid = 0;
tmp = RREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE);
tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x55);
mqd->cp_hqd_persistent_state = tmp;
/* set MIN_IB_AVAIL_SIZE */
tmp = RREG32_SOC15(GC, 0, regCP_HQD_IB_CONTROL);
tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3);
mqd->cp_hqd_ib_control = tmp;
/* set static priority for a compute queue/ring */
mqd->cp_hqd_pipe_priority = prop->hqd_pipe_priority;
mqd->cp_hqd_queue_priority = prop->hqd_queue_priority;
mqd->cp_hqd_active = prop->hqd_active;
return 0;
}
static int gfx_v11_0_kiq_init_register(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v11_compute_mqd *mqd = ring->mqd_ptr;
int j;
/* inactivate the queue */
if (amdgpu_sriov_vf(adev))
WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE, 0);
/* disable wptr polling */
WREG32_FIELD15_PREREG(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0);
/* write the EOP addr */
WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR,
mqd->cp_hqd_eop_base_addr_lo);
WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR_HI,
mqd->cp_hqd_eop_base_addr_hi);
/* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */
WREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL,
mqd->cp_hqd_eop_control);
/* enable doorbell? */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL,
mqd->cp_hqd_pq_doorbell_control);
/* disable the queue if it's active */
if (RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1) {
WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 1);
for (j = 0; j < adev->usec_timeout; j++) {
if (!(RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1))
break;
udelay(1);
}
WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST,
mqd->cp_hqd_dequeue_request);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR,
mqd->cp_hqd_pq_rptr);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO,
mqd->cp_hqd_pq_wptr_lo);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI,
mqd->cp_hqd_pq_wptr_hi);
}
/* set the pointer to the MQD */
WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR,
mqd->cp_mqd_base_addr_lo);
WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR_HI,
mqd->cp_mqd_base_addr_hi);
/* set MQD vmid to 0 */
WREG32_SOC15(GC, 0, regCP_MQD_CONTROL,
mqd->cp_mqd_control);
/* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE,
mqd->cp_hqd_pq_base_lo);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE_HI,
mqd->cp_hqd_pq_base_hi);
/* set up the HQD, this is similar to CP_RB0_CNTL */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL,
mqd->cp_hqd_pq_control);
/* set the wb address whether it's enabled or not */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR,
mqd->cp_hqd_pq_rptr_report_addr_lo);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
mqd->cp_hqd_pq_rptr_report_addr_hi);
/* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR,
mqd->cp_hqd_pq_wptr_poll_addr_lo);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI,
mqd->cp_hqd_pq_wptr_poll_addr_hi);
/* enable the doorbell if requested */
if (ring->use_doorbell) {
WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER,
(adev->doorbell_index.kiq * 2) << 2);
WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER,
(adev->doorbell_index.userqueue_end * 2) << 2);
}
WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL,
mqd->cp_hqd_pq_doorbell_control);
/* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO,
mqd->cp_hqd_pq_wptr_lo);
WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI,
mqd->cp_hqd_pq_wptr_hi);
/* set the vmid for the queue */
WREG32_SOC15(GC, 0, regCP_HQD_VMID, mqd->cp_hqd_vmid);
WREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE,
mqd->cp_hqd_persistent_state);
/* activate the queue */
WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE,
mqd->cp_hqd_active);
if (ring->use_doorbell)
WREG32_FIELD15_PREREG(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1);
return 0;
}
static int gfx_v11_0_kiq_init_queue(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct v11_compute_mqd *mqd = ring->mqd_ptr;
gfx_v11_0_kiq_setting(ring);
if (amdgpu_in_reset(adev)) { /* for GPU_RESET case */
/* reset MQD to a clean status */
if (adev->gfx.kiq[0].mqd_backup)
memcpy_toio(mqd, adev->gfx.kiq[0].mqd_backup, sizeof(*mqd));
/* reset ring buffer */
ring->wptr = 0;
amdgpu_ring_clear_ring(ring);
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
gfx_v11_0_kiq_init_register(ring);
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
} else {
memset((void *)mqd, 0, sizeof(*mqd));
if (amdgpu_sriov_vf(adev) && adev->in_suspend)
amdgpu_ring_clear_ring(ring);
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
amdgpu_ring_init_mqd(ring);
gfx_v11_0_kiq_init_register(ring);
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.kiq[0].mqd_backup)
memcpy_fromio(adev->gfx.kiq[0].mqd_backup, mqd, sizeof(*mqd));
}
return 0;
}
static int gfx_v11_0_kcq_init_queue(struct amdgpu_ring *ring, bool reset)
{
struct amdgpu_device *adev = ring->adev;
struct v11_compute_mqd *mqd = ring->mqd_ptr;
int mqd_idx = ring - &adev->gfx.compute_ring[0];
if (!reset && !amdgpu_in_reset(adev) && !adev->in_suspend) {
memset((void *)mqd, 0, sizeof(*mqd));
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
amdgpu_ring_init_mqd(ring);
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy_fromio(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd));
} else {
/* restore MQD to a clean status */
if (adev->gfx.mec.mqd_backup[mqd_idx])
memcpy_toio(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd));
/* reset ring buffer */
ring->wptr = 0;
atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 0);
amdgpu_ring_clear_ring(ring);
}
return 0;
}
static int gfx_v11_0_kiq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int r;
ring = &adev->gfx.kiq[0].ring;
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (unlikely(r != 0)) {
amdgpu_bo_unreserve(ring->mqd_obj);
return r;
}
gfx_v11_0_kiq_init_queue(ring);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
amdgpu_bo_unreserve(ring->mqd_obj);
ring->sched.ready = true;
return 0;
}
static int gfx_v11_0_kcq_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = NULL;
int r = 0, i;
if (!amdgpu_async_gfx_ring)
gfx_v11_0_cp_compute_enable(adev, true);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0))
goto done;
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v11_0_kcq_init_queue(ring, false);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r)
goto done;
}
r = amdgpu_gfx_enable_kcq(adev, 0);
done:
return r;
}
static int gfx_v11_0_cp_resume(struct amdgpu_device *adev)
{
int r, i;
struct amdgpu_ring *ring;
if (!(adev->flags & AMD_IS_APU))
gfx_v11_0_enable_gui_idle_interrupt(adev, false);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
/* legacy firmware loading */
r = gfx_v11_0_cp_gfx_load_microcode(adev);
if (r)
return r;
if (adev->gfx.rs64_enable)
r = gfx_v11_0_cp_compute_load_microcode_rs64(adev);
else
r = gfx_v11_0_cp_compute_load_microcode(adev);
if (r)
return r;
}
gfx_v11_0_cp_set_doorbell_range(adev);
if (amdgpu_async_gfx_ring) {
gfx_v11_0_cp_compute_enable(adev, true);
gfx_v11_0_cp_gfx_enable(adev, true);
}
if (adev->enable_mes_kiq && adev->mes.kiq_hw_init)
r = amdgpu_mes_kiq_hw_init(adev);
else
r = gfx_v11_0_kiq_resume(adev);
if (r)
return r;
r = gfx_v11_0_kcq_resume(adev);
if (r)
return r;
if (!amdgpu_async_gfx_ring) {
r = gfx_v11_0_cp_gfx_resume(adev);
if (r)
return r;
} else {
r = gfx_v11_0_cp_async_gfx_ring_resume(adev);
if (r)
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
}
return 0;
}
static void gfx_v11_0_cp_enable(struct amdgpu_device *adev, bool enable)
{
gfx_v11_0_cp_gfx_enable(adev, enable);
gfx_v11_0_cp_compute_enable(adev, enable);
}
static int gfx_v11_0_gfxhub_enable(struct amdgpu_device *adev)
{
int r;
bool value;
r = adev->gfxhub.funcs->gart_enable(adev);
if (r)
return r;
adev->hdp.funcs->flush_hdp(adev, NULL);
value = (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) ?
false : true;
adev->gfxhub.funcs->set_fault_enable_default(adev, value);
/* TODO investigate why this and the hdp flush above is needed,
* are we missing a flush somewhere else? */
adev->gmc.gmc_funcs->flush_gpu_tlb(adev, 0, AMDGPU_GFXHUB(0), 0);
return 0;
}
static void gfx_v11_0_select_cp_fw_arch(struct amdgpu_device *adev)
{
u32 tmp;
/* select RS64 */
if (adev->gfx.rs64_enable) {
tmp = RREG32_SOC15(GC, 0, regCP_GFX_CNTL);
tmp = REG_SET_FIELD(tmp, CP_GFX_CNTL, ENGINE_SEL, 1);
WREG32_SOC15(GC, 0, regCP_GFX_CNTL, tmp);
tmp = RREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL);
tmp = REG_SET_FIELD(tmp, CP_MEC_ISA_CNTL, ISA_MODE, 1);
WREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL, tmp);
}
if (amdgpu_emu_mode == 1)
msleep(100);
}
static int get_gb_addr_config(struct amdgpu_device * adev)
{
u32 gb_addr_config;
gb_addr_config = RREG32_SOC15(GC, 0, regGB_ADDR_CONFIG);
if (gb_addr_config == 0)
return -EINVAL;
adev->gfx.config.gb_addr_config_fields.num_pkrs =
1 << REG_GET_FIELD(gb_addr_config, GB_ADDR_CONFIG, NUM_PKRS);
adev->gfx.config.gb_addr_config = gb_addr_config;
adev->gfx.config.gb_addr_config_fields.num_pipes = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_PIPES);
adev->gfx.config.max_tile_pipes =
adev->gfx.config.gb_addr_config_fields.num_pipes;
adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS);
adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_RB_PER_SE);
adev->gfx.config.gb_addr_config_fields.num_se = 1 <<
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, NUM_SHADER_ENGINES);
adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 +
REG_GET_FIELD(adev->gfx.config.gb_addr_config,
GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE));
return 0;
}
static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev)
{
uint32_t data;
data = RREG32_SOC15(GC, 0, regCPC_PSP_DEBUG);
data |= CPC_PSP_DEBUG__GPA_OVERRIDE_MASK;
WREG32_SOC15(GC, 0, regCPC_PSP_DEBUG, data);
data = RREG32_SOC15(GC, 0, regCPG_PSP_DEBUG);
data |= CPG_PSP_DEBUG__GPA_OVERRIDE_MASK;
WREG32_SOC15(GC, 0, regCPG_PSP_DEBUG, data);
}
static int gfx_v11_0_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) {
if (adev->gfx.imu.funcs) {
/* RLC autoload sequence 1: Program rlc ram */
if (adev->gfx.imu.funcs->program_rlc_ram)
adev->gfx.imu.funcs->program_rlc_ram(adev);
/* rlc autoload firmware */
r = gfx_v11_0_rlc_backdoor_autoload_enable(adev);
if (r)
return r;
}
} else {
if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
if (adev->gfx.imu.funcs && (amdgpu_dpm > 0)) {
if (adev->gfx.imu.funcs->load_microcode)
adev->gfx.imu.funcs->load_microcode(adev);
if (adev->gfx.imu.funcs->setup_imu)
adev->gfx.imu.funcs->setup_imu(adev);
if (adev->gfx.imu.funcs->start_imu)
adev->gfx.imu.funcs->start_imu(adev);
}
/* disable gpa mode in backdoor loading */
gfx_v11_0_disable_gpa_mode(adev);
}
}
if ((adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) ||
(adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)) {
r = gfx_v11_0_wait_for_rlc_autoload_complete(adev);
if (r) {
dev_err(adev->dev, "(%d) failed to wait rlc autoload complete\n", r);
return r;
}
}
adev->gfx.is_poweron = true;
if(get_gb_addr_config(adev))
DRM_WARN("Invalid gb_addr_config !\n");
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP &&
adev->gfx.rs64_enable)
gfx_v11_0_config_gfx_rs64(adev);
r = gfx_v11_0_gfxhub_enable(adev);
if (r)
return r;
if (!amdgpu_emu_mode)
gfx_v11_0_init_golden_registers(adev);
if ((adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) ||
(adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO && amdgpu_dpm == 1)) {
/**
* For gfx 11, rlc firmware loading relies on smu firmware is
* loaded firstly, so in direct type, it has to load smc ucode
* here before rlc.
*/
r = amdgpu_pm_load_smu_firmware(adev, NULL);
if (r)
return r;
}
gfx_v11_0_constants_init(adev);
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP)
gfx_v11_0_select_cp_fw_arch(adev);
if (adev->nbio.funcs->gc_doorbell_init)
adev->nbio.funcs->gc_doorbell_init(adev);
r = gfx_v11_0_rlc_resume(adev);
if (r)
return r;
/*
* init golden registers and rlc resume may override some registers,
* reconfig them here
*/
gfx_v11_0_tcp_harvest(adev);
r = gfx_v11_0_cp_resume(adev);
if (r)
return r;
/* get IMU version from HW if it's not set */
if (!adev->gfx.imu_fw_version)
adev->gfx.imu_fw_version = RREG32_SOC15(GC, 0, regGFX_IMU_SCRATCH_0);
return r;
}
static int gfx_v11_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0);
amdgpu_irq_put(adev, &adev->gfx.bad_op_irq, 0);
if (!adev->no_hw_access) {
if (amdgpu_async_gfx_ring) {
if (amdgpu_gfx_disable_kgq(adev, 0))
DRM_ERROR("KGQ disable failed\n");
}
if (amdgpu_gfx_disable_kcq(adev, 0))
DRM_ERROR("KCQ disable failed\n");
amdgpu_mes_kiq_hw_fini(adev);
}
if (amdgpu_sriov_vf(adev))
/* Remove the steps disabling CPG and clearing KIQ position,
* so that CP could perform IDLE-SAVE during switch. Those
* steps are necessary to avoid a DMAR error in gfx9 but it is
* not reproduced on gfx11.
*/
return 0;
gfx_v11_0_cp_enable(adev, false);
gfx_v11_0_enable_gui_idle_interrupt(adev, false);
adev->gfxhub.funcs->gart_disable(adev);
adev->gfx.is_poweron = false;
return 0;
}
static int gfx_v11_0_suspend(void *handle)
{
return gfx_v11_0_hw_fini(handle);
}
static int gfx_v11_0_resume(void *handle)
{
return gfx_v11_0_hw_init(handle);
}
static bool gfx_v11_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (REG_GET_FIELD(RREG32_SOC15(GC, 0, regGRBM_STATUS),
GRBM_STATUS, GUI_ACTIVE))
return false;
else
return true;
}
static int gfx_v11_0_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
/* read MC_STATUS */
tmp = RREG32_SOC15(GC, 0, regGRBM_STATUS) &
GRBM_STATUS__GUI_ACTIVE_MASK;
if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
int gfx_v11_0_request_gfx_index_mutex(struct amdgpu_device *adev,
bool req)
{
u32 i, tmp, val;
for (i = 0; i < adev->usec_timeout; i++) {
/* Request with MeId=2, PipeId=0 */
tmp = REG_SET_FIELD(0, CP_GFX_INDEX_MUTEX, REQUEST, req);
tmp = REG_SET_FIELD(tmp, CP_GFX_INDEX_MUTEX, CLIENTID, 4);
WREG32_SOC15(GC, 0, regCP_GFX_INDEX_MUTEX, tmp);
val = RREG32_SOC15(GC, 0, regCP_GFX_INDEX_MUTEX);
if (req) {
if (val == tmp)
break;
} else {
tmp = REG_SET_FIELD(tmp, CP_GFX_INDEX_MUTEX,
REQUEST, 1);
/* unlocked or locked by firmware */
if (val != tmp)
break;
}
udelay(1);
}
if (i >= adev->usec_timeout)
return -EINVAL;
return 0;
}
static int gfx_v11_0_soft_reset(void *handle)
{
u32 grbm_soft_reset = 0;
u32 tmp;
int r, i, j, k;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 0);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 0);
WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->gfx.mec.num_mec; ++i) {
for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) {
soc21_grbm_select(adev, i, k, j, 0);
WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 0x2);
WREG32_SOC15(GC, 0, regSPI_COMPUTE_QUEUE_RESET, 0x1);
}
}
}
for (i = 0; i < adev->gfx.me.num_me; ++i) {
for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) {
for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) {
soc21_grbm_select(adev, i, k, j, 0);
WREG32_SOC15(GC, 0, regCP_GFX_HQD_DEQUEUE_REQUEST, 0x1);
}
}
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
/* Try to acquire the gfx mutex before access to CP_VMID_RESET */
mutex_lock(&adev->gfx.reset_sem_mutex);
r = gfx_v11_0_request_gfx_index_mutex(adev, true);
if (r) {
mutex_unlock(&adev->gfx.reset_sem_mutex);
DRM_ERROR("Failed to acquire the gfx mutex during soft reset\n");
return r;
}
WREG32_SOC15(GC, 0, regCP_VMID_RESET, 0xfffffffe);
// Read CP_VMID_RESET register three times.
// to get sufficient time for GFX_HQD_ACTIVE reach 0
RREG32_SOC15(GC, 0, regCP_VMID_RESET);
RREG32_SOC15(GC, 0, regCP_VMID_RESET);
RREG32_SOC15(GC, 0, regCP_VMID_RESET);
/* release the gfx mutex */
r = gfx_v11_0_request_gfx_index_mutex(adev, false);
mutex_unlock(&adev->gfx.reset_sem_mutex);
if (r) {
DRM_ERROR("Failed to release the gfx mutex during soft reset\n");
return r;
}
for (i = 0; i < adev->usec_timeout; i++) {
if (!RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) &&
!RREG32_SOC15(GC, 0, regCP_GFX_HQD_ACTIVE))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
printk("Failed to wait all pipes clean\n");
return -EINVAL;
}
/********** trigger soft reset ***********/
grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CP, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_GFX, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPF, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPC, 1);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPG, 1);
WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset);
/********** exit soft reset ***********/
grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CP, 0);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_GFX, 0);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPF, 0);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPC, 0);
grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET,
SOFT_RESET_CPG, 0);
WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset);
tmp = RREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL);
tmp = REG_SET_FIELD(tmp, CP_SOFT_RESET_CNTL, CMP_HQD_REG_RESET, 0x1);
WREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL, tmp);
WREG32_SOC15(GC, 0, regCP_ME_CNTL, 0x0);
WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, 0x0);
for (i = 0; i < adev->usec_timeout; i++) {
if (!RREG32_SOC15(GC, 0, regCP_VMID_RESET))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
printk("Failed to wait CP_VMID_RESET to 0\n");
return -EINVAL;
}
tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1);
tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp);
amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
return gfx_v11_0_cp_resume(adev);
}
static bool gfx_v11_0_check_soft_reset(void *handle)
{
int i, r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_ring *ring;
long tmo = msecs_to_jiffies(1000);
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
r = amdgpu_ring_test_ib(ring, tmo);
if (r)
return true;
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
r = amdgpu_ring_test_ib(ring, tmo);
if (r)
return true;
}
return false;
}
static int gfx_v11_0_post_soft_reset(void *handle)
{
/**
* GFX soft reset will impact MES, need resume MES when do GFX soft reset
*/
return amdgpu_mes_resume((struct amdgpu_device *)handle);
}
static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev)
{
uint64_t clock;
uint64_t clock_counter_lo, clock_counter_hi_pre, clock_counter_hi_after;
if (amdgpu_sriov_vf(adev)) {
amdgpu_gfx_off_ctrl(adev, false);
mutex_lock(&adev->gfx.gpu_clock_mutex);
clock_counter_hi_pre = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI);
clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO);
clock_counter_hi_after = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI);
if (clock_counter_hi_pre != clock_counter_hi_after)
clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO);
mutex_unlock(&adev->gfx.gpu_clock_mutex);
amdgpu_gfx_off_ctrl(adev, true);
} else {
preempt_disable();
clock_counter_hi_pre = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER);
clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER);
clock_counter_hi_after = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER);
if (clock_counter_hi_pre != clock_counter_hi_after)
clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER);
preempt_enable();
}
clock = clock_counter_lo | (clock_counter_hi_after << 32ULL);
return clock;
}
static void gfx_v11_0_ring_emit_gds_switch(struct amdgpu_ring *ring,
uint32_t vmid,
uint32_t gds_base, uint32_t gds_size,
uint32_t gws_base, uint32_t gws_size,
uint32_t oa_base, uint32_t oa_size)
{
struct amdgpu_device *adev = ring->adev;
/* GDS Base */
gfx_v11_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_BASE) + 2 * vmid,
gds_base);
/* GDS Size */
gfx_v11_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_SIZE) + 2 * vmid,
gds_size);
/* GWS */
gfx_v11_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, regGDS_GWS_VMID0) + vmid,
gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base);
/* OA */
gfx_v11_0_write_data_to_reg(ring, 0, false,
SOC15_REG_OFFSET(GC, 0, regGDS_OA_VMID0) + vmid,
(1 << (oa_size + oa_base)) - (1 << oa_base));
}
static int gfx_v11_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->gfx.funcs = &gfx_v11_0_gfx_funcs;
adev->gfx.num_gfx_rings = GFX11_NUM_GFX_RINGS;
adev->gfx.num_compute_rings = min(amdgpu_gfx_get_num_kcq(adev),
AMDGPU_MAX_COMPUTE_RINGS);
gfx_v11_0_set_kiq_pm4_funcs(adev);
gfx_v11_0_set_ring_funcs(adev);
gfx_v11_0_set_irq_funcs(adev);
gfx_v11_0_set_gds_init(adev);
gfx_v11_0_set_rlc_funcs(adev);
gfx_v11_0_set_mqd_funcs(adev);
gfx_v11_0_set_imu_funcs(adev);
gfx_v11_0_init_rlcg_reg_access_ctrl(adev);
return gfx_v11_0_init_microcode(adev);
}
static int gfx_v11_0_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0);
if (r)
return r;
r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0);
if (r)
return r;
r = amdgpu_irq_get(adev, &adev->gfx.bad_op_irq, 0);
if (r)
return r;
return 0;
}
static bool gfx_v11_0_is_rlc_enabled(struct amdgpu_device *adev)
{
uint32_t rlc_cntl;
/* if RLC is not enabled, do nothing */
rlc_cntl = RREG32_SOC15(GC, 0, regRLC_CNTL);
return (REG_GET_FIELD(rlc_cntl, RLC_CNTL, RLC_ENABLE_F32)) ? true : false;
}
static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id)
{
uint32_t data;
unsigned i;
data = RLC_SAFE_MODE__CMD_MASK;
data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT);
WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, data);
/* wait for RLC_SAFE_MODE */
for (i = 0; i < adev->usec_timeout; i++) {
if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, regRLC_SAFE_MODE),
RLC_SAFE_MODE, CMD))
break;
udelay(1);
}
}
static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id)
{
WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, RLC_SAFE_MODE__CMD_MASK);
}
static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev,
bool enable)
{
uint32_t def, data;
if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_PERF_CLK))
return;
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
if (enable)
data &= ~RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK;
else
data |= RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK;
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}
static void gfx_v11_0_update_sram_fgcg(struct amdgpu_device *adev,
bool enable)
{
uint32_t def, data;
if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_FGCG))
return;
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
if (enable)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK;
else
data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK;
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}
static void gfx_v11_0_update_repeater_fgcg(struct amdgpu_device *adev,
bool enable)
{
uint32_t def, data;
if (!(adev->cg_flags & AMD_CG_SUPPORT_REPEATER_FGCG))
return;
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
if (enable)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK;
else
data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK;
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}
static void gfx_v11_0_update_medium_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t data, def;
if (!(adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)))
return;
/* It is disabled by HW by default */
if (enable) {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
/* 1 - RLC_CGTT_MGCG_OVERRIDE */
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK);
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}
} else {
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) {
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK |
RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK);
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
}
}
}
static void gfx_v11_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev,
bool enable)
{
uint32_t def, data;
if (!(adev->cg_flags &
(AMD_CG_SUPPORT_GFX_CGCG |
AMD_CG_SUPPORT_GFX_CGLS |
AMD_CG_SUPPORT_GFX_3D_CGCG |
AMD_CG_SUPPORT_GFX_3D_CGLS)))
return;
if (enable) {
def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
/* unset CGCG override */
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG ||
adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS)
data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK;
/* update CGCG override bits */
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data);
/* enable cgcg FSM(0x0000363F) */
def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) {
data &= ~RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD_MASK;
data |= (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) {
data &= ~RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY_MASK;
data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
}
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data);
/* Program RLC_CGCG_CGLS_CTRL_3D */
def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) {
data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD_MASK;
data |= (0x36 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) |
RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK;
}
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) {
data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY_MASK;
data |= (0xf << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) |
RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK;
}
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data);
/* set IDLE_POLL_COUNT(0x00900100) */
def = data = RREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL);
data &= ~(CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY_MASK | CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT_MASK);
data |= (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) |
(0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT);
if (def != data)
WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL, data);
data = RREG32_SOC15(GC, 0, regCP_INT_CNTL);
data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1);
data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1);
data = REG_SET_FIELD(data, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1);
data = REG_SET_FIELD(data, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, regCP_INT_CNTL, data);
data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL);
data = REG_SET_FIELD(data, SDMA0_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data);
/* Some ASICs only have one SDMA instance, not need to configure SDMA1 */
if (adev->sdma.num_instances > 1) {
data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL);
data = REG_SET_FIELD(data, SDMA1_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data);
}
} else {
/* Program RLC_CGCG_CGLS_CTRL */
def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)
data &= ~RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS)
data &= ~RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data);
/* Program RLC_CGCG_CGLS_CTRL_3D */
def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG)
data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK;
if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS)
data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK;
if (def != data)
WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data);
data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL);
data &= ~SDMA0_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK;
WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data);
/* Some ASICs only have one SDMA instance, not need to configure SDMA1 */
if (adev->sdma.num_instances > 1) {
data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL);
data &= ~SDMA1_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK;
WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data);
}
}
}
static int gfx_v11_0_update_gfx_clock_gating(struct amdgpu_device *adev,
bool enable)
{
amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
gfx_v11_0_update_coarse_grain_clock_gating(adev, enable);
gfx_v11_0_update_medium_grain_clock_gating(adev, enable);
gfx_v11_0_update_repeater_fgcg(adev, enable);
gfx_v11_0_update_sram_fgcg(adev, enable);
gfx_v11_0_update_perf_clk(adev, enable);
if (adev->cg_flags &
(AMD_CG_SUPPORT_GFX_MGCG |
AMD_CG_SUPPORT_GFX_CGLS |
AMD_CG_SUPPORT_GFX_CGCG |
AMD_CG_SUPPORT_GFX_3D_CGCG |
AMD_CG_SUPPORT_GFX_3D_CGLS))
gfx_v11_0_enable_gui_idle_interrupt(adev, enable);
amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
return 0;
}
static void gfx_v11_0_update_spm_vmid(struct amdgpu_device *adev, struct amdgpu_ring *ring, unsigned vmid)
{
u32 reg, pre_data, data;
amdgpu_gfx_off_ctrl(adev, false);
reg = SOC15_REG_OFFSET(GC, 0, regRLC_SPM_MC_CNTL);
if (amdgpu_sriov_is_pp_one_vf(adev) && !amdgpu_sriov_runtime(adev))
pre_data = RREG32_NO_KIQ(reg);
else
pre_data = RREG32(reg);
data = pre_data & (~RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK);
data |= (vmid & RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK) << RLC_SPM_MC_CNTL__RLC_SPM_VMID__SHIFT;
if (pre_data != data) {
if (amdgpu_sriov_is_pp_one_vf(adev) && !amdgpu_sriov_runtime(adev)) {
WREG32_SOC15_NO_KIQ(GC, 0, regRLC_SPM_MC_CNTL, data);
} else
WREG32_SOC15(GC, 0, regRLC_SPM_MC_CNTL, data);
}
amdgpu_gfx_off_ctrl(adev, true);
if (ring
&& amdgpu_sriov_is_pp_one_vf(adev)
&& (pre_data != data)
&& ((ring->funcs->type == AMDGPU_RING_TYPE_GFX)
|| (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE))) {
amdgpu_ring_emit_wreg(ring, reg, data);
}
}
static const struct amdgpu_rlc_funcs gfx_v11_0_rlc_funcs = {
.is_rlc_enabled = gfx_v11_0_is_rlc_enabled,
.set_safe_mode = gfx_v11_0_set_safe_mode,
.unset_safe_mode = gfx_v11_0_unset_safe_mode,
.init = gfx_v11_0_rlc_init,
.get_csb_size = gfx_v11_0_get_csb_size,
.get_csb_buffer = gfx_v11_0_get_csb_buffer,
.resume = gfx_v11_0_rlc_resume,
.stop = gfx_v11_0_rlc_stop,
.reset = gfx_v11_0_rlc_reset,
.start = gfx_v11_0_rlc_start,
.update_spm_vmid = gfx_v11_0_update_spm_vmid,
};
static void gfx_v11_cntl_power_gating(struct amdgpu_device *adev, bool enable)
{
u32 data = RREG32_SOC15(GC, 0, regRLC_PG_CNTL);
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG))
data |= RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK;
else
data &= ~RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK;
WREG32_SOC15(GC, 0, regRLC_PG_CNTL, data);
// Program RLC_PG_DELAY3 for CGPG hysteresis
if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) {
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
WREG32_SOC15(GC, 0, regRLC_PG_DELAY_3, RLC_PG_DELAY_3_DEFAULT_GC_11_0_1);
break;
default:
break;
}
}
}
static void gfx_v11_cntl_pg(struct amdgpu_device *adev, bool enable)
{
amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
gfx_v11_cntl_power_gating(adev, enable);
amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
}
static int gfx_v11_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
bool enable = (state == AMD_PG_STATE_GATE);
if (amdgpu_sriov_vf(adev))
return 0;
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
amdgpu_gfx_off_ctrl(adev, enable);
break;
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
if (!enable)
amdgpu_gfx_off_ctrl(adev, false);
gfx_v11_cntl_pg(adev, enable);
if (enable)
amdgpu_gfx_off_ctrl(adev, true);
break;
default:
break;
}
return 0;
}
static int gfx_v11_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_sriov_vf(adev))
return 0;
switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
case IP_VERSION(11, 0, 4):
case IP_VERSION(11, 5, 0):
case IP_VERSION(11, 5, 1):
case IP_VERSION(11, 5, 2):
gfx_v11_0_update_gfx_clock_gating(adev,
state == AMD_CG_STATE_GATE);
break;
default:
break;
}
return 0;
}
static void gfx_v11_0_get_clockgating_state(void *handle, u64 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
/* AMD_CG_SUPPORT_GFX_MGCG */
data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE);
if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_MGCG;
/* AMD_CG_SUPPORT_REPEATER_FGCG */
if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_REPEATER_FGCG;
/* AMD_CG_SUPPORT_GFX_FGCG */
if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_FGCG;
/* AMD_CG_SUPPORT_GFX_PERF_CLK */
if (!(data & RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK))
*flags |= AMD_CG_SUPPORT_GFX_PERF_CLK;
/* AMD_CG_SUPPORT_GFX_CGCG */
data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL);
if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGCG;
/* AMD_CG_SUPPORT_GFX_CGLS */
if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_CGLS;
/* AMD_CG_SUPPORT_GFX_3D_CGCG */
data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D);
if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_3D_CGCG;
/* AMD_CG_SUPPORT_GFX_3D_CGLS */
if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK)
*flags |= AMD_CG_SUPPORT_GFX_3D_CGLS;
}
static u64 gfx_v11_0_ring_get_rptr_gfx(struct amdgpu_ring *ring)
{
/* gfx11 is 32bit rptr*/
return *(uint32_t *)ring->rptr_cpu_addr;
}
static u64 gfx_v11_0_ring_get_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u64 wptr;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell) {
wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
} else {
wptr = RREG32_SOC15(GC, 0, regCP_RB0_WPTR);
wptr += (u64)RREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI) << 32;
}
return wptr;
}
static void gfx_v11_0_ring_set_wptr_gfx(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
ring->wptr);
WDOORBELL64(ring->doorbell_index, ring->wptr);
} else {
WREG32_SOC15(GC, 0, regCP_RB0_WPTR,
lower_32_bits(ring->wptr));
WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI,
upper_32_bits(ring->wptr));
}
}
static u64 gfx_v11_0_ring_get_rptr_compute(struct amdgpu_ring *ring)
{
/* gfx11 hardware is 32bit rptr */
return *(uint32_t *)ring->rptr_cpu_addr;
}
static u64 gfx_v11_0_ring_get_wptr_compute(struct amdgpu_ring *ring)
{
u64 wptr;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell)
wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
else
BUG();
return wptr;
}
static void gfx_v11_0_ring_set_wptr_compute(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
/* XXX check if swapping is necessary on BE */
if (ring->use_doorbell) {
atomic64_set((atomic64_t *)ring->wptr_cpu_addr,
ring->wptr);
WDOORBELL64(ring->doorbell_index, ring->wptr);
} else {
BUG(); /* only DOORBELL method supported on gfx11 now */
}
}
static void gfx_v11_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 ref_and_mask, reg_mem_engine;
const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) {
switch (ring->me) {
case 1:
ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe;
break;
case 2:
ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe;
break;
default:
return;
}
reg_mem_engine = 0;
} else {
ref_and_mask = nbio_hf_reg->ref_and_mask_cp0 << ring->pipe;
reg_mem_engine = 1; /* pfp */
}
gfx_v11_0_wait_reg_mem(ring, reg_mem_engine, 0, 1,
adev->nbio.funcs->get_hdp_flush_req_offset(adev),
adev->nbio.funcs->get_hdp_flush_done_offset(adev),
ref_and_mask, ref_and_mask, 0x20);
}
static void gfx_v11_0_ring_emit_ib_gfx(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 header, control = 0;
BUG_ON(ib->flags & AMDGPU_IB_FLAG_CE);
header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
control |= ib->length_dw | (vmid << 24);
if (ring->adev->gfx.mcbp && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) {
control |= INDIRECT_BUFFER_PRE_ENB(1);
if (flags & AMDGPU_IB_PREEMPTED)
control |= INDIRECT_BUFFER_PRE_RESUME(1);
if (vmid)
gfx_v11_0_ring_emit_de_meta(ring,
(!amdgpu_sriov_vf(ring->adev) && flags & AMDGPU_IB_PREEMPTED) ? true : false);
}
if (ring->is_mes_queue)
/* inherit vmid from mqd */
control |= 0x400000;
amdgpu_ring_write(ring, header);
BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
lower_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, control);
}
static void gfx_v11_0_ring_emit_ib_compute(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24);
if (ring->is_mes_queue)
/* inherit vmid from mqd */
control |= 0x40000000;
/* Currently, there is a high possibility to get wave ID mismatch
* between ME and GDS, leading to a hw deadlock, because ME generates
* different wave IDs than the GDS expects. This situation happens
* randomly when at least 5 compute pipes use GDS ordered append.
* The wave IDs generated by ME are also wrong after suspend/resume.
* Those are probably bugs somewhere else in the kernel driver.
*
* Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and
* GDS to 0 for this ring (me/pipe).
*/
if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) {
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1));
amdgpu_ring_write(ring, regGDS_COMPUTE_MAX_WAVE_ID);
amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id);
}
amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2));
BUG_ON(ib->gpu_addr & 0x3); /* Dword align */
amdgpu_ring_write(ring,
#ifdef __BIG_ENDIAN
(2 << 0) |
#endif
lower_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, control);
}
static void gfx_v11_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
bool int_sel = flags & AMDGPU_FENCE_FLAG_INT;
/* RELEASE_MEM - flush caches, send int */
amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6));
amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_GCR_SEQ |
PACKET3_RELEASE_MEM_GCR_GL2_WB |
PACKET3_RELEASE_MEM_GCR_GLM_INV | /* must be set with GLM_WB */
PACKET3_RELEASE_MEM_GCR_GLM_WB |
PACKET3_RELEASE_MEM_CACHE_POLICY(3) |
PACKET3_RELEASE_MEM_EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
PACKET3_RELEASE_MEM_EVENT_INDEX(5)));
amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_DATA_SEL(write64bit ? 2 : 1) |
PACKET3_RELEASE_MEM_INT_SEL(int_sel ? 2 : 0)));
/*
* the address should be Qword aligned if 64bit write, Dword
* aligned if only send 32bit data low (discard data high)
*/
if (write64bit)
BUG_ON(addr & 0x7);
else
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
amdgpu_ring_write(ring, upper_32_bits(seq));
amdgpu_ring_write(ring, ring->is_mes_queue ?
(ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0);
}
static void gfx_v11_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
gfx_v11_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr),
upper_32_bits(addr), seq, 0xffffffff, 4);
}
static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring,
uint16_t pasid, uint32_t flush_type,
bool all_hub, uint8_t dst_sel)
{
amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
amdgpu_ring_write(ring,
PACKET3_INVALIDATE_TLBS_DST_SEL(dst_sel) |
PACKET3_INVALIDATE_TLBS_ALL_HUB(all_hub) |
PACKET3_INVALIDATE_TLBS_PASID(pasid) |
PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(flush_type));
}
static void gfx_v11_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
if (ring->is_mes_queue)
gfx_v11_0_ring_invalidate_tlbs(ring, 0, 0, false, 0);
else
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
/* compute doesn't have PFP */
if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) {
/* sync PFP to ME, otherwise we might get invalid PFP reads */
amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
amdgpu_ring_write(ring, 0x0);
}
/* Make sure that we can't skip the SET_Q_MODE packets when the VM
* changed in any way.
*/
ring->set_q_mode_offs = 0;
ring->set_q_mode_ptr = NULL;
}
static void gfx_v11_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr,
u64 seq, unsigned int flags)
{
struct amdgpu_device *adev = ring->adev;
/* we only allocate 32bit for each seq wb address */
BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT);
/* write fence seq to the "addr" */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(5) | WR_CONFIRM));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
if (flags & AMDGPU_FENCE_FLAG_INT) {
/* set register to trigger INT */
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
WRITE_DATA_DST_SEL(0) | WR_CONFIRM));
amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, regCPC_INT_STATUS));
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */
}
}
static void gfx_v11_0_ring_emit_cntxcntl(struct amdgpu_ring *ring,
uint32_t flags)
{
uint32_t dw2 = 0;
dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */
if (flags & AMDGPU_HAVE_CTX_SWITCH) {
/* set load_global_config & load_global_uconfig */
dw2 |= 0x8001;
/* set load_cs_sh_regs */
dw2 |= 0x01000000;
/* set load_per_context_state & load_gfx_sh_regs for GFX */
dw2 |= 0x10002;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
amdgpu_ring_write(ring, dw2);
amdgpu_ring_write(ring, 0);
}
static unsigned gfx_v11_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring,
uint64_t addr)
{
unsigned ret;
amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
/* discard following DWs if *cond_exec_gpu_addr==0 */
amdgpu_ring_write(ring, 0);
ret = ring->wptr & ring->buf_mask;
/* patch dummy value later */
amdgpu_ring_write(ring, 0);
return ret;
}
static void gfx_v11_0_ring_emit_gfx_shadow(struct amdgpu_ring *ring,
u64 shadow_va, u64 csa_va,
u64 gds_va, bool init_shadow,
int vmid)
{
struct amdgpu_device *adev = ring->adev;
unsigned int offs, end;
if (!adev->gfx.cp_gfx_shadow || !ring->ring_obj)
return;
/*
* The logic here isn't easy to understand because we need to keep state
* accross multiple executions of the function as well as between the
* CPU and GPU. The general idea is that the newly written GPU command
* has a condition on the previous one and only executed if really
* necessary.
*/
/*
* The dw in the NOP controls if the next SET_Q_MODE packet should be
* executed or not. Reserve 64bits just to be on the save side.
*/
amdgpu_ring_write(ring, PACKET3(PACKET3_NOP, 1));
offs = ring->wptr & ring->buf_mask;
/*
* We start with skipping the prefix SET_Q_MODE and always executing
* the postfix SET_Q_MODE packet. This is changed below with a
* WRITE_DATA command when the postfix executed.
*/
amdgpu_ring_write(ring, shadow_va ? 1 : 0);
amdgpu_ring_write(ring, 0);
if (ring->set_q_mode_offs) {
uint64_t addr;
addr = amdgpu_bo_gpu_offset(ring->ring_obj);
addr += ring->set_q_mode_offs << 2;
end = gfx_v11_0_ring_emit_init_cond_exec(ring, addr);
}
/*
* When the postfix SET_Q_MODE packet executes we need to make sure that the
* next prefix SET_Q_MODE packet executes as well.
*/
if (!shadow_va) {
uint64_t addr;
addr = amdgpu_bo_gpu_offset(ring->ring_obj);
addr += offs << 2;
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, WRITE_DATA_DST_SEL(5) | WR_CONFIRM);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, 0x1);
}
amdgpu_ring_write(ring, PACKET3(PACKET3_SET_Q_PREEMPTION_MODE, 7));
amdgpu_ring_write(ring, lower_32_bits(shadow_va));
amdgpu_ring_write(ring, upper_32_bits(shadow_va));
amdgpu_ring_write(ring, lower_32_bits(gds_va));
amdgpu_ring_write(ring, upper_32_bits(gds_va));
amdgpu_ring_write(ring, lower_32_bits(csa_va));
amdgpu_ring_write(ring, upper_32_bits(csa_va));
amdgpu_ring_write(ring, shadow_va ?
PACKET3_SET_Q_PREEMPTION_MODE_IB_VMID(vmid) : 0);
amdgpu_ring_write(ring, init_shadow ?
PACKET3_SET_Q_PREEMPTION_MODE_INIT_SHADOW_MEM : 0);
if (ring->set_q_mode_offs)
amdgpu_ring_patch_cond_exec(ring, end);
if (shadow_va) {
uint64_t token = shadow_va ^ csa_va ^ gds_va ^ vmid;
/*
* If the tokens match try to skip the last postfix SET_Q_MODE
* packet to avoid saving/restoring the state all the time.
*/
if (ring->set_q_mode_ptr && ring->set_q_mode_token == token)
*ring->set_q_mode_ptr = 0;
ring->set_q_mode_token = token;
} else {
ring->set_q_mode_ptr = &ring->ring[ring->set_q_mode_offs];
}
ring->set_q_mode_offs = offs;
}
static int gfx_v11_0_ring_preempt_ib(struct amdgpu_ring *ring)
{
int i, r = 0;
struct amdgpu_device *adev = ring->adev;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
struct amdgpu_ring *kiq_ring = &kiq->ring;
unsigned long flags;
if (adev->enable_mes)
return -EINVAL;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
spin_lock_irqsave(&kiq->ring_lock, flags);
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) {
spin_unlock_irqrestore(&kiq->ring_lock, flags);
return -ENOMEM;
}
/* assert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, false);
/* assert IB preemption, emit the trailing fence */
kiq->pmf->kiq_unmap_queues(kiq_ring, ring, PREEMPT_QUEUES_NO_UNMAP,
ring->trail_fence_gpu_addr,
++ring->trail_seq);
amdgpu_ring_commit(kiq_ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
/* poll the trailing fence */
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->trail_seq ==
le32_to_cpu(*(ring->trail_fence_cpu_addr)))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
r = -EINVAL;
DRM_ERROR("ring %d failed to preempt ib\n", ring->idx);
}
/* deassert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, true);
return r;
}
static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume)
{
struct amdgpu_device *adev = ring->adev;
struct v10_de_ib_state de_payload = {0};
uint64_t offset, gds_addr, de_payload_gpu_addr;
void *de_payload_cpu_addr;
int cnt;
if (ring->is_mes_queue) {
offset = offsetof(struct amdgpu_mes_ctx_meta_data,
gfx[0].gfx_meta_data) +
offsetof(struct v10_gfx_meta_data, de_payload);
de_payload_gpu_addr =
amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
de_payload_cpu_addr =
amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset);
offset = offsetof(struct amdgpu_mes_ctx_meta_data,
gfx[0].gds_backup) +
offsetof(struct v10_gfx_meta_data, de_payload);
gds_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset);
} else {
offset = offsetof(struct v10_gfx_meta_data, de_payload);
de_payload_gpu_addr = amdgpu_csa_vaddr(ring->adev) + offset;
de_payload_cpu_addr = adev->virt.csa_cpu_addr + offset;
gds_addr = ALIGN(amdgpu_csa_vaddr(ring->adev) +
AMDGPU_CSA_SIZE - adev->gds.gds_size,
PAGE_SIZE);
}
de_payload.gds_backup_addrlo = lower_32_bits(gds_addr);
de_payload.gds_backup_addrhi = upper_32_bits(gds_addr);
cnt = (sizeof(de_payload) >> 2) + 4 - 2;
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt));
amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) |
WRITE_DATA_DST_SEL(8) |
WR_CONFIRM) |
WRITE_DATA_CACHE_POLICY(0));
amdgpu_ring_write(ring, lower_32_bits(de_payload_gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(de_payload_gpu_addr));
if (resume)
amdgpu_ring_write_multiple(ring, de_payload_cpu_addr,
sizeof(de_payload) >> 2);
else
amdgpu_ring_write_multiple(ring, (void *)&de_payload,
sizeof(de_payload) >> 2);
}
static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start,
bool secure)
{
uint32_t v = secure ? FRAME_TMZ : 0;
amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0));
amdgpu_ring_write(ring, v | FRAME_CMD(start ? 0 : 1));
}
static void gfx_v11_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg,
uint32_t reg_val_offs)
{
struct amdgpu_device *adev = ring->adev;
amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4));
amdgpu_ring_write(ring, 0 | /* src: register*/
(5 << 8) | /* dst: memory */
(1 << 20)); /* write confirm */
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr +
reg_val_offs * 4));
amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr +
reg_val_offs * 4));
}
static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val)
{
uint32_t cmd = 0;
switch (ring->funcs->type) {
case AMDGPU_RING_TYPE_GFX:
cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM;
break;
case AMDGPU_RING_TYPE_KIQ:
cmd = (1 << 16); /* no inc addr */
break;
default:
cmd = WR_CONFIRM;
break;
}
amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
amdgpu_ring_write(ring, cmd);
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val);
}
static void gfx_v11_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
gfx_v11_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20);
}
static void gfx_v11_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring,
uint32_t reg0, uint32_t reg1,
uint32_t ref, uint32_t mask)
{
int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX);
gfx_v11_0_wait_reg_mem(ring, usepfp, 0, 1, reg0, reg1,
ref, mask, 0x20);
}
static void gfx_v11_0_ring_soft_recovery(struct amdgpu_ring *ring,
unsigned vmid)
{
struct amdgpu_device *adev = ring->adev;
uint32_t value = 0;
value = REG_SET_FIELD(value, SQ_CMD, CMD, 0x03);
value = REG_SET_FIELD(value, SQ_CMD, MODE, 0x01);
value = REG_SET_FIELD(value, SQ_CMD, CHECK_VMID, 1);
value = REG_SET_FIELD(value, SQ_CMD, VM_ID, vmid);
amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
WREG32_SOC15(GC, 0, regSQ_CMD, value);
amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
}
static void
gfx_v11_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev,
uint32_t me, uint32_t pipe,
enum amdgpu_interrupt_state state)
{
uint32_t cp_int_cntl, cp_int_cntl_reg;
if (!me) {
switch (pipe) {
case 0:
cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING0);
break;
case 1:
cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING1);
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 0);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
GENERIC0_INT_ENABLE, 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
TIME_STAMP_INT_ENABLE, 1);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
GENERIC0_INT_ENABLE, 1);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
break;
default:
break;
}
}
static void gfx_v11_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev,
int me, int pipe,
enum amdgpu_interrupt_state state)
{
u32 mec_int_cntl, mec_int_cntl_reg;
/*
* amdgpu controls only the first MEC. That's why this function only
* handles the setting of interrupts for this specific MEC. All other
* pipes' interrupts are set by amdkfd.
*/
if (me == 1) {
switch (pipe) {
case 0:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
break;
case 1:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE1_INT_CNTL);
break;
case 2:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE2_INT_CNTL);
break;
case 3:
mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE3_INT_CNTL);
break;
default:
DRM_DEBUG("invalid pipe %d\n", pipe);
return;
}
} else {
DRM_DEBUG("invalid me %d\n", me);
return;
}
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 0);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
GENERIC0_INT_ENABLE, 0);
WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
TIME_STAMP_INT_ENABLE, 1);
mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL,
GENERIC0_INT_ENABLE, 1);
WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl);
break;
default:
break;
}
}
static int gfx_v11_0_set_eop_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
switch (type) {
case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP:
gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 0, state);
break;
case AMDGPU_CP_IRQ_GFX_ME0_PIPE1_EOP:
gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP:
gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 0, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP:
gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 1, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP:
gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 2, state);
break;
case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP:
gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 3, state);
break;
default:
break;
}
return 0;
}
static int gfx_v11_0_eop_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int i;
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
uint32_t mes_queue_id = entry->src_data[0];
DRM_DEBUG("IH: CP EOP\n");
if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) {
struct amdgpu_mes_queue *queue;
mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK;
spin_lock(&adev->mes.queue_id_lock);
queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id);
if (queue) {
DRM_DEBUG("process mes queue id = %d\n", mes_queue_id);
amdgpu_fence_process(queue->ring);
}
spin_unlock(&adev->mes.queue_id_lock);
} else {
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
if (pipe_id == 0)
amdgpu_fence_process(&adev->gfx.gfx_ring[0]);
else
amdgpu_fence_process(&adev->gfx.gfx_ring[1]);
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
/* Per-queue interrupt is supported for MEC starting from VI.
* The interrupt can only be enabled/disabled per pipe instead
* of per queue.
*/
if ((ring->me == me_id) &&
(ring->pipe == pipe_id) &&
(ring->queue == queue_id))
amdgpu_fence_process(ring);
}
break;
}
}
return 0;
}
static int gfx_v11_0_set_priv_reg_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned int type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl_reg, cp_int_cntl;
int i, j;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
case AMDGPU_IRQ_STATE_ENABLE:
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);
if (cp_int_cntl_reg) {
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_REG_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
}
}
}
for (i = 0; i < adev->gfx.mec.num_mec; i++) {
for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
/* MECs start at 1 */
cp_int_cntl_reg = gfx_v11_0_get_cpc_int_cntl(adev, i + 1, j);
if (cp_int_cntl_reg) {
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_ME1_PIPE0_INT_CNTL,
PRIV_REG_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
}
}
}
break;
default:
break;
}
return 0;
}
static int gfx_v11_0_set_bad_op_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl_reg, cp_int_cntl;
int i, j;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
case AMDGPU_IRQ_STATE_ENABLE:
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);
if (cp_int_cntl_reg) {
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
OPCODE_ERROR_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
}
}
}
for (i = 0; i < adev->gfx.mec.num_mec; i++) {
for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
/* MECs start at 1 */
cp_int_cntl_reg = gfx_v11_0_get_cpc_int_cntl(adev, i + 1, j);
if (cp_int_cntl_reg) {
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_ME1_PIPE0_INT_CNTL,
OPCODE_ERROR_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
}
}
}
break;
default:
break;
}
return 0;
}
static int gfx_v11_0_set_priv_inst_fault_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned int type,
enum amdgpu_interrupt_state state)
{
u32 cp_int_cntl_reg, cp_int_cntl;
int i, j;
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
case AMDGPU_IRQ_STATE_ENABLE:
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
cp_int_cntl_reg = gfx_v11_0_get_cpg_int_cntl(adev, i, j);
if (cp_int_cntl_reg) {
cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg);
cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0,
PRIV_INSTR_INT_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl);
}
}
}
break;
default:
break;
}
return 0;
}
static void gfx_v11_0_handle_priv_fault(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
u8 me_id, pipe_id, queue_id;
struct amdgpu_ring *ring;
int i;
me_id = (entry->ring_id & 0x0c) >> 2;
pipe_id = (entry->ring_id & 0x03) >> 0;
queue_id = (entry->ring_id & 0x70) >> 4;
switch (me_id) {
case 0:
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
if (ring->me == me_id && ring->pipe == pipe_id &&
ring->queue == queue_id)
drm_sched_fault(&ring->sched);
}
break;
case 1:
case 2:
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
if (ring->me == me_id && ring->pipe == pipe_id &&
ring->queue == queue_id)
drm_sched_fault(&ring->sched);
}
break;
default:
BUG();
break;
}
}
static int gfx_v11_0_priv_reg_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal register access in command stream\n");
gfx_v11_0_handle_priv_fault(adev, entry);
return 0;
}
static int gfx_v11_0_bad_op_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal opcode in command stream \n");
gfx_v11_0_handle_priv_fault(adev, entry);
return 0;
}
static int gfx_v11_0_priv_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in command stream\n");
gfx_v11_0_handle_priv_fault(adev, entry);
return 0;
}
static int gfx_v11_0_rlc_gc_fed_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
if (adev->gfx.ras && adev->gfx.ras->rlc_gc_fed_irq)
return adev->gfx.ras->rlc_gc_fed_irq(adev, source, entry);
return 0;
}
#if 0
static int gfx_v11_0_kiq_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned int type,
enum amdgpu_interrupt_state state)
{
uint32_t tmp, target;
struct amdgpu_ring *ring = &(adev->gfx.kiq[0].ring);
target = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL);
target += ring->pipe;
switch (type) {
case AMDGPU_CP_KIQ_IRQ_DRIVER0:
if (state == AMDGPU_IRQ_STATE_DISABLE) {
tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
GENERIC2_INT_ENABLE, 0);
WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp);
tmp = RREG32_SOC15_IP(GC, target);
tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL,
GENERIC2_INT_ENABLE, 0);
WREG32_SOC15_IP(GC, target, tmp);
} else {
tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL);
tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL,
GENERIC2_INT_ENABLE, 1);
WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp);
tmp = RREG32_SOC15_IP(GC, target);
tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL,
GENERIC2_INT_ENABLE, 1);
WREG32_SOC15_IP(GC, target, tmp);
}
break;
default:
BUG(); /* kiq only support GENERIC2_INT now */
break;
}
return 0;
}
#endif
static void gfx_v11_0_emit_mem_sync(struct amdgpu_ring *ring)
{
const unsigned int gcr_cntl =
PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_INV(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_WB(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_INV(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_WB(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GL1_INV(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GLV_INV(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GLK_INV(1) |
PACKET3_ACQUIRE_MEM_GCR_CNTL_GLI_INV(1);
/* ACQUIRE_MEM - make one or more surfaces valid for use by the subsequent operations */
amdgpu_ring_write(ring, PACKET3(PACKET3_ACQUIRE_MEM, 6));
amdgpu_ring_write(ring, 0); /* CP_COHER_CNTL */
amdgpu_ring_write(ring, 0xffffffff); /* CP_COHER_SIZE */
amdgpu_ring_write(ring, 0xffffff); /* CP_COHER_SIZE_HI */
amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */
amdgpu_ring_write(ring, 0); /* CP_COHER_BASE_HI */
amdgpu_ring_write(ring, 0x0000000A); /* POLL_INTERVAL */
amdgpu_ring_write(ring, gcr_cntl); /* GCR_CNTL */
}
static int gfx_v11_0_reset_kgq(struct amdgpu_ring *ring, unsigned int vmid)
{
struct amdgpu_device *adev = ring->adev;
int r;
if (amdgpu_sriov_vf(adev))
return -EINVAL;
r = amdgpu_mes_reset_legacy_queue(ring->adev, ring, vmid, false);
if (r)
return r;
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0)) {
dev_err(adev->dev, "fail to resv mqd_obj\n");
return r;
}
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v11_0_kgq_init_queue(ring, true);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r) {
dev_err(adev->dev, "fail to unresv mqd_obj\n");
return r;
}
r = amdgpu_mes_map_legacy_queue(adev, ring);
if (r) {
dev_err(adev->dev, "failed to remap kgq\n");
return r;
}
return amdgpu_ring_test_ring(ring);
}
static int gfx_v11_0_reset_kcq(struct amdgpu_ring *ring, unsigned int vmid)
{
struct amdgpu_device *adev = ring->adev;
int i, r = 0;
if (amdgpu_sriov_vf(adev))
return -EINVAL;
amdgpu_gfx_rlc_enter_safe_mode(adev, 0);
mutex_lock(&adev->srbm_mutex);
soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0);
WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 0x2);
WREG32_SOC15(GC, 0, regSPI_COMPUTE_QUEUE_RESET, 0x1);
/* make sure dequeue is complete*/
for (i = 0; i < adev->usec_timeout; i++) {
if (!(RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1))
break;
udelay(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
amdgpu_gfx_rlc_exit_safe_mode(adev, 0);
if (r) {
dev_err(adev->dev, "fail to wait on hqd deactivate\n");
return r;
}
r = amdgpu_bo_reserve(ring->mqd_obj, false);
if (unlikely(r != 0)) {
dev_err(adev->dev, "fail to resv mqd_obj\n");
return r;
}
r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr);
if (!r) {
r = gfx_v11_0_kcq_init_queue(ring, true);
amdgpu_bo_kunmap(ring->mqd_obj);
ring->mqd_ptr = NULL;
}
amdgpu_bo_unreserve(ring->mqd_obj);
if (r) {
dev_err(adev->dev, "fail to unresv mqd_obj\n");
return r;
}
r = amdgpu_mes_map_legacy_queue(adev, ring);
if (r) {
dev_err(adev->dev, "failed to remap kcq\n");
return r;
}
return amdgpu_ring_test_ring(ring);
}
static void gfx_v11_ip_print(void *handle, struct drm_printer *p)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t i, j, k, reg, index = 0;
uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);
if (!adev->gfx.ip_dump_core)
return;
for (i = 0; i < reg_count; i++)
drm_printf(p, "%-50s \t 0x%08x\n",
gc_reg_list_11_0[i].reg_name,
adev->gfx.ip_dump_core[i]);
/* print compute queue registers for all instances */
if (!adev->gfx.ip_dump_compute_queues)
return;
reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
drm_printf(p, "\nnum_mec: %d num_pipe: %d num_queue: %d\n",
adev->gfx.mec.num_mec,
adev->gfx.mec.num_pipe_per_mec,
adev->gfx.mec.num_queue_per_pipe);
for (i = 0; i < adev->gfx.mec.num_mec; i++) {
for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
for (k = 0; k < adev->gfx.mec.num_queue_per_pipe; k++) {
drm_printf(p, "\nmec %d, pipe %d, queue %d\n", i, j, k);
for (reg = 0; reg < reg_count; reg++) {
drm_printf(p, "%-50s \t 0x%08x\n",
gc_cp_reg_list_11[reg].reg_name,
adev->gfx.ip_dump_compute_queues[index + reg]);
}
index += reg_count;
}
}
}
/* print gfx queue registers for all instances */
if (!adev->gfx.ip_dump_gfx_queues)
return;
index = 0;
reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
drm_printf(p, "\nnum_me: %d num_pipe: %d num_queue: %d\n",
adev->gfx.me.num_me,
adev->gfx.me.num_pipe_per_me,
adev->gfx.me.num_queue_per_pipe);
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
for (k = 0; k < adev->gfx.me.num_queue_per_pipe; k++) {
drm_printf(p, "\nme %d, pipe %d, queue %d\n", i, j, k);
for (reg = 0; reg < reg_count; reg++) {
drm_printf(p, "%-50s \t 0x%08x\n",
gc_gfx_queue_reg_list_11[reg].reg_name,
adev->gfx.ip_dump_gfx_queues[index + reg]);
}
index += reg_count;
}
}
}
}
static void gfx_v11_ip_dump(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t i, j, k, reg, index = 0;
uint32_t reg_count = ARRAY_SIZE(gc_reg_list_11_0);
if (!adev->gfx.ip_dump_core)
return;
amdgpu_gfx_off_ctrl(adev, false);
for (i = 0; i < reg_count; i++)
adev->gfx.ip_dump_core[i] = RREG32(SOC15_REG_ENTRY_OFFSET(gc_reg_list_11_0[i]));
amdgpu_gfx_off_ctrl(adev, true);
/* dump compute queue registers for all instances */
if (!adev->gfx.ip_dump_compute_queues)
return;
reg_count = ARRAY_SIZE(gc_cp_reg_list_11);
amdgpu_gfx_off_ctrl(adev, false);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->gfx.mec.num_mec; i++) {
for (j = 0; j < adev->gfx.mec.num_pipe_per_mec; j++) {
for (k = 0; k < adev->gfx.mec.num_queue_per_pipe; k++) {
/* ME0 is for GFX so start from 1 for CP */
soc21_grbm_select(adev, adev->gfx.me.num_me + i, j, k, 0);
for (reg = 0; reg < reg_count; reg++) {
adev->gfx.ip_dump_compute_queues[index + reg] =
RREG32(SOC15_REG_ENTRY_OFFSET(
gc_cp_reg_list_11[reg]));
}
index += reg_count;
}
}
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
amdgpu_gfx_off_ctrl(adev, true);
/* dump gfx queue registers for all instances */
if (!adev->gfx.ip_dump_gfx_queues)
return;
index = 0;
reg_count = ARRAY_SIZE(gc_gfx_queue_reg_list_11);
amdgpu_gfx_off_ctrl(adev, false);
mutex_lock(&adev->srbm_mutex);
for (i = 0; i < adev->gfx.me.num_me; i++) {
for (j = 0; j < adev->gfx.me.num_pipe_per_me; j++) {
for (k = 0; k < adev->gfx.me.num_queue_per_pipe; k++) {
soc21_grbm_select(adev, i, j, k, 0);
for (reg = 0; reg < reg_count; reg++) {
adev->gfx.ip_dump_gfx_queues[index + reg] =
RREG32(SOC15_REG_ENTRY_OFFSET(
gc_gfx_queue_reg_list_11[reg]));
}
index += reg_count;
}
}
}
soc21_grbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
amdgpu_gfx_off_ctrl(adev, true);
}
static const struct amd_ip_funcs gfx_v11_0_ip_funcs = {
.name = "gfx_v11_0",
.early_init = gfx_v11_0_early_init,
.late_init = gfx_v11_0_late_init,
.sw_init = gfx_v11_0_sw_init,
.sw_fini = gfx_v11_0_sw_fini,
.hw_init = gfx_v11_0_hw_init,
.hw_fini = gfx_v11_0_hw_fini,
.suspend = gfx_v11_0_suspend,
.resume = gfx_v11_0_resume,
.is_idle = gfx_v11_0_is_idle,
.wait_for_idle = gfx_v11_0_wait_for_idle,
.soft_reset = gfx_v11_0_soft_reset,
.check_soft_reset = gfx_v11_0_check_soft_reset,
.post_soft_reset = gfx_v11_0_post_soft_reset,
.set_clockgating_state = gfx_v11_0_set_clockgating_state,
.set_powergating_state = gfx_v11_0_set_powergating_state,
.get_clockgating_state = gfx_v11_0_get_clockgating_state,
.dump_ip_state = gfx_v11_ip_dump,
.print_ip_state = gfx_v11_ip_print,
};
static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_gfx = {
.type = AMDGPU_RING_TYPE_GFX,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.secure_submission_supported = true,
.get_rptr = gfx_v11_0_ring_get_rptr_gfx,
.get_wptr = gfx_v11_0_ring_get_wptr_gfx,
.set_wptr = gfx_v11_0_ring_set_wptr_gfx,
.emit_frame_size = /* totally 247 maximum if 16 IBs */
5 + /* update_spm_vmid */
5 + /* COND_EXEC */
22 + /* SET_Q_PREEMPTION_MODE */
7 + /* PIPELINE_SYNC */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
4 + /* VM_FLUSH */
8 + /* FENCE for VM_FLUSH */
20 + /* GDS switch */
5 + /* COND_EXEC */
7 + /* HDP_flush */
4 + /* VGT_flush */
31 + /* DE_META */
3 + /* CNTX_CTRL */
5 + /* HDP_INVL */
22 + /* SET_Q_PREEMPTION_MODE */
8 + 8 + /* FENCE x2 */
8, /* gfx_v11_0_emit_mem_sync */
.emit_ib_size = 4, /* gfx_v11_0_ring_emit_ib_gfx */
.emit_ib = gfx_v11_0_ring_emit_ib_gfx,
.emit_fence = gfx_v11_0_ring_emit_fence,
.emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v11_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v11_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush,
.test_ring = gfx_v11_0_ring_test_ring,
.test_ib = gfx_v11_0_ring_test_ib,
.insert_nop = gfx_v11_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_cntxcntl = gfx_v11_0_ring_emit_cntxcntl,
.emit_gfx_shadow = gfx_v11_0_ring_emit_gfx_shadow,
.init_cond_exec = gfx_v11_0_ring_emit_init_cond_exec,
.preempt_ib = gfx_v11_0_ring_preempt_ib,
.emit_frame_cntl = gfx_v11_0_ring_emit_frame_cntl,
.emit_wreg = gfx_v11_0_ring_emit_wreg,
.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
.soft_recovery = gfx_v11_0_ring_soft_recovery,
.emit_mem_sync = gfx_v11_0_emit_mem_sync,
.reset = gfx_v11_0_reset_kgq,
};
static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_compute = {
.type = AMDGPU_RING_TYPE_COMPUTE,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.get_rptr = gfx_v11_0_ring_get_rptr_compute,
.get_wptr = gfx_v11_0_ring_get_wptr_compute,
.set_wptr = gfx_v11_0_ring_set_wptr_compute,
.emit_frame_size =
5 + /* update_spm_vmid */
20 + /* gfx_v11_0_ring_emit_gds_switch */
7 + /* gfx_v11_0_ring_emit_hdp_flush */
5 + /* hdp invalidate */
7 + /* gfx_v11_0_ring_emit_pipeline_sync */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
2 + /* gfx_v11_0_ring_emit_vm_flush */
8 + 8 + 8 + /* gfx_v11_0_ring_emit_fence x3 for user fence, vm fence */
8, /* gfx_v11_0_emit_mem_sync */
.emit_ib_size = 7, /* gfx_v11_0_ring_emit_ib_compute */
.emit_ib = gfx_v11_0_ring_emit_ib_compute,
.emit_fence = gfx_v11_0_ring_emit_fence,
.emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync,
.emit_vm_flush = gfx_v11_0_ring_emit_vm_flush,
.emit_gds_switch = gfx_v11_0_ring_emit_gds_switch,
.emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush,
.test_ring = gfx_v11_0_ring_test_ring,
.test_ib = gfx_v11_0_ring_test_ib,
.insert_nop = gfx_v11_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_wreg = gfx_v11_0_ring_emit_wreg,
.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
.soft_recovery = gfx_v11_0_ring_soft_recovery,
.emit_mem_sync = gfx_v11_0_emit_mem_sync,
.reset = gfx_v11_0_reset_kcq,
};
static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_kiq = {
.type = AMDGPU_RING_TYPE_KIQ,
.align_mask = 0xff,
.nop = PACKET3(PACKET3_NOP, 0x3FFF),
.support_64bit_ptrs = true,
.get_rptr = gfx_v11_0_ring_get_rptr_compute,
.get_wptr = gfx_v11_0_ring_get_wptr_compute,
.set_wptr = gfx_v11_0_ring_set_wptr_compute,
.emit_frame_size =
20 + /* gfx_v11_0_ring_emit_gds_switch */
7 + /* gfx_v11_0_ring_emit_hdp_flush */
5 + /*hdp invalidate */
7 + /* gfx_v11_0_ring_emit_pipeline_sync */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 +
8 + 8 + 8, /* gfx_v11_0_ring_emit_fence_kiq x3 for user fence, vm fence */
.emit_ib_size = 7, /* gfx_v11_0_ring_emit_ib_compute */
.emit_ib = gfx_v11_0_ring_emit_ib_compute,
.emit_fence = gfx_v11_0_ring_emit_fence_kiq,
.test_ring = gfx_v11_0_ring_test_ring,
.test_ib = gfx_v11_0_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.emit_rreg = gfx_v11_0_ring_emit_rreg,
.emit_wreg = gfx_v11_0_ring_emit_wreg,
.emit_reg_wait = gfx_v11_0_ring_emit_reg_wait,
.emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait,
};
static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
adev->gfx.kiq[0].ring.funcs = &gfx_v11_0_ring_funcs_kiq;
for (i = 0; i < adev->gfx.num_gfx_rings; i++)
adev->gfx.gfx_ring[i].funcs = &gfx_v11_0_ring_funcs_gfx;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
adev->gfx.compute_ring[i].funcs = &gfx_v11_0_ring_funcs_compute;
}
static const struct amdgpu_irq_src_funcs gfx_v11_0_eop_irq_funcs = {
.set = gfx_v11_0_set_eop_interrupt_state,
.process = gfx_v11_0_eop_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_reg_irq_funcs = {
.set = gfx_v11_0_set_priv_reg_fault_state,
.process = gfx_v11_0_priv_reg_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v11_0_bad_op_irq_funcs = {
.set = gfx_v11_0_set_bad_op_fault_state,
.process = gfx_v11_0_bad_op_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_inst_irq_funcs = {
.set = gfx_v11_0_set_priv_inst_fault_state,
.process = gfx_v11_0_priv_inst_irq,
};
static const struct amdgpu_irq_src_funcs gfx_v11_0_rlc_gc_fed_irq_funcs = {
.process = gfx_v11_0_rlc_gc_fed_irq,
};
static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST;
adev->gfx.eop_irq.funcs = &gfx_v11_0_eop_irq_funcs;
adev->gfx.priv_reg_irq.num_types = 1;
adev->gfx.priv_reg_irq.funcs = &gfx_v11_0_priv_reg_irq_funcs;
adev->gfx.bad_op_irq.num_types = 1;
adev->gfx.bad_op_irq.funcs = &gfx_v11_0_bad_op_irq_funcs;
adev->gfx.priv_inst_irq.num_types = 1;
adev->gfx.priv_inst_irq.funcs = &gfx_v11_0_priv_inst_irq_funcs;
adev->gfx.rlc_gc_fed_irq.num_types = 1; /* 0x80 FED error */
adev->gfx.rlc_gc_fed_irq.funcs = &gfx_v11_0_rlc_gc_fed_irq_funcs;
}
static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev)
{
if (adev->flags & AMD_IS_APU)
adev->gfx.imu.mode = MISSION_MODE;
else
adev->gfx.imu.mode = DEBUG_MODE;
adev->gfx.imu.funcs = &gfx_v11_0_imu_funcs;
}
static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev)
{
adev->gfx.rlc.funcs = &gfx_v11_0_rlc_funcs;
}
static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev)
{
unsigned total_cu = adev->gfx.config.max_cu_per_sh *
adev->gfx.config.max_sh_per_se *
adev->gfx.config.max_shader_engines;
adev->gds.gds_size = 0x1000;
adev->gds.gds_compute_max_wave_id = total_cu * 32 - 1;
adev->gds.gws_size = 64;
adev->gds.oa_size = 16;
}
static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev)
{
/* set gfx eng mqd */
adev->mqds[AMDGPU_HW_IP_GFX].mqd_size =
sizeof(struct v11_gfx_mqd);
adev->mqds[AMDGPU_HW_IP_GFX].init_mqd =
gfx_v11_0_gfx_mqd_init;
/* set compute eng mqd */
adev->mqds[AMDGPU_HW_IP_COMPUTE].mqd_size =
sizeof(struct v11_compute_mqd);
adev->mqds[AMDGPU_HW_IP_COMPUTE].init_mqd =
gfx_v11_0_compute_mqd_init;
}
static void gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh(struct amdgpu_device *adev,
u32 bitmap)
{
u32 data;
if (!bitmap)
return;
data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;
data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;
WREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG, data);
}
static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev)
{
u32 data, wgp_bitmask;
data = RREG32_SOC15(GC, 0, regCC_GC_SHADER_ARRAY_CONFIG);
data |= RREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG);
data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK;
data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT;
wgp_bitmask =
amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh >> 1);
return (~data) & wgp_bitmask;
}
static u32 gfx_v11_0_get_cu_active_bitmap_per_sh(struct amdgpu_device *adev)
{
u32 wgp_idx, wgp_active_bitmap;
u32 cu_bitmap_per_wgp, cu_active_bitmap;
wgp_active_bitmap = gfx_v11_0_get_wgp_active_bitmap_per_sh(adev);
cu_active_bitmap = 0;
for (wgp_idx = 0; wgp_idx < 16; wgp_idx++) {
/* if there is one WGP enabled, it means 2 CUs will be enabled */
cu_bitmap_per_wgp = 3 << (2 * wgp_idx);
if (wgp_active_bitmap & (1 << wgp_idx))
cu_active_bitmap |= cu_bitmap_per_wgp;
}
return cu_active_bitmap;
}
static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev,
struct amdgpu_cu_info *cu_info)
{
int i, j, k, counter, active_cu_number = 0;
u32 mask, bitmap;
unsigned disable_masks[8 * 2];
if (!adev || !cu_info)
return -EINVAL;
amdgpu_gfx_parse_disable_cu(disable_masks, 8, 2);
mutex_lock(&adev->grbm_idx_mutex);
for (i = 0; i < adev->gfx.config.max_shader_engines; i++) {
for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) {
bitmap = i * adev->gfx.config.max_sh_per_se + j;
if (!((gfx_v11_0_get_sa_active_bitmap(adev) >> bitmap) & 1))
continue;
mask = 1;
counter = 0;
gfx_v11_0_select_se_sh(adev, i, j, 0xffffffff, 0);
if (i < 8 && j < 2)
gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh(
adev, disable_masks[i * 2 + j]);
bitmap = gfx_v11_0_get_cu_active_bitmap_per_sh(adev);
/**
* GFX11 could support more than 4 SEs, while the bitmap
* in cu_info struct is 4x4 and ioctl interface struct
* drm_amdgpu_info_device should keep stable.
* So we use last two columns of bitmap to store cu mask for
* SEs 4 to 7, the layout of the bitmap is as below:
* SE0: {SH0,SH1} --> {bitmap[0][0], bitmap[0][1]}
* SE1: {SH0,SH1} --> {bitmap[1][0], bitmap[1][1]}
* SE2: {SH0,SH1} --> {bitmap[2][0], bitmap[2][1]}
* SE3: {SH0,SH1} --> {bitmap[3][0], bitmap[3][1]}
* SE4: {SH0,SH1} --> {bitmap[0][2], bitmap[0][3]}
* SE5: {SH0,SH1} --> {bitmap[1][2], bitmap[1][3]}
* SE6: {SH0,SH1} --> {bitmap[2][2], bitmap[2][3]}
* SE7: {SH0,SH1} --> {bitmap[3][2], bitmap[3][3]}
*/
cu_info->bitmap[0][i % 4][j + (i / 4) * 2] = bitmap;
for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) {
if (bitmap & mask)
counter++;
mask <<= 1;
}
active_cu_number += counter;
}
}
gfx_v11_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0);
mutex_unlock(&adev->grbm_idx_mutex);
cu_info->number = active_cu_number;
cu_info->simd_per_cu = NUM_SIMD_PER_CU;
return 0;
}
const struct amdgpu_ip_block_version gfx_v11_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_GFX,
.major = 11,
.minor = 0,
.rev = 0,
.funcs = &gfx_v11_0_ip_funcs,
};