| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * Copyright (C) 2011 Red Hat, Inc. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #ifndef DM_BTREE_INTERNAL_H |
| #define DM_BTREE_INTERNAL_H |
| |
| #include "dm-btree.h" |
| |
| /*----------------------------------------------------------------*/ |
| |
| /* |
| * We'll need 2 accessor functions for n->csum and n->blocknr |
| * to support dm-btree-spine.c in that case. |
| */ |
| |
| enum node_flags { |
| INTERNAL_NODE = 1, |
| LEAF_NODE = 1 << 1 |
| }; |
| |
| /* |
| * Every btree node begins with this structure. Make sure it's a multiple |
| * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned. |
| */ |
| struct node_header { |
| __le32 csum; |
| __le32 flags; |
| __le64 blocknr; /* Block this node is supposed to live in. */ |
| |
| __le32 nr_entries; |
| __le32 max_entries; |
| __le32 value_size; |
| __le32 padding; |
| } __packed __aligned(8); |
| |
| struct btree_node { |
| struct node_header header; |
| __le64 keys[]; |
| } __packed __aligned(8); |
| |
| |
| /* |
| * Locks a block using the btree node validator. |
| */ |
| int bn_read_lock(struct dm_btree_info *info, dm_block_t b, |
| struct dm_block **result); |
| |
| void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, |
| struct dm_btree_value_type *vt); |
| |
| int new_block(struct dm_btree_info *info, struct dm_block **result); |
| void unlock_block(struct dm_btree_info *info, struct dm_block *b); |
| |
| /* |
| * Spines keep track of the rolling locks. There are 2 variants, read-only |
| * and one that uses shadowing. These are separate structs to allow the |
| * type checker to spot misuse, for example accidentally calling read_lock |
| * on a shadow spine. |
| */ |
| struct ro_spine { |
| struct dm_btree_info *info; |
| |
| int count; |
| struct dm_block *nodes[2]; |
| }; |
| |
| void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info); |
| void exit_ro_spine(struct ro_spine *s); |
| int ro_step(struct ro_spine *s, dm_block_t new_child); |
| void ro_pop(struct ro_spine *s); |
| struct btree_node *ro_node(struct ro_spine *s); |
| |
| struct shadow_spine { |
| struct dm_btree_info *info; |
| |
| int count; |
| struct dm_block *nodes[2]; |
| |
| dm_block_t root; |
| }; |
| |
| void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info); |
| void exit_shadow_spine(struct shadow_spine *s); |
| |
| int shadow_step(struct shadow_spine *s, dm_block_t b, |
| struct dm_btree_value_type *vt); |
| |
| /* |
| * The spine must have at least one entry before calling this. |
| */ |
| struct dm_block *shadow_current(struct shadow_spine *s); |
| |
| /* |
| * The spine must have at least two entries before calling this. |
| */ |
| struct dm_block *shadow_parent(struct shadow_spine *s); |
| |
| int shadow_has_parent(struct shadow_spine *s); |
| |
| dm_block_t shadow_root(struct shadow_spine *s); |
| |
| /* |
| * Some inlines. |
| */ |
| static inline __le64 *key_ptr(struct btree_node *n, uint32_t index) |
| { |
| return n->keys + index; |
| } |
| |
| static inline void *value_base(struct btree_node *n) |
| { |
| return &n->keys[le32_to_cpu(n->header.max_entries)]; |
| } |
| |
| static inline void *value_ptr(struct btree_node *n, uint32_t index) |
| { |
| uint32_t value_size = le32_to_cpu(n->header.value_size); |
| |
| return value_base(n) + (value_size * index); |
| } |
| |
| /* |
| * Assumes the values are suitably-aligned and converts to core format. |
| */ |
| static inline uint64_t value64(struct btree_node *n, uint32_t index) |
| { |
| __le64 *values_le = value_base(n); |
| |
| return le64_to_cpu(values_le[index]); |
| } |
| |
| /* |
| * Searching for a key within a single node. |
| */ |
| int lower_bound(struct btree_node *n, uint64_t key); |
| |
| extern const struct dm_block_validator btree_node_validator; |
| |
| /* |
| * Value type for upper levels of multi-level btrees. |
| */ |
| extern void init_le64_type(struct dm_transaction_manager *tm, |
| struct dm_btree_value_type *vt); |
| |
| /* |
| * This returns a shadowed btree leaf that you may modify. In practise |
| * this means overwrites only, since an insert could cause a node to |
| * be split. Useful if you need access to the old value to calculate the |
| * new one. |
| * |
| * This only works with single level btrees. The given key must be present in |
| * the tree, otherwise -EINVAL will be returned. |
| */ |
| int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root, |
| uint64_t key, int *index, |
| dm_block_t *new_root, struct dm_block **leaf); |
| |
| #endif /* DM_BTREE_INTERNAL_H */ |