| // SPDX-License-Identifier: GPL-2.0-or-later |
| // |
| // helpers.c -- Voltage/Current Regulator framework helper functions. |
| // |
| // Copyright 2007, 2008 Wolfson Microelectronics PLC. |
| // Copyright 2008 SlimLogic Ltd. |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/regulator/driver.h> |
| |
| #include "internal.h" |
| |
| /** |
| * regulator_is_enabled_regmap - standard is_enabled() for regmap users |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * enable_reg and enable_mask fields in their descriptor and then use |
| * this as their is_enabled operation, saving some code. |
| */ |
| int regulator_is_enabled_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val); |
| if (ret != 0) |
| return ret; |
| |
| val &= rdev->desc->enable_mask; |
| |
| if (rdev->desc->enable_is_inverted) { |
| if (rdev->desc->enable_val) |
| return val != rdev->desc->enable_val; |
| return val == 0; |
| } else { |
| if (rdev->desc->enable_val) |
| return val == rdev->desc->enable_val; |
| return val != 0; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap); |
| |
| /** |
| * regulator_enable_regmap - standard enable() for regmap users |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * enable_reg and enable_mask fields in their descriptor and then use |
| * this as their enable() operation, saving some code. |
| */ |
| int regulator_enable_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| |
| if (rdev->desc->enable_is_inverted) { |
| val = rdev->desc->disable_val; |
| } else { |
| val = rdev->desc->enable_val; |
| if (!val) |
| val = rdev->desc->enable_mask; |
| } |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, |
| rdev->desc->enable_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_enable_regmap); |
| |
| /** |
| * regulator_disable_regmap - standard disable() for regmap users |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * enable_reg and enable_mask fields in their descriptor and then use |
| * this as their disable() operation, saving some code. |
| */ |
| int regulator_disable_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| |
| if (rdev->desc->enable_is_inverted) { |
| val = rdev->desc->enable_val; |
| if (!val) |
| val = rdev->desc->enable_mask; |
| } else { |
| val = rdev->desc->disable_val; |
| } |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg, |
| rdev->desc->enable_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable_regmap); |
| |
| static int regulator_range_selector_to_index(struct regulator_dev *rdev, |
| unsigned int rval) |
| { |
| int i; |
| |
| if (!rdev->desc->linear_range_selectors_bitfield) |
| return -EINVAL; |
| |
| rval &= rdev->desc->vsel_range_mask; |
| rval >>= ffs(rdev->desc->vsel_range_mask) - 1; |
| |
| for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| if (rdev->desc->linear_range_selectors_bitfield[i] == rval) |
| return i; |
| } |
| return -EINVAL; |
| } |
| |
| /** |
| * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O and use pickable |
| * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask |
| * fields in their descriptor and then use this as their get_voltage_sel |
| * operation, saving some code. |
| */ |
| int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int r_val; |
| int range; |
| unsigned int val; |
| int ret; |
| unsigned int voltages = 0; |
| const struct linear_range *r = rdev->desc->linear_ranges; |
| |
| if (!r) |
| return -EINVAL; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); |
| if (ret != 0) |
| return ret; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val); |
| if (ret != 0) |
| return ret; |
| |
| val &= rdev->desc->vsel_mask; |
| val >>= ffs(rdev->desc->vsel_mask) - 1; |
| |
| range = regulator_range_selector_to_index(rdev, r_val); |
| if (range < 0) |
| return -EINVAL; |
| |
| voltages = linear_range_values_in_range_array(r, range); |
| |
| return val + voltages; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap); |
| |
| static int write_separate_vsel_and_range(struct regulator_dev *rdev, |
| unsigned int sel, unsigned int range) |
| { |
| bool range_updated; |
| int ret; |
| |
| ret = regmap_update_bits_base(rdev->regmap, rdev->desc->vsel_range_reg, |
| rdev->desc->vsel_range_mask, |
| range, &range_updated, false, false); |
| if (ret) |
| return ret; |
| |
| /* |
| * Some PMICs treat the vsel_reg same as apply-bit. Force it to be |
| * written if the range changed, even if the old selector was same as |
| * the new one |
| */ |
| if (rdev->desc->range_applied_by_vsel && range_updated) |
| return regmap_write_bits(rdev->regmap, |
| rdev->desc->vsel_reg, |
| rdev->desc->vsel_mask, sel); |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, |
| rdev->desc->vsel_mask, sel); |
| } |
| |
| /** |
| * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel |
| * |
| * @rdev: regulator to operate on |
| * @sel: Selector to set |
| * |
| * Regulators that use regmap for their register I/O and use pickable |
| * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask |
| * fields in their descriptor and then use this as their set_voltage_sel |
| * operation, saving some code. |
| */ |
| int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev, |
| unsigned int sel) |
| { |
| unsigned int range; |
| int ret, i; |
| unsigned int voltages_in_range = 0; |
| |
| for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| const struct linear_range *r; |
| |
| r = &rdev->desc->linear_ranges[i]; |
| voltages_in_range = linear_range_values_in_range(r); |
| |
| if (sel < voltages_in_range) |
| break; |
| sel -= voltages_in_range; |
| } |
| |
| if (i == rdev->desc->n_linear_ranges) |
| return -EINVAL; |
| |
| sel <<= ffs(rdev->desc->vsel_mask) - 1; |
| sel += rdev->desc->linear_ranges[i].min_sel; |
| |
| range = rdev->desc->linear_range_selectors_bitfield[i]; |
| range <<= ffs(rdev->desc->vsel_range_mask) - 1; |
| |
| if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) |
| ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, |
| rdev->desc->vsel_range_mask | |
| rdev->desc->vsel_mask, sel | range); |
| else |
| ret = write_separate_vsel_and_range(rdev, sel, range); |
| |
| if (ret) |
| return ret; |
| |
| if (rdev->desc->apply_bit) |
| ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, |
| rdev->desc->apply_bit, |
| rdev->desc->apply_bit); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap); |
| |
| /** |
| * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * vsel_reg and vsel_mask fields in their descriptor and then use this |
| * as their get_voltage_sel operation, saving some code. |
| */ |
| int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val); |
| if (ret != 0) |
| return ret; |
| |
| val &= rdev->desc->vsel_mask; |
| val >>= ffs(rdev->desc->vsel_mask) - 1; |
| |
| return val; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap); |
| |
| /** |
| * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users |
| * |
| * @rdev: regulator to operate on |
| * @sel: Selector to set |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * vsel_reg and vsel_mask fields in their descriptor and then use this |
| * as their set_voltage_sel operation, saving some code. |
| */ |
| int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel) |
| { |
| int ret; |
| |
| sel <<= ffs(rdev->desc->vsel_mask) - 1; |
| |
| ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg, |
| rdev->desc->vsel_mask, sel); |
| if (ret) |
| return ret; |
| |
| if (rdev->desc->apply_bit) |
| ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg, |
| rdev->desc->apply_bit, |
| rdev->desc->apply_bit); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap); |
| |
| /** |
| * regulator_map_voltage_iterate - map_voltage() based on list_voltage() |
| * |
| * @rdev: Regulator to operate on |
| * @min_uV: Lower bound for voltage |
| * @max_uV: Upper bound for voltage |
| * |
| * Drivers implementing set_voltage_sel() and list_voltage() can use |
| * this as their map_voltage() operation. It will find a suitable |
| * voltage by calling list_voltage() until it gets something in bounds |
| * for the requested voltages. |
| */ |
| int regulator_map_voltage_iterate(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| int best_val = INT_MAX; |
| int selector = 0; |
| int i, ret; |
| |
| /* Find the smallest voltage that falls within the specified |
| * range. |
| */ |
| for (i = 0; i < rdev->desc->n_voltages; i++) { |
| ret = rdev->desc->ops->list_voltage(rdev, i); |
| if (ret < 0) |
| continue; |
| |
| if (ret < best_val && ret >= min_uV && ret <= max_uV) { |
| best_val = ret; |
| selector = i; |
| } |
| } |
| |
| if (best_val != INT_MAX) |
| return selector; |
| else |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate); |
| |
| /** |
| * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list |
| * |
| * @rdev: Regulator to operate on |
| * @min_uV: Lower bound for voltage |
| * @max_uV: Upper bound for voltage |
| * |
| * Drivers that have ascendant voltage list can use this as their |
| * map_voltage() operation. |
| */ |
| int regulator_map_voltage_ascend(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| int i, ret; |
| |
| for (i = 0; i < rdev->desc->n_voltages; i++) { |
| ret = rdev->desc->ops->list_voltage(rdev, i); |
| if (ret < 0) |
| continue; |
| |
| if (ret > max_uV) |
| break; |
| |
| if (ret >= min_uV && ret <= max_uV) |
| return i; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend); |
| |
| /** |
| * regulator_map_voltage_linear - map_voltage() for simple linear mappings |
| * |
| * @rdev: Regulator to operate on |
| * @min_uV: Lower bound for voltage |
| * @max_uV: Upper bound for voltage |
| * |
| * Drivers providing min_uV and uV_step in their regulator_desc can |
| * use this as their map_voltage() operation. |
| */ |
| int regulator_map_voltage_linear(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| int ret, voltage; |
| |
| /* Allow uV_step to be 0 for fixed voltage */ |
| if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) { |
| if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV) |
| return 0; |
| else |
| return -EINVAL; |
| } |
| |
| if (!rdev->desc->uV_step) { |
| BUG_ON(!rdev->desc->uV_step); |
| return -EINVAL; |
| } |
| |
| if (min_uV < rdev->desc->min_uV) |
| min_uV = rdev->desc->min_uV; |
| |
| ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step); |
| if (ret < 0) |
| return ret; |
| |
| ret += rdev->desc->linear_min_sel; |
| |
| /* Map back into a voltage to verify we're still in bounds */ |
| voltage = rdev->desc->ops->list_voltage(rdev, ret); |
| if (voltage < min_uV || voltage > max_uV) |
| return -EINVAL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_linear); |
| |
| /** |
| * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges |
| * |
| * @rdev: Regulator to operate on |
| * @min_uV: Lower bound for voltage |
| * @max_uV: Upper bound for voltage |
| * |
| * Drivers providing linear_ranges in their descriptor can use this as |
| * their map_voltage() callback. |
| */ |
| int regulator_map_voltage_linear_range(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| const struct linear_range *range; |
| int ret = -EINVAL; |
| unsigned int sel; |
| bool found; |
| int voltage, i; |
| |
| if (!rdev->desc->n_linear_ranges) { |
| BUG_ON(!rdev->desc->n_linear_ranges); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| range = &rdev->desc->linear_ranges[i]; |
| |
| ret = linear_range_get_selector_high(range, min_uV, &sel, |
| &found); |
| if (ret) |
| continue; |
| ret = sel; |
| |
| /* |
| * Map back into a voltage to verify we're still in bounds. |
| * If we are not, then continue checking rest of the ranges. |
| */ |
| voltage = rdev->desc->ops->list_voltage(rdev, sel); |
| if (voltage >= min_uV && voltage <= max_uV) |
| break; |
| } |
| |
| if (i == rdev->desc->n_linear_ranges) |
| return -EINVAL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range); |
| |
| /** |
| * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges |
| * |
| * @rdev: Regulator to operate on |
| * @min_uV: Lower bound for voltage |
| * @max_uV: Upper bound for voltage |
| * |
| * Drivers providing pickable linear_ranges in their descriptor can use |
| * this as their map_voltage() callback. |
| */ |
| int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| const struct linear_range *range; |
| int ret = -EINVAL; |
| int voltage, i; |
| unsigned int selector = 0; |
| |
| if (!rdev->desc->n_linear_ranges) { |
| BUG_ON(!rdev->desc->n_linear_ranges); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| int linear_max_uV; |
| bool found; |
| unsigned int sel; |
| |
| range = &rdev->desc->linear_ranges[i]; |
| linear_max_uV = linear_range_get_max_value(range); |
| |
| if (!(min_uV <= linear_max_uV && max_uV >= range->min)) { |
| selector += linear_range_values_in_range(range); |
| continue; |
| } |
| |
| ret = linear_range_get_selector_high(range, min_uV, &sel, |
| &found); |
| if (ret) { |
| selector += linear_range_values_in_range(range); |
| continue; |
| } |
| |
| ret = selector + sel - range->min_sel; |
| |
| voltage = rdev->desc->ops->list_voltage(rdev, ret); |
| |
| /* |
| * Map back into a voltage to verify we're still in bounds. |
| * We may have overlapping voltage ranges. Hence we don't |
| * exit but retry until we have checked all ranges. |
| */ |
| if (voltage < min_uV || voltage > max_uV) |
| selector += linear_range_values_in_range(range); |
| else |
| break; |
| } |
| |
| if (i == rdev->desc->n_linear_ranges) |
| return -EINVAL; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range); |
| |
| /** |
| * regulator_desc_list_voltage_linear - List voltages with simple calculation |
| * |
| * @desc: Regulator desc for regulator which volatges are to be listed |
| * @selector: Selector to convert into a voltage |
| * |
| * Regulators with a simple linear mapping between voltages and |
| * selectors can set min_uV and uV_step in the regulator descriptor |
| * and then use this function prior regulator registration to list |
| * the voltages. This is useful when voltages need to be listed during |
| * device-tree parsing. |
| */ |
| int regulator_desc_list_voltage_linear(const struct regulator_desc *desc, |
| unsigned int selector) |
| { |
| if (selector >= desc->n_voltages) |
| return -EINVAL; |
| |
| if (selector < desc->linear_min_sel) |
| return 0; |
| |
| selector -= desc->linear_min_sel; |
| |
| return desc->min_uV + (desc->uV_step * selector); |
| } |
| EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear); |
| |
| /** |
| * regulator_list_voltage_linear - List voltages with simple calculation |
| * |
| * @rdev: Regulator device |
| * @selector: Selector to convert into a voltage |
| * |
| * Regulators with a simple linear mapping between voltages and |
| * selectors can set min_uV and uV_step in the regulator descriptor |
| * and then use this function as their list_voltage() operation, |
| */ |
| int regulator_list_voltage_linear(struct regulator_dev *rdev, |
| unsigned int selector) |
| { |
| return regulator_desc_list_voltage_linear(rdev->desc, selector); |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_linear); |
| |
| /** |
| * regulator_list_voltage_pickable_linear_range - pickable range list voltages |
| * |
| * @rdev: Regulator device |
| * @selector: Selector to convert into a voltage |
| * |
| * list_voltage() operation, intended to be used by drivers utilizing pickable |
| * ranges helpers. |
| */ |
| int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev, |
| unsigned int selector) |
| { |
| const struct linear_range *range; |
| int i; |
| unsigned int all_sels = 0; |
| |
| if (!rdev->desc->n_linear_ranges) { |
| BUG_ON(!rdev->desc->n_linear_ranges); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < rdev->desc->n_linear_ranges; i++) { |
| unsigned int sel_indexes; |
| |
| range = &rdev->desc->linear_ranges[i]; |
| |
| sel_indexes = linear_range_values_in_range(range) - 1; |
| |
| if (all_sels + sel_indexes >= selector) { |
| selector -= all_sels; |
| /* |
| * As we see here, pickable ranges work only as |
| * long as the first selector for each pickable |
| * range is 0, and the each subsequent range for |
| * this 'pick' follow immediately at next unused |
| * selector (Eg. there is no gaps between ranges). |
| * I think this is fine but it probably should be |
| * documented. OTOH, whole pickable range stuff |
| * might benefit from some documentation |
| */ |
| return range->min + (range->step * selector); |
| } |
| |
| all_sels += (sel_indexes + 1); |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range); |
| |
| /** |
| * regulator_desc_list_voltage_linear_range - List voltages for linear ranges |
| * |
| * @desc: Regulator desc for regulator which volatges are to be listed |
| * @selector: Selector to convert into a voltage |
| * |
| * Regulators with a series of simple linear mappings between voltages |
| * and selectors who have set linear_ranges in the regulator descriptor |
| * can use this function prior regulator registration to list voltages. |
| * This is useful when voltages need to be listed during device-tree |
| * parsing. |
| */ |
| int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc, |
| unsigned int selector) |
| { |
| unsigned int val; |
| int ret; |
| |
| BUG_ON(!desc->n_linear_ranges); |
| |
| ret = linear_range_get_value_array(desc->linear_ranges, |
| desc->n_linear_ranges, selector, |
| &val); |
| if (ret) |
| return ret; |
| |
| return val; |
| } |
| EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range); |
| |
| /** |
| * regulator_list_voltage_linear_range - List voltages for linear ranges |
| * |
| * @rdev: Regulator device |
| * @selector: Selector to convert into a voltage |
| * |
| * Regulators with a series of simple linear mappings between voltages |
| * and selectors can set linear_ranges in the regulator descriptor and |
| * then use this function as their list_voltage() operation, |
| */ |
| int regulator_list_voltage_linear_range(struct regulator_dev *rdev, |
| unsigned int selector) |
| { |
| return regulator_desc_list_voltage_linear_range(rdev->desc, selector); |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range); |
| |
| /** |
| * regulator_list_voltage_table - List voltages with table based mapping |
| * |
| * @rdev: Regulator device |
| * @selector: Selector to convert into a voltage |
| * |
| * Regulators with table based mapping between voltages and |
| * selectors can set volt_table in the regulator descriptor |
| * and then use this function as their list_voltage() operation. |
| */ |
| int regulator_list_voltage_table(struct regulator_dev *rdev, |
| unsigned int selector) |
| { |
| if (!rdev->desc->volt_table) { |
| BUG_ON(!rdev->desc->volt_table); |
| return -EINVAL; |
| } |
| |
| if (selector >= rdev->desc->n_voltages) |
| return -EINVAL; |
| if (selector < rdev->desc->linear_min_sel) |
| return 0; |
| |
| return rdev->desc->volt_table[selector]; |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_table); |
| |
| /** |
| * regulator_set_bypass_regmap - Default set_bypass() using regmap |
| * |
| * @rdev: device to operate on. |
| * @enable: state to set. |
| */ |
| int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable) |
| { |
| unsigned int val; |
| |
| if (enable) { |
| val = rdev->desc->bypass_val_on; |
| if (!val) |
| val = rdev->desc->bypass_mask; |
| } else { |
| val = rdev->desc->bypass_val_off; |
| } |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg, |
| rdev->desc->bypass_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap); |
| |
| /** |
| * regulator_set_soft_start_regmap - Default set_soft_start() using regmap |
| * |
| * @rdev: device to operate on. |
| */ |
| int regulator_set_soft_start_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| |
| val = rdev->desc->soft_start_val_on; |
| if (!val) |
| val = rdev->desc->soft_start_mask; |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg, |
| rdev->desc->soft_start_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap); |
| |
| /** |
| * regulator_set_pull_down_regmap - Default set_pull_down() using regmap |
| * |
| * @rdev: device to operate on. |
| */ |
| int regulator_set_pull_down_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| |
| val = rdev->desc->pull_down_val_on; |
| if (!val) |
| val = rdev->desc->pull_down_mask; |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg, |
| rdev->desc->pull_down_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap); |
| |
| /** |
| * regulator_get_bypass_regmap - Default get_bypass() using regmap |
| * |
| * @rdev: device to operate on. |
| * @enable: current state. |
| */ |
| int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable) |
| { |
| unsigned int val; |
| unsigned int val_on = rdev->desc->bypass_val_on; |
| int ret; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val); |
| if (ret != 0) |
| return ret; |
| |
| if (!val_on) |
| val_on = rdev->desc->bypass_mask; |
| |
| *enable = (val & rdev->desc->bypass_mask) == val_on; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap); |
| |
| /** |
| * regulator_set_active_discharge_regmap - Default set_active_discharge() |
| * using regmap |
| * |
| * @rdev: device to operate on. |
| * @enable: state to set, 0 to disable and 1 to enable. |
| */ |
| int regulator_set_active_discharge_regmap(struct regulator_dev *rdev, |
| bool enable) |
| { |
| unsigned int val; |
| |
| if (enable) |
| val = rdev->desc->active_discharge_on; |
| else |
| val = rdev->desc->active_discharge_off; |
| |
| return regmap_update_bits(rdev->regmap, |
| rdev->desc->active_discharge_reg, |
| rdev->desc->active_discharge_mask, val); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap); |
| |
| /** |
| * regulator_set_current_limit_regmap - set_current_limit for regmap users |
| * |
| * @rdev: regulator to operate on |
| * @min_uA: Lower bound for current limit |
| * @max_uA: Upper bound for current limit |
| * |
| * Regulators that use regmap for their register I/O can set curr_table, |
| * csel_reg and csel_mask fields in their descriptor and then use this |
| * as their set_current_limit operation, saving some code. |
| */ |
| int regulator_set_current_limit_regmap(struct regulator_dev *rdev, |
| int min_uA, int max_uA) |
| { |
| unsigned int n_currents = rdev->desc->n_current_limits; |
| int i, sel = -1; |
| |
| if (n_currents == 0) |
| return -EINVAL; |
| |
| if (rdev->desc->curr_table) { |
| const unsigned int *curr_table = rdev->desc->curr_table; |
| bool ascend = curr_table[n_currents - 1] > curr_table[0]; |
| |
| /* search for closest to maximum */ |
| if (ascend) { |
| for (i = n_currents - 1; i >= 0; i--) { |
| if (min_uA <= curr_table[i] && |
| curr_table[i] <= max_uA) { |
| sel = i; |
| break; |
| } |
| } |
| } else { |
| for (i = 0; i < n_currents; i++) { |
| if (min_uA <= curr_table[i] && |
| curr_table[i] <= max_uA) { |
| sel = i; |
| break; |
| } |
| } |
| } |
| } |
| |
| if (sel < 0) |
| return -EINVAL; |
| |
| sel <<= ffs(rdev->desc->csel_mask) - 1; |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg, |
| rdev->desc->csel_mask, sel); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap); |
| |
| /** |
| * regulator_get_current_limit_regmap - get_current_limit for regmap users |
| * |
| * @rdev: regulator to operate on |
| * |
| * Regulators that use regmap for their register I/O can set the |
| * csel_reg and csel_mask fields in their descriptor and then use this |
| * as their get_current_limit operation, saving some code. |
| */ |
| int regulator_get_current_limit_regmap(struct regulator_dev *rdev) |
| { |
| unsigned int val; |
| int ret; |
| |
| ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val); |
| if (ret != 0) |
| return ret; |
| |
| val &= rdev->desc->csel_mask; |
| val >>= ffs(rdev->desc->csel_mask) - 1; |
| |
| if (rdev->desc->curr_table) { |
| if (val >= rdev->desc->n_current_limits) |
| return -EINVAL; |
| |
| return rdev->desc->curr_table[val]; |
| } |
| |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap); |
| |
| /** |
| * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array |
| * of regulator_bulk_data structs |
| * |
| * @consumers: array of regulator_bulk_data entries to initialize |
| * @supply_names: array of supply name strings |
| * @num_supplies: number of supply names to initialize |
| * |
| * Note: the 'consumers' array must be the size of 'num_supplies'. |
| */ |
| void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers, |
| const char *const *supply_names, |
| unsigned int num_supplies) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < num_supplies; i++) |
| consumers[i].supply = supply_names[i]; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names); |
| |
| /** |
| * regulator_is_equal - test whether two regulators are the same |
| * |
| * @reg1: first regulator to operate on |
| * @reg2: second regulator to operate on |
| */ |
| bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2) |
| { |
| return reg1->rdev == reg2->rdev; |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_equal); |
| |
| /** |
| * regulator_find_closest_bigger - helper to find offset in ramp delay table |
| * |
| * @target: targeted ramp_delay |
| * @table: table with supported ramp delays |
| * @num_sel: number of entries in the table |
| * @sel: Pointer to store table offset |
| * |
| * This is the internal helper used by regulator_set_ramp_delay_regmap to |
| * map ramp delay to register value. It should only be used directly if |
| * regulator_set_ramp_delay_regmap cannot handle a specific device setup |
| * (e.g. because the value is split over multiple registers). |
| */ |
| int regulator_find_closest_bigger(unsigned int target, const unsigned int *table, |
| unsigned int num_sel, unsigned int *sel) |
| { |
| unsigned int s, tmp, max, maxsel = 0; |
| bool found = false; |
| |
| max = table[0]; |
| |
| for (s = 0; s < num_sel; s++) { |
| if (table[s] > max) { |
| max = table[s]; |
| maxsel = s; |
| } |
| if (table[s] >= target) { |
| if (!found || table[s] - target < tmp - target) { |
| tmp = table[s]; |
| *sel = s; |
| found = true; |
| if (tmp == target) |
| break; |
| } |
| } |
| } |
| |
| if (!found) { |
| *sel = maxsel; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_find_closest_bigger); |
| |
| /** |
| * regulator_set_ramp_delay_regmap - set_ramp_delay() helper |
| * |
| * @rdev: regulator to operate on |
| * @ramp_delay: ramp-rate value given in units V/S (uV/uS) |
| * |
| * Regulators that use regmap for their register I/O can set the ramp_reg |
| * and ramp_mask fields in their descriptor and then use this as their |
| * set_ramp_delay operation, saving some code. |
| */ |
| int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay) |
| { |
| int ret; |
| unsigned int sel; |
| |
| if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table)) |
| return -EINVAL; |
| |
| ret = regulator_find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table, |
| rdev->desc->n_ramp_values, &sel); |
| |
| if (ret) { |
| dev_warn(rdev_get_dev(rdev), |
| "Can't set ramp-delay %u, setting %u\n", ramp_delay, |
| rdev->desc->ramp_delay_table[sel]); |
| } |
| |
| sel <<= ffs(rdev->desc->ramp_mask) - 1; |
| |
| return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg, |
| rdev->desc->ramp_mask, sel); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap); |