| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Iterator helpers. |
| * |
| * Copyright (C) 2022 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/uio.h> |
| #include <linux/scatterlist.h> |
| #include <linux/netfs.h> |
| #include "internal.h" |
| |
| /** |
| * netfs_extract_user_iter - Extract the pages from a user iterator into a bvec |
| * @orig: The original iterator |
| * @orig_len: The amount of iterator to copy |
| * @new: The iterator to be set up |
| * @extraction_flags: Flags to qualify the request |
| * |
| * Extract the page fragments from the given amount of the source iterator and |
| * build up a second iterator that refers to all of those bits. This allows |
| * the original iterator to disposed of. |
| * |
| * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA be |
| * allowed on the pages extracted. |
| * |
| * On success, the number of elements in the bvec is returned, the original |
| * iterator will have been advanced by the amount extracted. |
| * |
| * The iov_iter_extract_mode() function should be used to query how cleanup |
| * should be performed. |
| */ |
| ssize_t netfs_extract_user_iter(struct iov_iter *orig, size_t orig_len, |
| struct iov_iter *new, |
| iov_iter_extraction_t extraction_flags) |
| { |
| struct bio_vec *bv = NULL; |
| struct page **pages; |
| unsigned int cur_npages; |
| unsigned int max_pages; |
| unsigned int npages = 0; |
| unsigned int i; |
| ssize_t ret; |
| size_t count = orig_len, offset, len; |
| size_t bv_size, pg_size; |
| |
| if (WARN_ON_ONCE(!iter_is_ubuf(orig) && !iter_is_iovec(orig))) |
| return -EIO; |
| |
| max_pages = iov_iter_npages(orig, INT_MAX); |
| bv_size = array_size(max_pages, sizeof(*bv)); |
| bv = kvmalloc(bv_size, GFP_KERNEL); |
| if (!bv) |
| return -ENOMEM; |
| |
| /* Put the page list at the end of the bvec list storage. bvec |
| * elements are larger than page pointers, so as long as we work |
| * 0->last, we should be fine. |
| */ |
| pg_size = array_size(max_pages, sizeof(*pages)); |
| pages = (void *)bv + bv_size - pg_size; |
| |
| while (count && npages < max_pages) { |
| ret = iov_iter_extract_pages(orig, &pages, count, |
| max_pages - npages, extraction_flags, |
| &offset); |
| if (ret < 0) { |
| pr_err("Couldn't get user pages (rc=%zd)\n", ret); |
| break; |
| } |
| |
| if (ret > count) { |
| pr_err("get_pages rc=%zd more than %zu\n", ret, count); |
| break; |
| } |
| |
| count -= ret; |
| ret += offset; |
| cur_npages = DIV_ROUND_UP(ret, PAGE_SIZE); |
| |
| if (npages + cur_npages > max_pages) { |
| pr_err("Out of bvec array capacity (%u vs %u)\n", |
| npages + cur_npages, max_pages); |
| break; |
| } |
| |
| for (i = 0; i < cur_npages; i++) { |
| len = ret > PAGE_SIZE ? PAGE_SIZE : ret; |
| bvec_set_page(bv + npages + i, *pages++, len - offset, offset); |
| ret -= len; |
| offset = 0; |
| } |
| |
| npages += cur_npages; |
| } |
| |
| iov_iter_bvec(new, orig->data_source, bv, npages, orig_len - count); |
| return npages; |
| } |
| EXPORT_SYMBOL_GPL(netfs_extract_user_iter); |
| |
| /* |
| * Select the span of a bvec iterator we're going to use. Limit it by both maximum |
| * size and maximum number of segments. Returns the size of the span in bytes. |
| */ |
| static size_t netfs_limit_bvec(const struct iov_iter *iter, size_t start_offset, |
| size_t max_size, size_t max_segs) |
| { |
| const struct bio_vec *bvecs = iter->bvec; |
| unsigned int nbv = iter->nr_segs, ix = 0, nsegs = 0; |
| size_t len, span = 0, n = iter->count; |
| size_t skip = iter->iov_offset + start_offset; |
| |
| if (WARN_ON(!iov_iter_is_bvec(iter)) || |
| WARN_ON(start_offset > n) || |
| n == 0) |
| return 0; |
| |
| while (n && ix < nbv && skip) { |
| len = bvecs[ix].bv_len; |
| if (skip < len) |
| break; |
| skip -= len; |
| n -= len; |
| ix++; |
| } |
| |
| while (n && ix < nbv) { |
| len = min3(n, bvecs[ix].bv_len - skip, max_size); |
| span += len; |
| nsegs++; |
| ix++; |
| if (span >= max_size || nsegs >= max_segs) |
| break; |
| skip = 0; |
| n -= len; |
| } |
| |
| return min(span, max_size); |
| } |
| |
| /* |
| * Select the span of an xarray iterator we're going to use. Limit it by both |
| * maximum size and maximum number of segments. It is assumed that segments |
| * can be larger than a page in size, provided they're physically contiguous. |
| * Returns the size of the span in bytes. |
| */ |
| static size_t netfs_limit_xarray(const struct iov_iter *iter, size_t start_offset, |
| size_t max_size, size_t max_segs) |
| { |
| struct folio *folio; |
| unsigned int nsegs = 0; |
| loff_t pos = iter->xarray_start + iter->iov_offset; |
| pgoff_t index = pos / PAGE_SIZE; |
| size_t span = 0, n = iter->count; |
| |
| XA_STATE(xas, iter->xarray, index); |
| |
| if (WARN_ON(!iov_iter_is_xarray(iter)) || |
| WARN_ON(start_offset > n) || |
| n == 0) |
| return 0; |
| max_size = min(max_size, n - start_offset); |
| |
| rcu_read_lock(); |
| xas_for_each(&xas, folio, ULONG_MAX) { |
| size_t offset, flen, len; |
| if (xas_retry(&xas, folio)) |
| continue; |
| if (WARN_ON(xa_is_value(folio))) |
| break; |
| if (WARN_ON(folio_test_hugetlb(folio))) |
| break; |
| |
| flen = folio_size(folio); |
| offset = offset_in_folio(folio, pos); |
| len = min(max_size, flen - offset); |
| span += len; |
| nsegs++; |
| if (span >= max_size || nsegs >= max_segs) |
| break; |
| } |
| |
| rcu_read_unlock(); |
| return min(span, max_size); |
| } |
| |
| /* |
| * Select the span of a folio queue iterator we're going to use. Limit it by |
| * both maximum size and maximum number of segments. Returns the size of the |
| * span in bytes. |
| */ |
| static size_t netfs_limit_folioq(const struct iov_iter *iter, size_t start_offset, |
| size_t max_size, size_t max_segs) |
| { |
| const struct folio_queue *folioq = iter->folioq; |
| unsigned int nsegs = 0; |
| unsigned int slot = iter->folioq_slot; |
| size_t span = 0, n = iter->count; |
| |
| if (WARN_ON(!iov_iter_is_folioq(iter)) || |
| WARN_ON(start_offset > n) || |
| n == 0) |
| return 0; |
| max_size = umin(max_size, n - start_offset); |
| |
| if (slot >= folioq_nr_slots(folioq)) { |
| folioq = folioq->next; |
| slot = 0; |
| } |
| |
| start_offset += iter->iov_offset; |
| do { |
| size_t flen = folioq_folio_size(folioq, slot); |
| |
| if (start_offset < flen) { |
| span += flen - start_offset; |
| nsegs++; |
| start_offset = 0; |
| } else { |
| start_offset -= flen; |
| } |
| if (span >= max_size || nsegs >= max_segs) |
| break; |
| |
| slot++; |
| if (slot >= folioq_nr_slots(folioq)) { |
| folioq = folioq->next; |
| slot = 0; |
| } |
| } while (folioq); |
| |
| return umin(span, max_size); |
| } |
| |
| size_t netfs_limit_iter(const struct iov_iter *iter, size_t start_offset, |
| size_t max_size, size_t max_segs) |
| { |
| if (iov_iter_is_folioq(iter)) |
| return netfs_limit_folioq(iter, start_offset, max_size, max_segs); |
| if (iov_iter_is_bvec(iter)) |
| return netfs_limit_bvec(iter, start_offset, max_size, max_segs); |
| if (iov_iter_is_xarray(iter)) |
| return netfs_limit_xarray(iter, start_offset, max_size, max_segs); |
| BUG(); |
| } |
| EXPORT_SYMBOL(netfs_limit_iter); |