blob: 1d438be2e1b4b83b60488cf05acab5c6e442b26e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Network filesystem write subrequest result collection, assessment
* and retrying.
*
* Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <linux/export.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include "internal.h"
/* Notes made in the collector */
#define HIT_PENDING 0x01 /* A front op was still pending */
#define NEED_REASSESS 0x02 /* Need to loop round and reassess */
#define MADE_PROGRESS 0x04 /* Made progress cleaning up a stream or the folio set */
#define BUFFERED 0x08 /* The pagecache needs cleaning up */
#define NEED_RETRY 0x10 /* A front op requests retrying */
#define SAW_FAILURE 0x20 /* One stream or hit a permanent failure */
/*
* Successful completion of write of a folio to the server and/or cache. Note
* that we are not allowed to lock the folio here on pain of deadlocking with
* truncate.
*/
int netfs_folio_written_back(struct folio *folio)
{
enum netfs_folio_trace why = netfs_folio_trace_clear;
struct netfs_inode *ictx = netfs_inode(folio->mapping->host);
struct netfs_folio *finfo;
struct netfs_group *group = NULL;
int gcount = 0;
if ((finfo = netfs_folio_info(folio))) {
/* Streaming writes cannot be redirtied whilst under writeback,
* so discard the streaming record.
*/
unsigned long long fend;
fend = folio_pos(folio) + finfo->dirty_offset + finfo->dirty_len;
if (fend > ictx->zero_point)
ictx->zero_point = fend;
folio_detach_private(folio);
group = finfo->netfs_group;
gcount++;
kfree(finfo);
why = netfs_folio_trace_clear_s;
goto end_wb;
}
if ((group = netfs_folio_group(folio))) {
if (group == NETFS_FOLIO_COPY_TO_CACHE) {
why = netfs_folio_trace_clear_cc;
folio_detach_private(folio);
goto end_wb;
}
/* Need to detach the group pointer if the page didn't get
* redirtied. If it has been redirtied, then it must be within
* the same group.
*/
why = netfs_folio_trace_redirtied;
if (!folio_test_dirty(folio)) {
folio_detach_private(folio);
gcount++;
why = netfs_folio_trace_clear_g;
}
}
end_wb:
trace_netfs_folio(folio, why);
folio_end_writeback(folio);
return gcount;
}
/*
* Unlock any folios we've finished with.
*/
static void netfs_writeback_unlock_folios(struct netfs_io_request *wreq,
unsigned int *notes)
{
struct folio_queue *folioq = wreq->buffer;
unsigned long long collected_to = wreq->collected_to;
unsigned int slot = wreq->buffer_head_slot;
if (wreq->origin == NETFS_PGPRIV2_COPY_TO_CACHE) {
if (netfs_pgpriv2_unlock_copied_folios(wreq))
*notes |= MADE_PROGRESS;
return;
}
if (slot >= folioq_nr_slots(folioq)) {
folioq = netfs_delete_buffer_head(wreq);
slot = 0;
}
for (;;) {
struct folio *folio;
struct netfs_folio *finfo;
unsigned long long fpos, fend;
size_t fsize, flen;
folio = folioq_folio(folioq, slot);
if (WARN_ONCE(!folio_test_writeback(folio),
"R=%08x: folio %lx is not under writeback\n",
wreq->debug_id, folio->index))
trace_netfs_folio(folio, netfs_folio_trace_not_under_wback);
fpos = folio_pos(folio);
fsize = folio_size(folio);
finfo = netfs_folio_info(folio);
flen = finfo ? finfo->dirty_offset + finfo->dirty_len : fsize;
fend = min_t(unsigned long long, fpos + flen, wreq->i_size);
trace_netfs_collect_folio(wreq, folio, fend, collected_to);
/* Unlock any folio we've transferred all of. */
if (collected_to < fend)
break;
wreq->nr_group_rel += netfs_folio_written_back(folio);
wreq->cleaned_to = fpos + fsize;
*notes |= MADE_PROGRESS;
/* Clean up the head folioq. If we clear an entire folioq, then
* we can get rid of it provided it's not also the tail folioq
* being filled by the issuer.
*/
folioq_clear(folioq, slot);
slot++;
if (slot >= folioq_nr_slots(folioq)) {
if (READ_ONCE(wreq->buffer_tail) == folioq)
break;
folioq = netfs_delete_buffer_head(wreq);
slot = 0;
}
if (fpos + fsize >= collected_to)
break;
}
wreq->buffer = folioq;
wreq->buffer_head_slot = slot;
}
/*
* Perform retries on the streams that need it.
*/
static void netfs_retry_write_stream(struct netfs_io_request *wreq,
struct netfs_io_stream *stream)
{
struct list_head *next;
_enter("R=%x[%x:]", wreq->debug_id, stream->stream_nr);
if (list_empty(&stream->subrequests))
return;
if (stream->source == NETFS_UPLOAD_TO_SERVER &&
wreq->netfs_ops->retry_request)
wreq->netfs_ops->retry_request(wreq, stream);
if (unlikely(stream->failed))
return;
/* If there's no renegotiation to do, just resend each failed subreq. */
if (!stream->prepare_write) {
struct netfs_io_subrequest *subreq;
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
if (test_bit(NETFS_SREQ_FAILED, &subreq->flags))
break;
if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) {
struct iov_iter source = subreq->io_iter;
iov_iter_revert(&source, subreq->len - source.count);
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
netfs_reissue_write(stream, subreq, &source);
}
}
return;
}
next = stream->subrequests.next;
do {
struct netfs_io_subrequest *subreq = NULL, *from, *to, *tmp;
struct iov_iter source;
unsigned long long start, len;
size_t part;
bool boundary = false;
/* Go through the stream and find the next span of contiguous
* data that we then rejig (cifs, for example, needs the wsize
* renegotiating) and reissue.
*/
from = list_entry(next, struct netfs_io_subrequest, rreq_link);
to = from;
start = from->start + from->transferred;
len = from->len - from->transferred;
if (test_bit(NETFS_SREQ_FAILED, &from->flags) ||
!test_bit(NETFS_SREQ_NEED_RETRY, &from->flags))
return;
list_for_each_continue(next, &stream->subrequests) {
subreq = list_entry(next, struct netfs_io_subrequest, rreq_link);
if (subreq->start + subreq->transferred != start + len ||
test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags) ||
!test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags))
break;
to = subreq;
len += to->len;
}
/* Determine the set of buffers we're going to use. Each
* subreq gets a subset of a single overall contiguous buffer.
*/
netfs_reset_iter(from);
source = from->io_iter;
source.count = len;
/* Work through the sublist. */
subreq = from;
list_for_each_entry_from(subreq, &stream->subrequests, rreq_link) {
if (!len)
break;
/* Renegotiate max_len (wsize) */
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
__clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
stream->prepare_write(subreq);
part = min(len, stream->sreq_max_len);
subreq->len = part;
subreq->start = start;
subreq->transferred = 0;
len -= part;
start += part;
if (len && subreq == to &&
__test_and_clear_bit(NETFS_SREQ_BOUNDARY, &to->flags))
boundary = true;
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
netfs_reissue_write(stream, subreq, &source);
if (subreq == to)
break;
}
/* If we managed to use fewer subreqs, we can discard the
* excess; if we used the same number, then we're done.
*/
if (!len) {
if (subreq == to)
continue;
list_for_each_entry_safe_from(subreq, tmp,
&stream->subrequests, rreq_link) {
trace_netfs_sreq(subreq, netfs_sreq_trace_discard);
list_del(&subreq->rreq_link);
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done);
if (subreq == to)
break;
}
continue;
}
/* We ran out of subrequests, so we need to allocate some more
* and insert them after.
*/
do {
subreq = netfs_alloc_subrequest(wreq);
subreq->source = to->source;
subreq->start = start;
subreq->debug_index = atomic_inc_return(&wreq->subreq_counter);
subreq->stream_nr = to->stream_nr;
__set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index,
refcount_read(&subreq->ref),
netfs_sreq_trace_new);
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
list_add(&subreq->rreq_link, &to->rreq_link);
to = list_next_entry(to, rreq_link);
trace_netfs_sreq(subreq, netfs_sreq_trace_retry);
stream->sreq_max_len = len;
stream->sreq_max_segs = INT_MAX;
switch (stream->source) {
case NETFS_UPLOAD_TO_SERVER:
netfs_stat(&netfs_n_wh_upload);
stream->sreq_max_len = umin(len, wreq->wsize);
break;
case NETFS_WRITE_TO_CACHE:
netfs_stat(&netfs_n_wh_write);
break;
default:
WARN_ON_ONCE(1);
}
stream->prepare_write(subreq);
part = umin(len, stream->sreq_max_len);
subreq->len = subreq->transferred + part;
len -= part;
start += part;
if (!len && boundary) {
__set_bit(NETFS_SREQ_BOUNDARY, &to->flags);
boundary = false;
}
netfs_reissue_write(stream, subreq, &source);
if (!len)
break;
} while (len);
} while (!list_is_head(next, &stream->subrequests));
}
/*
* Perform retries on the streams that need it. If we're doing content
* encryption and the server copy changed due to a third-party write, we may
* need to do an RMW cycle and also rewrite the data to the cache.
*/
static void netfs_retry_writes(struct netfs_io_request *wreq)
{
struct netfs_io_subrequest *subreq;
struct netfs_io_stream *stream;
int s;
/* Wait for all outstanding I/O to quiesce before performing retries as
* we may need to renegotiate the I/O sizes.
*/
for (s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
if (!stream->active)
continue;
list_for_each_entry(subreq, &stream->subrequests, rreq_link) {
wait_on_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS,
TASK_UNINTERRUPTIBLE);
}
}
// TODO: Enc: Fetch changed partial pages
// TODO: Enc: Reencrypt content if needed.
// TODO: Enc: Wind back transferred point.
// TODO: Enc: Mark cache pages for retry.
for (s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
if (stream->need_retry) {
stream->need_retry = false;
netfs_retry_write_stream(wreq, stream);
}
}
}
/*
* Collect and assess the results of various write subrequests. We may need to
* retry some of the results - or even do an RMW cycle for content crypto.
*
* Note that we have a number of parallel, overlapping lists of subrequests,
* one to the server and one to the local cache for example, which may not be
* the same size or starting position and may not even correspond in boundary
* alignment.
*/
static void netfs_collect_write_results(struct netfs_io_request *wreq)
{
struct netfs_io_subrequest *front, *remove;
struct netfs_io_stream *stream;
unsigned long long collected_to, issued_to;
unsigned int notes;
int s;
_enter("%llx-%llx", wreq->start, wreq->start + wreq->len);
trace_netfs_collect(wreq);
trace_netfs_rreq(wreq, netfs_rreq_trace_collect);
reassess_streams:
issued_to = atomic64_read(&wreq->issued_to);
smp_rmb();
collected_to = ULLONG_MAX;
if (wreq->origin == NETFS_WRITEBACK ||
wreq->origin == NETFS_WRITETHROUGH ||
wreq->origin == NETFS_PGPRIV2_COPY_TO_CACHE)
notes = BUFFERED;
else
notes = 0;
/* Remove completed subrequests from the front of the streams and
* advance the completion point on each stream. We stop when we hit
* something that's in progress. The issuer thread may be adding stuff
* to the tail whilst we're doing this.
*/
for (s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
/* Read active flag before list pointers */
if (!smp_load_acquire(&stream->active))
continue;
front = stream->front;
while (front) {
trace_netfs_collect_sreq(wreq, front);
//_debug("sreq [%x] %llx %zx/%zx",
// front->debug_index, front->start, front->transferred, front->len);
if (stream->collected_to < front->start) {
trace_netfs_collect_gap(wreq, stream, issued_to, 'F');
stream->collected_to = front->start;
}
/* Stall if the front is still undergoing I/O. */
if (test_bit(NETFS_SREQ_IN_PROGRESS, &front->flags)) {
notes |= HIT_PENDING;
break;
}
smp_rmb(); /* Read counters after I-P flag. */
if (stream->failed) {
stream->collected_to = front->start + front->len;
notes |= MADE_PROGRESS | SAW_FAILURE;
goto cancel;
}
if (front->start + front->transferred > stream->collected_to) {
stream->collected_to = front->start + front->transferred;
stream->transferred = stream->collected_to - wreq->start;
notes |= MADE_PROGRESS;
}
if (test_bit(NETFS_SREQ_FAILED, &front->flags)) {
stream->failed = true;
stream->error = front->error;
if (stream->source == NETFS_UPLOAD_TO_SERVER)
mapping_set_error(wreq->mapping, front->error);
notes |= NEED_REASSESS | SAW_FAILURE;
break;
}
if (front->transferred < front->len) {
stream->need_retry = true;
notes |= NEED_RETRY | MADE_PROGRESS;
break;
}
cancel:
/* Remove if completely consumed. */
spin_lock_bh(&wreq->lock);
remove = front;
list_del_init(&front->rreq_link);
front = list_first_entry_or_null(&stream->subrequests,
struct netfs_io_subrequest, rreq_link);
stream->front = front;
spin_unlock_bh(&wreq->lock);
netfs_put_subrequest(remove, false,
notes & SAW_FAILURE ?
netfs_sreq_trace_put_cancel :
netfs_sreq_trace_put_done);
}
/* If we have an empty stream, we need to jump it forward
* otherwise the collection point will never advance.
*/
if (!front && issued_to > stream->collected_to) {
trace_netfs_collect_gap(wreq, stream, issued_to, 'E');
stream->collected_to = issued_to;
}
if (stream->collected_to < collected_to)
collected_to = stream->collected_to;
}
if (collected_to != ULLONG_MAX && collected_to > wreq->collected_to)
wreq->collected_to = collected_to;
for (s = 0; s < NR_IO_STREAMS; s++) {
stream = &wreq->io_streams[s];
if (stream->active)
trace_netfs_collect_stream(wreq, stream);
}
trace_netfs_collect_state(wreq, wreq->collected_to, notes);
/* Unlock any folios that we have now finished with. */
if (notes & BUFFERED) {
if (wreq->cleaned_to < wreq->collected_to)
netfs_writeback_unlock_folios(wreq, &notes);
} else {
wreq->cleaned_to = wreq->collected_to;
}
// TODO: Discard encryption buffers
if (notes & NEED_RETRY)
goto need_retry;
if ((notes & MADE_PROGRESS) && test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) {
trace_netfs_rreq(wreq, netfs_rreq_trace_unpause);
clear_bit_unlock(NETFS_RREQ_PAUSE, &wreq->flags);
wake_up_bit(&wreq->flags, NETFS_RREQ_PAUSE);
}
if (notes & NEED_REASSESS) {
//cond_resched();
goto reassess_streams;
}
if (notes & MADE_PROGRESS) {
//cond_resched();
goto reassess_streams;
}
out:
netfs_put_group_many(wreq->group, wreq->nr_group_rel);
wreq->nr_group_rel = 0;
_leave(" = %x", notes);
return;
need_retry:
/* Okay... We're going to have to retry one or both streams. Note
* that any partially completed op will have had any wholly transferred
* folios removed from it.
*/
_debug("retry");
netfs_retry_writes(wreq);
goto out;
}
/*
* Perform the collection of subrequests, folios and encryption buffers.
*/
void netfs_write_collection_worker(struct work_struct *work)
{
struct netfs_io_request *wreq = container_of(work, struct netfs_io_request, work);
struct netfs_inode *ictx = netfs_inode(wreq->inode);
size_t transferred;
int s;
_enter("R=%x", wreq->debug_id);
netfs_see_request(wreq, netfs_rreq_trace_see_work);
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &wreq->flags)) {
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
return;
}
netfs_collect_write_results(wreq);
/* We're done when the app thread has finished posting subreqs and all
* the queues in all the streams are empty.
*/
if (!test_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags)) {
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
return;
}
smp_rmb(); /* Read ALL_QUEUED before lists. */
transferred = LONG_MAX;
for (s = 0; s < NR_IO_STREAMS; s++) {
struct netfs_io_stream *stream = &wreq->io_streams[s];
if (!stream->active)
continue;
if (!list_empty(&stream->subrequests)) {
netfs_put_request(wreq, false, netfs_rreq_trace_put_work);
return;
}
if (stream->transferred < transferred)
transferred = stream->transferred;
}
/* Okay, declare that all I/O is complete. */
wreq->transferred = transferred;
trace_netfs_rreq(wreq, netfs_rreq_trace_write_done);
if (wreq->io_streams[1].active &&
wreq->io_streams[1].failed) {
/* Cache write failure doesn't prevent writeback completion
* unless we're in disconnected mode.
*/
ictx->ops->invalidate_cache(wreq);
}
if (wreq->cleanup)
wreq->cleanup(wreq);
if (wreq->origin == NETFS_DIO_WRITE &&
wreq->mapping->nrpages) {
/* mmap may have got underfoot and we may now have folios
* locally covering the region we just wrote. Attempt to
* discard the folios, but leave in place any modified locally.
* ->write_iter() is prevented from interfering by the DIO
* counter.
*/
pgoff_t first = wreq->start >> PAGE_SHIFT;
pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT;
invalidate_inode_pages2_range(wreq->mapping, first, last);
}
if (wreq->origin == NETFS_DIO_WRITE)
inode_dio_end(wreq->inode);
_debug("finished");
trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip);
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags);
wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS);
if (wreq->iocb) {
size_t written = min(wreq->transferred, wreq->len);
wreq->iocb->ki_pos += written;
if (wreq->iocb->ki_complete)
wreq->iocb->ki_complete(
wreq->iocb, wreq->error ? wreq->error : written);
wreq->iocb = VFS_PTR_POISON;
}
netfs_clear_subrequests(wreq, false);
netfs_put_request(wreq, false, netfs_rreq_trace_put_work_complete);
}
/*
* Wake the collection work item.
*/
void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async)
{
if (!work_pending(&wreq->work)) {
netfs_get_request(wreq, netfs_rreq_trace_get_work);
if (!queue_work(system_unbound_wq, &wreq->work))
netfs_put_request(wreq, was_async, netfs_rreq_trace_put_work_nq);
}
}
/**
* netfs_write_subrequest_terminated - Note the termination of a write operation.
* @_op: The I/O request that has terminated.
* @transferred_or_error: The amount of data transferred or an error code.
* @was_async: The termination was asynchronous
*
* This tells the library that a contributory write I/O operation has
* terminated, one way or another, and that it should collect the results.
*
* The caller indicates in @transferred_or_error the outcome of the operation,
* supplying a positive value to indicate the number of bytes transferred or a
* negative error code. The library will look after reissuing I/O operations
* as appropriate and writing downloaded data to the cache.
*
* If @was_async is true, the caller might be running in softirq or interrupt
* context and we can't sleep.
*
* When this is called, ownership of the subrequest is transferred back to the
* library, along with a ref.
*
* Note that %_op is a void* so that the function can be passed to
* kiocb::term_func without the need for a casting wrapper.
*/
void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error,
bool was_async)
{
struct netfs_io_subrequest *subreq = _op;
struct netfs_io_request *wreq = subreq->rreq;
struct netfs_io_stream *stream = &wreq->io_streams[subreq->stream_nr];
_enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error);
switch (subreq->source) {
case NETFS_UPLOAD_TO_SERVER:
netfs_stat(&netfs_n_wh_upload_done);
break;
case NETFS_WRITE_TO_CACHE:
netfs_stat(&netfs_n_wh_write_done);
break;
case NETFS_INVALID_WRITE:
break;
default:
BUG();
}
if (IS_ERR_VALUE(transferred_or_error)) {
subreq->error = transferred_or_error;
if (subreq->error == -EAGAIN)
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
else
set_bit(NETFS_SREQ_FAILED, &subreq->flags);
trace_netfs_failure(wreq, subreq, transferred_or_error, netfs_fail_write);
switch (subreq->source) {
case NETFS_WRITE_TO_CACHE:
netfs_stat(&netfs_n_wh_write_failed);
break;
case NETFS_UPLOAD_TO_SERVER:
netfs_stat(&netfs_n_wh_upload_failed);
break;
default:
break;
}
trace_netfs_rreq(wreq, netfs_rreq_trace_set_pause);
set_bit(NETFS_RREQ_PAUSE, &wreq->flags);
} else {
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
"Subreq excess write: R=%x[%x] %zd > %zu - %zu",
wreq->debug_id, subreq->debug_index,
transferred_or_error, subreq->len, subreq->transferred))
transferred_or_error = subreq->len - subreq->transferred;
subreq->error = 0;
subreq->transferred += transferred_or_error;
if (subreq->transferred < subreq->len)
set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
}
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags);
wake_up_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS);
/* If we are at the head of the queue, wake up the collector,
* transferring a ref to it if we were the ones to do so.
*/
if (list_is_first(&subreq->rreq_link, &stream->subrequests))
netfs_wake_write_collector(wreq, was_async);
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
}
EXPORT_SYMBOL(netfs_write_subrequest_terminated);