| // SPDX-License-Identifier: GPL-2.0-only |
| /* Network filesystem high-level (buffered) writeback. |
| * |
| * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * |
| * To support network filesystems with local caching, we manage a situation |
| * that can be envisioned like the following: |
| * |
| * +---+---+-----+-----+---+----------+ |
| * Folios: | | | | | | | |
| * +---+---+-----+-----+---+----------+ |
| * |
| * +------+------+ +----+----+ |
| * Upload: | | |.....| | | |
| * (Stream 0) +------+------+ +----+----+ |
| * |
| * +------+------+------+------+------+ |
| * Cache: | | | | | | |
| * (Stream 1) +------+------+------+------+------+ |
| * |
| * Where we have a sequence of folios of varying sizes that we need to overlay |
| * with multiple parallel streams of I/O requests, where the I/O requests in a |
| * stream may also be of various sizes (in cifs, for example, the sizes are |
| * negotiated with the server; in something like ceph, they may represent the |
| * sizes of storage objects). |
| * |
| * The sequence in each stream may contain gaps and noncontiguous subrequests |
| * may be glued together into single vectored write RPCs. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include "internal.h" |
| |
| /* |
| * Kill all dirty folios in the event of an unrecoverable error, starting with |
| * a locked folio we've already obtained from writeback_iter(). |
| */ |
| static void netfs_kill_dirty_pages(struct address_space *mapping, |
| struct writeback_control *wbc, |
| struct folio *folio) |
| { |
| int error = 0; |
| |
| do { |
| enum netfs_folio_trace why = netfs_folio_trace_kill; |
| struct netfs_group *group = NULL; |
| struct netfs_folio *finfo = NULL; |
| void *priv; |
| |
| priv = folio_detach_private(folio); |
| if (priv) { |
| finfo = __netfs_folio_info(priv); |
| if (finfo) { |
| /* Kill folio from streaming write. */ |
| group = finfo->netfs_group; |
| why = netfs_folio_trace_kill_s; |
| } else { |
| group = priv; |
| if (group == NETFS_FOLIO_COPY_TO_CACHE) { |
| /* Kill copy-to-cache folio */ |
| why = netfs_folio_trace_kill_cc; |
| group = NULL; |
| } else { |
| /* Kill folio with group */ |
| why = netfs_folio_trace_kill_g; |
| } |
| } |
| } |
| |
| trace_netfs_folio(folio, why); |
| |
| folio_start_writeback(folio); |
| folio_unlock(folio); |
| folio_end_writeback(folio); |
| |
| netfs_put_group(group); |
| kfree(finfo); |
| |
| } while ((folio = writeback_iter(mapping, wbc, folio, &error))); |
| } |
| |
| /* |
| * Create a write request and set it up appropriately for the origin type. |
| */ |
| struct netfs_io_request *netfs_create_write_req(struct address_space *mapping, |
| struct file *file, |
| loff_t start, |
| enum netfs_io_origin origin) |
| { |
| struct netfs_io_request *wreq; |
| struct netfs_inode *ictx; |
| bool is_buffered = (origin == NETFS_WRITEBACK || |
| origin == NETFS_WRITETHROUGH || |
| origin == NETFS_PGPRIV2_COPY_TO_CACHE); |
| |
| wreq = netfs_alloc_request(mapping, file, start, 0, origin); |
| if (IS_ERR(wreq)) |
| return wreq; |
| |
| _enter("R=%x", wreq->debug_id); |
| |
| ictx = netfs_inode(wreq->inode); |
| if (is_buffered && netfs_is_cache_enabled(ictx)) |
| fscache_begin_write_operation(&wreq->cache_resources, netfs_i_cookie(ictx)); |
| |
| wreq->cleaned_to = wreq->start; |
| |
| wreq->io_streams[0].stream_nr = 0; |
| wreq->io_streams[0].source = NETFS_UPLOAD_TO_SERVER; |
| wreq->io_streams[0].prepare_write = ictx->ops->prepare_write; |
| wreq->io_streams[0].issue_write = ictx->ops->issue_write; |
| wreq->io_streams[0].collected_to = start; |
| wreq->io_streams[0].transferred = LONG_MAX; |
| |
| wreq->io_streams[1].stream_nr = 1; |
| wreq->io_streams[1].source = NETFS_WRITE_TO_CACHE; |
| wreq->io_streams[1].collected_to = start; |
| wreq->io_streams[1].transferred = LONG_MAX; |
| if (fscache_resources_valid(&wreq->cache_resources)) { |
| wreq->io_streams[1].avail = true; |
| wreq->io_streams[1].active = true; |
| wreq->io_streams[1].prepare_write = wreq->cache_resources.ops->prepare_write_subreq; |
| wreq->io_streams[1].issue_write = wreq->cache_resources.ops->issue_write; |
| } |
| |
| return wreq; |
| } |
| |
| /** |
| * netfs_prepare_write_failed - Note write preparation failed |
| * @subreq: The subrequest to mark |
| * |
| * Mark a subrequest to note that preparation for write failed. |
| */ |
| void netfs_prepare_write_failed(struct netfs_io_subrequest *subreq) |
| { |
| __set_bit(NETFS_SREQ_FAILED, &subreq->flags); |
| trace_netfs_sreq(subreq, netfs_sreq_trace_prep_failed); |
| } |
| EXPORT_SYMBOL(netfs_prepare_write_failed); |
| |
| /* |
| * Prepare a write subrequest. We need to allocate a new subrequest |
| * if we don't have one. |
| */ |
| static void netfs_prepare_write(struct netfs_io_request *wreq, |
| struct netfs_io_stream *stream, |
| loff_t start) |
| { |
| struct netfs_io_subrequest *subreq; |
| struct iov_iter *wreq_iter = &wreq->io_iter; |
| |
| /* Make sure we don't point the iterator at a used-up folio_queue |
| * struct being used as a placeholder to prevent the queue from |
| * collapsing. In such a case, extend the queue. |
| */ |
| if (iov_iter_is_folioq(wreq_iter) && |
| wreq_iter->folioq_slot >= folioq_nr_slots(wreq_iter->folioq)) { |
| netfs_buffer_make_space(wreq); |
| } |
| |
| subreq = netfs_alloc_subrequest(wreq); |
| subreq->source = stream->source; |
| subreq->start = start; |
| subreq->stream_nr = stream->stream_nr; |
| subreq->io_iter = *wreq_iter; |
| |
| _enter("R=%x[%x]", wreq->debug_id, subreq->debug_index); |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_prepare); |
| |
| stream->sreq_max_len = UINT_MAX; |
| stream->sreq_max_segs = INT_MAX; |
| switch (stream->source) { |
| case NETFS_UPLOAD_TO_SERVER: |
| netfs_stat(&netfs_n_wh_upload); |
| stream->sreq_max_len = wreq->wsize; |
| break; |
| case NETFS_WRITE_TO_CACHE: |
| netfs_stat(&netfs_n_wh_write); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| break; |
| } |
| |
| if (stream->prepare_write) |
| stream->prepare_write(subreq); |
| |
| __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); |
| |
| /* We add to the end of the list whilst the collector may be walking |
| * the list. The collector only goes nextwards and uses the lock to |
| * remove entries off of the front. |
| */ |
| spin_lock_bh(&wreq->lock); |
| list_add_tail(&subreq->rreq_link, &stream->subrequests); |
| if (list_is_first(&subreq->rreq_link, &stream->subrequests)) { |
| stream->front = subreq; |
| if (!stream->active) { |
| stream->collected_to = stream->front->start; |
| /* Write list pointers before active flag */ |
| smp_store_release(&stream->active, true); |
| } |
| } |
| |
| spin_unlock_bh(&wreq->lock); |
| |
| stream->construct = subreq; |
| } |
| |
| /* |
| * Set the I/O iterator for the filesystem/cache to use and dispatch the I/O |
| * operation. The operation may be asynchronous and should call |
| * netfs_write_subrequest_terminated() when complete. |
| */ |
| static void netfs_do_issue_write(struct netfs_io_stream *stream, |
| struct netfs_io_subrequest *subreq) |
| { |
| struct netfs_io_request *wreq = subreq->rreq; |
| |
| _enter("R=%x[%x],%zx", wreq->debug_id, subreq->debug_index, subreq->len); |
| |
| if (test_bit(NETFS_SREQ_FAILED, &subreq->flags)) |
| return netfs_write_subrequest_terminated(subreq, subreq->error, false); |
| |
| trace_netfs_sreq(subreq, netfs_sreq_trace_submit); |
| stream->issue_write(subreq); |
| } |
| |
| void netfs_reissue_write(struct netfs_io_stream *stream, |
| struct netfs_io_subrequest *subreq, |
| struct iov_iter *source) |
| { |
| size_t size = subreq->len - subreq->transferred; |
| |
| // TODO: Use encrypted buffer |
| subreq->io_iter = *source; |
| iov_iter_advance(source, size); |
| iov_iter_truncate(&subreq->io_iter, size); |
| |
| __set_bit(NETFS_SREQ_IN_PROGRESS, &subreq->flags); |
| netfs_do_issue_write(stream, subreq); |
| } |
| |
| void netfs_issue_write(struct netfs_io_request *wreq, |
| struct netfs_io_stream *stream) |
| { |
| struct netfs_io_subrequest *subreq = stream->construct; |
| |
| if (!subreq) |
| return; |
| stream->construct = NULL; |
| subreq->io_iter.count = subreq->len; |
| netfs_do_issue_write(stream, subreq); |
| } |
| |
| /* |
| * Add data to the write subrequest, dispatching each as we fill it up or if it |
| * is discontiguous with the previous. We only fill one part at a time so that |
| * we can avoid overrunning the credits obtained (cifs) and try to parallelise |
| * content-crypto preparation with network writes. |
| */ |
| int netfs_advance_write(struct netfs_io_request *wreq, |
| struct netfs_io_stream *stream, |
| loff_t start, size_t len, bool to_eof) |
| { |
| struct netfs_io_subrequest *subreq = stream->construct; |
| size_t part; |
| |
| if (!stream->avail) { |
| _leave("no write"); |
| return len; |
| } |
| |
| _enter("R=%x[%x]", wreq->debug_id, subreq ? subreq->debug_index : 0); |
| |
| if (subreq && start != subreq->start + subreq->len) { |
| netfs_issue_write(wreq, stream); |
| subreq = NULL; |
| } |
| |
| if (!stream->construct) |
| netfs_prepare_write(wreq, stream, start); |
| subreq = stream->construct; |
| |
| part = umin(stream->sreq_max_len - subreq->len, len); |
| _debug("part %zx/%zx %zx/%zx", subreq->len, stream->sreq_max_len, part, len); |
| subreq->len += part; |
| subreq->nr_segs++; |
| stream->submit_extendable_to -= part; |
| |
| if (subreq->len >= stream->sreq_max_len || |
| subreq->nr_segs >= stream->sreq_max_segs || |
| to_eof) { |
| netfs_issue_write(wreq, stream); |
| subreq = NULL; |
| } |
| |
| return part; |
| } |
| |
| /* |
| * Write some of a pending folio data back to the server. |
| */ |
| static int netfs_write_folio(struct netfs_io_request *wreq, |
| struct writeback_control *wbc, |
| struct folio *folio) |
| { |
| struct netfs_io_stream *upload = &wreq->io_streams[0]; |
| struct netfs_io_stream *cache = &wreq->io_streams[1]; |
| struct netfs_io_stream *stream; |
| struct netfs_group *fgroup; /* TODO: Use this with ceph */ |
| struct netfs_folio *finfo; |
| size_t iter_off = 0; |
| size_t fsize = folio_size(folio), flen = fsize, foff = 0; |
| loff_t fpos = folio_pos(folio), i_size; |
| bool to_eof = false, streamw = false; |
| bool debug = false; |
| |
| _enter(""); |
| |
| /* netfs_perform_write() may shift i_size around the page or from out |
| * of the page to beyond it, but cannot move i_size into or through the |
| * page since we have it locked. |
| */ |
| i_size = i_size_read(wreq->inode); |
| |
| if (fpos >= i_size) { |
| /* mmap beyond eof. */ |
| _debug("beyond eof"); |
| folio_start_writeback(folio); |
| folio_unlock(folio); |
| wreq->nr_group_rel += netfs_folio_written_back(folio); |
| netfs_put_group_many(wreq->group, wreq->nr_group_rel); |
| wreq->nr_group_rel = 0; |
| return 0; |
| } |
| |
| if (fpos + fsize > wreq->i_size) |
| wreq->i_size = i_size; |
| |
| fgroup = netfs_folio_group(folio); |
| finfo = netfs_folio_info(folio); |
| if (finfo) { |
| foff = finfo->dirty_offset; |
| flen = foff + finfo->dirty_len; |
| streamw = true; |
| } |
| |
| if (wreq->origin == NETFS_WRITETHROUGH) { |
| to_eof = false; |
| if (flen > i_size - fpos) |
| flen = i_size - fpos; |
| } else if (flen > i_size - fpos) { |
| flen = i_size - fpos; |
| if (!streamw) |
| folio_zero_segment(folio, flen, fsize); |
| to_eof = true; |
| } else if (flen == i_size - fpos) { |
| to_eof = true; |
| } |
| flen -= foff; |
| |
| _debug("folio %zx %zx %zx", foff, flen, fsize); |
| |
| /* Deal with discontinuities in the stream of dirty pages. These can |
| * arise from a number of sources: |
| * |
| * (1) Intervening non-dirty pages from random-access writes, multiple |
| * flushers writing back different parts simultaneously and manual |
| * syncing. |
| * |
| * (2) Partially-written pages from write-streaming. |
| * |
| * (3) Pages that belong to a different write-back group (eg. Ceph |
| * snapshots). |
| * |
| * (4) Actually-clean pages that were marked for write to the cache |
| * when they were read. Note that these appear as a special |
| * write-back group. |
| */ |
| if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { |
| netfs_issue_write(wreq, upload); |
| } else if (fgroup != wreq->group) { |
| /* We can't write this page to the server yet. */ |
| kdebug("wrong group"); |
| folio_redirty_for_writepage(wbc, folio); |
| folio_unlock(folio); |
| netfs_issue_write(wreq, upload); |
| netfs_issue_write(wreq, cache); |
| return 0; |
| } |
| |
| if (foff > 0) |
| netfs_issue_write(wreq, upload); |
| if (streamw) |
| netfs_issue_write(wreq, cache); |
| |
| /* Flip the page to the writeback state and unlock. If we're called |
| * from write-through, then the page has already been put into the wb |
| * state. |
| */ |
| if (wreq->origin == NETFS_WRITEBACK) |
| folio_start_writeback(folio); |
| folio_unlock(folio); |
| |
| if (fgroup == NETFS_FOLIO_COPY_TO_CACHE) { |
| if (!cache->avail) { |
| trace_netfs_folio(folio, netfs_folio_trace_cancel_copy); |
| netfs_issue_write(wreq, upload); |
| netfs_folio_written_back(folio); |
| return 0; |
| } |
| trace_netfs_folio(folio, netfs_folio_trace_store_copy); |
| } else if (!upload->avail && !cache->avail) { |
| trace_netfs_folio(folio, netfs_folio_trace_cancel_store); |
| netfs_folio_written_back(folio); |
| return 0; |
| } else if (!upload->construct) { |
| trace_netfs_folio(folio, netfs_folio_trace_store); |
| } else { |
| trace_netfs_folio(folio, netfs_folio_trace_store_plus); |
| } |
| |
| /* Attach the folio to the rolling buffer. */ |
| netfs_buffer_append_folio(wreq, folio, false); |
| |
| /* Move the submission point forward to allow for write-streaming data |
| * not starting at the front of the page. We don't do write-streaming |
| * with the cache as the cache requires DIO alignment. |
| * |
| * Also skip uploading for data that's been read and just needs copying |
| * to the cache. |
| */ |
| for (int s = 0; s < NR_IO_STREAMS; s++) { |
| stream = &wreq->io_streams[s]; |
| stream->submit_off = foff; |
| stream->submit_len = flen; |
| if ((stream->source == NETFS_WRITE_TO_CACHE && streamw) || |
| (stream->source == NETFS_UPLOAD_TO_SERVER && |
| fgroup == NETFS_FOLIO_COPY_TO_CACHE)) { |
| stream->submit_off = UINT_MAX; |
| stream->submit_len = 0; |
| } |
| } |
| |
| /* Attach the folio to one or more subrequests. For a big folio, we |
| * could end up with thousands of subrequests if the wsize is small - |
| * but we might need to wait during the creation of subrequests for |
| * network resources (eg. SMB credits). |
| */ |
| for (;;) { |
| ssize_t part; |
| size_t lowest_off = ULONG_MAX; |
| int choose_s = -1; |
| |
| /* Always add to the lowest-submitted stream first. */ |
| for (int s = 0; s < NR_IO_STREAMS; s++) { |
| stream = &wreq->io_streams[s]; |
| if (stream->submit_len > 0 && |
| stream->submit_off < lowest_off) { |
| lowest_off = stream->submit_off; |
| choose_s = s; |
| } |
| } |
| |
| if (choose_s < 0) |
| break; |
| stream = &wreq->io_streams[choose_s]; |
| |
| /* Advance the iterator(s). */ |
| if (stream->submit_off > iter_off) { |
| iov_iter_advance(&wreq->io_iter, stream->submit_off - iter_off); |
| iter_off = stream->submit_off; |
| } |
| |
| atomic64_set(&wreq->issued_to, fpos + stream->submit_off); |
| stream->submit_extendable_to = fsize - stream->submit_off; |
| part = netfs_advance_write(wreq, stream, fpos + stream->submit_off, |
| stream->submit_len, to_eof); |
| stream->submit_off += part; |
| if (part > stream->submit_len) |
| stream->submit_len = 0; |
| else |
| stream->submit_len -= part; |
| if (part > 0) |
| debug = true; |
| } |
| |
| if (fsize > iter_off) |
| iov_iter_advance(&wreq->io_iter, fsize - iter_off); |
| atomic64_set(&wreq->issued_to, fpos + fsize); |
| |
| if (!debug) |
| kdebug("R=%x: No submit", wreq->debug_id); |
| |
| if (foff + flen < fsize) |
| for (int s = 0; s < NR_IO_STREAMS; s++) |
| netfs_issue_write(wreq, &wreq->io_streams[s]); |
| |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * End the issuing of writes, letting the collector know we're done. |
| */ |
| static void netfs_end_issue_write(struct netfs_io_request *wreq) |
| { |
| bool needs_poke = true; |
| |
| smp_wmb(); /* Write subreq lists before ALL_QUEUED. */ |
| set_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags); |
| |
| for (int s = 0; s < NR_IO_STREAMS; s++) { |
| struct netfs_io_stream *stream = &wreq->io_streams[s]; |
| |
| if (!stream->active) |
| continue; |
| if (!list_empty(&stream->subrequests)) |
| needs_poke = false; |
| netfs_issue_write(wreq, stream); |
| } |
| |
| if (needs_poke) |
| netfs_wake_write_collector(wreq, false); |
| } |
| |
| /* |
| * Write some of the pending data back to the server |
| */ |
| int netfs_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct netfs_inode *ictx = netfs_inode(mapping->host); |
| struct netfs_io_request *wreq = NULL; |
| struct folio *folio; |
| int error = 0; |
| |
| if (!mutex_trylock(&ictx->wb_lock)) { |
| if (wbc->sync_mode == WB_SYNC_NONE) { |
| netfs_stat(&netfs_n_wb_lock_skip); |
| return 0; |
| } |
| netfs_stat(&netfs_n_wb_lock_wait); |
| mutex_lock(&ictx->wb_lock); |
| } |
| |
| /* Need the first folio to be able to set up the op. */ |
| folio = writeback_iter(mapping, wbc, NULL, &error); |
| if (!folio) |
| goto out; |
| |
| wreq = netfs_create_write_req(mapping, NULL, folio_pos(folio), NETFS_WRITEBACK); |
| if (IS_ERR(wreq)) { |
| error = PTR_ERR(wreq); |
| goto couldnt_start; |
| } |
| |
| trace_netfs_write(wreq, netfs_write_trace_writeback); |
| netfs_stat(&netfs_n_wh_writepages); |
| |
| do { |
| _debug("wbiter %lx %llx", folio->index, atomic64_read(&wreq->issued_to)); |
| |
| /* It appears we don't have to handle cyclic writeback wrapping. */ |
| WARN_ON_ONCE(wreq && folio_pos(folio) < atomic64_read(&wreq->issued_to)); |
| |
| if (netfs_folio_group(folio) != NETFS_FOLIO_COPY_TO_CACHE && |
| unlikely(!test_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags))) { |
| set_bit(NETFS_RREQ_UPLOAD_TO_SERVER, &wreq->flags); |
| wreq->netfs_ops->begin_writeback(wreq); |
| } |
| |
| error = netfs_write_folio(wreq, wbc, folio); |
| if (error < 0) |
| break; |
| } while ((folio = writeback_iter(mapping, wbc, folio, &error))); |
| |
| netfs_end_issue_write(wreq); |
| |
| mutex_unlock(&ictx->wb_lock); |
| |
| netfs_put_request(wreq, false, netfs_rreq_trace_put_return); |
| _leave(" = %d", error); |
| return error; |
| |
| couldnt_start: |
| netfs_kill_dirty_pages(mapping, wbc, folio); |
| out: |
| mutex_unlock(&ictx->wb_lock); |
| _leave(" = %d", error); |
| return error; |
| } |
| EXPORT_SYMBOL(netfs_writepages); |
| |
| /* |
| * Begin a write operation for writing through the pagecache. |
| */ |
| struct netfs_io_request *netfs_begin_writethrough(struct kiocb *iocb, size_t len) |
| { |
| struct netfs_io_request *wreq = NULL; |
| struct netfs_inode *ictx = netfs_inode(file_inode(iocb->ki_filp)); |
| |
| mutex_lock(&ictx->wb_lock); |
| |
| wreq = netfs_create_write_req(iocb->ki_filp->f_mapping, iocb->ki_filp, |
| iocb->ki_pos, NETFS_WRITETHROUGH); |
| if (IS_ERR(wreq)) { |
| mutex_unlock(&ictx->wb_lock); |
| return wreq; |
| } |
| |
| wreq->io_streams[0].avail = true; |
| trace_netfs_write(wreq, netfs_write_trace_writethrough); |
| return wreq; |
| } |
| |
| /* |
| * Advance the state of the write operation used when writing through the |
| * pagecache. Data has been copied into the pagecache that we need to append |
| * to the request. If we've added more than wsize then we need to create a new |
| * subrequest. |
| */ |
| int netfs_advance_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, |
| struct folio *folio, size_t copied, bool to_page_end, |
| struct folio **writethrough_cache) |
| { |
| _enter("R=%x ic=%zu ws=%u cp=%zu tp=%u", |
| wreq->debug_id, wreq->iter.count, wreq->wsize, copied, to_page_end); |
| |
| if (!*writethrough_cache) { |
| if (folio_test_dirty(folio)) |
| /* Sigh. mmap. */ |
| folio_clear_dirty_for_io(folio); |
| |
| /* We can make multiple writes to the folio... */ |
| folio_start_writeback(folio); |
| if (wreq->len == 0) |
| trace_netfs_folio(folio, netfs_folio_trace_wthru); |
| else |
| trace_netfs_folio(folio, netfs_folio_trace_wthru_plus); |
| *writethrough_cache = folio; |
| } |
| |
| wreq->len += copied; |
| if (!to_page_end) |
| return 0; |
| |
| *writethrough_cache = NULL; |
| return netfs_write_folio(wreq, wbc, folio); |
| } |
| |
| /* |
| * End a write operation used when writing through the pagecache. |
| */ |
| int netfs_end_writethrough(struct netfs_io_request *wreq, struct writeback_control *wbc, |
| struct folio *writethrough_cache) |
| { |
| struct netfs_inode *ictx = netfs_inode(wreq->inode); |
| int ret; |
| |
| _enter("R=%x", wreq->debug_id); |
| |
| if (writethrough_cache) |
| netfs_write_folio(wreq, wbc, writethrough_cache); |
| |
| netfs_end_issue_write(wreq); |
| |
| mutex_unlock(&ictx->wb_lock); |
| |
| if (wreq->iocb) { |
| ret = -EIOCBQUEUED; |
| } else { |
| wait_on_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS, TASK_UNINTERRUPTIBLE); |
| ret = wreq->error; |
| } |
| netfs_put_request(wreq, false, netfs_rreq_trace_put_return); |
| return ret; |
| } |
| |
| /* |
| * Write data to the server without going through the pagecache and without |
| * writing it to the local cache. |
| */ |
| int netfs_unbuffered_write(struct netfs_io_request *wreq, bool may_wait, size_t len) |
| { |
| struct netfs_io_stream *upload = &wreq->io_streams[0]; |
| ssize_t part; |
| loff_t start = wreq->start; |
| int error = 0; |
| |
| _enter("%zx", len); |
| |
| if (wreq->origin == NETFS_DIO_WRITE) |
| inode_dio_begin(wreq->inode); |
| |
| while (len) { |
| // TODO: Prepare content encryption |
| |
| _debug("unbuffered %zx", len); |
| part = netfs_advance_write(wreq, upload, start, len, false); |
| start += part; |
| len -= part; |
| iov_iter_advance(&wreq->io_iter, part); |
| if (test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) { |
| trace_netfs_rreq(wreq, netfs_rreq_trace_wait_pause); |
| wait_on_bit(&wreq->flags, NETFS_RREQ_PAUSE, TASK_UNINTERRUPTIBLE); |
| } |
| if (test_bit(NETFS_RREQ_FAILED, &wreq->flags)) |
| break; |
| } |
| |
| netfs_end_issue_write(wreq); |
| _leave(" = %d", error); |
| return error; |
| } |