| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/crypto.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/tcp.h> |
| #include <linux/rcupdate.h> |
| #include <linux/rculist.h> |
| #include <net/inetpeer.h> |
| #include <net/tcp.h> |
| |
| void tcp_fastopen_init_key_once(struct net *net) |
| { |
| u8 key[TCP_FASTOPEN_KEY_LENGTH]; |
| struct tcp_fastopen_context *ctxt; |
| |
| rcu_read_lock(); |
| ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); |
| if (ctxt) { |
| rcu_read_unlock(); |
| return; |
| } |
| rcu_read_unlock(); |
| |
| /* tcp_fastopen_reset_cipher publishes the new context |
| * atomically, so we allow this race happening here. |
| * |
| * All call sites of tcp_fastopen_cookie_gen also check |
| * for a valid cookie, so this is an acceptable risk. |
| */ |
| get_random_bytes(key, sizeof(key)); |
| tcp_fastopen_reset_cipher(net, NULL, key, NULL); |
| } |
| |
| static void tcp_fastopen_ctx_free(struct rcu_head *head) |
| { |
| struct tcp_fastopen_context *ctx = |
| container_of(head, struct tcp_fastopen_context, rcu); |
| |
| kfree_sensitive(ctx); |
| } |
| |
| void tcp_fastopen_destroy_cipher(struct sock *sk) |
| { |
| struct tcp_fastopen_context *ctx; |
| |
| ctx = rcu_dereference_protected( |
| inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); |
| if (ctx) |
| call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); |
| } |
| |
| void tcp_fastopen_ctx_destroy(struct net *net) |
| { |
| struct tcp_fastopen_context *ctxt; |
| |
| ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL); |
| |
| if (ctxt) |
| call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); |
| } |
| |
| int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, |
| void *primary_key, void *backup_key) |
| { |
| struct tcp_fastopen_context *ctx, *octx; |
| struct fastopen_queue *q; |
| int err = 0; |
| |
| ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ctx->key[0].key[0] = get_unaligned_le64(primary_key); |
| ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8); |
| if (backup_key) { |
| ctx->key[1].key[0] = get_unaligned_le64(backup_key); |
| ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8); |
| ctx->num = 2; |
| } else { |
| ctx->num = 1; |
| } |
| |
| if (sk) { |
| q = &inet_csk(sk)->icsk_accept_queue.fastopenq; |
| octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx); |
| } else { |
| octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx); |
| } |
| |
| if (octx) |
| call_rcu(&octx->rcu, tcp_fastopen_ctx_free); |
| out: |
| return err; |
| } |
| |
| int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, |
| u64 *key) |
| { |
| struct tcp_fastopen_context *ctx; |
| int n_keys = 0, i; |
| |
| rcu_read_lock(); |
| if (icsk) |
| ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); |
| else |
| ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); |
| if (ctx) { |
| n_keys = tcp_fastopen_context_len(ctx); |
| for (i = 0; i < n_keys; i++) { |
| put_unaligned_le64(ctx->key[i].key[0], key + (i * 2)); |
| put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1); |
| } |
| } |
| rcu_read_unlock(); |
| |
| return n_keys; |
| } |
| |
| static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, |
| struct sk_buff *syn, |
| const siphash_key_t *key, |
| struct tcp_fastopen_cookie *foc) |
| { |
| BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); |
| |
| if (req->rsk_ops->family == AF_INET) { |
| const struct iphdr *iph = ip_hdr(syn); |
| |
| foc->val[0] = cpu_to_le64(siphash(&iph->saddr, |
| sizeof(iph->saddr) + |
| sizeof(iph->daddr), |
| key)); |
| foc->len = TCP_FASTOPEN_COOKIE_SIZE; |
| return true; |
| } |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (req->rsk_ops->family == AF_INET6) { |
| const struct ipv6hdr *ip6h = ipv6_hdr(syn); |
| |
| foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, |
| sizeof(ip6h->saddr) + |
| sizeof(ip6h->daddr), |
| key)); |
| foc->len = TCP_FASTOPEN_COOKIE_SIZE; |
| return true; |
| } |
| #endif |
| return false; |
| } |
| |
| /* Generate the fastopen cookie by applying SipHash to both the source and |
| * destination addresses. |
| */ |
| static void tcp_fastopen_cookie_gen(struct sock *sk, |
| struct request_sock *req, |
| struct sk_buff *syn, |
| struct tcp_fastopen_cookie *foc) |
| { |
| struct tcp_fastopen_context *ctx; |
| |
| rcu_read_lock(); |
| ctx = tcp_fastopen_get_ctx(sk); |
| if (ctx) |
| __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc); |
| rcu_read_unlock(); |
| } |
| |
| /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, |
| * queue this additional data / FIN. |
| */ |
| void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) |
| return; |
| |
| skb = skb_clone(skb, GFP_ATOMIC); |
| if (!skb) |
| return; |
| |
| skb_dst_drop(skb); |
| /* segs_in has been initialized to 1 in tcp_create_openreq_child(). |
| * Hence, reset segs_in to 0 before calling tcp_segs_in() |
| * to avoid double counting. Also, tcp_segs_in() expects |
| * skb->len to include the tcp_hdrlen. Hence, it should |
| * be called before __skb_pull(). |
| */ |
| tp->segs_in = 0; |
| tcp_segs_in(tp, skb); |
| __skb_pull(skb, tcp_hdrlen(skb)); |
| sk_forced_mem_schedule(sk, skb->truesize); |
| skb_set_owner_r(skb, sk); |
| |
| TCP_SKB_CB(skb)->seq++; |
| TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; |
| |
| tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| __skb_queue_tail(&sk->sk_receive_queue, skb); |
| tp->syn_data_acked = 1; |
| |
| /* u64_stats_update_begin(&tp->syncp) not needed here, |
| * as we certainly are not changing upper 32bit value (0) |
| */ |
| tp->bytes_received = skb->len; |
| |
| if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| tcp_fin(sk); |
| } |
| |
| /* returns 0 - no key match, 1 for primary, 2 for backup */ |
| static int tcp_fastopen_cookie_gen_check(struct sock *sk, |
| struct request_sock *req, |
| struct sk_buff *syn, |
| struct tcp_fastopen_cookie *orig, |
| struct tcp_fastopen_cookie *valid_foc) |
| { |
| struct tcp_fastopen_cookie search_foc = { .len = -1 }; |
| struct tcp_fastopen_cookie *foc = valid_foc; |
| struct tcp_fastopen_context *ctx; |
| int i, ret = 0; |
| |
| rcu_read_lock(); |
| ctx = tcp_fastopen_get_ctx(sk); |
| if (!ctx) |
| goto out; |
| for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { |
| __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc); |
| if (tcp_fastopen_cookie_match(foc, orig)) { |
| ret = i + 1; |
| goto out; |
| } |
| foc = &search_foc; |
| } |
| out: |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| static struct sock *tcp_fastopen_create_child(struct sock *sk, |
| struct sk_buff *skb, |
| struct request_sock *req) |
| { |
| struct tcp_sock *tp; |
| struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; |
| struct sock *child; |
| bool own_req; |
| |
| child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, |
| NULL, &own_req); |
| if (!child) |
| return NULL; |
| |
| spin_lock(&queue->fastopenq.lock); |
| queue->fastopenq.qlen++; |
| spin_unlock(&queue->fastopenq.lock); |
| |
| /* Initialize the child socket. Have to fix some values to take |
| * into account the child is a Fast Open socket and is created |
| * only out of the bits carried in the SYN packet. |
| */ |
| tp = tcp_sk(child); |
| |
| rcu_assign_pointer(tp->fastopen_rsk, req); |
| tcp_rsk(req)->tfo_listener = true; |
| |
| /* RFC1323: The window in SYN & SYN/ACK segments is never |
| * scaled. So correct it appropriately. |
| */ |
| tp->snd_wnd = ntohs(tcp_hdr(skb)->window); |
| tp->max_window = tp->snd_wnd; |
| |
| /* Activate the retrans timer so that SYNACK can be retransmitted. |
| * The request socket is not added to the ehash |
| * because it's been added to the accept queue directly. |
| */ |
| inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, |
| TCP_TIMEOUT_INIT, TCP_RTO_MAX); |
| |
| refcount_set(&req->rsk_refcnt, 2); |
| |
| /* Now finish processing the fastopen child socket. */ |
| tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); |
| |
| tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| |
| tcp_fastopen_add_skb(child, skb); |
| |
| tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; |
| tp->rcv_wup = tp->rcv_nxt; |
| /* tcp_conn_request() is sending the SYNACK, |
| * and queues the child into listener accept queue. |
| */ |
| return child; |
| } |
| |
| static bool tcp_fastopen_queue_check(struct sock *sk) |
| { |
| struct fastopen_queue *fastopenq; |
| |
| /* Make sure the listener has enabled fastopen, and we don't |
| * exceed the max # of pending TFO requests allowed before trying |
| * to validating the cookie in order to avoid burning CPU cycles |
| * unnecessarily. |
| * |
| * XXX (TFO) - The implication of checking the max_qlen before |
| * processing a cookie request is that clients can't differentiate |
| * between qlen overflow causing Fast Open to be disabled |
| * temporarily vs a server not supporting Fast Open at all. |
| */ |
| fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; |
| if (fastopenq->max_qlen == 0) |
| return false; |
| |
| if (fastopenq->qlen >= fastopenq->max_qlen) { |
| struct request_sock *req1; |
| spin_lock(&fastopenq->lock); |
| req1 = fastopenq->rskq_rst_head; |
| if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { |
| __NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); |
| spin_unlock(&fastopenq->lock); |
| return false; |
| } |
| fastopenq->rskq_rst_head = req1->dl_next; |
| fastopenq->qlen--; |
| spin_unlock(&fastopenq->lock); |
| reqsk_put(req1); |
| } |
| return true; |
| } |
| |
| static bool tcp_fastopen_no_cookie(const struct sock *sk, |
| const struct dst_entry *dst, |
| int flag) |
| { |
| return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || |
| tcp_sk(sk)->fastopen_no_cookie || |
| (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); |
| } |
| |
| /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) |
| * may be updated and return the client in the SYN-ACK later. E.g., Fast Open |
| * cookie request (foc->len == 0). |
| */ |
| struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct tcp_fastopen_cookie *foc, |
| const struct dst_entry *dst) |
| { |
| bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; |
| int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; |
| struct tcp_fastopen_cookie valid_foc = { .len = -1 }; |
| struct sock *child; |
| int ret = 0; |
| |
| if (foc->len == 0) /* Client requests a cookie */ |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); |
| |
| if (!((tcp_fastopen & TFO_SERVER_ENABLE) && |
| (syn_data || foc->len >= 0) && |
| tcp_fastopen_queue_check(sk))) { |
| foc->len = -1; |
| return NULL; |
| } |
| |
| if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) |
| goto fastopen; |
| |
| if (foc->len == 0) { |
| /* Client requests a cookie. */ |
| tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc); |
| } else if (foc->len > 0) { |
| ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc, |
| &valid_foc); |
| if (!ret) { |
| NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPFASTOPENPASSIVEFAIL); |
| } else { |
| /* Cookie is valid. Create a (full) child socket to |
| * accept the data in SYN before returning a SYN-ACK to |
| * ack the data. If we fail to create the socket, fall |
| * back and ack the ISN only but includes the same |
| * cookie. |
| * |
| * Note: Data-less SYN with valid cookie is allowed to |
| * send data in SYN_RECV state. |
| */ |
| fastopen: |
| child = tcp_fastopen_create_child(sk, skb, req); |
| if (child) { |
| if (ret == 2) { |
| valid_foc.exp = foc->exp; |
| *foc = valid_foc; |
| NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); |
| } else { |
| foc->len = -1; |
| } |
| NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPFASTOPENPASSIVE); |
| return child; |
| } |
| NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPFASTOPENPASSIVEFAIL); |
| } |
| } |
| valid_foc.exp = foc->exp; |
| *foc = valid_foc; |
| return NULL; |
| } |
| |
| bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, |
| struct tcp_fastopen_cookie *cookie) |
| { |
| const struct dst_entry *dst; |
| |
| tcp_fastopen_cache_get(sk, mss, cookie); |
| |
| /* Firewall blackhole issue check */ |
| if (tcp_fastopen_active_should_disable(sk)) { |
| cookie->len = -1; |
| return false; |
| } |
| |
| dst = __sk_dst_get(sk); |
| |
| if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { |
| cookie->len = -1; |
| return true; |
| } |
| if (cookie->len > 0) |
| return true; |
| tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; |
| return false; |
| } |
| |
| /* This function checks if we want to defer sending SYN until the first |
| * write(). We defer under the following conditions: |
| * 1. fastopen_connect sockopt is set |
| * 2. we have a valid cookie |
| * Return value: return true if we want to defer until application writes data |
| * return false if we want to send out SYN immediately |
| */ |
| bool tcp_fastopen_defer_connect(struct sock *sk, int *err) |
| { |
| struct tcp_fastopen_cookie cookie = { .len = 0 }; |
| struct tcp_sock *tp = tcp_sk(sk); |
| u16 mss; |
| |
| if (tp->fastopen_connect && !tp->fastopen_req) { |
| if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { |
| inet_sk(sk)->defer_connect = 1; |
| return true; |
| } |
| |
| /* Alloc fastopen_req in order for FO option to be included |
| * in SYN |
| */ |
| tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), |
| sk->sk_allocation); |
| if (tp->fastopen_req) |
| tp->fastopen_req->cookie = cookie; |
| else |
| *err = -ENOBUFS; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(tcp_fastopen_defer_connect); |
| |
| /* |
| * The following code block is to deal with middle box issues with TFO: |
| * Middlebox firewall issues can potentially cause server's data being |
| * blackholed after a successful 3WHS using TFO. |
| * The proposed solution is to disable active TFO globally under the |
| * following circumstances: |
| * 1. client side TFO socket receives out of order FIN |
| * 2. client side TFO socket receives out of order RST |
| * 3. client side TFO socket has timed out three times consecutively during |
| * or after handshake |
| * We disable active side TFO globally for 1hr at first. Then if it |
| * happens again, we disable it for 2h, then 4h, 8h, ... |
| * And we reset the timeout back to 1hr when we see a successful active |
| * TFO connection with data exchanges. |
| */ |
| |
| /* Disable active TFO and record current jiffies and |
| * tfo_active_disable_times |
| */ |
| void tcp_fastopen_active_disable(struct sock *sk) |
| { |
| struct net *net = sock_net(sk); |
| |
| if (!sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout) |
| return; |
| |
| /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ |
| WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); |
| |
| /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). |
| * We want net->ipv4.tfo_active_disable_stamp to be updated first. |
| */ |
| smp_mb__before_atomic(); |
| atomic_inc(&net->ipv4.tfo_active_disable_times); |
| |
| NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); |
| } |
| |
| /* Calculate timeout for tfo active disable |
| * Return true if we are still in the active TFO disable period |
| * Return false if timeout already expired and we should use active TFO |
| */ |
| bool tcp_fastopen_active_should_disable(struct sock *sk) |
| { |
| unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; |
| unsigned long timeout; |
| int tfo_da_times; |
| int multiplier; |
| |
| if (!tfo_bh_timeout) |
| return false; |
| |
| tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); |
| if (!tfo_da_times) |
| return false; |
| |
| /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ |
| smp_rmb(); |
| |
| /* Limit timeout to max: 2^6 * initial timeout */ |
| multiplier = 1 << min(tfo_da_times - 1, 6); |
| |
| /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ |
| timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + |
| multiplier * tfo_bh_timeout * HZ; |
| if (time_before(jiffies, timeout)) |
| return true; |
| |
| /* Mark check bit so we can check for successful active TFO |
| * condition and reset tfo_active_disable_times |
| */ |
| tcp_sk(sk)->syn_fastopen_ch = 1; |
| return false; |
| } |
| |
| /* Disable active TFO if FIN is the only packet in the ofo queue |
| * and no data is received. |
| * Also check if we can reset tfo_active_disable_times if data is |
| * received successfully on a marked active TFO sockets opened on |
| * a non-loopback interface |
| */ |
| void tcp_fastopen_active_disable_ofo_check(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct dst_entry *dst; |
| struct sk_buff *skb; |
| |
| if (!tp->syn_fastopen) |
| return; |
| |
| if (!tp->data_segs_in) { |
| skb = skb_rb_first(&tp->out_of_order_queue); |
| if (skb && !skb_rb_next(skb)) { |
| if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
| tcp_fastopen_active_disable(sk); |
| return; |
| } |
| } |
| } else if (tp->syn_fastopen_ch && |
| atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { |
| dst = sk_dst_get(sk); |
| if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) |
| atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); |
| dst_release(dst); |
| } |
| } |
| |
| void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) |
| { |
| u32 timeouts = inet_csk(sk)->icsk_retransmits; |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| /* Broken middle-boxes may black-hole Fast Open connection during or |
| * even after the handshake. Be extremely conservative and pause |
| * Fast Open globally after hitting the third consecutive timeout or |
| * exceeding the configured timeout limit. |
| */ |
| if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && |
| (timeouts == 2 || (timeouts < 2 && expired))) { |
| tcp_fastopen_active_disable(sk); |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); |
| } |
| } |