blob: ba43e6a3dc0aeeddab9409fd0adc6339815c841e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic OPP Interface
*
* Copyright (C) 2009-2010 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/pm_domain.h>
#include <linux/regulator/consumer.h>
#include "opp.h"
/*
* The root of the list of all opp-tables. All opp_table structures branch off
* from here, with each opp_table containing the list of opps it supports in
* various states of availability.
*/
LIST_HEAD(opp_tables);
/* Lock to allow exclusive modification to the device and opp lists */
DEFINE_MUTEX(opp_table_lock);
static struct opp_device *_find_opp_dev(const struct device *dev,
struct opp_table *opp_table)
{
struct opp_device *opp_dev;
list_for_each_entry(opp_dev, &opp_table->dev_list, node)
if (opp_dev->dev == dev)
return opp_dev;
return NULL;
}
static struct opp_table *_find_opp_table_unlocked(struct device *dev)
{
struct opp_table *opp_table;
bool found;
list_for_each_entry(opp_table, &opp_tables, node) {
mutex_lock(&opp_table->lock);
found = !!_find_opp_dev(dev, opp_table);
mutex_unlock(&opp_table->lock);
if (found) {
_get_opp_table_kref(opp_table);
return opp_table;
}
}
return ERR_PTR(-ENODEV);
}
/**
* _find_opp_table() - find opp_table struct using device pointer
* @dev: device pointer used to lookup OPP table
*
* Search OPP table for one containing matching device.
*
* Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
* -EINVAL based on type of error.
*
* The callers must call dev_pm_opp_put_opp_table() after the table is used.
*/
struct opp_table *_find_opp_table(struct device *dev)
{
struct opp_table *opp_table;
if (IS_ERR_OR_NULL(dev)) {
pr_err("%s: Invalid parameters\n", __func__);
return ERR_PTR(-EINVAL);
}
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table_unlocked(dev);
mutex_unlock(&opp_table_lock);
return opp_table;
}
/**
* dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
* @opp: opp for which voltage has to be returned for
*
* Return: voltage in micro volt corresponding to the opp, else
* return 0
*
* This is useful only for devices with single power supply.
*/
unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp)) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->supplies[0].u_volt;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
/**
* dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
* @opp: opp for which frequency has to be returned for
*
* Return: frequency in hertz corresponding to the opp, else
* return 0
*/
unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp) || !opp->available) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->rate;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
/**
* dev_pm_opp_get_level() - Gets the level corresponding to an available opp
* @opp: opp for which level value has to be returned for
*
* Return: level read from device tree corresponding to the opp, else
* return 0.
*/
unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp) || !opp->available) {
pr_err("%s: Invalid parameters\n", __func__);
return 0;
}
return opp->level;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
/**
* dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
* @opp: opp for which turbo mode is being verified
*
* Turbo OPPs are not for normal use, and can be enabled (under certain
* conditions) for short duration of times to finish high throughput work
* quickly. Running on them for longer times may overheat the chip.
*
* Return: true if opp is turbo opp, else false.
*/
bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp) || !opp->available) {
pr_err("%s: Invalid parameters\n", __func__);
return false;
}
return opp->turbo;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
/**
* dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max clock latency in nanoseconds.
*/
unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
{
struct opp_table *opp_table;
unsigned long clock_latency_ns;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
clock_latency_ns = opp_table->clock_latency_ns_max;
dev_pm_opp_put_opp_table(opp_table);
return clock_latency_ns;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
/**
* dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max voltage latency in nanoseconds.
*/
unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp;
struct regulator *reg;
unsigned long latency_ns = 0;
int ret, i, count;
struct {
unsigned long min;
unsigned long max;
} *uV;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
/* Regulator may not be required for the device */
if (!opp_table->regulators)
goto put_opp_table;
count = opp_table->regulator_count;
uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
if (!uV)
goto put_opp_table;
mutex_lock(&opp_table->lock);
for (i = 0; i < count; i++) {
uV[i].min = ~0;
uV[i].max = 0;
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (!opp->available)
continue;
if (opp->supplies[i].u_volt_min < uV[i].min)
uV[i].min = opp->supplies[i].u_volt_min;
if (opp->supplies[i].u_volt_max > uV[i].max)
uV[i].max = opp->supplies[i].u_volt_max;
}
}
mutex_unlock(&opp_table->lock);
/*
* The caller needs to ensure that opp_table (and hence the regulator)
* isn't freed, while we are executing this routine.
*/
for (i = 0; i < count; i++) {
reg = opp_table->regulators[i];
ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
if (ret > 0)
latency_ns += ret * 1000;
}
kfree(uV);
put_opp_table:
dev_pm_opp_put_opp_table(opp_table);
return latency_ns;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
/**
* dev_pm_opp_get_max_transition_latency() - Get max transition latency in
* nanoseconds
* @dev: device for which we do this operation
*
* Return: This function returns the max transition latency, in nanoseconds, to
* switch from one OPP to other.
*/
unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
{
return dev_pm_opp_get_max_volt_latency(dev) +
dev_pm_opp_get_max_clock_latency(dev);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
/**
* dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
* @dev: device for which we do this operation
*
* Return: This function returns the frequency of the OPP marked as suspend_opp
* if one is available, else returns 0;
*/
unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
{
struct opp_table *opp_table;
unsigned long freq = 0;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return 0;
if (opp_table->suspend_opp && opp_table->suspend_opp->available)
freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
dev_pm_opp_put_opp_table(opp_table);
return freq;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
int _get_opp_count(struct opp_table *opp_table)
{
struct dev_pm_opp *opp;
int count = 0;
mutex_lock(&opp_table->lock);
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (opp->available)
count++;
}
mutex_unlock(&opp_table->lock);
return count;
}
/**
* dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
* @dev: device for which we do this operation
*
* Return: This function returns the number of available opps if there are any,
* else returns 0 if none or the corresponding error value.
*/
int dev_pm_opp_get_opp_count(struct device *dev)
{
struct opp_table *opp_table;
int count;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
count = PTR_ERR(opp_table);
dev_dbg(dev, "%s: OPP table not found (%d)\n",
__func__, count);
return count;
}
count = _get_opp_count(opp_table);
dev_pm_opp_put_opp_table(opp_table);
return count;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
/**
* dev_pm_opp_find_freq_exact() - search for an exact frequency
* @dev: device for which we do this operation
* @freq: frequency to search for
* @available: true/false - match for available opp
*
* Return: Searches for exact match in the opp table and returns pointer to the
* matching opp if found, else returns ERR_PTR in case of error and should
* be handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* Note: available is a modifier for the search. if available=true, then the
* match is for exact matching frequency and is available in the stored OPP
* table. if false, the match is for exact frequency which is not available.
*
* This provides a mechanism to enable an opp which is not available currently
* or the opposite as well.
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
unsigned long freq,
bool available)
{
struct opp_table *opp_table;
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
int r = PTR_ERR(opp_table);
dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
return ERR_PTR(r);
}
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->available == available &&
temp_opp->rate == freq) {
opp = temp_opp;
/* Increment the reference count of OPP */
dev_pm_opp_get(opp);
break;
}
}
mutex_unlock(&opp_table->lock);
dev_pm_opp_put_opp_table(opp_table);
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
/**
* dev_pm_opp_find_level_exact() - search for an exact level
* @dev: device for which we do this operation
* @level: level to search for
*
* Return: Searches for exact match in the opp table and returns pointer to the
* matching opp if found, else returns ERR_PTR in case of error and should
* be handled using IS_ERR. Error return values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
unsigned int level)
{
struct opp_table *opp_table;
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
int r = PTR_ERR(opp_table);
dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
return ERR_PTR(r);
}
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->level == level) {
opp = temp_opp;
/* Increment the reference count of OPP */
dev_pm_opp_get(opp);
break;
}
}
mutex_unlock(&opp_table->lock);
dev_pm_opp_put_opp_table(opp_table);
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
unsigned long *freq)
{
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->available && temp_opp->rate >= *freq) {
opp = temp_opp;
*freq = opp->rate;
/* Increment the reference count of OPP */
dev_pm_opp_get(opp);
break;
}
}
mutex_unlock(&opp_table->lock);
return opp;
}
/**
* dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
* @dev: device for which we do this operation
* @freq: Start frequency
*
* Search for the matching ceil *available* OPP from a starting freq
* for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
unsigned long *freq)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp;
if (!dev || !freq) {
dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
return ERR_PTR(-EINVAL);
}
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return ERR_CAST(opp_table);
opp = _find_freq_ceil(opp_table, freq);
dev_pm_opp_put_opp_table(opp_table);
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
/**
* dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
* @dev: device for which we do this operation
* @freq: Start frequency
*
* Search for the matching floor *available* OPP from a starting freq
* for a device.
*
* Return: matching *opp and refreshes *freq accordingly, else returns
* ERR_PTR in case of error and should be handled using IS_ERR. Error return
* values can be:
* EINVAL: for bad pointer
* ERANGE: no match found for search
* ENODEV: if device not found in list of registered devices
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
unsigned long *freq)
{
struct opp_table *opp_table;
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
if (!dev || !freq) {
dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
return ERR_PTR(-EINVAL);
}
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return ERR_CAST(opp_table);
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->available) {
/* go to the next node, before choosing prev */
if (temp_opp->rate > *freq)
break;
else
opp = temp_opp;
}
}
/* Increment the reference count of OPP */
if (!IS_ERR(opp))
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
dev_pm_opp_put_opp_table(opp_table);
if (!IS_ERR(opp))
*freq = opp->rate;
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
/**
* dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
* target voltage.
* @dev: Device for which we do this operation.
* @u_volt: Target voltage.
*
* Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
*
* Return: matching *opp, else returns ERR_PTR in case of error which should be
* handled using IS_ERR.
*
* Error return values can be:
* EINVAL: bad parameters
*
* The callers are required to call dev_pm_opp_put() for the returned OPP after
* use.
*/
struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
unsigned long u_volt)
{
struct opp_table *opp_table;
struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
if (!dev || !u_volt) {
dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
u_volt);
return ERR_PTR(-EINVAL);
}
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return ERR_CAST(opp_table);
mutex_lock(&opp_table->lock);
list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
if (temp_opp->available) {
if (temp_opp->supplies[0].u_volt > u_volt)
break;
opp = temp_opp;
}
}
/* Increment the reference count of OPP */
if (!IS_ERR(opp))
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
dev_pm_opp_put_opp_table(opp_table);
return opp;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
static int _set_opp_voltage(struct device *dev, struct regulator *reg,
struct dev_pm_opp_supply *supply)
{
int ret;
/* Regulator not available for device */
if (IS_ERR(reg)) {
dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
PTR_ERR(reg));
return 0;
}
dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
supply->u_volt_min, supply->u_volt, supply->u_volt_max);
ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
supply->u_volt, supply->u_volt_max);
if (ret)
dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
__func__, supply->u_volt_min, supply->u_volt,
supply->u_volt_max, ret);
return ret;
}
static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
unsigned long freq)
{
int ret;
ret = clk_set_rate(clk, freq);
if (ret) {
dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
ret);
}
return ret;
}
static int _generic_set_opp_regulator(const struct opp_table *opp_table,
struct device *dev,
unsigned long old_freq,
unsigned long freq,
struct dev_pm_opp_supply *old_supply,
struct dev_pm_opp_supply *new_supply)
{
struct regulator *reg = opp_table->regulators[0];
int ret;
/* This function only supports single regulator per device */
if (WARN_ON(opp_table->regulator_count > 1)) {
dev_err(dev, "multiple regulators are not supported\n");
return -EINVAL;
}
/* Scaling up? Scale voltage before frequency */
if (freq >= old_freq) {
ret = _set_opp_voltage(dev, reg, new_supply);
if (ret)
goto restore_voltage;
}
/* Change frequency */
ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
if (ret)
goto restore_voltage;
/* Scaling down? Scale voltage after frequency */
if (freq < old_freq) {
ret = _set_opp_voltage(dev, reg, new_supply);
if (ret)
goto restore_freq;
}
return 0;
restore_freq:
if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
__func__, old_freq);
restore_voltage:
/* This shouldn't harm even if the voltages weren't updated earlier */
if (old_supply)
_set_opp_voltage(dev, reg, old_supply);
return ret;
}
static int _set_opp_custom(const struct opp_table *opp_table,
struct device *dev, unsigned long old_freq,
unsigned long freq,
struct dev_pm_opp_supply *old_supply,
struct dev_pm_opp_supply *new_supply)
{
struct dev_pm_set_opp_data *data;
int size;
data = opp_table->set_opp_data;
data->regulators = opp_table->regulators;
data->regulator_count = opp_table->regulator_count;
data->clk = opp_table->clk;
data->dev = dev;
data->old_opp.rate = old_freq;
size = sizeof(*old_supply) * opp_table->regulator_count;
if (!old_supply)
memset(data->old_opp.supplies, 0, size);
else
memcpy(data->old_opp.supplies, old_supply, size);
data->new_opp.rate = freq;
memcpy(data->new_opp.supplies, new_supply, size);
return opp_table->set_opp(data);
}
/* This is only called for PM domain for now */
static int _set_required_opps(struct device *dev,
struct opp_table *opp_table,
struct dev_pm_opp *opp)
{
struct opp_table **required_opp_tables = opp_table->required_opp_tables;
struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
unsigned int pstate;
int i, ret = 0;
if (!required_opp_tables)
return 0;
/* Single genpd case */
if (!genpd_virt_devs) {
pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
ret = dev_pm_genpd_set_performance_state(dev, pstate);
if (ret) {
dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
dev_name(dev), pstate, ret);
}
return ret;
}
/* Multiple genpd case */
/*
* Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
* after it is freed from another thread.
*/
mutex_lock(&opp_table->genpd_virt_dev_lock);
for (i = 0; i < opp_table->required_opp_count; i++) {
pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
if (!genpd_virt_devs[i])
continue;
ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
if (ret) {
dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
dev_name(genpd_virt_devs[i]), pstate, ret);
break;
}
}
mutex_unlock(&opp_table->genpd_virt_dev_lock);
return ret;
}
/**
* dev_pm_opp_set_rate() - Configure new OPP based on frequency
* @dev: device for which we do this operation
* @target_freq: frequency to achieve
*
* This configures the power-supplies to the levels specified by the OPP
* corresponding to the target_freq, and programs the clock to a value <=
* target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
* provided by the opp, should have already rounded to the target OPP's
* frequency.
*/
int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
{
struct opp_table *opp_table;
unsigned long freq, old_freq, temp_freq;
struct dev_pm_opp *old_opp, *opp;
struct clk *clk;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
dev_err(dev, "%s: device opp doesn't exist\n", __func__);
return PTR_ERR(opp_table);
}
if (unlikely(!target_freq)) {
if (opp_table->required_opp_tables) {
ret = _set_required_opps(dev, opp_table, NULL);
} else {
dev_err(dev, "target frequency can't be 0\n");
ret = -EINVAL;
}
goto put_opp_table;
}
clk = opp_table->clk;
if (IS_ERR(clk)) {
dev_err(dev, "%s: No clock available for the device\n",
__func__);
ret = PTR_ERR(clk);
goto put_opp_table;
}
freq = clk_round_rate(clk, target_freq);
if ((long)freq <= 0)
freq = target_freq;
old_freq = clk_get_rate(clk);
/* Return early if nothing to do */
if (old_freq == freq) {
dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
__func__, freq);
ret = 0;
goto put_opp_table;
}
temp_freq = old_freq;
old_opp = _find_freq_ceil(opp_table, &temp_freq);
if (IS_ERR(old_opp)) {
dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
__func__, old_freq, PTR_ERR(old_opp));
}
temp_freq = freq;
opp = _find_freq_ceil(opp_table, &temp_freq);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
__func__, freq, ret);
goto put_old_opp;
}
dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
old_freq, freq);
/* Scaling up? Configure required OPPs before frequency */
if (freq >= old_freq) {
ret = _set_required_opps(dev, opp_table, opp);
if (ret)
goto put_opp;
}
if (opp_table->set_opp) {
ret = _set_opp_custom(opp_table, dev, old_freq, freq,
IS_ERR(old_opp) ? NULL : old_opp->supplies,
opp->supplies);
} else if (opp_table->regulators) {
ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
IS_ERR(old_opp) ? NULL : old_opp->supplies,
opp->supplies);
} else {
/* Only frequency scaling */
ret = _generic_set_opp_clk_only(dev, clk, freq);
}
/* Scaling down? Configure required OPPs after frequency */
if (!ret && freq < old_freq) {
ret = _set_required_opps(dev, opp_table, opp);
if (ret)
dev_err(dev, "Failed to set required opps: %d\n", ret);
}
put_opp:
dev_pm_opp_put(opp);
put_old_opp:
if (!IS_ERR(old_opp))
dev_pm_opp_put(old_opp);
put_opp_table:
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
/* OPP-dev Helpers */
static void _remove_opp_dev(struct opp_device *opp_dev,
struct opp_table *opp_table)
{
opp_debug_unregister(opp_dev, opp_table);
list_del(&opp_dev->node);
kfree(opp_dev);
}
static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
struct opp_table *opp_table)
{
struct opp_device *opp_dev;
opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
if (!opp_dev)
return NULL;
/* Initialize opp-dev */
opp_dev->dev = dev;
list_add(&opp_dev->node, &opp_table->dev_list);
/* Create debugfs entries for the opp_table */
opp_debug_register(opp_dev, opp_table);
return opp_dev;
}
struct opp_device *_add_opp_dev(const struct device *dev,
struct opp_table *opp_table)
{
struct opp_device *opp_dev;
mutex_lock(&opp_table->lock);
opp_dev = _add_opp_dev_unlocked(dev, opp_table);
mutex_unlock(&opp_table->lock);
return opp_dev;
}
static struct opp_table *_allocate_opp_table(struct device *dev, int index)
{
struct opp_table *opp_table;
struct opp_device *opp_dev;
int ret;
/*
* Allocate a new OPP table. In the infrequent case where a new
* device is needed to be added, we pay this penalty.
*/
opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
if (!opp_table)
return NULL;
mutex_init(&opp_table->lock);
mutex_init(&opp_table->genpd_virt_dev_lock);
INIT_LIST_HEAD(&opp_table->dev_list);
/* Mark regulator count uninitialized */
opp_table->regulator_count = -1;
opp_dev = _add_opp_dev(dev, opp_table);
if (!opp_dev) {
kfree(opp_table);
return NULL;
}
_of_init_opp_table(opp_table, dev, index);
/* Find clk for the device */
opp_table->clk = clk_get(dev, NULL);
if (IS_ERR(opp_table->clk)) {
ret = PTR_ERR(opp_table->clk);
if (ret != -EPROBE_DEFER)
dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
ret);
}
BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
INIT_LIST_HEAD(&opp_table->opp_list);
kref_init(&opp_table->kref);
/* Secure the device table modification */
list_add(&opp_table->node, &opp_tables);
return opp_table;
}
void _get_opp_table_kref(struct opp_table *opp_table)
{
kref_get(&opp_table->kref);
}
static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
{
struct opp_table *opp_table;
/* Hold our table modification lock here */
mutex_lock(&opp_table_lock);
opp_table = _find_opp_table_unlocked(dev);
if (!IS_ERR(opp_table))
goto unlock;
opp_table = _managed_opp(dev, index);
if (opp_table) {
if (!_add_opp_dev_unlocked(dev, opp_table)) {
dev_pm_opp_put_opp_table(opp_table);
opp_table = NULL;
}
goto unlock;
}
opp_table = _allocate_opp_table(dev, index);
unlock:
mutex_unlock(&opp_table_lock);
return opp_table;
}
struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
{
return _opp_get_opp_table(dev, 0);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
int index)
{
return _opp_get_opp_table(dev, index);
}
static void _opp_table_kref_release(struct kref *kref)
{
struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
struct opp_device *opp_dev, *temp;
_of_clear_opp_table(opp_table);
/* Release clk */
if (!IS_ERR(opp_table->clk))
clk_put(opp_table->clk);
WARN_ON(!list_empty(&opp_table->opp_list));
list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
/*
* The OPP table is getting removed, drop the performance state
* constraints.
*/
if (opp_table->genpd_performance_state)
dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
_remove_opp_dev(opp_dev, opp_table);
}
mutex_destroy(&opp_table->genpd_virt_dev_lock);
mutex_destroy(&opp_table->lock);
list_del(&opp_table->node);
kfree(opp_table);
mutex_unlock(&opp_table_lock);
}
void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
{
kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
&opp_table_lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
void _opp_free(struct dev_pm_opp *opp)
{
kfree(opp);
}
static void _opp_kref_release(struct dev_pm_opp *opp,
struct opp_table *opp_table)
{
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
_of_opp_free_required_opps(opp_table, opp);
opp_debug_remove_one(opp);
list_del(&opp->node);
kfree(opp);
}
static void _opp_kref_release_unlocked(struct kref *kref)
{
struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
struct opp_table *opp_table = opp->opp_table;
_opp_kref_release(opp, opp_table);
}
static void _opp_kref_release_locked(struct kref *kref)
{
struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
struct opp_table *opp_table = opp->opp_table;
_opp_kref_release(opp, opp_table);
mutex_unlock(&opp_table->lock);
}
void dev_pm_opp_get(struct dev_pm_opp *opp)
{
kref_get(&opp->kref);
}
void dev_pm_opp_put(struct dev_pm_opp *opp)
{
kref_put_mutex(&opp->kref, _opp_kref_release_locked,
&opp->opp_table->lock);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put);
static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
{
kref_put(&opp->kref, _opp_kref_release_unlocked);
}
/**
* dev_pm_opp_remove() - Remove an OPP from OPP table
* @dev: device for which we do this operation
* @freq: OPP to remove with matching 'freq'
*
* This function removes an opp from the opp table.
*/
void dev_pm_opp_remove(struct device *dev, unsigned long freq)
{
struct dev_pm_opp *opp;
struct opp_table *opp_table;
bool found = false;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return;
mutex_lock(&opp_table->lock);
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (opp->rate == freq) {
found = true;
break;
}
}
mutex_unlock(&opp_table->lock);
if (found) {
dev_pm_opp_put(opp);
/* Drop the reference taken by dev_pm_opp_add() */
dev_pm_opp_put_opp_table(opp_table);
} else {
dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
__func__, freq);
}
/* Drop the reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
void _opp_remove_all_static(struct opp_table *opp_table)
{
struct dev_pm_opp *opp, *tmp;
mutex_lock(&opp_table->lock);
if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
goto unlock;
list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
if (!opp->dynamic)
dev_pm_opp_put_unlocked(opp);
}
unlock:
mutex_unlock(&opp_table->lock);
}
/**
* dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
* @dev: device for which we do this operation
*
* This function removes all dynamically created OPPs from the opp table.
*/
void dev_pm_opp_remove_all_dynamic(struct device *dev)
{
struct opp_table *opp_table;
struct dev_pm_opp *opp, *temp;
int count = 0;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return;
mutex_lock(&opp_table->lock);
list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
if (opp->dynamic) {
dev_pm_opp_put_unlocked(opp);
count++;
}
}
mutex_unlock(&opp_table->lock);
/* Drop the references taken by dev_pm_opp_add() */
while (count--)
dev_pm_opp_put_opp_table(opp_table);
/* Drop the reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
struct dev_pm_opp *_opp_allocate(struct opp_table *table)
{
struct dev_pm_opp *opp;
int count, supply_size;
/* Allocate space for at least one supply */
count = table->regulator_count > 0 ? table->regulator_count : 1;
supply_size = sizeof(*opp->supplies) * count;
/* allocate new OPP node and supplies structures */
opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
if (!opp)
return NULL;
/* Put the supplies at the end of the OPP structure as an empty array */
opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
INIT_LIST_HEAD(&opp->node);
return opp;
}
static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
struct opp_table *opp_table)
{
struct regulator *reg;
int i;
if (!opp_table->regulators)
return true;
for (i = 0; i < opp_table->regulator_count; i++) {
reg = opp_table->regulators[i];
if (!regulator_is_supported_voltage(reg,
opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max)) {
pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
__func__, opp->supplies[i].u_volt_min,
opp->supplies[i].u_volt_max);
return false;
}
}
return true;
}
static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table,
struct list_head **head)
{
struct dev_pm_opp *opp;
/*
* Insert new OPP in order of increasing frequency and discard if
* already present.
*
* Need to use &opp_table->opp_list in the condition part of the 'for'
* loop, don't replace it with head otherwise it will become an infinite
* loop.
*/
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (new_opp->rate > opp->rate) {
*head = &opp->node;
continue;
}
if (new_opp->rate < opp->rate)
return 0;
/* Duplicate OPPs */
dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
__func__, opp->rate, opp->supplies[0].u_volt,
opp->available, new_opp->rate,
new_opp->supplies[0].u_volt, new_opp->available);
/* Should we compare voltages for all regulators here ? */
return opp->available &&
new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
}
return 0;
}
/*
* Returns:
* 0: On success. And appropriate error message for duplicate OPPs.
* -EBUSY: For OPP with same freq/volt and is available. The callers of
* _opp_add() must return 0 if they receive -EBUSY from it. This is to make
* sure we don't print error messages unnecessarily if different parts of
* kernel try to initialize the OPP table.
* -EEXIST: For OPP with same freq but different volt or is unavailable. This
* should be considered an error by the callers of _opp_add().
*/
int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
struct opp_table *opp_table, bool rate_not_available)
{
struct list_head *head;
int ret;
mutex_lock(&opp_table->lock);
head = &opp_table->opp_list;
if (likely(!rate_not_available)) {
ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
if (ret) {
mutex_unlock(&opp_table->lock);
return ret;
}
}
list_add(&new_opp->node, head);
mutex_unlock(&opp_table->lock);
new_opp->opp_table = opp_table;
kref_init(&new_opp->kref);
opp_debug_create_one(new_opp, opp_table);
if (!_opp_supported_by_regulators(new_opp, opp_table)) {
new_opp->available = false;
dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
__func__, new_opp->rate);
}
return 0;
}
/**
* _opp_add_v1() - Allocate a OPP based on v1 bindings.
* @opp_table: OPP table
* @dev: device for which we do this operation
* @freq: Frequency in Hz for this OPP
* @u_volt: Voltage in uVolts for this OPP
* @dynamic: Dynamically added OPPs.
*
* This function adds an opp definition to the opp table and returns status.
* The opp is made available by default and it can be controlled using
* dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
*
* NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
* and freed by dev_pm_opp_of_remove_table.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
*/
int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
unsigned long freq, long u_volt, bool dynamic)
{
struct dev_pm_opp *new_opp;
unsigned long tol;
int ret;
new_opp = _opp_allocate(opp_table);
if (!new_opp)
return -ENOMEM;
/* populate the opp table */
new_opp->rate = freq;
tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
new_opp->supplies[0].u_volt = u_volt;
new_opp->supplies[0].u_volt_min = u_volt - tol;
new_opp->supplies[0].u_volt_max = u_volt + tol;
new_opp->available = true;
new_opp->dynamic = dynamic;
ret = _opp_add(dev, new_opp, opp_table, false);
if (ret) {
/* Don't return error for duplicate OPPs */
if (ret == -EBUSY)
ret = 0;
goto free_opp;
}
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
return 0;
free_opp:
_opp_free(new_opp);
return ret;
}
/**
* dev_pm_opp_set_supported_hw() - Set supported platforms
* @dev: Device for which supported-hw has to be set.
* @versions: Array of hierarchy of versions to match.
* @count: Number of elements in the array.
*
* This is required only for the V2 bindings, and it enables a platform to
* specify the hierarchy of versions it supports. OPP layer will then enable
* OPPs, which are available for those versions, based on its 'opp-supported-hw'
* property.
*/
struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
const u32 *versions, unsigned int count)
{
struct opp_table *opp_table;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
/* Another CPU that shares the OPP table has set the property ? */
if (opp_table->supported_hw)
return opp_table;
opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
GFP_KERNEL);
if (!opp_table->supported_hw) {
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(-ENOMEM);
}
opp_table->supported_hw_count = count;
return opp_table;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
/**
* dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
* @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
*
* This is required only for the V2 bindings, and is called for a matching
* dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
* will not be freed.
*/
void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
{
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
kfree(opp_table->supported_hw);
opp_table->supported_hw = NULL;
opp_table->supported_hw_count = 0;
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
/**
* dev_pm_opp_set_prop_name() - Set prop-extn name
* @dev: Device for which the prop-name has to be set.
* @name: name to postfix to properties.
*
* This is required only for the V2 bindings, and it enables a platform to
* specify the extn to be used for certain property names. The properties to
* which the extension will apply are opp-microvolt and opp-microamp. OPP core
* should postfix the property name with -<name> while looking for them.
*/
struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
{
struct opp_table *opp_table;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
/* Another CPU that shares the OPP table has set the property ? */
if (opp_table->prop_name)
return opp_table;
opp_table->prop_name = kstrdup(name, GFP_KERNEL);
if (!opp_table->prop_name) {
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(-ENOMEM);
}
return opp_table;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
/**
* dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
* @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
*
* This is required only for the V2 bindings, and is called for a matching
* dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
* will not be freed.
*/
void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
{
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
kfree(opp_table->prop_name);
opp_table->prop_name = NULL;
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
static int _allocate_set_opp_data(struct opp_table *opp_table)
{
struct dev_pm_set_opp_data *data;
int len, count = opp_table->regulator_count;
if (WARN_ON(!opp_table->regulators))
return -EINVAL;
/* space for set_opp_data */
len = sizeof(*data);
/* space for old_opp.supplies and new_opp.supplies */
len += 2 * sizeof(struct dev_pm_opp_supply) * count;
data = kzalloc(len, GFP_KERNEL);
if (!data)
return -ENOMEM;
data->old_opp.supplies = (void *)(data + 1);
data->new_opp.supplies = data->old_opp.supplies + count;
opp_table->set_opp_data = data;
return 0;
}
static void _free_set_opp_data(struct opp_table *opp_table)
{
kfree(opp_table->set_opp_data);
opp_table->set_opp_data = NULL;
}
/**
* dev_pm_opp_set_regulators() - Set regulator names for the device
* @dev: Device for which regulator name is being set.
* @names: Array of pointers to the names of the regulator.
* @count: Number of regulators.
*
* In order to support OPP switching, OPP layer needs to know the name of the
* device's regulators, as the core would be required to switch voltages as
* well.
*
* This must be called before any OPPs are initialized for the device.
*/
struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
const char * const names[],
unsigned int count)
{
struct opp_table *opp_table;
struct regulator *reg;
int ret, i;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/* This should be called before OPPs are initialized */
if (WARN_ON(!list_empty(&opp_table->opp_list))) {
ret = -EBUSY;
goto err;
}
/* Another CPU that shares the OPP table has set the regulators ? */
if (opp_table->regulators)
return opp_table;
opp_table->regulators = kmalloc_array(count,
sizeof(*opp_table->regulators),
GFP_KERNEL);
if (!opp_table->regulators) {
ret = -ENOMEM;
goto err;
}
for (i = 0; i < count; i++) {
reg = regulator_get_optional(dev, names[i]);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret != -EPROBE_DEFER)
dev_err(dev, "%s: no regulator (%s) found: %d\n",
__func__, names[i], ret);
goto free_regulators;
}
opp_table->regulators[i] = reg;
}
opp_table->regulator_count = count;
/* Allocate block only once to pass to set_opp() routines */
ret = _allocate_set_opp_data(opp_table);
if (ret)
goto free_regulators;
return opp_table;
free_regulators:
while (i != 0)
regulator_put(opp_table->regulators[--i]);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
opp_table->regulator_count = -1;
err:
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
/**
* dev_pm_opp_put_regulators() - Releases resources blocked for regulator
* @opp_table: OPP table returned from dev_pm_opp_set_regulators().
*/
void dev_pm_opp_put_regulators(struct opp_table *opp_table)
{
int i;
if (!opp_table->regulators)
goto put_opp_table;
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
for (i = opp_table->regulator_count - 1; i >= 0; i--)
regulator_put(opp_table->regulators[i]);
_free_set_opp_data(opp_table);
kfree(opp_table->regulators);
opp_table->regulators = NULL;
opp_table->regulator_count = -1;
put_opp_table:
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
/**
* dev_pm_opp_set_clkname() - Set clk name for the device
* @dev: Device for which clk name is being set.
* @name: Clk name.
*
* In order to support OPP switching, OPP layer needs to get pointer to the
* clock for the device. Simple cases work fine without using this routine (i.e.
* by passing connection-id as NULL), but for a device with multiple clocks
* available, the OPP core needs to know the exact name of the clk to use.
*
* This must be called before any OPPs are initialized for the device.
*/
struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
{
struct opp_table *opp_table;
int ret;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/* This should be called before OPPs are initialized */
if (WARN_ON(!list_empty(&opp_table->opp_list))) {
ret = -EBUSY;
goto err;
}
/* Already have default clk set, free it */
if (!IS_ERR(opp_table->clk))
clk_put(opp_table->clk);
/* Find clk for the device */
opp_table->clk = clk_get(dev, name);
if (IS_ERR(opp_table->clk)) {
ret = PTR_ERR(opp_table->clk);
if (ret != -EPROBE_DEFER) {
dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
ret);
}
goto err;
}
return opp_table;
err:
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
/**
* dev_pm_opp_put_clkname() - Releases resources blocked for clk.
* @opp_table: OPP table returned from dev_pm_opp_set_clkname().
*/
void dev_pm_opp_put_clkname(struct opp_table *opp_table)
{
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
clk_put(opp_table->clk);
opp_table->clk = ERR_PTR(-EINVAL);
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
/**
* dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
* @dev: Device for which the helper is getting registered.
* @set_opp: Custom set OPP helper.
*
* This is useful to support complex platforms (like platforms with multiple
* regulators per device), instead of the generic OPP set rate helper.
*
* This must be called before any OPPs are initialized for the device.
*/
struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
int (*set_opp)(struct dev_pm_set_opp_data *data))
{
struct opp_table *opp_table;
if (!set_opp)
return ERR_PTR(-EINVAL);
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/* This should be called before OPPs are initialized */
if (WARN_ON(!list_empty(&opp_table->opp_list))) {
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(-EBUSY);
}
/* Another CPU that shares the OPP table has set the helper ? */
if (!opp_table->set_opp)
opp_table->set_opp = set_opp;
return opp_table;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
/**
* dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
* set_opp helper
* @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
*
* Release resources blocked for platform specific set_opp helper.
*/
void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
{
/* Make sure there are no concurrent readers while updating opp_table */
WARN_ON(!list_empty(&opp_table->opp_list));
opp_table->set_opp = NULL;
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
static void _opp_detach_genpd(struct opp_table *opp_table)
{
int index;
for (index = 0; index < opp_table->required_opp_count; index++) {
if (!opp_table->genpd_virt_devs[index])
continue;
dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
opp_table->genpd_virt_devs[index] = NULL;
}
kfree(opp_table->genpd_virt_devs);
opp_table->genpd_virt_devs = NULL;
}
/**
* dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
* @dev: Consumer device for which the genpd is getting attached.
* @names: Null terminated array of pointers containing names of genpd to attach.
* @virt_devs: Pointer to return the array of virtual devices.
*
* Multiple generic power domains for a device are supported with the help of
* virtual genpd devices, which are created for each consumer device - genpd
* pair. These are the device structures which are attached to the power domain
* and are required by the OPP core to set the performance state of the genpd.
* The same API also works for the case where single genpd is available and so
* we don't need to support that separately.
*
* This helper will normally be called by the consumer driver of the device
* "dev", as only that has details of the genpd names.
*
* This helper needs to be called once with a list of all genpd to attach.
* Otherwise the original device structure will be used instead by the OPP core.
*
* The order of entries in the names array must match the order in which
* "required-opps" are added in DT.
*/
struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
const char **names, struct device ***virt_devs)
{
struct opp_table *opp_table;
struct device *virt_dev;
int index = 0, ret = -EINVAL;
const char **name = names;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return ERR_PTR(-ENOMEM);
/*
* If the genpd's OPP table isn't already initialized, parsing of the
* required-opps fail for dev. We should retry this after genpd's OPP
* table is added.
*/
if (!opp_table->required_opp_count) {
ret = -EPROBE_DEFER;
goto put_table;
}
mutex_lock(&opp_table->genpd_virt_dev_lock);
opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
sizeof(*opp_table->genpd_virt_devs),
GFP_KERNEL);
if (!opp_table->genpd_virt_devs)
goto unlock;
while (*name) {
if (index >= opp_table->required_opp_count) {
dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
*name, opp_table->required_opp_count, index);
goto err;
}
if (opp_table->genpd_virt_devs[index]) {
dev_err(dev, "Genpd virtual device already set %s\n",
*name);
goto err;
}
virt_dev = dev_pm_domain_attach_by_name(dev, *name);
if (IS_ERR(virt_dev)) {
ret = PTR_ERR(virt_dev);
dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
goto err;
}
opp_table->genpd_virt_devs[index] = virt_dev;
index++;
name++;
}
if (virt_devs)
*virt_devs = opp_table->genpd_virt_devs;
mutex_unlock(&opp_table->genpd_virt_dev_lock);
return opp_table;
err:
_opp_detach_genpd(opp_table);
unlock:
mutex_unlock(&opp_table->genpd_virt_dev_lock);
put_table:
dev_pm_opp_put_opp_table(opp_table);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
/**
* dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
* @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
*
* This detaches the genpd(s), resets the virtual device pointers, and puts the
* OPP table.
*/
void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
{
/*
* Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
* used in parallel.
*/
mutex_lock(&opp_table->genpd_virt_dev_lock);
_opp_detach_genpd(opp_table);
mutex_unlock(&opp_table->genpd_virt_dev_lock);
dev_pm_opp_put_opp_table(opp_table);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
/**
* dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
* @src_table: OPP table which has dst_table as one of its required OPP table.
* @dst_table: Required OPP table of the src_table.
* @pstate: Current performance state of the src_table.
*
* This Returns pstate of the OPP (present in @dst_table) pointed out by the
* "required-opps" property of the OPP (present in @src_table) which has
* performance state set to @pstate.
*
* Return: Zero or positive performance state on success, otherwise negative
* value on errors.
*/
int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
struct opp_table *dst_table,
unsigned int pstate)
{
struct dev_pm_opp *opp;
int dest_pstate = -EINVAL;
int i;
if (!pstate)
return 0;
/*
* Normally the src_table will have the "required_opps" property set to
* point to one of the OPPs in the dst_table, but in some cases the
* genpd and its master have one to one mapping of performance states
* and so none of them have the "required-opps" property set. Return the
* pstate of the src_table as it is in such cases.
*/
if (!src_table->required_opp_count)
return pstate;
for (i = 0; i < src_table->required_opp_count; i++) {
if (src_table->required_opp_tables[i]->np == dst_table->np)
break;
}
if (unlikely(i == src_table->required_opp_count)) {
pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
__func__, src_table, dst_table);
return -EINVAL;
}
mutex_lock(&src_table->lock);
list_for_each_entry(opp, &src_table->opp_list, node) {
if (opp->pstate == pstate) {
dest_pstate = opp->required_opps[i]->pstate;
goto unlock;
}
}
pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
dst_table);
unlock:
mutex_unlock(&src_table->lock);
return dest_pstate;
}
/**
* dev_pm_opp_add() - Add an OPP table from a table definitions
* @dev: device for which we do this operation
* @freq: Frequency in Hz for this OPP
* @u_volt: Voltage in uVolts for this OPP
*
* This function adds an opp definition to the opp table and returns status.
* The opp is made available by default and it can be controlled using
* dev_pm_opp_enable/disable functions.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
*/
int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
{
struct opp_table *opp_table;
int ret;
opp_table = dev_pm_opp_get_opp_table(dev);
if (!opp_table)
return -ENOMEM;
/* Fix regulator count for dynamic OPPs */
opp_table->regulator_count = 1;
ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
if (ret)
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_add);
/**
* _opp_set_availability() - helper to set the availability of an opp
* @dev: device for which we do this operation
* @freq: OPP frequency to modify availability
* @availability_req: availability status requested for this opp
*
* Set the availability of an OPP, opp_{enable,disable} share a common logic
* which is isolated here.
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
static int _opp_set_availability(struct device *dev, unsigned long freq,
bool availability_req)
{
struct opp_table *opp_table;
struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
int r = 0;
/* Find the opp_table */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
r = PTR_ERR(opp_table);
dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
mutex_lock(&opp_table->lock);
/* Do we have the frequency? */
list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
if (tmp_opp->rate == freq) {
opp = tmp_opp;
break;
}
}
if (IS_ERR(opp)) {
r = PTR_ERR(opp);
goto unlock;
}
/* Is update really needed? */
if (opp->available == availability_req)
goto unlock;
opp->available = availability_req;
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
/* Notify the change of the OPP availability */
if (availability_req)
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
opp);
else
blocking_notifier_call_chain(&opp_table->head,
OPP_EVENT_DISABLE, opp);
dev_pm_opp_put(opp);
goto put_table;
unlock:
mutex_unlock(&opp_table->lock);
put_table:
dev_pm_opp_put_opp_table(opp_table);
return r;
}
/**
* dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to adjust voltage of
* @u_volt: new OPP target voltage
* @u_volt_min: new OPP min voltage
* @u_volt_max: new OPP max voltage
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modifcation was done OR modification was
* successful.
*/
int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
unsigned long u_volt, unsigned long u_volt_min,
unsigned long u_volt_max)
{
struct opp_table *opp_table;
struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
int r = 0;
/* Find the opp_table */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
r = PTR_ERR(opp_table);
dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
return r;
}
mutex_lock(&opp_table->lock);
/* Do we have the frequency? */
list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
if (tmp_opp->rate == freq) {
opp = tmp_opp;
break;
}
}
if (IS_ERR(opp)) {
r = PTR_ERR(opp);
goto adjust_unlock;
}
/* Is update really needed? */
if (opp->supplies->u_volt == u_volt)
goto adjust_unlock;
opp->supplies->u_volt = u_volt;
opp->supplies->u_volt_min = u_volt_min;
opp->supplies->u_volt_max = u_volt_max;
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
/* Notify the voltage change of the OPP */
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
opp);
dev_pm_opp_put(opp);
goto adjust_put_table;
adjust_unlock:
mutex_unlock(&opp_table->lock);
adjust_put_table:
dev_pm_opp_put_opp_table(opp_table);
return r;
}
/**
* dev_pm_opp_enable() - Enable a specific OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to enable
*
* Enables a provided opp. If the operation is valid, this returns 0, else the
* corresponding error value. It is meant to be used for users an OPP available
* after being temporarily made unavailable with dev_pm_opp_disable.
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
int dev_pm_opp_enable(struct device *dev, unsigned long freq)
{
return _opp_set_availability(dev, freq, true);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
/**
* dev_pm_opp_disable() - Disable a specific OPP
* @dev: device for which we do this operation
* @freq: OPP frequency to disable
*
* Disables a provided opp. If the operation is valid, this returns
* 0, else the corresponding error value. It is meant to be a temporary
* control by users to make this OPP not available until the circumstances are
* right to make it available again (with a call to dev_pm_opp_enable).
*
* Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
* copy operation, returns 0 if no modification was done OR modification was
* successful.
*/
int dev_pm_opp_disable(struct device *dev, unsigned long freq)
{
return _opp_set_availability(dev, freq, false);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
/**
* dev_pm_opp_register_notifier() - Register OPP notifier for the device
* @dev: Device for which notifier needs to be registered
* @nb: Notifier block to be registered
*
* Return: 0 on success or a negative error value.
*/
int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
{
struct opp_table *opp_table;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return PTR_ERR(opp_table);
ret = blocking_notifier_chain_register(&opp_table->head, nb);
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL(dev_pm_opp_register_notifier);
/**
* dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
* @dev: Device for which notifier needs to be unregistered
* @nb: Notifier block to be unregistered
*
* Return: 0 on success or a negative error value.
*/
int dev_pm_opp_unregister_notifier(struct device *dev,
struct notifier_block *nb)
{
struct opp_table *opp_table;
int ret;
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table))
return PTR_ERR(opp_table);
ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
void _dev_pm_opp_find_and_remove_table(struct device *dev)
{
struct opp_table *opp_table;
/* Check for existing table for 'dev' */
opp_table = _find_opp_table(dev);
if (IS_ERR(opp_table)) {
int error = PTR_ERR(opp_table);
if (error != -ENODEV)
WARN(1, "%s: opp_table: %d\n",
IS_ERR_OR_NULL(dev) ?
"Invalid device" : dev_name(dev),
error);
return;
}
_opp_remove_all_static(opp_table);
/* Drop reference taken by _find_opp_table() */
dev_pm_opp_put_opp_table(opp_table);
/* Drop reference taken while the OPP table was added */
dev_pm_opp_put_opp_table(opp_table);
}
/**
* dev_pm_opp_remove_table() - Free all OPPs associated with the device
* @dev: device pointer used to lookup OPP table.
*
* Free both OPPs created using static entries present in DT and the
* dynamically added entries.
*/
void dev_pm_opp_remove_table(struct device *dev)
{
_dev_pm_opp_find_and_remove_table(dev);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);