| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Block multiqueue core code |
| * |
| * Copyright (C) 2013-2014 Jens Axboe |
| * Copyright (C) 2013-2014 Christoph Hellwig |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/backing-dev.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/kmemleak.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/workqueue.h> |
| #include <linux/smp.h> |
| #include <linux/llist.h> |
| #include <linux/list_sort.h> |
| #include <linux/cpu.h> |
| #include <linux/cache.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/sched/topology.h> |
| #include <linux/sched/signal.h> |
| #include <linux/delay.h> |
| #include <linux/crash_dump.h> |
| #include <linux/prefetch.h> |
| |
| #include <trace/events/block.h> |
| |
| #include <linux/blk-mq.h> |
| #include <linux/t10-pi.h> |
| #include "blk.h" |
| #include "blk-mq.h" |
| #include "blk-mq-debugfs.h" |
| #include "blk-mq-tag.h" |
| #include "blk-pm.h" |
| #include "blk-stat.h" |
| #include "blk-mq-sched.h" |
| #include "blk-rq-qos.h" |
| |
| static void blk_mq_poll_stats_start(struct request_queue *q); |
| static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); |
| |
| static int blk_mq_poll_stats_bkt(const struct request *rq) |
| { |
| int ddir, sectors, bucket; |
| |
| ddir = rq_data_dir(rq); |
| sectors = blk_rq_stats_sectors(rq); |
| |
| bucket = ddir + 2 * ilog2(sectors); |
| |
| if (bucket < 0) |
| return -1; |
| else if (bucket >= BLK_MQ_POLL_STATS_BKTS) |
| return ddir + BLK_MQ_POLL_STATS_BKTS - 2; |
| |
| return bucket; |
| } |
| |
| /* |
| * Check if any of the ctx, dispatch list or elevator |
| * have pending work in this hardware queue. |
| */ |
| static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) |
| { |
| return !list_empty_careful(&hctx->dispatch) || |
| sbitmap_any_bit_set(&hctx->ctx_map) || |
| blk_mq_sched_has_work(hctx); |
| } |
| |
| /* |
| * Mark this ctx as having pending work in this hardware queue |
| */ |
| static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_ctx *ctx) |
| { |
| const int bit = ctx->index_hw[hctx->type]; |
| |
| if (!sbitmap_test_bit(&hctx->ctx_map, bit)) |
| sbitmap_set_bit(&hctx->ctx_map, bit); |
| } |
| |
| static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_ctx *ctx) |
| { |
| const int bit = ctx->index_hw[hctx->type]; |
| |
| sbitmap_clear_bit(&hctx->ctx_map, bit); |
| } |
| |
| struct mq_inflight { |
| struct hd_struct *part; |
| unsigned int inflight[2]; |
| }; |
| |
| static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, void *priv, |
| bool reserved) |
| { |
| struct mq_inflight *mi = priv; |
| |
| if (rq->part == mi->part) |
| mi->inflight[rq_data_dir(rq)]++; |
| |
| return true; |
| } |
| |
| unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) |
| { |
| struct mq_inflight mi = { .part = part }; |
| |
| blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); |
| |
| return mi.inflight[0] + mi.inflight[1]; |
| } |
| |
| void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, |
| unsigned int inflight[2]) |
| { |
| struct mq_inflight mi = { .part = part }; |
| |
| blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); |
| inflight[0] = mi.inflight[0]; |
| inflight[1] = mi.inflight[1]; |
| } |
| |
| void blk_freeze_queue_start(struct request_queue *q) |
| { |
| mutex_lock(&q->mq_freeze_lock); |
| if (++q->mq_freeze_depth == 1) { |
| percpu_ref_kill(&q->q_usage_counter); |
| mutex_unlock(&q->mq_freeze_lock); |
| if (queue_is_mq(q)) |
| blk_mq_run_hw_queues(q, false); |
| } else { |
| mutex_unlock(&q->mq_freeze_lock); |
| } |
| } |
| EXPORT_SYMBOL_GPL(blk_freeze_queue_start); |
| |
| void blk_mq_freeze_queue_wait(struct request_queue *q) |
| { |
| wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); |
| |
| int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, |
| unsigned long timeout) |
| { |
| return wait_event_timeout(q->mq_freeze_wq, |
| percpu_ref_is_zero(&q->q_usage_counter), |
| timeout); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); |
| |
| /* |
| * Guarantee no request is in use, so we can change any data structure of |
| * the queue afterward. |
| */ |
| void blk_freeze_queue(struct request_queue *q) |
| { |
| /* |
| * In the !blk_mq case we are only calling this to kill the |
| * q_usage_counter, otherwise this increases the freeze depth |
| * and waits for it to return to zero. For this reason there is |
| * no blk_unfreeze_queue(), and blk_freeze_queue() is not |
| * exported to drivers as the only user for unfreeze is blk_mq. |
| */ |
| blk_freeze_queue_start(q); |
| blk_mq_freeze_queue_wait(q); |
| } |
| |
| void blk_mq_freeze_queue(struct request_queue *q) |
| { |
| /* |
| * ...just an alias to keep freeze and unfreeze actions balanced |
| * in the blk_mq_* namespace |
| */ |
| blk_freeze_queue(q); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); |
| |
| void blk_mq_unfreeze_queue(struct request_queue *q) |
| { |
| mutex_lock(&q->mq_freeze_lock); |
| q->mq_freeze_depth--; |
| WARN_ON_ONCE(q->mq_freeze_depth < 0); |
| if (!q->mq_freeze_depth) { |
| percpu_ref_resurrect(&q->q_usage_counter); |
| wake_up_all(&q->mq_freeze_wq); |
| } |
| mutex_unlock(&q->mq_freeze_lock); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); |
| |
| /* |
| * FIXME: replace the scsi_internal_device_*block_nowait() calls in the |
| * mpt3sas driver such that this function can be removed. |
| */ |
| void blk_mq_quiesce_queue_nowait(struct request_queue *q) |
| { |
| blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); |
| |
| /** |
| * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished |
| * @q: request queue. |
| * |
| * Note: this function does not prevent that the struct request end_io() |
| * callback function is invoked. Once this function is returned, we make |
| * sure no dispatch can happen until the queue is unquiesced via |
| * blk_mq_unquiesce_queue(). |
| */ |
| void blk_mq_quiesce_queue(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned int i; |
| bool rcu = false; |
| |
| blk_mq_quiesce_queue_nowait(q); |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (hctx->flags & BLK_MQ_F_BLOCKING) |
| synchronize_srcu(hctx->srcu); |
| else |
| rcu = true; |
| } |
| if (rcu) |
| synchronize_rcu(); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); |
| |
| /* |
| * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() |
| * @q: request queue. |
| * |
| * This function recovers queue into the state before quiescing |
| * which is done by blk_mq_quiesce_queue. |
| */ |
| void blk_mq_unquiesce_queue(struct request_queue *q) |
| { |
| blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); |
| |
| /* dispatch requests which are inserted during quiescing */ |
| blk_mq_run_hw_queues(q, true); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); |
| |
| void blk_mq_wake_waiters(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| if (blk_mq_hw_queue_mapped(hctx)) |
| blk_mq_tag_wakeup_all(hctx->tags, true); |
| } |
| |
| /* |
| * Only need start/end time stamping if we have iostat or |
| * blk stats enabled, or using an IO scheduler. |
| */ |
| static inline bool blk_mq_need_time_stamp(struct request *rq) |
| { |
| return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; |
| } |
| |
| static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, |
| unsigned int tag, unsigned int op, u64 alloc_time_ns) |
| { |
| struct blk_mq_tags *tags = blk_mq_tags_from_data(data); |
| struct request *rq = tags->static_rqs[tag]; |
| req_flags_t rq_flags = 0; |
| |
| if (data->flags & BLK_MQ_REQ_INTERNAL) { |
| rq->tag = -1; |
| rq->internal_tag = tag; |
| } else { |
| if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { |
| rq_flags = RQF_MQ_INFLIGHT; |
| atomic_inc(&data->hctx->nr_active); |
| } |
| rq->tag = tag; |
| rq->internal_tag = -1; |
| data->hctx->tags->rqs[rq->tag] = rq; |
| } |
| |
| /* csd/requeue_work/fifo_time is initialized before use */ |
| rq->q = data->q; |
| rq->mq_ctx = data->ctx; |
| rq->mq_hctx = data->hctx; |
| rq->rq_flags = rq_flags; |
| rq->cmd_flags = op; |
| if (data->flags & BLK_MQ_REQ_PREEMPT) |
| rq->rq_flags |= RQF_PREEMPT; |
| if (blk_queue_io_stat(data->q)) |
| rq->rq_flags |= RQF_IO_STAT; |
| INIT_LIST_HEAD(&rq->queuelist); |
| INIT_HLIST_NODE(&rq->hash); |
| RB_CLEAR_NODE(&rq->rb_node); |
| rq->rq_disk = NULL; |
| rq->part = NULL; |
| #ifdef CONFIG_BLK_RQ_ALLOC_TIME |
| rq->alloc_time_ns = alloc_time_ns; |
| #endif |
| if (blk_mq_need_time_stamp(rq)) |
| rq->start_time_ns = ktime_get_ns(); |
| else |
| rq->start_time_ns = 0; |
| rq->io_start_time_ns = 0; |
| rq->stats_sectors = 0; |
| rq->nr_phys_segments = 0; |
| #if defined(CONFIG_BLK_DEV_INTEGRITY) |
| rq->nr_integrity_segments = 0; |
| #endif |
| /* tag was already set */ |
| rq->extra_len = 0; |
| WRITE_ONCE(rq->deadline, 0); |
| |
| rq->timeout = 0; |
| |
| rq->end_io = NULL; |
| rq->end_io_data = NULL; |
| |
| data->ctx->rq_dispatched[op_is_sync(op)]++; |
| refcount_set(&rq->ref, 1); |
| return rq; |
| } |
| |
| static struct request *blk_mq_get_request(struct request_queue *q, |
| struct bio *bio, |
| struct blk_mq_alloc_data *data) |
| { |
| struct elevator_queue *e = q->elevator; |
| struct request *rq; |
| unsigned int tag; |
| bool clear_ctx_on_error = false; |
| u64 alloc_time_ns = 0; |
| |
| blk_queue_enter_live(q); |
| |
| /* alloc_time includes depth and tag waits */ |
| if (blk_queue_rq_alloc_time(q)) |
| alloc_time_ns = ktime_get_ns(); |
| |
| data->q = q; |
| if (likely(!data->ctx)) { |
| data->ctx = blk_mq_get_ctx(q); |
| clear_ctx_on_error = true; |
| } |
| if (likely(!data->hctx)) |
| data->hctx = blk_mq_map_queue(q, data->cmd_flags, |
| data->ctx); |
| if (data->cmd_flags & REQ_NOWAIT) |
| data->flags |= BLK_MQ_REQ_NOWAIT; |
| |
| if (e) { |
| data->flags |= BLK_MQ_REQ_INTERNAL; |
| |
| /* |
| * Flush requests are special and go directly to the |
| * dispatch list. Don't include reserved tags in the |
| * limiting, as it isn't useful. |
| */ |
| if (!op_is_flush(data->cmd_flags) && |
| e->type->ops.limit_depth && |
| !(data->flags & BLK_MQ_REQ_RESERVED)) |
| e->type->ops.limit_depth(data->cmd_flags, data); |
| } else { |
| blk_mq_tag_busy(data->hctx); |
| } |
| |
| tag = blk_mq_get_tag(data); |
| if (tag == BLK_MQ_TAG_FAIL) { |
| if (clear_ctx_on_error) |
| data->ctx = NULL; |
| blk_queue_exit(q); |
| return NULL; |
| } |
| |
| rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); |
| if (!op_is_flush(data->cmd_flags)) { |
| rq->elv.icq = NULL; |
| if (e && e->type->ops.prepare_request) { |
| if (e->type->icq_cache) |
| blk_mq_sched_assign_ioc(rq); |
| |
| e->type->ops.prepare_request(rq, bio); |
| rq->rq_flags |= RQF_ELVPRIV; |
| } |
| } |
| data->hctx->queued++; |
| return rq; |
| } |
| |
| struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, |
| blk_mq_req_flags_t flags) |
| { |
| struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; |
| struct request *rq; |
| int ret; |
| |
| ret = blk_queue_enter(q, flags); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| rq = blk_mq_get_request(q, NULL, &alloc_data); |
| blk_queue_exit(q); |
| |
| if (!rq) |
| return ERR_PTR(-EWOULDBLOCK); |
| |
| rq->__data_len = 0; |
| rq->__sector = (sector_t) -1; |
| rq->bio = rq->biotail = NULL; |
| return rq; |
| } |
| EXPORT_SYMBOL(blk_mq_alloc_request); |
| |
| struct request *blk_mq_alloc_request_hctx(struct request_queue *q, |
| unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) |
| { |
| struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; |
| struct request *rq; |
| unsigned int cpu; |
| int ret; |
| |
| /* |
| * If the tag allocator sleeps we could get an allocation for a |
| * different hardware context. No need to complicate the low level |
| * allocator for this for the rare use case of a command tied to |
| * a specific queue. |
| */ |
| if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) |
| return ERR_PTR(-EINVAL); |
| |
| if (hctx_idx >= q->nr_hw_queues) |
| return ERR_PTR(-EIO); |
| |
| ret = blk_queue_enter(q, flags); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| /* |
| * Check if the hardware context is actually mapped to anything. |
| * If not tell the caller that it should skip this queue. |
| */ |
| alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; |
| if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { |
| blk_queue_exit(q); |
| return ERR_PTR(-EXDEV); |
| } |
| cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); |
| alloc_data.ctx = __blk_mq_get_ctx(q, cpu); |
| |
| rq = blk_mq_get_request(q, NULL, &alloc_data); |
| blk_queue_exit(q); |
| |
| if (!rq) |
| return ERR_PTR(-EWOULDBLOCK); |
| |
| return rq; |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); |
| |
| static void __blk_mq_free_request(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
| const int sched_tag = rq->internal_tag; |
| |
| blk_pm_mark_last_busy(rq); |
| rq->mq_hctx = NULL; |
| if (rq->tag != -1) |
| blk_mq_put_tag(hctx->tags, ctx, rq->tag); |
| if (sched_tag != -1) |
| blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); |
| blk_mq_sched_restart(hctx); |
| blk_queue_exit(q); |
| } |
| |
| void blk_mq_free_request(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| struct elevator_queue *e = q->elevator; |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
| |
| if (rq->rq_flags & RQF_ELVPRIV) { |
| if (e && e->type->ops.finish_request) |
| e->type->ops.finish_request(rq); |
| if (rq->elv.icq) { |
| put_io_context(rq->elv.icq->ioc); |
| rq->elv.icq = NULL; |
| } |
| } |
| |
| ctx->rq_completed[rq_is_sync(rq)]++; |
| if (rq->rq_flags & RQF_MQ_INFLIGHT) |
| atomic_dec(&hctx->nr_active); |
| |
| if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) |
| laptop_io_completion(q->backing_dev_info); |
| |
| rq_qos_done(q, rq); |
| |
| WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| if (refcount_dec_and_test(&rq->ref)) |
| __blk_mq_free_request(rq); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_free_request); |
| |
| inline void __blk_mq_end_request(struct request *rq, blk_status_t error) |
| { |
| u64 now = 0; |
| |
| if (blk_mq_need_time_stamp(rq)) |
| now = ktime_get_ns(); |
| |
| if (rq->rq_flags & RQF_STATS) { |
| blk_mq_poll_stats_start(rq->q); |
| blk_stat_add(rq, now); |
| } |
| |
| if (rq->internal_tag != -1) |
| blk_mq_sched_completed_request(rq, now); |
| |
| blk_account_io_done(rq, now); |
| |
| if (rq->end_io) { |
| rq_qos_done(rq->q, rq); |
| rq->end_io(rq, error); |
| } else { |
| blk_mq_free_request(rq); |
| } |
| } |
| EXPORT_SYMBOL(__blk_mq_end_request); |
| |
| void blk_mq_end_request(struct request *rq, blk_status_t error) |
| { |
| if (blk_update_request(rq, error, blk_rq_bytes(rq))) |
| BUG(); |
| __blk_mq_end_request(rq, error); |
| } |
| EXPORT_SYMBOL(blk_mq_end_request); |
| |
| static void __blk_mq_complete_request_remote(void *data) |
| { |
| struct request *rq = data; |
| struct request_queue *q = rq->q; |
| |
| q->mq_ops->complete(rq); |
| } |
| |
| static void __blk_mq_complete_request(struct request *rq) |
| { |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| struct request_queue *q = rq->q; |
| bool shared = false; |
| int cpu; |
| |
| WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); |
| /* |
| * Most of single queue controllers, there is only one irq vector |
| * for handling IO completion, and the only irq's affinity is set |
| * as all possible CPUs. On most of ARCHs, this affinity means the |
| * irq is handled on one specific CPU. |
| * |
| * So complete IO reqeust in softirq context in case of single queue |
| * for not degrading IO performance by irqsoff latency. |
| */ |
| if (q->nr_hw_queues == 1) { |
| __blk_complete_request(rq); |
| return; |
| } |
| |
| /* |
| * For a polled request, always complete locallly, it's pointless |
| * to redirect the completion. |
| */ |
| if ((rq->cmd_flags & REQ_HIPRI) || |
| !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { |
| q->mq_ops->complete(rq); |
| return; |
| } |
| |
| cpu = get_cpu(); |
| if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) |
| shared = cpus_share_cache(cpu, ctx->cpu); |
| |
| if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { |
| rq->csd.func = __blk_mq_complete_request_remote; |
| rq->csd.info = rq; |
| rq->csd.flags = 0; |
| smp_call_function_single_async(ctx->cpu, &rq->csd); |
| } else { |
| q->mq_ops->complete(rq); |
| } |
| put_cpu(); |
| } |
| |
| static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) |
| __releases(hctx->srcu) |
| { |
| if (!(hctx->flags & BLK_MQ_F_BLOCKING)) |
| rcu_read_unlock(); |
| else |
| srcu_read_unlock(hctx->srcu, srcu_idx); |
| } |
| |
| static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) |
| __acquires(hctx->srcu) |
| { |
| if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { |
| /* shut up gcc false positive */ |
| *srcu_idx = 0; |
| rcu_read_lock(); |
| } else |
| *srcu_idx = srcu_read_lock(hctx->srcu); |
| } |
| |
| /** |
| * blk_mq_complete_request - end I/O on a request |
| * @rq: the request being processed |
| * |
| * Description: |
| * Ends all I/O on a request. It does not handle partial completions. |
| * The actual completion happens out-of-order, through a IPI handler. |
| **/ |
| bool blk_mq_complete_request(struct request *rq) |
| { |
| if (unlikely(blk_should_fake_timeout(rq->q))) |
| return false; |
| __blk_mq_complete_request(rq); |
| return true; |
| } |
| EXPORT_SYMBOL(blk_mq_complete_request); |
| |
| /** |
| * blk_mq_start_request - Start processing a request |
| * @rq: Pointer to request to be started |
| * |
| * Function used by device drivers to notify the block layer that a request |
| * is going to be processed now, so blk layer can do proper initializations |
| * such as starting the timeout timer. |
| */ |
| void blk_mq_start_request(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| |
| trace_block_rq_issue(q, rq); |
| |
| if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { |
| rq->io_start_time_ns = ktime_get_ns(); |
| rq->stats_sectors = blk_rq_sectors(rq); |
| rq->rq_flags |= RQF_STATS; |
| rq_qos_issue(q, rq); |
| } |
| |
| WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); |
| |
| blk_add_timer(rq); |
| WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); |
| |
| if (q->dma_drain_size && blk_rq_bytes(rq)) { |
| /* |
| * Make sure space for the drain appears. We know we can do |
| * this because max_hw_segments has been adjusted to be one |
| * fewer than the device can handle. |
| */ |
| rq->nr_phys_segments++; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) |
| q->integrity.profile->prepare_fn(rq); |
| #endif |
| } |
| EXPORT_SYMBOL(blk_mq_start_request); |
| |
| static void __blk_mq_requeue_request(struct request *rq) |
| { |
| struct request_queue *q = rq->q; |
| |
| blk_mq_put_driver_tag(rq); |
| |
| trace_block_rq_requeue(q, rq); |
| rq_qos_requeue(q, rq); |
| |
| if (blk_mq_request_started(rq)) { |
| WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| rq->rq_flags &= ~RQF_TIMED_OUT; |
| if (q->dma_drain_size && blk_rq_bytes(rq)) |
| rq->nr_phys_segments--; |
| } |
| } |
| |
| void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) |
| { |
| __blk_mq_requeue_request(rq); |
| |
| /* this request will be re-inserted to io scheduler queue */ |
| blk_mq_sched_requeue_request(rq); |
| |
| BUG_ON(!list_empty(&rq->queuelist)); |
| blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); |
| } |
| EXPORT_SYMBOL(blk_mq_requeue_request); |
| |
| static void blk_mq_requeue_work(struct work_struct *work) |
| { |
| struct request_queue *q = |
| container_of(work, struct request_queue, requeue_work.work); |
| LIST_HEAD(rq_list); |
| struct request *rq, *next; |
| |
| spin_lock_irq(&q->requeue_lock); |
| list_splice_init(&q->requeue_list, &rq_list); |
| spin_unlock_irq(&q->requeue_lock); |
| |
| list_for_each_entry_safe(rq, next, &rq_list, queuelist) { |
| if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) |
| continue; |
| |
| rq->rq_flags &= ~RQF_SOFTBARRIER; |
| list_del_init(&rq->queuelist); |
| /* |
| * If RQF_DONTPREP, rq has contained some driver specific |
| * data, so insert it to hctx dispatch list to avoid any |
| * merge. |
| */ |
| if (rq->rq_flags & RQF_DONTPREP) |
| blk_mq_request_bypass_insert(rq, false, false); |
| else |
| blk_mq_sched_insert_request(rq, true, false, false); |
| } |
| |
| while (!list_empty(&rq_list)) { |
| rq = list_entry(rq_list.next, struct request, queuelist); |
| list_del_init(&rq->queuelist); |
| blk_mq_sched_insert_request(rq, false, false, false); |
| } |
| |
| blk_mq_run_hw_queues(q, false); |
| } |
| |
| void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, |
| bool kick_requeue_list) |
| { |
| struct request_queue *q = rq->q; |
| unsigned long flags; |
| |
| /* |
| * We abuse this flag that is otherwise used by the I/O scheduler to |
| * request head insertion from the workqueue. |
| */ |
| BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); |
| |
| spin_lock_irqsave(&q->requeue_lock, flags); |
| if (at_head) { |
| rq->rq_flags |= RQF_SOFTBARRIER; |
| list_add(&rq->queuelist, &q->requeue_list); |
| } else { |
| list_add_tail(&rq->queuelist, &q->requeue_list); |
| } |
| spin_unlock_irqrestore(&q->requeue_lock, flags); |
| |
| if (kick_requeue_list) |
| blk_mq_kick_requeue_list(q); |
| } |
| |
| void blk_mq_kick_requeue_list(struct request_queue *q) |
| { |
| kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); |
| } |
| EXPORT_SYMBOL(blk_mq_kick_requeue_list); |
| |
| void blk_mq_delay_kick_requeue_list(struct request_queue *q, |
| unsigned long msecs) |
| { |
| kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, |
| msecs_to_jiffies(msecs)); |
| } |
| EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); |
| |
| struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) |
| { |
| if (tag < tags->nr_tags) { |
| prefetch(tags->rqs[tag]); |
| return tags->rqs[tag]; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(blk_mq_tag_to_rq); |
| |
| static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| void *priv, bool reserved) |
| { |
| /* |
| * If we find a request that is inflight and the queue matches, |
| * we know the queue is busy. Return false to stop the iteration. |
| */ |
| if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { |
| bool *busy = priv; |
| |
| *busy = true; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool blk_mq_queue_inflight(struct request_queue *q) |
| { |
| bool busy = false; |
| |
| blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); |
| return busy; |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); |
| |
| static void blk_mq_rq_timed_out(struct request *req, bool reserved) |
| { |
| req->rq_flags |= RQF_TIMED_OUT; |
| if (req->q->mq_ops->timeout) { |
| enum blk_eh_timer_return ret; |
| |
| ret = req->q->mq_ops->timeout(req, reserved); |
| if (ret == BLK_EH_DONE) |
| return; |
| WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); |
| } |
| |
| blk_add_timer(req); |
| } |
| |
| static bool blk_mq_req_expired(struct request *rq, unsigned long *next) |
| { |
| unsigned long deadline; |
| |
| if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) |
| return false; |
| if (rq->rq_flags & RQF_TIMED_OUT) |
| return false; |
| |
| deadline = READ_ONCE(rq->deadline); |
| if (time_after_eq(jiffies, deadline)) |
| return true; |
| |
| if (*next == 0) |
| *next = deadline; |
| else if (time_after(*next, deadline)) |
| *next = deadline; |
| return false; |
| } |
| |
| static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, void *priv, bool reserved) |
| { |
| unsigned long *next = priv; |
| |
| /* |
| * Just do a quick check if it is expired before locking the request in |
| * so we're not unnecessarilly synchronizing across CPUs. |
| */ |
| if (!blk_mq_req_expired(rq, next)) |
| return true; |
| |
| /* |
| * We have reason to believe the request may be expired. Take a |
| * reference on the request to lock this request lifetime into its |
| * currently allocated context to prevent it from being reallocated in |
| * the event the completion by-passes this timeout handler. |
| * |
| * If the reference was already released, then the driver beat the |
| * timeout handler to posting a natural completion. |
| */ |
| if (!refcount_inc_not_zero(&rq->ref)) |
| return true; |
| |
| /* |
| * The request is now locked and cannot be reallocated underneath the |
| * timeout handler's processing. Re-verify this exact request is truly |
| * expired; if it is not expired, then the request was completed and |
| * reallocated as a new request. |
| */ |
| if (blk_mq_req_expired(rq, next)) |
| blk_mq_rq_timed_out(rq, reserved); |
| |
| if (is_flush_rq(rq, hctx)) |
| rq->end_io(rq, 0); |
| else if (refcount_dec_and_test(&rq->ref)) |
| __blk_mq_free_request(rq); |
| |
| return true; |
| } |
| |
| static void blk_mq_timeout_work(struct work_struct *work) |
| { |
| struct request_queue *q = |
| container_of(work, struct request_queue, timeout_work); |
| unsigned long next = 0; |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| /* A deadlock might occur if a request is stuck requiring a |
| * timeout at the same time a queue freeze is waiting |
| * completion, since the timeout code would not be able to |
| * acquire the queue reference here. |
| * |
| * That's why we don't use blk_queue_enter here; instead, we use |
| * percpu_ref_tryget directly, because we need to be able to |
| * obtain a reference even in the short window between the queue |
| * starting to freeze, by dropping the first reference in |
| * blk_freeze_queue_start, and the moment the last request is |
| * consumed, marked by the instant q_usage_counter reaches |
| * zero. |
| */ |
| if (!percpu_ref_tryget(&q->q_usage_counter)) |
| return; |
| |
| blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); |
| |
| if (next != 0) { |
| mod_timer(&q->timeout, next); |
| } else { |
| /* |
| * Request timeouts are handled as a forward rolling timer. If |
| * we end up here it means that no requests are pending and |
| * also that no request has been pending for a while. Mark |
| * each hctx as idle. |
| */ |
| queue_for_each_hw_ctx(q, hctx, i) { |
| /* the hctx may be unmapped, so check it here */ |
| if (blk_mq_hw_queue_mapped(hctx)) |
| blk_mq_tag_idle(hctx); |
| } |
| } |
| blk_queue_exit(q); |
| } |
| |
| struct flush_busy_ctx_data { |
| struct blk_mq_hw_ctx *hctx; |
| struct list_head *list; |
| }; |
| |
| static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) |
| { |
| struct flush_busy_ctx_data *flush_data = data; |
| struct blk_mq_hw_ctx *hctx = flush_data->hctx; |
| struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; |
| enum hctx_type type = hctx->type; |
| |
| spin_lock(&ctx->lock); |
| list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); |
| sbitmap_clear_bit(sb, bitnr); |
| spin_unlock(&ctx->lock); |
| return true; |
| } |
| |
| /* |
| * Process software queues that have been marked busy, splicing them |
| * to the for-dispatch |
| */ |
| void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) |
| { |
| struct flush_busy_ctx_data data = { |
| .hctx = hctx, |
| .list = list, |
| }; |
| |
| sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); |
| |
| struct dispatch_rq_data { |
| struct blk_mq_hw_ctx *hctx; |
| struct request *rq; |
| }; |
| |
| static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, |
| void *data) |
| { |
| struct dispatch_rq_data *dispatch_data = data; |
| struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; |
| struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; |
| enum hctx_type type = hctx->type; |
| |
| spin_lock(&ctx->lock); |
| if (!list_empty(&ctx->rq_lists[type])) { |
| dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); |
| list_del_init(&dispatch_data->rq->queuelist); |
| if (list_empty(&ctx->rq_lists[type])) |
| sbitmap_clear_bit(sb, bitnr); |
| } |
| spin_unlock(&ctx->lock); |
| |
| return !dispatch_data->rq; |
| } |
| |
| struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, |
| struct blk_mq_ctx *start) |
| { |
| unsigned off = start ? start->index_hw[hctx->type] : 0; |
| struct dispatch_rq_data data = { |
| .hctx = hctx, |
| .rq = NULL, |
| }; |
| |
| __sbitmap_for_each_set(&hctx->ctx_map, off, |
| dispatch_rq_from_ctx, &data); |
| |
| return data.rq; |
| } |
| |
| static inline unsigned int queued_to_index(unsigned int queued) |
| { |
| if (!queued) |
| return 0; |
| |
| return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); |
| } |
| |
| bool blk_mq_get_driver_tag(struct request *rq) |
| { |
| struct blk_mq_alloc_data data = { |
| .q = rq->q, |
| .hctx = rq->mq_hctx, |
| .flags = BLK_MQ_REQ_NOWAIT, |
| .cmd_flags = rq->cmd_flags, |
| }; |
| bool shared; |
| |
| if (rq->tag != -1) |
| return true; |
| |
| if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) |
| data.flags |= BLK_MQ_REQ_RESERVED; |
| |
| shared = blk_mq_tag_busy(data.hctx); |
| rq->tag = blk_mq_get_tag(&data); |
| if (rq->tag >= 0) { |
| if (shared) { |
| rq->rq_flags |= RQF_MQ_INFLIGHT; |
| atomic_inc(&data.hctx->nr_active); |
| } |
| data.hctx->tags->rqs[rq->tag] = rq; |
| } |
| |
| return rq->tag != -1; |
| } |
| |
| static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, |
| int flags, void *key) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| |
| hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); |
| |
| spin_lock(&hctx->dispatch_wait_lock); |
| if (!list_empty(&wait->entry)) { |
| struct sbitmap_queue *sbq; |
| |
| list_del_init(&wait->entry); |
| sbq = &hctx->tags->bitmap_tags; |
| atomic_dec(&sbq->ws_active); |
| } |
| spin_unlock(&hctx->dispatch_wait_lock); |
| |
| blk_mq_run_hw_queue(hctx, true); |
| return 1; |
| } |
| |
| /* |
| * Mark us waiting for a tag. For shared tags, this involves hooking us into |
| * the tag wakeups. For non-shared tags, we can simply mark us needing a |
| * restart. For both cases, take care to check the condition again after |
| * marking us as waiting. |
| */ |
| static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, |
| struct request *rq) |
| { |
| struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; |
| struct wait_queue_head *wq; |
| wait_queue_entry_t *wait; |
| bool ret; |
| |
| if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { |
| blk_mq_sched_mark_restart_hctx(hctx); |
| |
| /* |
| * It's possible that a tag was freed in the window between the |
| * allocation failure and adding the hardware queue to the wait |
| * queue. |
| * |
| * Don't clear RESTART here, someone else could have set it. |
| * At most this will cost an extra queue run. |
| */ |
| return blk_mq_get_driver_tag(rq); |
| } |
| |
| wait = &hctx->dispatch_wait; |
| if (!list_empty_careful(&wait->entry)) |
| return false; |
| |
| wq = &bt_wait_ptr(sbq, hctx)->wait; |
| |
| spin_lock_irq(&wq->lock); |
| spin_lock(&hctx->dispatch_wait_lock); |
| if (!list_empty(&wait->entry)) { |
| spin_unlock(&hctx->dispatch_wait_lock); |
| spin_unlock_irq(&wq->lock); |
| return false; |
| } |
| |
| atomic_inc(&sbq->ws_active); |
| wait->flags &= ~WQ_FLAG_EXCLUSIVE; |
| __add_wait_queue(wq, wait); |
| |
| /* |
| * It's possible that a tag was freed in the window between the |
| * allocation failure and adding the hardware queue to the wait |
| * queue. |
| */ |
| ret = blk_mq_get_driver_tag(rq); |
| if (!ret) { |
| spin_unlock(&hctx->dispatch_wait_lock); |
| spin_unlock_irq(&wq->lock); |
| return false; |
| } |
| |
| /* |
| * We got a tag, remove ourselves from the wait queue to ensure |
| * someone else gets the wakeup. |
| */ |
| list_del_init(&wait->entry); |
| atomic_dec(&sbq->ws_active); |
| spin_unlock(&hctx->dispatch_wait_lock); |
| spin_unlock_irq(&wq->lock); |
| |
| return true; |
| } |
| |
| #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 |
| #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 |
| /* |
| * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): |
| * - EWMA is one simple way to compute running average value |
| * - weight(7/8 and 1/8) is applied so that it can decrease exponentially |
| * - take 4 as factor for avoiding to get too small(0) result, and this |
| * factor doesn't matter because EWMA decreases exponentially |
| */ |
| static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) |
| { |
| unsigned int ewma; |
| |
| if (hctx->queue->elevator) |
| return; |
| |
| ewma = hctx->dispatch_busy; |
| |
| if (!ewma && !busy) |
| return; |
| |
| ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; |
| if (busy) |
| ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; |
| ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; |
| |
| hctx->dispatch_busy = ewma; |
| } |
| |
| #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ |
| |
| /* |
| * Returns true if we did some work AND can potentially do more. |
| */ |
| bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, |
| bool got_budget) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| struct request *rq, *nxt; |
| bool no_tag = false; |
| int errors, queued; |
| blk_status_t ret = BLK_STS_OK; |
| |
| if (list_empty(list)) |
| return false; |
| |
| WARN_ON(!list_is_singular(list) && got_budget); |
| |
| /* |
| * Now process all the entries, sending them to the driver. |
| */ |
| errors = queued = 0; |
| do { |
| struct blk_mq_queue_data bd; |
| |
| rq = list_first_entry(list, struct request, queuelist); |
| |
| hctx = rq->mq_hctx; |
| if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) |
| break; |
| |
| if (!blk_mq_get_driver_tag(rq)) { |
| /* |
| * The initial allocation attempt failed, so we need to |
| * rerun the hardware queue when a tag is freed. The |
| * waitqueue takes care of that. If the queue is run |
| * before we add this entry back on the dispatch list, |
| * we'll re-run it below. |
| */ |
| if (!blk_mq_mark_tag_wait(hctx, rq)) { |
| blk_mq_put_dispatch_budget(hctx); |
| /* |
| * For non-shared tags, the RESTART check |
| * will suffice. |
| */ |
| if (hctx->flags & BLK_MQ_F_TAG_SHARED) |
| no_tag = true; |
| break; |
| } |
| } |
| |
| list_del_init(&rq->queuelist); |
| |
| bd.rq = rq; |
| |
| /* |
| * Flag last if we have no more requests, or if we have more |
| * but can't assign a driver tag to it. |
| */ |
| if (list_empty(list)) |
| bd.last = true; |
| else { |
| nxt = list_first_entry(list, struct request, queuelist); |
| bd.last = !blk_mq_get_driver_tag(nxt); |
| } |
| |
| ret = q->mq_ops->queue_rq(hctx, &bd); |
| if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { |
| /* |
| * If an I/O scheduler has been configured and we got a |
| * driver tag for the next request already, free it |
| * again. |
| */ |
| if (!list_empty(list)) { |
| nxt = list_first_entry(list, struct request, queuelist); |
| blk_mq_put_driver_tag(nxt); |
| } |
| list_add(&rq->queuelist, list); |
| __blk_mq_requeue_request(rq); |
| break; |
| } |
| |
| if (unlikely(ret != BLK_STS_OK)) { |
| errors++; |
| blk_mq_end_request(rq, BLK_STS_IOERR); |
| continue; |
| } |
| |
| queued++; |
| } while (!list_empty(list)); |
| |
| hctx->dispatched[queued_to_index(queued)]++; |
| |
| /* |
| * Any items that need requeuing? Stuff them into hctx->dispatch, |
| * that is where we will continue on next queue run. |
| */ |
| if (!list_empty(list)) { |
| bool needs_restart; |
| |
| /* |
| * If we didn't flush the entire list, we could have told |
| * the driver there was more coming, but that turned out to |
| * be a lie. |
| */ |
| if (q->mq_ops->commit_rqs) |
| q->mq_ops->commit_rqs(hctx); |
| |
| spin_lock(&hctx->lock); |
| list_splice_tail_init(list, &hctx->dispatch); |
| spin_unlock(&hctx->lock); |
| |
| /* |
| * If SCHED_RESTART was set by the caller of this function and |
| * it is no longer set that means that it was cleared by another |
| * thread and hence that a queue rerun is needed. |
| * |
| * If 'no_tag' is set, that means that we failed getting |
| * a driver tag with an I/O scheduler attached. If our dispatch |
| * waitqueue is no longer active, ensure that we run the queue |
| * AFTER adding our entries back to the list. |
| * |
| * If no I/O scheduler has been configured it is possible that |
| * the hardware queue got stopped and restarted before requests |
| * were pushed back onto the dispatch list. Rerun the queue to |
| * avoid starvation. Notes: |
| * - blk_mq_run_hw_queue() checks whether or not a queue has |
| * been stopped before rerunning a queue. |
| * - Some but not all block drivers stop a queue before |
| * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq |
| * and dm-rq. |
| * |
| * If driver returns BLK_STS_RESOURCE and SCHED_RESTART |
| * bit is set, run queue after a delay to avoid IO stalls |
| * that could otherwise occur if the queue is idle. |
| */ |
| needs_restart = blk_mq_sched_needs_restart(hctx); |
| if (!needs_restart || |
| (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) |
| blk_mq_run_hw_queue(hctx, true); |
| else if (needs_restart && (ret == BLK_STS_RESOURCE)) |
| blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); |
| |
| blk_mq_update_dispatch_busy(hctx, true); |
| return false; |
| } else |
| blk_mq_update_dispatch_busy(hctx, false); |
| |
| /* |
| * If the host/device is unable to accept more work, inform the |
| * caller of that. |
| */ |
| if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) |
| return false; |
| |
| return (queued + errors) != 0; |
| } |
| |
| /** |
| * __blk_mq_run_hw_queue - Run a hardware queue. |
| * @hctx: Pointer to the hardware queue to run. |
| * |
| * Send pending requests to the hardware. |
| */ |
| static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) |
| { |
| int srcu_idx; |
| |
| /* |
| * We should be running this queue from one of the CPUs that |
| * are mapped to it. |
| * |
| * There are at least two related races now between setting |
| * hctx->next_cpu from blk_mq_hctx_next_cpu() and running |
| * __blk_mq_run_hw_queue(): |
| * |
| * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), |
| * but later it becomes online, then this warning is harmless |
| * at all |
| * |
| * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), |
| * but later it becomes offline, then the warning can't be |
| * triggered, and we depend on blk-mq timeout handler to |
| * handle dispatched requests to this hctx |
| */ |
| if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && |
| cpu_online(hctx->next_cpu)) { |
| printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", |
| raw_smp_processor_id(), |
| cpumask_empty(hctx->cpumask) ? "inactive": "active"); |
| dump_stack(); |
| } |
| |
| /* |
| * We can't run the queue inline with ints disabled. Ensure that |
| * we catch bad users of this early. |
| */ |
| WARN_ON_ONCE(in_interrupt()); |
| |
| might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); |
| |
| hctx_lock(hctx, &srcu_idx); |
| blk_mq_sched_dispatch_requests(hctx); |
| hctx_unlock(hctx, srcu_idx); |
| } |
| |
| static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) |
| { |
| int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); |
| |
| if (cpu >= nr_cpu_ids) |
| cpu = cpumask_first(hctx->cpumask); |
| return cpu; |
| } |
| |
| /* |
| * It'd be great if the workqueue API had a way to pass |
| * in a mask and had some smarts for more clever placement. |
| * For now we just round-robin here, switching for every |
| * BLK_MQ_CPU_WORK_BATCH queued items. |
| */ |
| static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) |
| { |
| bool tried = false; |
| int next_cpu = hctx->next_cpu; |
| |
| if (hctx->queue->nr_hw_queues == 1) |
| return WORK_CPU_UNBOUND; |
| |
| if (--hctx->next_cpu_batch <= 0) { |
| select_cpu: |
| next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, |
| cpu_online_mask); |
| if (next_cpu >= nr_cpu_ids) |
| next_cpu = blk_mq_first_mapped_cpu(hctx); |
| hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; |
| } |
| |
| /* |
| * Do unbound schedule if we can't find a online CPU for this hctx, |
| * and it should only happen in the path of handling CPU DEAD. |
| */ |
| if (!cpu_online(next_cpu)) { |
| if (!tried) { |
| tried = true; |
| goto select_cpu; |
| } |
| |
| /* |
| * Make sure to re-select CPU next time once after CPUs |
| * in hctx->cpumask become online again. |
| */ |
| hctx->next_cpu = next_cpu; |
| hctx->next_cpu_batch = 1; |
| return WORK_CPU_UNBOUND; |
| } |
| |
| hctx->next_cpu = next_cpu; |
| return next_cpu; |
| } |
| |
| /** |
| * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. |
| * @hctx: Pointer to the hardware queue to run. |
| * @async: If we want to run the queue asynchronously. |
| * @msecs: Microseconds of delay to wait before running the queue. |
| * |
| * If !@async, try to run the queue now. Else, run the queue asynchronously and |
| * with a delay of @msecs. |
| */ |
| static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, |
| unsigned long msecs) |
| { |
| if (unlikely(blk_mq_hctx_stopped(hctx))) |
| return; |
| |
| if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { |
| int cpu = get_cpu(); |
| if (cpumask_test_cpu(cpu, hctx->cpumask)) { |
| __blk_mq_run_hw_queue(hctx); |
| put_cpu(); |
| return; |
| } |
| |
| put_cpu(); |
| } |
| |
| kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, |
| msecs_to_jiffies(msecs)); |
| } |
| |
| /** |
| * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. |
| * @hctx: Pointer to the hardware queue to run. |
| * @msecs: Microseconds of delay to wait before running the queue. |
| * |
| * Run a hardware queue asynchronously with a delay of @msecs. |
| */ |
| void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) |
| { |
| __blk_mq_delay_run_hw_queue(hctx, true, msecs); |
| } |
| EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); |
| |
| /** |
| * blk_mq_run_hw_queue - Start to run a hardware queue. |
| * @hctx: Pointer to the hardware queue to run. |
| * @async: If we want to run the queue asynchronously. |
| * |
| * Check if the request queue is not in a quiesced state and if there are |
| * pending requests to be sent. If this is true, run the queue to send requests |
| * to hardware. |
| */ |
| void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) |
| { |
| int srcu_idx; |
| bool need_run; |
| |
| /* |
| * When queue is quiesced, we may be switching io scheduler, or |
| * updating nr_hw_queues, or other things, and we can't run queue |
| * any more, even __blk_mq_hctx_has_pending() can't be called safely. |
| * |
| * And queue will be rerun in blk_mq_unquiesce_queue() if it is |
| * quiesced. |
| */ |
| hctx_lock(hctx, &srcu_idx); |
| need_run = !blk_queue_quiesced(hctx->queue) && |
| blk_mq_hctx_has_pending(hctx); |
| hctx_unlock(hctx, srcu_idx); |
| |
| if (need_run) |
| __blk_mq_delay_run_hw_queue(hctx, async, 0); |
| } |
| EXPORT_SYMBOL(blk_mq_run_hw_queue); |
| |
| /** |
| * blk_mq_run_hw_queue - Run all hardware queues in a request queue. |
| * @q: Pointer to the request queue to run. |
| * @async: If we want to run the queue asynchronously. |
| */ |
| void blk_mq_run_hw_queues(struct request_queue *q, bool async) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (blk_mq_hctx_stopped(hctx)) |
| continue; |
| |
| blk_mq_run_hw_queue(hctx, async); |
| } |
| } |
| EXPORT_SYMBOL(blk_mq_run_hw_queues); |
| |
| /** |
| * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped |
| * @q: request queue. |
| * |
| * The caller is responsible for serializing this function against |
| * blk_mq_{start,stop}_hw_queue(). |
| */ |
| bool blk_mq_queue_stopped(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| if (blk_mq_hctx_stopped(hctx)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL(blk_mq_queue_stopped); |
| |
| /* |
| * This function is often used for pausing .queue_rq() by driver when |
| * there isn't enough resource or some conditions aren't satisfied, and |
| * BLK_STS_RESOURCE is usually returned. |
| * |
| * We do not guarantee that dispatch can be drained or blocked |
| * after blk_mq_stop_hw_queue() returns. Please use |
| * blk_mq_quiesce_queue() for that requirement. |
| */ |
| void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) |
| { |
| cancel_delayed_work(&hctx->run_work); |
| |
| set_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| } |
| EXPORT_SYMBOL(blk_mq_stop_hw_queue); |
| |
| /* |
| * This function is often used for pausing .queue_rq() by driver when |
| * there isn't enough resource or some conditions aren't satisfied, and |
| * BLK_STS_RESOURCE is usually returned. |
| * |
| * We do not guarantee that dispatch can be drained or blocked |
| * after blk_mq_stop_hw_queues() returns. Please use |
| * blk_mq_quiesce_queue() for that requirement. |
| */ |
| void blk_mq_stop_hw_queues(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| blk_mq_stop_hw_queue(hctx); |
| } |
| EXPORT_SYMBOL(blk_mq_stop_hw_queues); |
| |
| void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) |
| { |
| clear_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| |
| blk_mq_run_hw_queue(hctx, false); |
| } |
| EXPORT_SYMBOL(blk_mq_start_hw_queue); |
| |
| void blk_mq_start_hw_queues(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| blk_mq_start_hw_queue(hctx); |
| } |
| EXPORT_SYMBOL(blk_mq_start_hw_queues); |
| |
| void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) |
| { |
| if (!blk_mq_hctx_stopped(hctx)) |
| return; |
| |
| clear_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| blk_mq_run_hw_queue(hctx, async); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); |
| |
| void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| blk_mq_start_stopped_hw_queue(hctx, async); |
| } |
| EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); |
| |
| static void blk_mq_run_work_fn(struct work_struct *work) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| |
| hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); |
| |
| /* |
| * If we are stopped, don't run the queue. |
| */ |
| if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) |
| return; |
| |
| __blk_mq_run_hw_queue(hctx); |
| } |
| |
| static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, |
| bool at_head) |
| { |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| enum hctx_type type = hctx->type; |
| |
| lockdep_assert_held(&ctx->lock); |
| |
| trace_block_rq_insert(hctx->queue, rq); |
| |
| if (at_head) |
| list_add(&rq->queuelist, &ctx->rq_lists[type]); |
| else |
| list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); |
| } |
| |
| void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| bool at_head) |
| { |
| struct blk_mq_ctx *ctx = rq->mq_ctx; |
| |
| lockdep_assert_held(&ctx->lock); |
| |
| __blk_mq_insert_req_list(hctx, rq, at_head); |
| blk_mq_hctx_mark_pending(hctx, ctx); |
| } |
| |
| /** |
| * blk_mq_request_bypass_insert - Insert a request at dispatch list. |
| * @rq: Pointer to request to be inserted. |
| * @run_queue: If we should run the hardware queue after inserting the request. |
| * |
| * Should only be used carefully, when the caller knows we want to |
| * bypass a potential IO scheduler on the target device. |
| */ |
| void blk_mq_request_bypass_insert(struct request *rq, bool at_head, |
| bool run_queue) |
| { |
| struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
| |
| spin_lock(&hctx->lock); |
| if (at_head) |
| list_add(&rq->queuelist, &hctx->dispatch); |
| else |
| list_add_tail(&rq->queuelist, &hctx->dispatch); |
| spin_unlock(&hctx->lock); |
| |
| if (run_queue) |
| blk_mq_run_hw_queue(hctx, false); |
| } |
| |
| void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, |
| struct list_head *list) |
| |
| { |
| struct request *rq; |
| enum hctx_type type = hctx->type; |
| |
| /* |
| * preemption doesn't flush plug list, so it's possible ctx->cpu is |
| * offline now |
| */ |
| list_for_each_entry(rq, list, queuelist) { |
| BUG_ON(rq->mq_ctx != ctx); |
| trace_block_rq_insert(hctx->queue, rq); |
| } |
| |
| spin_lock(&ctx->lock); |
| list_splice_tail_init(list, &ctx->rq_lists[type]); |
| blk_mq_hctx_mark_pending(hctx, ctx); |
| spin_unlock(&ctx->lock); |
| } |
| |
| static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) |
| { |
| struct request *rqa = container_of(a, struct request, queuelist); |
| struct request *rqb = container_of(b, struct request, queuelist); |
| |
| if (rqa->mq_ctx != rqb->mq_ctx) |
| return rqa->mq_ctx > rqb->mq_ctx; |
| if (rqa->mq_hctx != rqb->mq_hctx) |
| return rqa->mq_hctx > rqb->mq_hctx; |
| |
| return blk_rq_pos(rqa) > blk_rq_pos(rqb); |
| } |
| |
| void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) |
| { |
| LIST_HEAD(list); |
| |
| if (list_empty(&plug->mq_list)) |
| return; |
| list_splice_init(&plug->mq_list, &list); |
| |
| if (plug->rq_count > 2 && plug->multiple_queues) |
| list_sort(NULL, &list, plug_rq_cmp); |
| |
| plug->rq_count = 0; |
| |
| do { |
| struct list_head rq_list; |
| struct request *rq, *head_rq = list_entry_rq(list.next); |
| struct list_head *pos = &head_rq->queuelist; /* skip first */ |
| struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; |
| struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; |
| unsigned int depth = 1; |
| |
| list_for_each_continue(pos, &list) { |
| rq = list_entry_rq(pos); |
| BUG_ON(!rq->q); |
| if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) |
| break; |
| depth++; |
| } |
| |
| list_cut_before(&rq_list, &list, pos); |
| trace_block_unplug(head_rq->q, depth, !from_schedule); |
| blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, |
| from_schedule); |
| } while(!list_empty(&list)); |
| } |
| |
| static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, |
| unsigned int nr_segs) |
| { |
| if (bio->bi_opf & REQ_RAHEAD) |
| rq->cmd_flags |= REQ_FAILFAST_MASK; |
| |
| rq->__sector = bio->bi_iter.bi_sector; |
| rq->write_hint = bio->bi_write_hint; |
| blk_rq_bio_prep(rq, bio, nr_segs); |
| |
| blk_account_io_start(rq, true); |
| } |
| |
| static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, |
| blk_qc_t *cookie, bool last) |
| { |
| struct request_queue *q = rq->q; |
| struct blk_mq_queue_data bd = { |
| .rq = rq, |
| .last = last, |
| }; |
| blk_qc_t new_cookie; |
| blk_status_t ret; |
| |
| new_cookie = request_to_qc_t(hctx, rq); |
| |
| /* |
| * For OK queue, we are done. For error, caller may kill it. |
| * Any other error (busy), just add it to our list as we |
| * previously would have done. |
| */ |
| ret = q->mq_ops->queue_rq(hctx, &bd); |
| switch (ret) { |
| case BLK_STS_OK: |
| blk_mq_update_dispatch_busy(hctx, false); |
| *cookie = new_cookie; |
| break; |
| case BLK_STS_RESOURCE: |
| case BLK_STS_DEV_RESOURCE: |
| blk_mq_update_dispatch_busy(hctx, true); |
| __blk_mq_requeue_request(rq); |
| break; |
| default: |
| blk_mq_update_dispatch_busy(hctx, false); |
| *cookie = BLK_QC_T_NONE; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, |
| blk_qc_t *cookie, |
| bool bypass_insert, bool last) |
| { |
| struct request_queue *q = rq->q; |
| bool run_queue = true; |
| |
| /* |
| * RCU or SRCU read lock is needed before checking quiesced flag. |
| * |
| * When queue is stopped or quiesced, ignore 'bypass_insert' from |
| * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, |
| * and avoid driver to try to dispatch again. |
| */ |
| if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { |
| run_queue = false; |
| bypass_insert = false; |
| goto insert; |
| } |
| |
| if (q->elevator && !bypass_insert) |
| goto insert; |
| |
| if (!blk_mq_get_dispatch_budget(hctx)) |
| goto insert; |
| |
| if (!blk_mq_get_driver_tag(rq)) { |
| blk_mq_put_dispatch_budget(hctx); |
| goto insert; |
| } |
| |
| return __blk_mq_issue_directly(hctx, rq, cookie, last); |
| insert: |
| if (bypass_insert) |
| return BLK_STS_RESOURCE; |
| |
| blk_mq_request_bypass_insert(rq, false, run_queue); |
| return BLK_STS_OK; |
| } |
| |
| /** |
| * blk_mq_try_issue_directly - Try to send a request directly to device driver. |
| * @hctx: Pointer of the associated hardware queue. |
| * @rq: Pointer to request to be sent. |
| * @cookie: Request queue cookie. |
| * |
| * If the device has enough resources to accept a new request now, send the |
| * request directly to device driver. Else, insert at hctx->dispatch queue, so |
| * we can try send it another time in the future. Requests inserted at this |
| * queue have higher priority. |
| */ |
| static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, |
| struct request *rq, blk_qc_t *cookie) |
| { |
| blk_status_t ret; |
| int srcu_idx; |
| |
| might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); |
| |
| hctx_lock(hctx, &srcu_idx); |
| |
| ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); |
| if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) |
| blk_mq_request_bypass_insert(rq, false, true); |
| else if (ret != BLK_STS_OK) |
| blk_mq_end_request(rq, ret); |
| |
| hctx_unlock(hctx, srcu_idx); |
| } |
| |
| blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) |
| { |
| blk_status_t ret; |
| int srcu_idx; |
| blk_qc_t unused_cookie; |
| struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
| |
| hctx_lock(hctx, &srcu_idx); |
| ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); |
| hctx_unlock(hctx, srcu_idx); |
| |
| return ret; |
| } |
| |
| void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, |
| struct list_head *list) |
| { |
| while (!list_empty(list)) { |
| blk_status_t ret; |
| struct request *rq = list_first_entry(list, struct request, |
| queuelist); |
| |
| list_del_init(&rq->queuelist); |
| ret = blk_mq_request_issue_directly(rq, list_empty(list)); |
| if (ret != BLK_STS_OK) { |
| if (ret == BLK_STS_RESOURCE || |
| ret == BLK_STS_DEV_RESOURCE) { |
| blk_mq_request_bypass_insert(rq, false, |
| list_empty(list)); |
| break; |
| } |
| blk_mq_end_request(rq, ret); |
| } |
| } |
| |
| /* |
| * If we didn't flush the entire list, we could have told |
| * the driver there was more coming, but that turned out to |
| * be a lie. |
| */ |
| if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) |
| hctx->queue->mq_ops->commit_rqs(hctx); |
| } |
| |
| static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) |
| { |
| list_add_tail(&rq->queuelist, &plug->mq_list); |
| plug->rq_count++; |
| if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { |
| struct request *tmp; |
| |
| tmp = list_first_entry(&plug->mq_list, struct request, |
| queuelist); |
| if (tmp->q != rq->q) |
| plug->multiple_queues = true; |
| } |
| } |
| |
| /** |
| * blk_mq_make_request - Create and send a request to block device. |
| * @q: Request queue pointer. |
| * @bio: Bio pointer. |
| * |
| * Builds up a request structure from @q and @bio and send to the device. The |
| * request may not be queued directly to hardware if: |
| * * This request can be merged with another one |
| * * We want to place request at plug queue for possible future merging |
| * * There is an IO scheduler active at this queue |
| * |
| * It will not queue the request if there is an error with the bio, or at the |
| * request creation. |
| * |
| * Returns: Request queue cookie. |
| */ |
| static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) |
| { |
| const int is_sync = op_is_sync(bio->bi_opf); |
| const int is_flush_fua = op_is_flush(bio->bi_opf); |
| struct blk_mq_alloc_data data = { .flags = 0}; |
| struct request *rq; |
| struct blk_plug *plug; |
| struct request *same_queue_rq = NULL; |
| unsigned int nr_segs; |
| blk_qc_t cookie; |
| |
| blk_queue_bounce(q, &bio); |
| __blk_queue_split(q, &bio, &nr_segs); |
| |
| if (!bio_integrity_prep(bio)) |
| return BLK_QC_T_NONE; |
| |
| if (!is_flush_fua && !blk_queue_nomerges(q) && |
| blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) |
| return BLK_QC_T_NONE; |
| |
| if (blk_mq_sched_bio_merge(q, bio, nr_segs)) |
| return BLK_QC_T_NONE; |
| |
| rq_qos_throttle(q, bio); |
| |
| data.cmd_flags = bio->bi_opf; |
| rq = blk_mq_get_request(q, bio, &data); |
| if (unlikely(!rq)) { |
| rq_qos_cleanup(q, bio); |
| if (bio->bi_opf & REQ_NOWAIT) |
| bio_wouldblock_error(bio); |
| return BLK_QC_T_NONE; |
| } |
| |
| trace_block_getrq(q, bio, bio->bi_opf); |
| |
| rq_qos_track(q, rq, bio); |
| |
| cookie = request_to_qc_t(data.hctx, rq); |
| |
| blk_mq_bio_to_request(rq, bio, nr_segs); |
| |
| plug = blk_mq_plug(q, bio); |
| if (unlikely(is_flush_fua)) { |
| /* Bypass scheduler for flush requests */ |
| blk_insert_flush(rq); |
| blk_mq_run_hw_queue(data.hctx, true); |
| } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || |
| !blk_queue_nonrot(q))) { |
| /* |
| * Use plugging if we have a ->commit_rqs() hook as well, as |
| * we know the driver uses bd->last in a smart fashion. |
| * |
| * Use normal plugging if this disk is slow HDD, as sequential |
| * IO may benefit a lot from plug merging. |
| */ |
| unsigned int request_count = plug->rq_count; |
| struct request *last = NULL; |
| |
| if (!request_count) |
| trace_block_plug(q); |
| else |
| last = list_entry_rq(plug->mq_list.prev); |
| |
| if (request_count >= BLK_MAX_REQUEST_COUNT || (last && |
| blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { |
| blk_flush_plug_list(plug, false); |
| trace_block_plug(q); |
| } |
| |
| blk_add_rq_to_plug(plug, rq); |
| } else if (q->elevator) { |
| /* Insert the request at the IO scheduler queue */ |
| blk_mq_sched_insert_request(rq, false, true, true); |
| } else if (plug && !blk_queue_nomerges(q)) { |
| /* |
| * We do limited plugging. If the bio can be merged, do that. |
| * Otherwise the existing request in the plug list will be |
| * issued. So the plug list will have one request at most |
| * The plug list might get flushed before this. If that happens, |
| * the plug list is empty, and same_queue_rq is invalid. |
| */ |
| if (list_empty(&plug->mq_list)) |
| same_queue_rq = NULL; |
| if (same_queue_rq) { |
| list_del_init(&same_queue_rq->queuelist); |
| plug->rq_count--; |
| } |
| blk_add_rq_to_plug(plug, rq); |
| trace_block_plug(q); |
| |
| if (same_queue_rq) { |
| data.hctx = same_queue_rq->mq_hctx; |
| trace_block_unplug(q, 1, true); |
| blk_mq_try_issue_directly(data.hctx, same_queue_rq, |
| &cookie); |
| } |
| } else if ((q->nr_hw_queues > 1 && is_sync) || |
| !data.hctx->dispatch_busy) { |
| /* |
| * There is no scheduler and we can try to send directly |
| * to the hardware. |
| */ |
| blk_mq_try_issue_directly(data.hctx, rq, &cookie); |
| } else { |
| /* Default case. */ |
| blk_mq_sched_insert_request(rq, false, true, true); |
| } |
| |
| return cookie; |
| } |
| |
| void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, |
| unsigned int hctx_idx) |
| { |
| struct page *page; |
| |
| if (tags->rqs && set->ops->exit_request) { |
| int i; |
| |
| for (i = 0; i < tags->nr_tags; i++) { |
| struct request *rq = tags->static_rqs[i]; |
| |
| if (!rq) |
| continue; |
| set->ops->exit_request(set, rq, hctx_idx); |
| tags->static_rqs[i] = NULL; |
| } |
| } |
| |
| while (!list_empty(&tags->page_list)) { |
| page = list_first_entry(&tags->page_list, struct page, lru); |
| list_del_init(&page->lru); |
| /* |
| * Remove kmemleak object previously allocated in |
| * blk_mq_alloc_rqs(). |
| */ |
| kmemleak_free(page_address(page)); |
| __free_pages(page, page->private); |
| } |
| } |
| |
| void blk_mq_free_rq_map(struct blk_mq_tags *tags) |
| { |
| kfree(tags->rqs); |
| tags->rqs = NULL; |
| kfree(tags->static_rqs); |
| tags->static_rqs = NULL; |
| |
| blk_mq_free_tags(tags); |
| } |
| |
| struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, |
| unsigned int hctx_idx, |
| unsigned int nr_tags, |
| unsigned int reserved_tags) |
| { |
| struct blk_mq_tags *tags; |
| int node; |
| |
| node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); |
| if (node == NUMA_NO_NODE) |
| node = set->numa_node; |
| |
| tags = blk_mq_init_tags(nr_tags, reserved_tags, node, |
| BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); |
| if (!tags) |
| return NULL; |
| |
| tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), |
| GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| node); |
| if (!tags->rqs) { |
| blk_mq_free_tags(tags); |
| return NULL; |
| } |
| |
| tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), |
| GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| node); |
| if (!tags->static_rqs) { |
| kfree(tags->rqs); |
| blk_mq_free_tags(tags); |
| return NULL; |
| } |
| |
| return tags; |
| } |
| |
| static size_t order_to_size(unsigned int order) |
| { |
| return (size_t)PAGE_SIZE << order; |
| } |
| |
| static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, |
| unsigned int hctx_idx, int node) |
| { |
| int ret; |
| |
| if (set->ops->init_request) { |
| ret = set->ops->init_request(set, rq, hctx_idx, node); |
| if (ret) |
| return ret; |
| } |
| |
| WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| return 0; |
| } |
| |
| int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, |
| unsigned int hctx_idx, unsigned int depth) |
| { |
| unsigned int i, j, entries_per_page, max_order = 4; |
| size_t rq_size, left; |
| int node; |
| |
| node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); |
| if (node == NUMA_NO_NODE) |
| node = set->numa_node; |
| |
| INIT_LIST_HEAD(&tags->page_list); |
| |
| /* |
| * rq_size is the size of the request plus driver payload, rounded |
| * to the cacheline size |
| */ |
| rq_size = round_up(sizeof(struct request) + set->cmd_size, |
| cache_line_size()); |
| left = rq_size * depth; |
| |
| for (i = 0; i < depth; ) { |
| int this_order = max_order; |
| struct page *page; |
| int to_do; |
| void *p; |
| |
| while (this_order && left < order_to_size(this_order - 1)) |
| this_order--; |
| |
| do { |
| page = alloc_pages_node(node, |
| GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, |
| this_order); |
| if (page) |
| break; |
| if (!this_order--) |
| break; |
| if (order_to_size(this_order) < rq_size) |
| break; |
| } while (1); |
| |
| if (!page) |
| goto fail; |
| |
| page->private = this_order; |
| list_add_tail(&page->lru, &tags->page_list); |
| |
| p = page_address(page); |
| /* |
| * Allow kmemleak to scan these pages as they contain pointers |
| * to additional allocations like via ops->init_request(). |
| */ |
| kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); |
| entries_per_page = order_to_size(this_order) / rq_size; |
| to_do = min(entries_per_page, depth - i); |
| left -= to_do * rq_size; |
| for (j = 0; j < to_do; j++) { |
| struct request *rq = p; |
| |
| tags->static_rqs[i] = rq; |
| if (blk_mq_init_request(set, rq, hctx_idx, node)) { |
| tags->static_rqs[i] = NULL; |
| goto fail; |
| } |
| |
| p += rq_size; |
| i++; |
| } |
| } |
| return 0; |
| |
| fail: |
| blk_mq_free_rqs(set, tags, hctx_idx); |
| return -ENOMEM; |
| } |
| |
| /* |
| * 'cpu' is going away. splice any existing rq_list entries from this |
| * software queue to the hw queue dispatch list, and ensure that it |
| * gets run. |
| */ |
| static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| struct blk_mq_ctx *ctx; |
| LIST_HEAD(tmp); |
| enum hctx_type type; |
| |
| hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); |
| ctx = __blk_mq_get_ctx(hctx->queue, cpu); |
| type = hctx->type; |
| |
| spin_lock(&ctx->lock); |
| if (!list_empty(&ctx->rq_lists[type])) { |
| list_splice_init(&ctx->rq_lists[type], &tmp); |
| blk_mq_hctx_clear_pending(hctx, ctx); |
| } |
| spin_unlock(&ctx->lock); |
| |
| if (list_empty(&tmp)) |
| return 0; |
| |
| spin_lock(&hctx->lock); |
| list_splice_tail_init(&tmp, &hctx->dispatch); |
| spin_unlock(&hctx->lock); |
| |
| blk_mq_run_hw_queue(hctx, true); |
| return 0; |
| } |
| |
| static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) |
| { |
| cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, |
| &hctx->cpuhp_dead); |
| } |
| |
| /* hctx->ctxs will be freed in queue's release handler */ |
| static void blk_mq_exit_hctx(struct request_queue *q, |
| struct blk_mq_tag_set *set, |
| struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| { |
| if (blk_mq_hw_queue_mapped(hctx)) |
| blk_mq_tag_idle(hctx); |
| |
| if (set->ops->exit_request) |
| set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); |
| |
| if (set->ops->exit_hctx) |
| set->ops->exit_hctx(hctx, hctx_idx); |
| |
| blk_mq_remove_cpuhp(hctx); |
| |
| spin_lock(&q->unused_hctx_lock); |
| list_add(&hctx->hctx_list, &q->unused_hctx_list); |
| spin_unlock(&q->unused_hctx_lock); |
| } |
| |
| static void blk_mq_exit_hw_queues(struct request_queue *q, |
| struct blk_mq_tag_set *set, int nr_queue) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| unsigned int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (i == nr_queue) |
| break; |
| blk_mq_debugfs_unregister_hctx(hctx); |
| blk_mq_exit_hctx(q, set, hctx, i); |
| } |
| } |
| |
| static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) |
| { |
| int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); |
| |
| BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), |
| __alignof__(struct blk_mq_hw_ctx)) != |
| sizeof(struct blk_mq_hw_ctx)); |
| |
| if (tag_set->flags & BLK_MQ_F_BLOCKING) |
| hw_ctx_size += sizeof(struct srcu_struct); |
| |
| return hw_ctx_size; |
| } |
| |
| static int blk_mq_init_hctx(struct request_queue *q, |
| struct blk_mq_tag_set *set, |
| struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) |
| { |
| hctx->queue_num = hctx_idx; |
| |
| cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); |
| |
| hctx->tags = set->tags[hctx_idx]; |
| |
| if (set->ops->init_hctx && |
| set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) |
| goto unregister_cpu_notifier; |
| |
| if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, |
| hctx->numa_node)) |
| goto exit_hctx; |
| return 0; |
| |
| exit_hctx: |
| if (set->ops->exit_hctx) |
| set->ops->exit_hctx(hctx, hctx_idx); |
| unregister_cpu_notifier: |
| blk_mq_remove_cpuhp(hctx); |
| return -1; |
| } |
| |
| static struct blk_mq_hw_ctx * |
| blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, |
| int node) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; |
| |
| hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); |
| if (!hctx) |
| goto fail_alloc_hctx; |
| |
| if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) |
| goto free_hctx; |
| |
| atomic_set(&hctx->nr_active, 0); |
| if (node == NUMA_NO_NODE) |
| node = set->numa_node; |
| hctx->numa_node = node; |
| |
| INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); |
| spin_lock_init(&hctx->lock); |
| INIT_LIST_HEAD(&hctx->dispatch); |
| hctx->queue = q; |
| hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; |
| |
| INIT_LIST_HEAD(&hctx->hctx_list); |
| |
| /* |
| * Allocate space for all possible cpus to avoid allocation at |
| * runtime |
| */ |
| hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), |
| gfp, node); |
| if (!hctx->ctxs) |
| goto free_cpumask; |
| |
| if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), |
| gfp, node)) |
| goto free_ctxs; |
| hctx->nr_ctx = 0; |
| |
| spin_lock_init(&hctx->dispatch_wait_lock); |
| init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); |
| INIT_LIST_HEAD(&hctx->dispatch_wait.entry); |
| |
| hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); |
| if (!hctx->fq) |
| goto free_bitmap; |
| |
| if (hctx->flags & BLK_MQ_F_BLOCKING) |
| init_srcu_struct(hctx->srcu); |
| blk_mq_hctx_kobj_init(hctx); |
| |
| return hctx; |
| |
| free_bitmap: |
| sbitmap_free(&hctx->ctx_map); |
| free_ctxs: |
| kfree(hctx->ctxs); |
| free_cpumask: |
| free_cpumask_var(hctx->cpumask); |
| free_hctx: |
| kfree(hctx); |
| fail_alloc_hctx: |
| return NULL; |
| } |
| |
| static void blk_mq_init_cpu_queues(struct request_queue *q, |
| unsigned int nr_hw_queues) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| unsigned int i, j; |
| |
| for_each_possible_cpu(i) { |
| struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); |
| struct blk_mq_hw_ctx *hctx; |
| int k; |
| |
| __ctx->cpu = i; |
| spin_lock_init(&__ctx->lock); |
| for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) |
| INIT_LIST_HEAD(&__ctx->rq_lists[k]); |
| |
| __ctx->queue = q; |
| |
| /* |
| * Set local node, IFF we have more than one hw queue. If |
| * not, we remain on the home node of the device |
| */ |
| for (j = 0; j < set->nr_maps; j++) { |
| hctx = blk_mq_map_queue_type(q, j, i); |
| if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) |
| hctx->numa_node = local_memory_node(cpu_to_node(i)); |
| } |
| } |
| } |
| |
| static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) |
| { |
| int ret = 0; |
| |
| set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, |
| set->queue_depth, set->reserved_tags); |
| if (!set->tags[hctx_idx]) |
| return false; |
| |
| ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, |
| set->queue_depth); |
| if (!ret) |
| return true; |
| |
| blk_mq_free_rq_map(set->tags[hctx_idx]); |
| set->tags[hctx_idx] = NULL; |
| return false; |
| } |
| |
| static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, |
| unsigned int hctx_idx) |
| { |
| if (set->tags && set->tags[hctx_idx]) { |
| blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); |
| blk_mq_free_rq_map(set->tags[hctx_idx]); |
| set->tags[hctx_idx] = NULL; |
| } |
| } |
| |
| static void blk_mq_map_swqueue(struct request_queue *q) |
| { |
| unsigned int i, j, hctx_idx; |
| struct blk_mq_hw_ctx *hctx; |
| struct blk_mq_ctx *ctx; |
| struct blk_mq_tag_set *set = q->tag_set; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| cpumask_clear(hctx->cpumask); |
| hctx->nr_ctx = 0; |
| hctx->dispatch_from = NULL; |
| } |
| |
| /* |
| * Map software to hardware queues. |
| * |
| * If the cpu isn't present, the cpu is mapped to first hctx. |
| */ |
| for_each_possible_cpu(i) { |
| hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; |
| /* unmapped hw queue can be remapped after CPU topo changed */ |
| if (!set->tags[hctx_idx] && |
| !__blk_mq_alloc_rq_map(set, hctx_idx)) { |
| /* |
| * If tags initialization fail for some hctx, |
| * that hctx won't be brought online. In this |
| * case, remap the current ctx to hctx[0] which |
| * is guaranteed to always have tags allocated |
| */ |
| set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; |
| } |
| |
| ctx = per_cpu_ptr(q->queue_ctx, i); |
| for (j = 0; j < set->nr_maps; j++) { |
| if (!set->map[j].nr_queues) { |
| ctx->hctxs[j] = blk_mq_map_queue_type(q, |
| HCTX_TYPE_DEFAULT, i); |
| continue; |
| } |
| |
| hctx = blk_mq_map_queue_type(q, j, i); |
| ctx->hctxs[j] = hctx; |
| /* |
| * If the CPU is already set in the mask, then we've |
| * mapped this one already. This can happen if |
| * devices share queues across queue maps. |
| */ |
| if (cpumask_test_cpu(i, hctx->cpumask)) |
| continue; |
| |
| cpumask_set_cpu(i, hctx->cpumask); |
| hctx->type = j; |
| ctx->index_hw[hctx->type] = hctx->nr_ctx; |
| hctx->ctxs[hctx->nr_ctx++] = ctx; |
| |
| /* |
| * If the nr_ctx type overflows, we have exceeded the |
| * amount of sw queues we can support. |
| */ |
| BUG_ON(!hctx->nr_ctx); |
| } |
| |
| for (; j < HCTX_MAX_TYPES; j++) |
| ctx->hctxs[j] = blk_mq_map_queue_type(q, |
| HCTX_TYPE_DEFAULT, i); |
| } |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| /* |
| * If no software queues are mapped to this hardware queue, |
| * disable it and free the request entries. |
| */ |
| if (!hctx->nr_ctx) { |
| /* Never unmap queue 0. We need it as a |
| * fallback in case of a new remap fails |
| * allocation |
| */ |
| if (i && set->tags[i]) |
| blk_mq_free_map_and_requests(set, i); |
| |
| hctx->tags = NULL; |
| continue; |
| } |
| |
| hctx->tags = set->tags[i]; |
| WARN_ON(!hctx->tags); |
| |
| /* |
| * Set the map size to the number of mapped software queues. |
| * This is more accurate and more efficient than looping |
| * over all possibly mapped software queues. |
| */ |
| sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); |
| |
| /* |
| * Initialize batch roundrobin counts |
| */ |
| hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); |
| hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; |
| } |
| } |
| |
| /* |
| * Caller needs to ensure that we're either frozen/quiesced, or that |
| * the queue isn't live yet. |
| */ |
| static void queue_set_hctx_shared(struct request_queue *q, bool shared) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (shared) |
| hctx->flags |= BLK_MQ_F_TAG_SHARED; |
| else |
| hctx->flags &= ~BLK_MQ_F_TAG_SHARED; |
| } |
| } |
| |
| static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, |
| bool shared) |
| { |
| struct request_queue *q; |
| |
| lockdep_assert_held(&set->tag_list_lock); |
| |
| list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| blk_mq_freeze_queue(q); |
| queue_set_hctx_shared(q, shared); |
| blk_mq_unfreeze_queue(q); |
| } |
| } |
| |
| static void blk_mq_del_queue_tag_set(struct request_queue *q) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| |
| mutex_lock(&set->tag_list_lock); |
| list_del_rcu(&q->tag_set_list); |
| if (list_is_singular(&set->tag_list)) { |
| /* just transitioned to unshared */ |
| set->flags &= ~BLK_MQ_F_TAG_SHARED; |
| /* update existing queue */ |
| blk_mq_update_tag_set_depth(set, false); |
| } |
| mutex_unlock(&set->tag_list_lock); |
| INIT_LIST_HEAD(&q->tag_set_list); |
| } |
| |
| static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, |
| struct request_queue *q) |
| { |
| mutex_lock(&set->tag_list_lock); |
| |
| /* |
| * Check to see if we're transitioning to shared (from 1 to 2 queues). |
| */ |
| if (!list_empty(&set->tag_list) && |
| !(set->flags & BLK_MQ_F_TAG_SHARED)) { |
| set->flags |= BLK_MQ_F_TAG_SHARED; |
| /* update existing queue */ |
| blk_mq_update_tag_set_depth(set, true); |
| } |
| if (set->flags & BLK_MQ_F_TAG_SHARED) |
| queue_set_hctx_shared(q, true); |
| list_add_tail_rcu(&q->tag_set_list, &set->tag_list); |
| |
| mutex_unlock(&set->tag_list_lock); |
| } |
| |
| /* All allocations will be freed in release handler of q->mq_kobj */ |
| static int blk_mq_alloc_ctxs(struct request_queue *q) |
| { |
| struct blk_mq_ctxs *ctxs; |
| int cpu; |
| |
| ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); |
| if (!ctxs) |
| return -ENOMEM; |
| |
| ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); |
| if (!ctxs->queue_ctx) |
| goto fail; |
| |
| for_each_possible_cpu(cpu) { |
| struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); |
| ctx->ctxs = ctxs; |
| } |
| |
| q->mq_kobj = &ctxs->kobj; |
| q->queue_ctx = ctxs->queue_ctx; |
| |
| return 0; |
| fail: |
| kfree(ctxs); |
| return -ENOMEM; |
| } |
| |
| /* |
| * It is the actual release handler for mq, but we do it from |
| * request queue's release handler for avoiding use-after-free |
| * and headache because q->mq_kobj shouldn't have been introduced, |
| * but we can't group ctx/kctx kobj without it. |
| */ |
| void blk_mq_release(struct request_queue *q) |
| { |
| struct blk_mq_hw_ctx *hctx, *next; |
| int i; |
| |
| queue_for_each_hw_ctx(q, hctx, i) |
| WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); |
| |
| /* all hctx are in .unused_hctx_list now */ |
| list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { |
| list_del_init(&hctx->hctx_list); |
| kobject_put(&hctx->kobj); |
| } |
| |
| kfree(q->queue_hw_ctx); |
| |
| /* |
| * release .mq_kobj and sw queue's kobject now because |
| * both share lifetime with request queue. |
| */ |
| blk_mq_sysfs_deinit(q); |
| } |
| |
| struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) |
| { |
| struct request_queue *uninit_q, *q; |
| |
| uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); |
| if (!uninit_q) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Initialize the queue without an elevator. device_add_disk() will do |
| * the initialization. |
| */ |
| q = blk_mq_init_allocated_queue(set, uninit_q, false); |
| if (IS_ERR(q)) |
| blk_cleanup_queue(uninit_q); |
| |
| return q; |
| } |
| EXPORT_SYMBOL(blk_mq_init_queue); |
| |
| /* |
| * Helper for setting up a queue with mq ops, given queue depth, and |
| * the passed in mq ops flags. |
| */ |
| struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, |
| const struct blk_mq_ops *ops, |
| unsigned int queue_depth, |
| unsigned int set_flags) |
| { |
| struct request_queue *q; |
| int ret; |
| |
| memset(set, 0, sizeof(*set)); |
| set->ops = ops; |
| set->nr_hw_queues = 1; |
| set->nr_maps = 1; |
| set->queue_depth = queue_depth; |
| set->numa_node = NUMA_NO_NODE; |
| set->flags = set_flags; |
| |
| ret = blk_mq_alloc_tag_set(set); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| q = blk_mq_init_queue(set); |
| if (IS_ERR(q)) { |
| blk_mq_free_tag_set(set); |
| return q; |
| } |
| |
| return q; |
| } |
| EXPORT_SYMBOL(blk_mq_init_sq_queue); |
| |
| static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( |
| struct blk_mq_tag_set *set, struct request_queue *q, |
| int hctx_idx, int node) |
| { |
| struct blk_mq_hw_ctx *hctx = NULL, *tmp; |
| |
| /* reuse dead hctx first */ |
| spin_lock(&q->unused_hctx_lock); |
| list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { |
| if (tmp->numa_node == node) { |
| hctx = tmp; |
| break; |
| } |
| } |
| if (hctx) |
| list_del_init(&hctx->hctx_list); |
| spin_unlock(&q->unused_hctx_lock); |
| |
| if (!hctx) |
| hctx = blk_mq_alloc_hctx(q, set, node); |
| if (!hctx) |
| goto fail; |
| |
| if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) |
| goto free_hctx; |
| |
| return hctx; |
| |
| free_hctx: |
| kobject_put(&hctx->kobj); |
| fail: |
| return NULL; |
| } |
| |
| static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, |
| struct request_queue *q) |
| { |
| int i, j, end; |
| struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; |
| |
| if (q->nr_hw_queues < set->nr_hw_queues) { |
| struct blk_mq_hw_ctx **new_hctxs; |
| |
| new_hctxs = kcalloc_node(set->nr_hw_queues, |
| sizeof(*new_hctxs), GFP_KERNEL, |
| set->numa_node); |
| if (!new_hctxs) |
| return; |
| if (hctxs) |
| memcpy(new_hctxs, hctxs, q->nr_hw_queues * |
| sizeof(*hctxs)); |
| q->queue_hw_ctx = new_hctxs; |
| kfree(hctxs); |
| hctxs = new_hctxs; |
| } |
| |
| /* protect against switching io scheduler */ |
| mutex_lock(&q->sysfs_lock); |
| for (i = 0; i < set->nr_hw_queues; i++) { |
| int node; |
| struct blk_mq_hw_ctx *hctx; |
| |
| node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); |
| /* |
| * If the hw queue has been mapped to another numa node, |
| * we need to realloc the hctx. If allocation fails, fallback |
| * to use the previous one. |
| */ |
| if (hctxs[i] && (hctxs[i]->numa_node == node)) |
| continue; |
| |
| hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); |
| if (hctx) { |
| if (hctxs[i]) |
| blk_mq_exit_hctx(q, set, hctxs[i], i); |
| hctxs[i] = hctx; |
| } else { |
| if (hctxs[i]) |
| pr_warn("Allocate new hctx on node %d fails,\ |
| fallback to previous one on node %d\n", |
| node, hctxs[i]->numa_node); |
| else |
| break; |
| } |
| } |
| /* |
| * Increasing nr_hw_queues fails. Free the newly allocated |
| * hctxs and keep the previous q->nr_hw_queues. |
| */ |
| if (i != set->nr_hw_queues) { |
| j = q->nr_hw_queues; |
| end = i; |
| } else { |
| j = i; |
| end = q->nr_hw_queues; |
| q->nr_hw_queues = set->nr_hw_queues; |
| } |
| |
| for (; j < end; j++) { |
| struct blk_mq_hw_ctx *hctx = hctxs[j]; |
| |
| if (hctx) { |
| if (hctx->tags) |
| blk_mq_free_map_and_requests(set, j); |
| blk_mq_exit_hctx(q, set, hctx, j); |
| hctxs[j] = NULL; |
| } |
| } |
| mutex_unlock(&q->sysfs_lock); |
| } |
| |
| struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, |
| struct request_queue *q, |
| bool elevator_init) |
| { |
| /* mark the queue as mq asap */ |
| q->mq_ops = set->ops; |
| |
| q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, |
| blk_mq_poll_stats_bkt, |
| BLK_MQ_POLL_STATS_BKTS, q); |
| if (!q->poll_cb) |
| goto err_exit; |
| |
| if (blk_mq_alloc_ctxs(q)) |
| goto err_poll; |
| |
| /* init q->mq_kobj and sw queues' kobjects */ |
| blk_mq_sysfs_init(q); |
| |
| INIT_LIST_HEAD(&q->unused_hctx_list); |
| spin_lock_init(&q->unused_hctx_lock); |
| |
| blk_mq_realloc_hw_ctxs(set, q); |
| if (!q->nr_hw_queues) |
| goto err_hctxs; |
| |
| INIT_WORK(&q->timeout_work, blk_mq_timeout_work); |
| blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); |
| |
| q->tag_set = set; |
| |
| q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; |
| if (set->nr_maps > HCTX_TYPE_POLL && |
| set->map[HCTX_TYPE_POLL].nr_queues) |
| blk_queue_flag_set(QUEUE_FLAG_POLL, q); |
| |
| q->sg_reserved_size = INT_MAX; |
| |
| INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); |
| INIT_LIST_HEAD(&q->requeue_list); |
| spin_lock_init(&q->requeue_lock); |
| |
| blk_queue_make_request(q, blk_mq_make_request); |
| |
| /* |
| * Do this after blk_queue_make_request() overrides it... |
| */ |
| q->nr_requests = set->queue_depth; |
| |
| /* |
| * Default to classic polling |
| */ |
| q->poll_nsec = BLK_MQ_POLL_CLASSIC; |
| |
| blk_mq_init_cpu_queues(q, set->nr_hw_queues); |
| blk_mq_add_queue_tag_set(set, q); |
| blk_mq_map_swqueue(q); |
| |
| if (elevator_init) |
| elevator_init_mq(q); |
| |
| return q; |
| |
| err_hctxs: |
| kfree(q->queue_hw_ctx); |
| q->nr_hw_queues = 0; |
| blk_mq_sysfs_deinit(q); |
| err_poll: |
| blk_stat_free_callback(q->poll_cb); |
| q->poll_cb = NULL; |
| err_exit: |
| q->mq_ops = NULL; |
| return ERR_PTR(-ENOMEM); |
| } |
| EXPORT_SYMBOL(blk_mq_init_allocated_queue); |
| |
| /* tags can _not_ be used after returning from blk_mq_exit_queue */ |
| void blk_mq_exit_queue(struct request_queue *q) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| |
| blk_mq_del_queue_tag_set(q); |
| blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); |
| } |
| |
| static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) |
| { |
| int i; |
| |
| for (i = 0; i < set->nr_hw_queues; i++) |
| if (!__blk_mq_alloc_rq_map(set, i)) |
| goto out_unwind; |
| |
| return 0; |
| |
| out_unwind: |
| while (--i >= 0) |
| blk_mq_free_rq_map(set->tags[i]); |
| |
| return -ENOMEM; |
| } |
| |
| /* |
| * Allocate the request maps associated with this tag_set. Note that this |
| * may reduce the depth asked for, if memory is tight. set->queue_depth |
| * will be updated to reflect the allocated depth. |
| */ |
| static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) |
| { |
| unsigned int depth; |
| int err; |
| |
| depth = set->queue_depth; |
| do { |
| err = __blk_mq_alloc_rq_maps(set); |
| if (!err) |
| break; |
| |
| set->queue_depth >>= 1; |
| if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { |
| err = -ENOMEM; |
| break; |
| } |
| } while (set->queue_depth); |
| |
| if (!set->queue_depth || err) { |
| pr_err("blk-mq: failed to allocate request map\n"); |
| return -ENOMEM; |
| } |
| |
| if (depth != set->queue_depth) |
| pr_info("blk-mq: reduced tag depth (%u -> %u)\n", |
| depth, set->queue_depth); |
| |
| return 0; |
| } |
| |
| static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) |
| { |
| /* |
| * blk_mq_map_queues() and multiple .map_queues() implementations |
| * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the |
| * number of hardware queues. |
| */ |
| if (set->nr_maps == 1) |
| set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; |
| |
| if (set->ops->map_queues && !is_kdump_kernel()) { |
| int i; |
| |
| /* |
| * transport .map_queues is usually done in the following |
| * way: |
| * |
| * for (queue = 0; queue < set->nr_hw_queues; queue++) { |
| * mask = get_cpu_mask(queue) |
| * for_each_cpu(cpu, mask) |
| * set->map[x].mq_map[cpu] = queue; |
| * } |
| * |
| * When we need to remap, the table has to be cleared for |
| * killing stale mapping since one CPU may not be mapped |
| * to any hw queue. |
| */ |
| for (i = 0; i < set->nr_maps; i++) |
| blk_mq_clear_mq_map(&set->map[i]); |
| |
| return set->ops->map_queues(set); |
| } else { |
| BUG_ON(set->nr_maps > 1); |
| return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); |
| } |
| } |
| |
| static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, |
| int cur_nr_hw_queues, int new_nr_hw_queues) |
| { |
| struct blk_mq_tags **new_tags; |
| |
| if (cur_nr_hw_queues >= new_nr_hw_queues) |
| return 0; |
| |
| new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), |
| GFP_KERNEL, set->numa_node); |
| if (!new_tags) |
| return -ENOMEM; |
| |
| if (set->tags) |
| memcpy(new_tags, set->tags, cur_nr_hw_queues * |
| sizeof(*set->tags)); |
| kfree(set->tags); |
| set->tags = new_tags; |
| set->nr_hw_queues = new_nr_hw_queues; |
| |
| return 0; |
| } |
| |
| /* |
| * Alloc a tag set to be associated with one or more request queues. |
| * May fail with EINVAL for various error conditions. May adjust the |
| * requested depth down, if it's too large. In that case, the set |
| * value will be stored in set->queue_depth. |
| */ |
| int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) |
| { |
| int i, ret; |
| |
| BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); |
| |
| if (!set->nr_hw_queues) |
| return -EINVAL; |
| if (!set->queue_depth) |
| return -EINVAL; |
| if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) |
| return -EINVAL; |
| |
| if (!set->ops->queue_rq) |
| return -EINVAL; |
| |
| if (!set->ops->get_budget ^ !set->ops->put_budget) |
| return -EINVAL; |
| |
| if (set->queue_depth > BLK_MQ_MAX_DEPTH) { |
| pr_info("blk-mq: reduced tag depth to %u\n", |
| BLK_MQ_MAX_DEPTH); |
| set->queue_depth = BLK_MQ_MAX_DEPTH; |
| } |
| |
| if (!set->nr_maps) |
| set->nr_maps = 1; |
| else if (set->nr_maps > HCTX_MAX_TYPES) |
| return -EINVAL; |
| |
| /* |
| * If a crashdump is active, then we are potentially in a very |
| * memory constrained environment. Limit us to 1 queue and |
| * 64 tags to prevent using too much memory. |
| */ |
| if (is_kdump_kernel()) { |
| set->nr_hw_queues = 1; |
| set->nr_maps = 1; |
| set->queue_depth = min(64U, set->queue_depth); |
| } |
| /* |
| * There is no use for more h/w queues than cpus if we just have |
| * a single map |
| */ |
| if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) |
| set->nr_hw_queues = nr_cpu_ids; |
| |
| if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) |
| return -ENOMEM; |
| |
| ret = -ENOMEM; |
| for (i = 0; i < set->nr_maps; i++) { |
| set->map[i].mq_map = kcalloc_node(nr_cpu_ids, |
| sizeof(set->map[i].mq_map[0]), |
| GFP_KERNEL, set->numa_node); |
| if (!set->map[i].mq_map) |
| goto out_free_mq_map; |
| set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; |
| } |
| |
| ret = blk_mq_update_queue_map(set); |
| if (ret) |
| goto out_free_mq_map; |
| |
| ret = blk_mq_alloc_rq_maps(set); |
| if (ret) |
| goto out_free_mq_map; |
| |
| mutex_init(&set->tag_list_lock); |
| INIT_LIST_HEAD(&set->tag_list); |
| |
| return 0; |
| |
| out_free_mq_map: |
| for (i = 0; i < set->nr_maps; i++) { |
| kfree(set->map[i].mq_map); |
| set->map[i].mq_map = NULL; |
| } |
| kfree(set->tags); |
| set->tags = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL(blk_mq_alloc_tag_set); |
| |
| void blk_mq_free_tag_set(struct blk_mq_tag_set *set) |
| { |
| int i, j; |
| |
| for (i = 0; i < set->nr_hw_queues; i++) |
| blk_mq_free_map_and_requests(set, i); |
| |
| for (j = 0; j < set->nr_maps; j++) { |
| kfree(set->map[j].mq_map); |
| set->map[j].mq_map = NULL; |
| } |
| |
| kfree(set->tags); |
| set->tags = NULL; |
| } |
| EXPORT_SYMBOL(blk_mq_free_tag_set); |
| |
| int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) |
| { |
| struct blk_mq_tag_set *set = q->tag_set; |
| struct blk_mq_hw_ctx *hctx; |
| int i, ret; |
| |
| if (!set) |
| return -EINVAL; |
| |
| if (q->nr_requests == nr) |
| return 0; |
| |
| blk_mq_freeze_queue(q); |
| blk_mq_quiesce_queue(q); |
| |
| ret = 0; |
| queue_for_each_hw_ctx(q, hctx, i) { |
| if (!hctx->tags) |
| continue; |
| /* |
| * If we're using an MQ scheduler, just update the scheduler |
| * queue depth. This is similar to what the old code would do. |
| */ |
| if (!hctx->sched_tags) { |
| ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, |
| false); |
| } else { |
| ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, |
| nr, true); |
| } |
| if (ret) |
| break; |
| if (q->elevator && q->elevator->type->ops.depth_updated) |
| q->elevator->type->ops.depth_updated(hctx); |
| } |
| |
| if (!ret) |
| q->nr_requests = nr; |
| |
| blk_mq_unquiesce_queue(q); |
| blk_mq_unfreeze_queue(q); |
| |
| return ret; |
| } |
| |
| /* |
| * request_queue and elevator_type pair. |
| * It is just used by __blk_mq_update_nr_hw_queues to cache |
| * the elevator_type associated with a request_queue. |
| */ |
| struct blk_mq_qe_pair { |
| struct list_head node; |
| struct request_queue *q; |
| struct elevator_type *type; |
| }; |
| |
| /* |
| * Cache the elevator_type in qe pair list and switch the |
| * io scheduler to 'none' |
| */ |
| static bool blk_mq_elv_switch_none(struct list_head *head, |
| struct request_queue *q) |
| { |
| struct blk_mq_qe_pair *qe; |
| |
| if (!q->elevator) |
| return true; |
| |
| qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); |
| if (!qe) |
| return false; |
| |
| INIT_LIST_HEAD(&qe->node); |
| qe->q = q; |
| qe->type = q->elevator->type; |
| list_add(&qe->node, head); |
| |
| mutex_lock(&q->sysfs_lock); |
| /* |
| * After elevator_switch_mq, the previous elevator_queue will be |
| * released by elevator_release. The reference of the io scheduler |
| * module get by elevator_get will also be put. So we need to get |
| * a reference of the io scheduler module here to prevent it to be |
| * removed. |
| */ |
| __module_get(qe->type->elevator_owner); |
| elevator_switch_mq(q, NULL); |
| mutex_unlock(&q->sysfs_lock); |
| |
| return true; |
| } |
| |
| static void blk_mq_elv_switch_back(struct list_head *head, |
| struct request_queue *q) |
| { |
| struct blk_mq_qe_pair *qe; |
| struct elevator_type *t = NULL; |
| |
| list_for_each_entry(qe, head, node) |
| if (qe->q == q) { |
| t = qe->type; |
| break; |
| } |
| |
| if (!t) |
| return; |
| |
| list_del(&qe->node); |
| kfree(qe); |
| |
| mutex_lock(&q->sysfs_lock); |
| elevator_switch_mq(q, t); |
| mutex_unlock(&q->sysfs_lock); |
| } |
| |
| static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, |
| int nr_hw_queues) |
| { |
| struct request_queue *q; |
| LIST_HEAD(head); |
| int prev_nr_hw_queues; |
| |
| lockdep_assert_held(&set->tag_list_lock); |
| |
| if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) |
| nr_hw_queues = nr_cpu_ids; |
| if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) |
| return; |
| |
| list_for_each_entry(q, &set->tag_list, tag_set_list) |
| blk_mq_freeze_queue(q); |
| /* |
| * Switch IO scheduler to 'none', cleaning up the data associated |
| * with the previous scheduler. We will switch back once we are done |
| * updating the new sw to hw queue mappings. |
| */ |
| list_for_each_entry(q, &set->tag_list, tag_set_list) |
| if (!blk_mq_elv_switch_none(&head, q)) |
| goto switch_back; |
| |
| list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| blk_mq_debugfs_unregister_hctxs(q); |
| blk_mq_sysfs_unregister(q); |
| } |
| |
| if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < |
| 0) |
| goto reregister; |
| |
| prev_nr_hw_queues = set->nr_hw_queues; |
| set->nr_hw_queues = nr_hw_queues; |
| blk_mq_update_queue_map(set); |
| fallback: |
| list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| blk_mq_realloc_hw_ctxs(set, q); |
| if (q->nr_hw_queues != set->nr_hw_queues) { |
| pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", |
| nr_hw_queues, prev_nr_hw_queues); |
| set->nr_hw_queues = prev_nr_hw_queues; |
| blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); |
| goto fallback; |
| } |
| blk_mq_map_swqueue(q); |
| } |
| |
| reregister: |
| list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| blk_mq_sysfs_register(q); |
| blk_mq_debugfs_register_hctxs(q); |
| } |
| |
| switch_back: |
| list_for_each_entry(q, &set->tag_list, tag_set_list) |
| blk_mq_elv_switch_back(&head, q); |
| |
| list_for_each_entry(q, &set->tag_list, tag_set_list) |
| blk_mq_unfreeze_queue(q); |
| } |
| |
| void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) |
| { |
| mutex_lock(&set->tag_list_lock); |
| __blk_mq_update_nr_hw_queues(set, nr_hw_queues); |
| mutex_unlock(&set->tag_list_lock); |
| } |
| EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); |
| |
| /* Enable polling stats and return whether they were already enabled. */ |
| static bool blk_poll_stats_enable(struct request_queue *q) |
| { |
| if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || |
| blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) |
| return true; |
| blk_stat_add_callback(q, q->poll_cb); |
| return false; |
| } |
| |
| static void blk_mq_poll_stats_start(struct request_queue *q) |
| { |
| /* |
| * We don't arm the callback if polling stats are not enabled or the |
| * callback is already active. |
| */ |
| if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || |
| blk_stat_is_active(q->poll_cb)) |
| return; |
| |
| blk_stat_activate_msecs(q->poll_cb, 100); |
| } |
| |
| static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) |
| { |
| struct request_queue *q = cb->data; |
| int bucket; |
| |
| for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { |
| if (cb->stat[bucket].nr_samples) |
| q->poll_stat[bucket] = cb->stat[bucket]; |
| } |
| } |
| |
| static unsigned long blk_mq_poll_nsecs(struct request_queue *q, |
| struct request *rq) |
| { |
| unsigned long ret = 0; |
| int bucket; |
| |
| /* |
| * If stats collection isn't on, don't sleep but turn it on for |
| * future users |
| */ |
| if (!blk_poll_stats_enable(q)) |
| return 0; |
| |
| /* |
| * As an optimistic guess, use half of the mean service time |
| * for this type of request. We can (and should) make this smarter. |
| * For instance, if the completion latencies are tight, we can |
| * get closer than just half the mean. This is especially |
| * important on devices where the completion latencies are longer |
| * than ~10 usec. We do use the stats for the relevant IO size |
| * if available which does lead to better estimates. |
| */ |
| bucket = blk_mq_poll_stats_bkt(rq); |
| if (bucket < 0) |
| return ret; |
| |
| if (q->poll_stat[bucket].nr_samples) |
| ret = (q->poll_stat[bucket].mean + 1) / 2; |
| |
| return ret; |
| } |
| |
| static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, |
| struct request *rq) |
| { |
| struct hrtimer_sleeper hs; |
| enum hrtimer_mode mode; |
| unsigned int nsecs; |
| ktime_t kt; |
| |
| if (rq->rq_flags & RQF_MQ_POLL_SLEPT) |
| return false; |
| |
| /* |
| * If we get here, hybrid polling is enabled. Hence poll_nsec can be: |
| * |
| * 0: use half of prev avg |
| * >0: use this specific value |
| */ |
| if (q->poll_nsec > 0) |
| nsecs = q->poll_nsec; |
| else |
| nsecs = blk_mq_poll_nsecs(q, rq); |
| |
| if (!nsecs) |
| return false; |
| |
| rq->rq_flags |= RQF_MQ_POLL_SLEPT; |
| |
| /* |
| * This will be replaced with the stats tracking code, using |
| * 'avg_completion_time / 2' as the pre-sleep target. |
| */ |
| kt = nsecs; |
| |
| mode = HRTIMER_MODE_REL; |
| hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); |
| hrtimer_set_expires(&hs.timer, kt); |
| |
| do { |
| if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) |
| break; |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| hrtimer_sleeper_start_expires(&hs, mode); |
| if (hs.task) |
| io_schedule(); |
| hrtimer_cancel(&hs.timer); |
| mode = HRTIMER_MODE_ABS; |
| } while (hs.task && !signal_pending(current)); |
| |
| __set_current_state(TASK_RUNNING); |
| destroy_hrtimer_on_stack(&hs.timer); |
| return true; |
| } |
| |
| static bool blk_mq_poll_hybrid(struct request_queue *q, |
| struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) |
| { |
| struct request *rq; |
| |
| if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) |
| return false; |
| |
| if (!blk_qc_t_is_internal(cookie)) |
| rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); |
| else { |
| rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); |
| /* |
| * With scheduling, if the request has completed, we'll |
| * get a NULL return here, as we clear the sched tag when |
| * that happens. The request still remains valid, like always, |
| * so we should be safe with just the NULL check. |
| */ |
| if (!rq) |
| return false; |
| } |
| |
| return blk_mq_poll_hybrid_sleep(q, rq); |
| } |
| |
| /** |
| * blk_poll - poll for IO completions |
| * @q: the queue |
| * @cookie: cookie passed back at IO submission time |
| * @spin: whether to spin for completions |
| * |
| * Description: |
| * Poll for completions on the passed in queue. Returns number of |
| * completed entries found. If @spin is true, then blk_poll will continue |
| * looping until at least one completion is found, unless the task is |
| * otherwise marked running (or we need to reschedule). |
| */ |
| int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) |
| { |
| struct blk_mq_hw_ctx *hctx; |
| long state; |
| |
| if (!blk_qc_t_valid(cookie) || |
| !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) |
| return 0; |
| |
| if (current->plug) |
| blk_flush_plug_list(current->plug, false); |
| |
| hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; |
| |
| /* |
| * If we sleep, have the caller restart the poll loop to reset |
| * the state. Like for the other success return cases, the |
| * caller is responsible for checking if the IO completed. If |
| * the IO isn't complete, we'll get called again and will go |
| * straight to the busy poll loop. |
| */ |
| if (blk_mq_poll_hybrid(q, hctx, cookie)) |
| return 1; |
| |
| hctx->poll_considered++; |
| |
| state = current->state; |
| do { |
| int ret; |
| |
| hctx->poll_invoked++; |
| |
| ret = q->mq_ops->poll(hctx); |
| if (ret > 0) { |
| hctx->poll_success++; |
| __set_current_state(TASK_RUNNING); |
| return ret; |
| } |
| |
| if (signal_pending_state(state, current)) |
| __set_current_state(TASK_RUNNING); |
| |
| if (current->state == TASK_RUNNING) |
| return 1; |
| if (ret < 0 || !spin) |
| break; |
| cpu_relax(); |
| } while (!need_resched()); |
| |
| __set_current_state(TASK_RUNNING); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(blk_poll); |
| |
| unsigned int blk_mq_rq_cpu(struct request *rq) |
| { |
| return rq->mq_ctx->cpu; |
| } |
| EXPORT_SYMBOL(blk_mq_rq_cpu); |
| |
| static int __init blk_mq_init(void) |
| { |
| cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, |
| blk_mq_hctx_notify_dead); |
| return 0; |
| } |
| subsys_initcall(blk_mq_init); |