| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2016 Thomas Gleixner. |
| * Copyright (C) 2016-2017 Christoph Hellwig. |
| */ |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/cpu.h> |
| #include <linux/sort.h> |
| |
| static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, |
| unsigned int cpus_per_vec) |
| { |
| const struct cpumask *siblmsk; |
| int cpu, sibl; |
| |
| for ( ; cpus_per_vec > 0; ) { |
| cpu = cpumask_first(nmsk); |
| |
| /* Should not happen, but I'm too lazy to think about it */ |
| if (cpu >= nr_cpu_ids) |
| return; |
| |
| cpumask_clear_cpu(cpu, nmsk); |
| cpumask_set_cpu(cpu, irqmsk); |
| cpus_per_vec--; |
| |
| /* If the cpu has siblings, use them first */ |
| siblmsk = topology_sibling_cpumask(cpu); |
| for (sibl = -1; cpus_per_vec > 0; ) { |
| sibl = cpumask_next(sibl, siblmsk); |
| if (sibl >= nr_cpu_ids) |
| break; |
| if (!cpumask_test_and_clear_cpu(sibl, nmsk)) |
| continue; |
| cpumask_set_cpu(sibl, irqmsk); |
| cpus_per_vec--; |
| } |
| } |
| } |
| |
| static cpumask_var_t *alloc_node_to_cpumask(void) |
| { |
| cpumask_var_t *masks; |
| int node; |
| |
| masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); |
| if (!masks) |
| return NULL; |
| |
| for (node = 0; node < nr_node_ids; node++) { |
| if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) |
| goto out_unwind; |
| } |
| |
| return masks; |
| |
| out_unwind: |
| while (--node >= 0) |
| free_cpumask_var(masks[node]); |
| kfree(masks); |
| return NULL; |
| } |
| |
| static void free_node_to_cpumask(cpumask_var_t *masks) |
| { |
| int node; |
| |
| for (node = 0; node < nr_node_ids; node++) |
| free_cpumask_var(masks[node]); |
| kfree(masks); |
| } |
| |
| static void build_node_to_cpumask(cpumask_var_t *masks) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); |
| } |
| |
| static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, |
| const struct cpumask *mask, nodemask_t *nodemsk) |
| { |
| int n, nodes = 0; |
| |
| /* Calculate the number of nodes in the supplied affinity mask */ |
| for_each_node(n) { |
| if (cpumask_intersects(mask, node_to_cpumask[n])) { |
| node_set(n, *nodemsk); |
| nodes++; |
| } |
| } |
| return nodes; |
| } |
| |
| struct node_vectors { |
| unsigned id; |
| |
| union { |
| unsigned nvectors; |
| unsigned ncpus; |
| }; |
| }; |
| |
| static int ncpus_cmp_func(const void *l, const void *r) |
| { |
| const struct node_vectors *ln = l; |
| const struct node_vectors *rn = r; |
| |
| return ln->ncpus - rn->ncpus; |
| } |
| |
| /* |
| * Allocate vector number for each node, so that for each node: |
| * |
| * 1) the allocated number is >= 1 |
| * |
| * 2) the allocated numbver is <= active CPU number of this node |
| * |
| * The actual allocated total vectors may be less than @numvecs when |
| * active total CPU number is less than @numvecs. |
| * |
| * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' |
| * for each node. |
| */ |
| static void alloc_nodes_vectors(unsigned int numvecs, |
| cpumask_var_t *node_to_cpumask, |
| const struct cpumask *cpu_mask, |
| const nodemask_t nodemsk, |
| struct cpumask *nmsk, |
| struct node_vectors *node_vectors) |
| { |
| unsigned n, remaining_ncpus = 0; |
| |
| for (n = 0; n < nr_node_ids; n++) { |
| node_vectors[n].id = n; |
| node_vectors[n].ncpus = UINT_MAX; |
| } |
| |
| for_each_node_mask(n, nodemsk) { |
| unsigned ncpus; |
| |
| cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); |
| ncpus = cpumask_weight(nmsk); |
| |
| if (!ncpus) |
| continue; |
| remaining_ncpus += ncpus; |
| node_vectors[n].ncpus = ncpus; |
| } |
| |
| numvecs = min_t(unsigned, remaining_ncpus, numvecs); |
| |
| sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]), |
| ncpus_cmp_func, NULL); |
| |
| /* |
| * Allocate vectors for each node according to the ratio of this |
| * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is |
| * bigger than number of active numa nodes. Always start the |
| * allocation from the node with minimized nr_cpus. |
| * |
| * This way guarantees that each active node gets allocated at |
| * least one vector, and the theory is simple: over-allocation |
| * is only done when this node is assigned by one vector, so |
| * other nodes will be allocated >= 1 vector, since 'numvecs' is |
| * bigger than number of numa nodes. |
| * |
| * One perfect invariant is that number of allocated vectors for |
| * each node is <= CPU count of this node: |
| * |
| * 1) suppose there are two nodes: A and B |
| * ncpu(X) is CPU count of node X |
| * vecs(X) is the vector count allocated to node X via this |
| * algorithm |
| * |
| * ncpu(A) <= ncpu(B) |
| * ncpu(A) + ncpu(B) = N |
| * vecs(A) + vecs(B) = V |
| * |
| * vecs(A) = max(1, round_down(V * ncpu(A) / N)) |
| * vecs(B) = V - vecs(A) |
| * |
| * both N and V are integer, and 2 <= V <= N, suppose |
| * V = N - delta, and 0 <= delta <= N - 2 |
| * |
| * 2) obviously vecs(A) <= ncpu(A) because: |
| * |
| * if vecs(A) is 1, then vecs(A) <= ncpu(A) given |
| * ncpu(A) >= 1 |
| * |
| * otherwise, |
| * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N |
| * |
| * 3) prove how vecs(B) <= ncpu(B): |
| * |
| * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be |
| * over-allocated, so vecs(B) <= ncpu(B), |
| * |
| * otherwise: |
| * |
| * vecs(A) = |
| * round_down(V * ncpu(A) / N) = |
| * round_down((N - delta) * ncpu(A) / N) = |
| * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= |
| * round_down((N * ncpu(A) - delta * N) / N) = |
| * cpu(A) - delta |
| * |
| * then: |
| * |
| * vecs(A) - V >= ncpu(A) - delta - V |
| * => |
| * V - vecs(A) <= V + delta - ncpu(A) |
| * => |
| * vecs(B) <= N - ncpu(A) |
| * => |
| * vecs(B) <= cpu(B) |
| * |
| * For nodes >= 3, it can be thought as one node and another big |
| * node given that is exactly what this algorithm is implemented, |
| * and we always re-calculate 'remaining_ncpus' & 'numvecs', and |
| * finally for each node X: vecs(X) <= ncpu(X). |
| * |
| */ |
| for (n = 0; n < nr_node_ids; n++) { |
| unsigned nvectors, ncpus; |
| |
| if (node_vectors[n].ncpus == UINT_MAX) |
| continue; |
| |
| WARN_ON_ONCE(numvecs == 0); |
| |
| ncpus = node_vectors[n].ncpus; |
| nvectors = max_t(unsigned, 1, |
| numvecs * ncpus / remaining_ncpus); |
| WARN_ON_ONCE(nvectors > ncpus); |
| |
| node_vectors[n].nvectors = nvectors; |
| |
| remaining_ncpus -= ncpus; |
| numvecs -= nvectors; |
| } |
| } |
| |
| static int __irq_build_affinity_masks(unsigned int startvec, |
| unsigned int numvecs, |
| unsigned int firstvec, |
| cpumask_var_t *node_to_cpumask, |
| const struct cpumask *cpu_mask, |
| struct cpumask *nmsk, |
| struct irq_affinity_desc *masks) |
| { |
| unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0; |
| unsigned int last_affv = firstvec + numvecs; |
| unsigned int curvec = startvec; |
| nodemask_t nodemsk = NODE_MASK_NONE; |
| struct node_vectors *node_vectors; |
| |
| if (!cpumask_weight(cpu_mask)) |
| return 0; |
| |
| nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); |
| |
| /* |
| * If the number of nodes in the mask is greater than or equal the |
| * number of vectors we just spread the vectors across the nodes. |
| */ |
| if (numvecs <= nodes) { |
| for_each_node_mask(n, nodemsk) { |
| cpumask_or(&masks[curvec].mask, &masks[curvec].mask, |
| node_to_cpumask[n]); |
| if (++curvec == last_affv) |
| curvec = firstvec; |
| } |
| return numvecs; |
| } |
| |
| node_vectors = kcalloc(nr_node_ids, |
| sizeof(struct node_vectors), |
| GFP_KERNEL); |
| if (!node_vectors) |
| return -ENOMEM; |
| |
| /* allocate vector number for each node */ |
| alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask, |
| nodemsk, nmsk, node_vectors); |
| |
| for (i = 0; i < nr_node_ids; i++) { |
| unsigned int ncpus, v; |
| struct node_vectors *nv = &node_vectors[i]; |
| |
| if (nv->nvectors == UINT_MAX) |
| continue; |
| |
| /* Get the cpus on this node which are in the mask */ |
| cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); |
| ncpus = cpumask_weight(nmsk); |
| if (!ncpus) |
| continue; |
| |
| WARN_ON_ONCE(nv->nvectors > ncpus); |
| |
| /* Account for rounding errors */ |
| extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors); |
| |
| /* Spread allocated vectors on CPUs of the current node */ |
| for (v = 0; v < nv->nvectors; v++, curvec++) { |
| cpus_per_vec = ncpus / nv->nvectors; |
| |
| /* Account for extra vectors to compensate rounding errors */ |
| if (extra_vecs) { |
| cpus_per_vec++; |
| --extra_vecs; |
| } |
| |
| /* |
| * wrapping has to be considered given 'startvec' |
| * may start anywhere |
| */ |
| if (curvec >= last_affv) |
| curvec = firstvec; |
| irq_spread_init_one(&masks[curvec].mask, nmsk, |
| cpus_per_vec); |
| } |
| done += nv->nvectors; |
| } |
| kfree(node_vectors); |
| return done; |
| } |
| |
| /* |
| * build affinity in two stages: |
| * 1) spread present CPU on these vectors |
| * 2) spread other possible CPUs on these vectors |
| */ |
| static int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs, |
| unsigned int firstvec, |
| struct irq_affinity_desc *masks) |
| { |
| unsigned int curvec = startvec, nr_present = 0, nr_others = 0; |
| cpumask_var_t *node_to_cpumask; |
| cpumask_var_t nmsk, npresmsk; |
| int ret = -ENOMEM; |
| |
| if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) |
| return ret; |
| |
| if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) |
| goto fail_nmsk; |
| |
| node_to_cpumask = alloc_node_to_cpumask(); |
| if (!node_to_cpumask) |
| goto fail_npresmsk; |
| |
| /* Stabilize the cpumasks */ |
| cpus_read_lock(); |
| build_node_to_cpumask(node_to_cpumask); |
| |
| /* Spread on present CPUs starting from affd->pre_vectors */ |
| ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, |
| node_to_cpumask, cpu_present_mask, |
| nmsk, masks); |
| if (ret < 0) |
| goto fail_build_affinity; |
| nr_present = ret; |
| |
| /* |
| * Spread on non present CPUs starting from the next vector to be |
| * handled. If the spreading of present CPUs already exhausted the |
| * vector space, assign the non present CPUs to the already spread |
| * out vectors. |
| */ |
| if (nr_present >= numvecs) |
| curvec = firstvec; |
| else |
| curvec = firstvec + nr_present; |
| cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); |
| ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, |
| node_to_cpumask, npresmsk, nmsk, |
| masks); |
| if (ret >= 0) |
| nr_others = ret; |
| |
| fail_build_affinity: |
| cpus_read_unlock(); |
| |
| if (ret >= 0) |
| WARN_ON(nr_present + nr_others < numvecs); |
| |
| free_node_to_cpumask(node_to_cpumask); |
| |
| fail_npresmsk: |
| free_cpumask_var(npresmsk); |
| |
| fail_nmsk: |
| free_cpumask_var(nmsk); |
| return ret < 0 ? ret : 0; |
| } |
| |
| static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs) |
| { |
| affd->nr_sets = 1; |
| affd->set_size[0] = affvecs; |
| } |
| |
| /** |
| * irq_create_affinity_masks - Create affinity masks for multiqueue spreading |
| * @nvecs: The total number of vectors |
| * @affd: Description of the affinity requirements |
| * |
| * Returns the irq_affinity_desc pointer or NULL if allocation failed. |
| */ |
| struct irq_affinity_desc * |
| irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd) |
| { |
| unsigned int affvecs, curvec, usedvecs, i; |
| struct irq_affinity_desc *masks = NULL; |
| |
| /* |
| * Determine the number of vectors which need interrupt affinities |
| * assigned. If the pre/post request exhausts the available vectors |
| * then nothing to do here except for invoking the calc_sets() |
| * callback so the device driver can adjust to the situation. |
| */ |
| if (nvecs > affd->pre_vectors + affd->post_vectors) |
| affvecs = nvecs - affd->pre_vectors - affd->post_vectors; |
| else |
| affvecs = 0; |
| |
| /* |
| * Simple invocations do not provide a calc_sets() callback. Install |
| * the generic one. |
| */ |
| if (!affd->calc_sets) |
| affd->calc_sets = default_calc_sets; |
| |
| /* Recalculate the sets */ |
| affd->calc_sets(affd, affvecs); |
| |
| if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS)) |
| return NULL; |
| |
| /* Nothing to assign? */ |
| if (!affvecs) |
| return NULL; |
| |
| masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); |
| if (!masks) |
| return NULL; |
| |
| /* Fill out vectors at the beginning that don't need affinity */ |
| for (curvec = 0; curvec < affd->pre_vectors; curvec++) |
| cpumask_copy(&masks[curvec].mask, irq_default_affinity); |
| |
| /* |
| * Spread on present CPUs starting from affd->pre_vectors. If we |
| * have multiple sets, build each sets affinity mask separately. |
| */ |
| for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) { |
| unsigned int this_vecs = affd->set_size[i]; |
| int ret; |
| |
| ret = irq_build_affinity_masks(curvec, this_vecs, |
| curvec, masks); |
| if (ret) { |
| kfree(masks); |
| return NULL; |
| } |
| curvec += this_vecs; |
| usedvecs += this_vecs; |
| } |
| |
| /* Fill out vectors at the end that don't need affinity */ |
| if (usedvecs >= affvecs) |
| curvec = affd->pre_vectors + affvecs; |
| else |
| curvec = affd->pre_vectors + usedvecs; |
| for (; curvec < nvecs; curvec++) |
| cpumask_copy(&masks[curvec].mask, irq_default_affinity); |
| |
| /* Mark the managed interrupts */ |
| for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++) |
| masks[i].is_managed = 1; |
| |
| return masks; |
| } |
| |
| /** |
| * irq_calc_affinity_vectors - Calculate the optimal number of vectors |
| * @minvec: The minimum number of vectors available |
| * @maxvec: The maximum number of vectors available |
| * @affd: Description of the affinity requirements |
| */ |
| unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, |
| const struct irq_affinity *affd) |
| { |
| unsigned int resv = affd->pre_vectors + affd->post_vectors; |
| unsigned int set_vecs; |
| |
| if (resv > minvec) |
| return 0; |
| |
| if (affd->calc_sets) { |
| set_vecs = maxvec - resv; |
| } else { |
| cpus_read_lock(); |
| set_vecs = cpumask_weight(cpu_possible_mask); |
| cpus_read_unlock(); |
| } |
| |
| return resv + min(set_vecs, maxvec - resv); |
| } |