| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018 Intel Corporation */ |
| |
| #include "igc_phy.h" |
| |
| /** |
| * igc_check_reset_block - Check if PHY reset is blocked |
| * @hw: pointer to the HW structure |
| * |
| * Read the PHY management control register and check whether a PHY reset |
| * is blocked. If a reset is not blocked return 0, otherwise |
| * return IGC_ERR_BLK_PHY_RESET (12). |
| */ |
| s32 igc_check_reset_block(struct igc_hw *hw) |
| { |
| u32 manc; |
| |
| manc = rd32(IGC_MANC); |
| |
| return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ? |
| IGC_ERR_BLK_PHY_RESET : 0; |
| } |
| |
| /** |
| * igc_get_phy_id - Retrieve the PHY ID and revision |
| * @hw: pointer to the HW structure |
| * |
| * Reads the PHY registers and stores the PHY ID and possibly the PHY |
| * revision in the hardware structure. |
| */ |
| s32 igc_get_phy_id(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| s32 ret_val = 0; |
| u16 phy_id; |
| |
| ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); |
| if (ret_val) |
| goto out; |
| |
| phy->id = (u32)(phy_id << 16); |
| usleep_range(200, 500); |
| ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); |
| if (ret_val) |
| goto out; |
| |
| phy->id |= (u32)(phy_id & PHY_REVISION_MASK); |
| phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_phy_has_link - Polls PHY for link |
| * @hw: pointer to the HW structure |
| * @iterations: number of times to poll for link |
| * @usec_interval: delay between polling attempts |
| * @success: pointer to whether polling was successful or not |
| * |
| * Polls the PHY status register for link, 'iterations' number of times. |
| */ |
| s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations, |
| u32 usec_interval, bool *success) |
| { |
| u16 i, phy_status; |
| s32 ret_val = 0; |
| |
| for (i = 0; i < iterations; i++) { |
| /* Some PHYs require the PHY_STATUS register to be read |
| * twice due to the link bit being sticky. No harm doing |
| * it across the board. |
| */ |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val && usec_interval > 0) { |
| /* If the first read fails, another entity may have |
| * ownership of the resources, wait and try again to |
| * see if they have relinquished the resources yet. |
| */ |
| if (usec_interval >= 1000) |
| mdelay(usec_interval / 1000); |
| else |
| udelay(usec_interval); |
| } |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_LINK_STATUS) |
| break; |
| if (usec_interval >= 1000) |
| mdelay(usec_interval / 1000); |
| else |
| udelay(usec_interval); |
| } |
| |
| *success = (i < iterations) ? true : false; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_power_up_phy_copper - Restore copper link in case of PHY power down |
| * @hw: pointer to the HW structure |
| * |
| * In the case of a PHY power down to save power, or to turn off link during a |
| * driver unload, restore the link to previous settings. |
| */ |
| void igc_power_up_phy_copper(struct igc_hw *hw) |
| { |
| u16 mii_reg = 0; |
| |
| /* The PHY will retain its settings across a power down/up cycle */ |
| hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); |
| mii_reg &= ~MII_CR_POWER_DOWN; |
| hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); |
| } |
| |
| /** |
| * igc_power_down_phy_copper - Power down copper PHY |
| * @hw: pointer to the HW structure |
| * |
| * Power down PHY to save power when interface is down and wake on lan |
| * is not enabled. |
| */ |
| void igc_power_down_phy_copper(struct igc_hw *hw) |
| { |
| u16 mii_reg = 0; |
| |
| /* The PHY will retain its settings across a power down/up cycle */ |
| hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); |
| mii_reg |= MII_CR_POWER_DOWN; |
| |
| /* Temporary workaround - should be removed when PHY will implement |
| * IEEE registers as properly |
| */ |
| /* hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);*/ |
| usleep_range(1000, 2000); |
| } |
| |
| /** |
| * igc_check_downshift - Checks whether a downshift in speed occurred |
| * @hw: pointer to the HW structure |
| * |
| * Success returns 0, Failure returns 1 |
| * |
| * A downshift is detected by querying the PHY link health. |
| */ |
| s32 igc_check_downshift(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| |
| switch (phy->type) { |
| case igc_phy_i225: |
| default: |
| /* speed downshift not supported */ |
| phy->speed_downgraded = false; |
| ret_val = 0; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_phy_hw_reset - PHY hardware reset |
| * @hw: pointer to the HW structure |
| * |
| * Verify the reset block is not blocking us from resetting. Acquire |
| * semaphore (if necessary) and read/set/write the device control reset |
| * bit in the PHY. Wait the appropriate delay time for the device to |
| * reset and release the semaphore (if necessary). |
| */ |
| s32 igc_phy_hw_reset(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| u32 phpm = 0, timeout = 10000; |
| s32 ret_val; |
| u32 ctrl; |
| |
| ret_val = igc_check_reset_block(hw); |
| if (ret_val) { |
| ret_val = 0; |
| goto out; |
| } |
| |
| ret_val = phy->ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| phpm = rd32(IGC_I225_PHPM); |
| |
| ctrl = rd32(IGC_CTRL); |
| wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST); |
| wrfl(); |
| |
| udelay(phy->reset_delay_us); |
| |
| wr32(IGC_CTRL, ctrl); |
| wrfl(); |
| |
| /* SW should guarantee 100us for the completion of the PHY reset */ |
| usleep_range(100, 150); |
| do { |
| phpm = rd32(IGC_I225_PHPM); |
| timeout--; |
| udelay(1); |
| } while (!(phpm & IGC_PHY_RST_COMP) && timeout); |
| |
| if (!timeout) |
| hw_dbg("Timeout is expired after a phy reset\n"); |
| |
| usleep_range(100, 150); |
| |
| phy->ops.release(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_phy_setup_autoneg - Configure PHY for auto-negotiation |
| * @hw: pointer to the HW structure |
| * |
| * Reads the MII auto-neg advertisement register and/or the 1000T control |
| * register and if the PHY is already setup for auto-negotiation, then |
| * return successful. Otherwise, setup advertisement and flow control to |
| * the appropriate values for the wanted auto-negotiation. |
| */ |
| static s32 igc_phy_setup_autoneg(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| u16 aneg_multigbt_an_ctrl = 0; |
| u16 mii_1000t_ctrl_reg = 0; |
| u16 mii_autoneg_adv_reg; |
| s32 ret_val; |
| |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) { |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, |
| &mii_1000t_ctrl_reg); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if ((phy->autoneg_mask & ADVERTISE_2500_FULL) && |
| hw->phy.id == I225_I_PHY_ID) { |
| /* Read the MULTI GBT AN Control Register - reg 7.32 */ |
| ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK << |
| MMD_DEVADDR_SHIFT) | |
| ANEG_MULTIGBT_AN_CTRL, |
| &aneg_multigbt_an_ctrl); |
| |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | |
| NWAY_AR_100TX_HD_CAPS | |
| NWAY_AR_10T_FD_CAPS | |
| NWAY_AR_10T_HD_CAPS); |
| mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); |
| |
| hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_HALF) { |
| hw_dbg("Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_10_FULL) { |
| hw_dbg("Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_HALF) { |
| hw_dbg("Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_100_FULL) { |
| hw_dbg("Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_HALF) |
| hw_dbg("Advertise 1000mb Half duplex request denied!\n"); |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { |
| hw_dbg("Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 2500 Mb Half Duplex */ |
| if (phy->autoneg_advertised & ADVERTISE_2500_HALF) |
| hw_dbg("Advertise 2500mb Half duplex request denied!\n"); |
| |
| /* Do we want to advertise 2500 Mb Full Duplex? */ |
| if (phy->autoneg_advertised & ADVERTISE_2500_FULL) { |
| hw_dbg("Advertise 2500mb Full duplex\n"); |
| aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS; |
| } else { |
| aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- |
| * negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and Tx flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc.current_mode) { |
| case igc_fc_none: |
| /* Flow control (Rx & Tx) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case igc_fc_rx_pause: |
| /* Rx Flow control is enabled, and Tx Flow control is |
| * disabled, by a software over-ride. |
| * |
| * Since there really isn't a way to advertise that we are |
| * capable of Rx Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric Rx PAUSE. Later |
| * (in igc_config_fc_after_link_up) we will disable the |
| * hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case igc_fc_tx_pause: |
| /* Tx Flow control is enabled, and Rx Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case igc_fc_full: |
| /* Flow control (both Rx and Tx) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| hw_dbg("Flow control param set incorrectly\n"); |
| return -IGC_ERR_CONFIG; |
| } |
| |
| ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (phy->autoneg_mask & ADVERTISE_1000_FULL) |
| ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, |
| mii_1000t_ctrl_reg); |
| |
| if ((phy->autoneg_mask & ADVERTISE_2500_FULL) && |
| hw->phy.id == I225_I_PHY_ID) |
| ret_val = phy->ops.write_reg(hw, |
| (STANDARD_AN_REG_MASK << |
| MMD_DEVADDR_SHIFT) | |
| ANEG_MULTIGBT_AN_CTRL, |
| aneg_multigbt_an_ctrl); |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_wait_autoneg - Wait for auto-neg completion |
| * @hw: pointer to the HW structure |
| * |
| * Waits for auto-negotiation to complete or for the auto-negotiation time |
| * limit to expire, which ever happens first. |
| */ |
| static s32 igc_wait_autoneg(struct igc_hw *hw) |
| { |
| u16 i, phy_status; |
| s32 ret_val = 0; |
| |
| /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ |
| for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); |
| if (ret_val) |
| break; |
| if (phy_status & MII_SR_AUTONEG_COMPLETE) |
| break; |
| msleep(100); |
| } |
| |
| /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation |
| * has completed. |
| */ |
| return ret_val; |
| } |
| |
| /** |
| * igc_copper_link_autoneg - Setup/Enable autoneg for copper link |
| * @hw: pointer to the HW structure |
| * |
| * Performs initial bounds checking on autoneg advertisement parameter, then |
| * configure to advertise the full capability. Setup the PHY to autoneg |
| * and restart the negotiation process between the link partner. If |
| * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. |
| */ |
| static s32 igc_copper_link_autoneg(struct igc_hw *hw) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| u16 phy_ctrl; |
| s32 ret_val; |
| |
| /* Perform some bounds checking on the autoneg advertisement |
| * parameter. |
| */ |
| phy->autoneg_advertised &= phy->autoneg_mask; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (phy->autoneg_advertised == 0) |
| phy->autoneg_advertised = phy->autoneg_mask; |
| |
| hw_dbg("Reconfiguring auto-neg advertisement params\n"); |
| ret_val = igc_phy_setup_autoneg(hw); |
| if (ret_val) { |
| hw_dbg("Error Setting up Auto-Negotiation\n"); |
| goto out; |
| } |
| hw_dbg("Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); |
| if (ret_val) |
| goto out; |
| |
| phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); |
| if (ret_val) |
| goto out; |
| |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (phy->autoneg_wait_to_complete) { |
| ret_val = igc_wait_autoneg(hw); |
| if (ret_val) { |
| hw_dbg("Error while waiting for autoneg to complete\n"); |
| goto out; |
| } |
| } |
| |
| hw->mac.get_link_status = true; |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_setup_copper_link - Configure copper link settings |
| * @hw: pointer to the HW structure |
| * |
| * Calls the appropriate function to configure the link for auto-neg or forced |
| * speed and duplex. Then we check for link, once link is established calls |
| * to configure collision distance and flow control are called. If link is |
| * not established, we return -IGC_ERR_PHY (-2). |
| */ |
| s32 igc_setup_copper_link(struct igc_hw *hw) |
| { |
| s32 ret_val = 0; |
| bool link; |
| |
| if (hw->mac.autoneg) { |
| /* Setup autoneg and flow control advertisement and perform |
| * autonegotiation. |
| */ |
| ret_val = igc_copper_link_autoneg(hw); |
| if (ret_val) |
| goto out; |
| } else { |
| /* PHY will be set to 10H, 10F, 100H or 100F |
| * depending on user settings. |
| */ |
| hw_dbg("Forcing Speed and Duplex\n"); |
| ret_val = hw->phy.ops.force_speed_duplex(hw); |
| if (ret_val) { |
| hw_dbg("Error Forcing Speed and Duplex\n"); |
| goto out; |
| } |
| } |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); |
| if (ret_val) |
| goto out; |
| |
| if (link) { |
| hw_dbg("Valid link established!!!\n"); |
| igc_config_collision_dist(hw); |
| ret_val = igc_config_fc_after_link_up(hw); |
| } else { |
| hw_dbg("Unable to establish link!!!\n"); |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_read_phy_reg_mdic - Read MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to be read |
| * @data: pointer to the read data |
| * |
| * Reads the MDI control register in the PHY at offset and stores the |
| * information read to data. |
| */ |
| static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| s32 ret_val = 0; |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| hw_dbg("PHY Address %d is out of range\n", offset); |
| ret_val = -IGC_ERR_PARAM; |
| goto out; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((offset << IGC_MDIC_REG_SHIFT) | |
| (phy->addr << IGC_MDIC_PHY_SHIFT) | |
| (IGC_MDIC_OP_READ)); |
| |
| wr32(IGC_MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed |
| * Increasing the time out as testing showed failures with |
| * the lower time out |
| */ |
| for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { |
| usleep_range(500, 1000); |
| mdic = rd32(IGC_MDIC); |
| if (mdic & IGC_MDIC_READY) |
| break; |
| } |
| if (!(mdic & IGC_MDIC_READY)) { |
| hw_dbg("MDI Read did not complete\n"); |
| ret_val = -IGC_ERR_PHY; |
| goto out; |
| } |
| if (mdic & IGC_MDIC_ERROR) { |
| hw_dbg("MDI Error\n"); |
| ret_val = -IGC_ERR_PHY; |
| goto out; |
| } |
| *data = (u16)mdic; |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_write_phy_reg_mdic - Write MDI control register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write to register at offset |
| * |
| * Writes data to MDI control register in the PHY at offset. |
| */ |
| static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data) |
| { |
| struct igc_phy_info *phy = &hw->phy; |
| u32 i, mdic = 0; |
| s32 ret_val = 0; |
| |
| if (offset > MAX_PHY_REG_ADDRESS) { |
| hw_dbg("PHY Address %d is out of range\n", offset); |
| ret_val = -IGC_ERR_PARAM; |
| goto out; |
| } |
| |
| /* Set up Op-code, Phy Address, and register offset in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to write the desired data. |
| */ |
| mdic = (((u32)data) | |
| (offset << IGC_MDIC_REG_SHIFT) | |
| (phy->addr << IGC_MDIC_PHY_SHIFT) | |
| (IGC_MDIC_OP_WRITE)); |
| |
| wr32(IGC_MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed |
| * Increasing the time out as testing showed failures with |
| * the lower time out |
| */ |
| for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { |
| usleep_range(500, 1000); |
| mdic = rd32(IGC_MDIC); |
| if (mdic & IGC_MDIC_READY) |
| break; |
| } |
| if (!(mdic & IGC_MDIC_READY)) { |
| hw_dbg("MDI Write did not complete\n"); |
| ret_val = -IGC_ERR_PHY; |
| goto out; |
| } |
| if (mdic & IGC_MDIC_ERROR) { |
| hw_dbg("MDI Error\n"); |
| ret_val = -IGC_ERR_PHY; |
| goto out; |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * __igc_access_xmdio_reg - Read/write XMDIO register |
| * @hw: pointer to the HW structure |
| * @address: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: pointer to value to read/write from/to the XMDIO address |
| * @read: boolean flag to indicate read or write |
| */ |
| static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address, |
| u8 dev_addr, u16 *data, bool read) |
| { |
| s32 ret_val; |
| |
| ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA | |
| dev_addr); |
| if (ret_val) |
| return ret_val; |
| |
| if (read) |
| ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data); |
| else |
| ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Recalibrate the device back to 0 */ |
| ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0); |
| if (ret_val) |
| return ret_val; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_read_xmdio_reg - Read XMDIO register |
| * @hw: pointer to the HW structure |
| * @addr: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: value to be read from the EMI address |
| */ |
| static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, |
| u8 dev_addr, u16 *data) |
| { |
| return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true); |
| } |
| |
| /** |
| * igc_write_xmdio_reg - Write XMDIO register |
| * @hw: pointer to the HW structure |
| * @addr: XMDIO address to program |
| * @dev_addr: device address to program |
| * @data: value to be written to the XMDIO address |
| */ |
| static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, |
| u8 dev_addr, u16 data) |
| { |
| return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false); |
| } |
| |
| /** |
| * igc_write_phy_reg_gpy - Write GPY PHY register |
| * @hw: pointer to the HW structure |
| * @offset: register offset to write to |
| * @data: data to write at register offset |
| * |
| * Acquires semaphore, if necessary, then writes the data to PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| */ |
| s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data) |
| { |
| u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; |
| s32 ret_val; |
| |
| offset = offset & GPY_REG_MASK; |
| |
| if (!dev_addr) { |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| ret_val = igc_write_phy_reg_mdic(hw, offset, data); |
| if (ret_val) |
| return ret_val; |
| hw->phy.ops.release(hw); |
| } else { |
| ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr, |
| data); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_read_phy_reg_gpy - Read GPY PHY register |
| * @hw: pointer to the HW structure |
| * @offset: lower half is register offset to read to |
| * upper half is MMD to use. |
| * @data: data to read at register offset |
| * |
| * Acquires semaphore, if necessary, then reads the data in the PHY register |
| * at the offset. Release any acquired semaphores before exiting. |
| */ |
| s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data) |
| { |
| u8 dev_addr = (offset & GPY_MMD_MASK) >> GPY_MMD_SHIFT; |
| s32 ret_val; |
| |
| offset = offset & GPY_REG_MASK; |
| |
| if (!dev_addr) { |
| ret_val = hw->phy.ops.acquire(hw); |
| if (ret_val) |
| return ret_val; |
| ret_val = igc_read_phy_reg_mdic(hw, offset, data); |
| if (ret_val) |
| return ret_val; |
| hw->phy.ops.release(hw); |
| } else { |
| ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr, |
| data); |
| } |
| |
| return ret_val; |
| } |