| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2016, Semihalf |
| * Author: Tomasz Nowicki <tn@semihalf.com> |
| * |
| * This file implements early detection/parsing of I/O mapping |
| * reported to OS through firmware via I/O Remapping Table (IORT) |
| * IORT document number: ARM DEN 0049A |
| */ |
| |
| #define pr_fmt(fmt) "ACPI: IORT: " fmt |
| |
| #include <linux/acpi_iort.h> |
| #include <linux/bitfield.h> |
| #include <linux/iommu.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/dma-map-ops.h> |
| |
| #define IORT_TYPE_MASK(type) (1 << (type)) |
| #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP) |
| #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \ |
| (1 << ACPI_IORT_NODE_SMMU_V3)) |
| |
| struct iort_its_msi_chip { |
| struct list_head list; |
| struct fwnode_handle *fw_node; |
| phys_addr_t base_addr; |
| u32 translation_id; |
| }; |
| |
| struct iort_fwnode { |
| struct list_head list; |
| struct acpi_iort_node *iort_node; |
| struct fwnode_handle *fwnode; |
| }; |
| static LIST_HEAD(iort_fwnode_list); |
| static DEFINE_SPINLOCK(iort_fwnode_lock); |
| |
| /** |
| * iort_set_fwnode() - Create iort_fwnode and use it to register |
| * iommu data in the iort_fwnode_list |
| * |
| * @iort_node: IORT table node associated with the IOMMU |
| * @fwnode: fwnode associated with the IORT node |
| * |
| * Returns: 0 on success |
| * <0 on failure |
| */ |
| static inline int iort_set_fwnode(struct acpi_iort_node *iort_node, |
| struct fwnode_handle *fwnode) |
| { |
| struct iort_fwnode *np; |
| |
| np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC); |
| |
| if (WARN_ON(!np)) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&np->list); |
| np->iort_node = iort_node; |
| np->fwnode = fwnode; |
| |
| spin_lock(&iort_fwnode_lock); |
| list_add_tail(&np->list, &iort_fwnode_list); |
| spin_unlock(&iort_fwnode_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * iort_get_fwnode() - Retrieve fwnode associated with an IORT node |
| * |
| * @node: IORT table node to be looked-up |
| * |
| * Returns: fwnode_handle pointer on success, NULL on failure |
| */ |
| static inline struct fwnode_handle *iort_get_fwnode( |
| struct acpi_iort_node *node) |
| { |
| struct iort_fwnode *curr; |
| struct fwnode_handle *fwnode = NULL; |
| |
| spin_lock(&iort_fwnode_lock); |
| list_for_each_entry(curr, &iort_fwnode_list, list) { |
| if (curr->iort_node == node) { |
| fwnode = curr->fwnode; |
| break; |
| } |
| } |
| spin_unlock(&iort_fwnode_lock); |
| |
| return fwnode; |
| } |
| |
| /** |
| * iort_delete_fwnode() - Delete fwnode associated with an IORT node |
| * |
| * @node: IORT table node associated with fwnode to delete |
| */ |
| static inline void iort_delete_fwnode(struct acpi_iort_node *node) |
| { |
| struct iort_fwnode *curr, *tmp; |
| |
| spin_lock(&iort_fwnode_lock); |
| list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) { |
| if (curr->iort_node == node) { |
| list_del(&curr->list); |
| kfree(curr); |
| break; |
| } |
| } |
| spin_unlock(&iort_fwnode_lock); |
| } |
| |
| /** |
| * iort_get_iort_node() - Retrieve iort_node associated with an fwnode |
| * |
| * @fwnode: fwnode associated with device to be looked-up |
| * |
| * Returns: iort_node pointer on success, NULL on failure |
| */ |
| static inline struct acpi_iort_node *iort_get_iort_node( |
| struct fwnode_handle *fwnode) |
| { |
| struct iort_fwnode *curr; |
| struct acpi_iort_node *iort_node = NULL; |
| |
| spin_lock(&iort_fwnode_lock); |
| list_for_each_entry(curr, &iort_fwnode_list, list) { |
| if (curr->fwnode == fwnode) { |
| iort_node = curr->iort_node; |
| break; |
| } |
| } |
| spin_unlock(&iort_fwnode_lock); |
| |
| return iort_node; |
| } |
| |
| typedef acpi_status (*iort_find_node_callback) |
| (struct acpi_iort_node *node, void *context); |
| |
| /* Root pointer to the mapped IORT table */ |
| static struct acpi_table_header *iort_table; |
| |
| static LIST_HEAD(iort_msi_chip_list); |
| static DEFINE_SPINLOCK(iort_msi_chip_lock); |
| |
| /** |
| * iort_register_domain_token() - register domain token along with related |
| * ITS ID and base address to the list from where we can get it back later on. |
| * @trans_id: ITS ID. |
| * @base: ITS base address. |
| * @fw_node: Domain token. |
| * |
| * Returns: 0 on success, -ENOMEM if no memory when allocating list element |
| */ |
| int iort_register_domain_token(int trans_id, phys_addr_t base, |
| struct fwnode_handle *fw_node) |
| { |
| struct iort_its_msi_chip *its_msi_chip; |
| |
| its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL); |
| if (!its_msi_chip) |
| return -ENOMEM; |
| |
| its_msi_chip->fw_node = fw_node; |
| its_msi_chip->translation_id = trans_id; |
| its_msi_chip->base_addr = base; |
| |
| spin_lock(&iort_msi_chip_lock); |
| list_add(&its_msi_chip->list, &iort_msi_chip_list); |
| spin_unlock(&iort_msi_chip_lock); |
| |
| return 0; |
| } |
| |
| /** |
| * iort_deregister_domain_token() - Deregister domain token based on ITS ID |
| * @trans_id: ITS ID. |
| * |
| * Returns: none. |
| */ |
| void iort_deregister_domain_token(int trans_id) |
| { |
| struct iort_its_msi_chip *its_msi_chip, *t; |
| |
| spin_lock(&iort_msi_chip_lock); |
| list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) { |
| if (its_msi_chip->translation_id == trans_id) { |
| list_del(&its_msi_chip->list); |
| kfree(its_msi_chip); |
| break; |
| } |
| } |
| spin_unlock(&iort_msi_chip_lock); |
| } |
| |
| /** |
| * iort_find_domain_token() - Find domain token based on given ITS ID |
| * @trans_id: ITS ID. |
| * |
| * Returns: domain token when find on the list, NULL otherwise |
| */ |
| struct fwnode_handle *iort_find_domain_token(int trans_id) |
| { |
| struct fwnode_handle *fw_node = NULL; |
| struct iort_its_msi_chip *its_msi_chip; |
| |
| spin_lock(&iort_msi_chip_lock); |
| list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { |
| if (its_msi_chip->translation_id == trans_id) { |
| fw_node = its_msi_chip->fw_node; |
| break; |
| } |
| } |
| spin_unlock(&iort_msi_chip_lock); |
| |
| return fw_node; |
| } |
| |
| static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type, |
| iort_find_node_callback callback, |
| void *context) |
| { |
| struct acpi_iort_node *iort_node, *iort_end; |
| struct acpi_table_iort *iort; |
| int i; |
| |
| if (!iort_table) |
| return NULL; |
| |
| /* Get the first IORT node */ |
| iort = (struct acpi_table_iort *)iort_table; |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, |
| iort->node_offset); |
| iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, |
| iort_table->length); |
| |
| for (i = 0; i < iort->node_count; i++) { |
| if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, |
| "IORT node pointer overflows, bad table!\n")) |
| return NULL; |
| |
| if (iort_node->type == type && |
| ACPI_SUCCESS(callback(iort_node, context))) |
| return iort_node; |
| |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, |
| iort_node->length); |
| } |
| |
| return NULL; |
| } |
| |
| static acpi_status iort_match_node_callback(struct acpi_iort_node *node, |
| void *context) |
| { |
| struct device *dev = context; |
| acpi_status status = AE_NOT_FOUND; |
| |
| if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) { |
| struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; |
| struct acpi_device *adev; |
| struct acpi_iort_named_component *ncomp; |
| struct device *nc_dev = dev; |
| |
| /* |
| * Walk the device tree to find a device with an |
| * ACPI companion; there is no point in scanning |
| * IORT for a device matching a named component if |
| * the device does not have an ACPI companion to |
| * start with. |
| */ |
| do { |
| adev = ACPI_COMPANION(nc_dev); |
| if (adev) |
| break; |
| |
| nc_dev = nc_dev->parent; |
| } while (nc_dev); |
| |
| if (!adev) |
| goto out; |
| |
| status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf); |
| if (ACPI_FAILURE(status)) { |
| dev_warn(nc_dev, "Can't get device full path name\n"); |
| goto out; |
| } |
| |
| ncomp = (struct acpi_iort_named_component *)node->node_data; |
| status = !strcmp(ncomp->device_name, buf.pointer) ? |
| AE_OK : AE_NOT_FOUND; |
| acpi_os_free(buf.pointer); |
| } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { |
| struct acpi_iort_root_complex *pci_rc; |
| struct pci_bus *bus; |
| |
| bus = to_pci_bus(dev); |
| pci_rc = (struct acpi_iort_root_complex *)node->node_data; |
| |
| /* |
| * It is assumed that PCI segment numbers maps one-to-one |
| * with root complexes. Each segment number can represent only |
| * one root complex. |
| */ |
| status = pci_rc->pci_segment_number == pci_domain_nr(bus) ? |
| AE_OK : AE_NOT_FOUND; |
| } |
| out: |
| return status; |
| } |
| |
| static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in, |
| u32 *rid_out, bool check_overlap) |
| { |
| /* Single mapping does not care for input id */ |
| if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { |
| if (type == ACPI_IORT_NODE_NAMED_COMPONENT || |
| type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { |
| *rid_out = map->output_base; |
| return 0; |
| } |
| |
| pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n", |
| map, type); |
| return -ENXIO; |
| } |
| |
| if (rid_in < map->input_base || |
| (rid_in > map->input_base + map->id_count)) |
| return -ENXIO; |
| |
| if (check_overlap) { |
| /* |
| * We already found a mapping for this input ID at the end of |
| * another region. If it coincides with the start of this |
| * region, we assume the prior match was due to the off-by-1 |
| * issue mentioned below, and allow it to be superseded. |
| * Otherwise, things are *really* broken, and we just disregard |
| * duplicate matches entirely to retain compatibility. |
| */ |
| pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n", |
| map, rid_in); |
| if (rid_in != map->input_base) |
| return -ENXIO; |
| |
| pr_err(FW_BUG "applying workaround.\n"); |
| } |
| |
| *rid_out = map->output_base + (rid_in - map->input_base); |
| |
| /* |
| * Due to confusion regarding the meaning of the id_count field (which |
| * carries the number of IDs *minus 1*), we may have to disregard this |
| * match if it is at the end of the range, and overlaps with the start |
| * of another one. |
| */ |
| if (map->id_count > 0 && rid_in == map->input_base + map->id_count) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node, |
| u32 *id_out, int index) |
| { |
| struct acpi_iort_node *parent; |
| struct acpi_iort_id_mapping *map; |
| |
| if (!node->mapping_offset || !node->mapping_count || |
| index >= node->mapping_count) |
| return NULL; |
| |
| map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, |
| node->mapping_offset + index * sizeof(*map)); |
| |
| /* Firmware bug! */ |
| if (!map->output_reference) { |
| pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", |
| node, node->type); |
| return NULL; |
| } |
| |
| parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, |
| map->output_reference); |
| |
| if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) { |
| if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT || |
| node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX || |
| node->type == ACPI_IORT_NODE_SMMU_V3 || |
| node->type == ACPI_IORT_NODE_PMCG) { |
| *id_out = map->output_base; |
| return parent; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| #ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID |
| #define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4) |
| #endif |
| |
| static int iort_get_id_mapping_index(struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu_v3 *smmu; |
| struct acpi_iort_pmcg *pmcg; |
| |
| switch (node->type) { |
| case ACPI_IORT_NODE_SMMU_V3: |
| /* |
| * SMMUv3 dev ID mapping index was introduced in revision 1 |
| * table, not available in revision 0 |
| */ |
| if (node->revision < 1) |
| return -EINVAL; |
| |
| smmu = (struct acpi_iort_smmu_v3 *)node->node_data; |
| /* |
| * Until IORT E.e (node rev. 5), the ID mapping index was |
| * defined to be valid unless all interrupts are GSIV-based. |
| */ |
| if (node->revision < 5) { |
| if (smmu->event_gsiv && smmu->pri_gsiv && |
| smmu->gerr_gsiv && smmu->sync_gsiv) |
| return -EINVAL; |
| } else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) { |
| return -EINVAL; |
| } |
| |
| if (smmu->id_mapping_index >= node->mapping_count) { |
| pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n", |
| node, node->type); |
| return -EINVAL; |
| } |
| |
| return smmu->id_mapping_index; |
| case ACPI_IORT_NODE_PMCG: |
| pmcg = (struct acpi_iort_pmcg *)node->node_data; |
| if (pmcg->overflow_gsiv || node->mapping_count == 0) |
| return -EINVAL; |
| |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node, |
| u32 id_in, u32 *id_out, |
| u8 type_mask) |
| { |
| u32 id = id_in; |
| |
| /* Parse the ID mapping tree to find specified node type */ |
| while (node) { |
| struct acpi_iort_id_mapping *map; |
| int i, index, rc = 0; |
| u32 out_ref = 0, map_id = id; |
| |
| if (IORT_TYPE_MASK(node->type) & type_mask) { |
| if (id_out) |
| *id_out = id; |
| return node; |
| } |
| |
| if (!node->mapping_offset || !node->mapping_count) |
| goto fail_map; |
| |
| map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, |
| node->mapping_offset); |
| |
| /* Firmware bug! */ |
| if (!map->output_reference) { |
| pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n", |
| node, node->type); |
| goto fail_map; |
| } |
| |
| /* |
| * Get the special ID mapping index (if any) and skip its |
| * associated ID map to prevent erroneous multi-stage |
| * IORT ID translations. |
| */ |
| index = iort_get_id_mapping_index(node); |
| |
| /* Do the ID translation */ |
| for (i = 0; i < node->mapping_count; i++, map++) { |
| /* if it is special mapping index, skip it */ |
| if (i == index) |
| continue; |
| |
| rc = iort_id_map(map, node->type, map_id, &id, out_ref); |
| if (!rc) |
| break; |
| if (rc == -EAGAIN) |
| out_ref = map->output_reference; |
| } |
| |
| if (i == node->mapping_count && !out_ref) |
| goto fail_map; |
| |
| node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, |
| rc ? out_ref : map->output_reference); |
| } |
| |
| fail_map: |
| /* Map input ID to output ID unchanged on mapping failure */ |
| if (id_out) |
| *id_out = id_in; |
| |
| return NULL; |
| } |
| |
| static struct acpi_iort_node *iort_node_map_platform_id( |
| struct acpi_iort_node *node, u32 *id_out, u8 type_mask, |
| int index) |
| { |
| struct acpi_iort_node *parent; |
| u32 id; |
| |
| /* step 1: retrieve the initial dev id */ |
| parent = iort_node_get_id(node, &id, index); |
| if (!parent) |
| return NULL; |
| |
| /* |
| * optional step 2: map the initial dev id if its parent is not |
| * the target type we want, map it again for the use cases such |
| * as NC (named component) -> SMMU -> ITS. If the type is matched, |
| * return the initial dev id and its parent pointer directly. |
| */ |
| if (!(IORT_TYPE_MASK(parent->type) & type_mask)) |
| parent = iort_node_map_id(parent, id, id_out, type_mask); |
| else |
| if (id_out) |
| *id_out = id; |
| |
| return parent; |
| } |
| |
| static struct acpi_iort_node *iort_find_dev_node(struct device *dev) |
| { |
| struct pci_bus *pbus; |
| |
| if (!dev_is_pci(dev)) { |
| struct acpi_iort_node *node; |
| /* |
| * scan iort_fwnode_list to see if it's an iort platform |
| * device (such as SMMU, PMCG),its iort node already cached |
| * and associated with fwnode when iort platform devices |
| * were initialized. |
| */ |
| node = iort_get_iort_node(dev->fwnode); |
| if (node) |
| return node; |
| /* |
| * if not, then it should be a platform device defined in |
| * DSDT/SSDT (with Named Component node in IORT) |
| */ |
| return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, |
| iort_match_node_callback, dev); |
| } |
| |
| pbus = to_pci_dev(dev)->bus; |
| |
| return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, |
| iort_match_node_callback, &pbus->dev); |
| } |
| |
| /** |
| * iort_msi_map_id() - Map a MSI input ID for a device |
| * @dev: The device for which the mapping is to be done. |
| * @input_id: The device input ID. |
| * |
| * Returns: mapped MSI ID on success, input ID otherwise |
| */ |
| u32 iort_msi_map_id(struct device *dev, u32 input_id) |
| { |
| struct acpi_iort_node *node; |
| u32 dev_id; |
| |
| node = iort_find_dev_node(dev); |
| if (!node) |
| return input_id; |
| |
| iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE); |
| return dev_id; |
| } |
| |
| /** |
| * iort_pmsi_get_dev_id() - Get the device id for a device |
| * @dev: The device for which the mapping is to be done. |
| * @dev_id: The device ID found. |
| * |
| * Returns: 0 for successful find a dev id, -ENODEV on error |
| */ |
| int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id) |
| { |
| int i, index; |
| struct acpi_iort_node *node; |
| |
| node = iort_find_dev_node(dev); |
| if (!node) |
| return -ENODEV; |
| |
| index = iort_get_id_mapping_index(node); |
| /* if there is a valid index, go get the dev_id directly */ |
| if (index >= 0) { |
| if (iort_node_get_id(node, dev_id, index)) |
| return 0; |
| } else { |
| for (i = 0; i < node->mapping_count; i++) { |
| if (iort_node_map_platform_id(node, dev_id, |
| IORT_MSI_TYPE, i)) |
| return 0; |
| } |
| } |
| |
| return -ENODEV; |
| } |
| |
| static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base) |
| { |
| struct iort_its_msi_chip *its_msi_chip; |
| int ret = -ENODEV; |
| |
| spin_lock(&iort_msi_chip_lock); |
| list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) { |
| if (its_msi_chip->translation_id == its_id) { |
| *base = its_msi_chip->base_addr; |
| ret = 0; |
| break; |
| } |
| } |
| spin_unlock(&iort_msi_chip_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * iort_dev_find_its_id() - Find the ITS identifier for a device |
| * @dev: The device. |
| * @id: Device's ID |
| * @idx: Index of the ITS identifier list. |
| * @its_id: ITS identifier. |
| * |
| * Returns: 0 on success, appropriate error value otherwise |
| */ |
| static int iort_dev_find_its_id(struct device *dev, u32 id, |
| unsigned int idx, int *its_id) |
| { |
| struct acpi_iort_its_group *its; |
| struct acpi_iort_node *node; |
| |
| node = iort_find_dev_node(dev); |
| if (!node) |
| return -ENXIO; |
| |
| node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE); |
| if (!node) |
| return -ENXIO; |
| |
| /* Move to ITS specific data */ |
| its = (struct acpi_iort_its_group *)node->node_data; |
| if (idx >= its->its_count) { |
| dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n", |
| idx, its->its_count); |
| return -ENXIO; |
| } |
| |
| *its_id = its->identifiers[idx]; |
| return 0; |
| } |
| |
| /** |
| * iort_get_device_domain() - Find MSI domain related to a device |
| * @dev: The device. |
| * @id: Requester ID for the device. |
| * @bus_token: irq domain bus token. |
| * |
| * Returns: the MSI domain for this device, NULL otherwise |
| */ |
| struct irq_domain *iort_get_device_domain(struct device *dev, u32 id, |
| enum irq_domain_bus_token bus_token) |
| { |
| struct fwnode_handle *handle; |
| int its_id; |
| |
| if (iort_dev_find_its_id(dev, id, 0, &its_id)) |
| return NULL; |
| |
| handle = iort_find_domain_token(its_id); |
| if (!handle) |
| return NULL; |
| |
| return irq_find_matching_fwnode(handle, bus_token); |
| } |
| |
| static void iort_set_device_domain(struct device *dev, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_its_group *its; |
| struct acpi_iort_node *msi_parent; |
| struct acpi_iort_id_mapping *map; |
| struct fwnode_handle *iort_fwnode; |
| struct irq_domain *domain; |
| int index; |
| |
| index = iort_get_id_mapping_index(node); |
| if (index < 0) |
| return; |
| |
| map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, |
| node->mapping_offset + index * sizeof(*map)); |
| |
| /* Firmware bug! */ |
| if (!map->output_reference || |
| !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) { |
| pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n", |
| node, node->type); |
| return; |
| } |
| |
| msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, |
| map->output_reference); |
| |
| if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP) |
| return; |
| |
| /* Move to ITS specific data */ |
| its = (struct acpi_iort_its_group *)msi_parent->node_data; |
| |
| iort_fwnode = iort_find_domain_token(its->identifiers[0]); |
| if (!iort_fwnode) |
| return; |
| |
| domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); |
| if (domain) |
| dev_set_msi_domain(dev, domain); |
| } |
| |
| /** |
| * iort_get_platform_device_domain() - Find MSI domain related to a |
| * platform device |
| * @dev: the dev pointer associated with the platform device |
| * |
| * Returns: the MSI domain for this device, NULL otherwise |
| */ |
| static struct irq_domain *iort_get_platform_device_domain(struct device *dev) |
| { |
| struct acpi_iort_node *node, *msi_parent = NULL; |
| struct fwnode_handle *iort_fwnode; |
| struct acpi_iort_its_group *its; |
| int i; |
| |
| /* find its associated iort node */ |
| node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, |
| iort_match_node_callback, dev); |
| if (!node) |
| return NULL; |
| |
| /* then find its msi parent node */ |
| for (i = 0; i < node->mapping_count; i++) { |
| msi_parent = iort_node_map_platform_id(node, NULL, |
| IORT_MSI_TYPE, i); |
| if (msi_parent) |
| break; |
| } |
| |
| if (!msi_parent) |
| return NULL; |
| |
| /* Move to ITS specific data */ |
| its = (struct acpi_iort_its_group *)msi_parent->node_data; |
| |
| iort_fwnode = iort_find_domain_token(its->identifiers[0]); |
| if (!iort_fwnode) |
| return NULL; |
| |
| return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI); |
| } |
| |
| void acpi_configure_pmsi_domain(struct device *dev) |
| { |
| struct irq_domain *msi_domain; |
| |
| msi_domain = iort_get_platform_device_domain(dev); |
| if (msi_domain) |
| dev_set_msi_domain(dev, msi_domain); |
| } |
| |
| #ifdef CONFIG_IOMMU_API |
| static void iort_rmr_free(struct device *dev, |
| struct iommu_resv_region *region) |
| { |
| struct iommu_iort_rmr_data *rmr_data; |
| |
| rmr_data = container_of(region, struct iommu_iort_rmr_data, rr); |
| kfree(rmr_data->sids); |
| kfree(rmr_data); |
| } |
| |
| static struct iommu_iort_rmr_data *iort_rmr_alloc( |
| struct acpi_iort_rmr_desc *rmr_desc, |
| int prot, enum iommu_resv_type type, |
| u32 *sids, u32 num_sids) |
| { |
| struct iommu_iort_rmr_data *rmr_data; |
| struct iommu_resv_region *region; |
| u32 *sids_copy; |
| u64 addr = rmr_desc->base_address, size = rmr_desc->length; |
| |
| rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL); |
| if (!rmr_data) |
| return NULL; |
| |
| /* Create a copy of SIDs array to associate with this rmr_data */ |
| sids_copy = kmemdup(sids, num_sids * sizeof(*sids), GFP_KERNEL); |
| if (!sids_copy) { |
| kfree(rmr_data); |
| return NULL; |
| } |
| rmr_data->sids = sids_copy; |
| rmr_data->num_sids = num_sids; |
| |
| if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) { |
| /* PAGE align base addr and size */ |
| addr &= PAGE_MASK; |
| size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address)); |
| |
| pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n", |
| rmr_desc->base_address, |
| rmr_desc->base_address + rmr_desc->length - 1, |
| addr, addr + size - 1); |
| } |
| |
| region = &rmr_data->rr; |
| INIT_LIST_HEAD(®ion->list); |
| region->start = addr; |
| region->length = size; |
| region->prot = prot; |
| region->type = type; |
| region->free = iort_rmr_free; |
| |
| return rmr_data; |
| } |
| |
| static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc, |
| u32 count) |
| { |
| int i, j; |
| |
| for (i = 0; i < count; i++) { |
| u64 end, start = desc[i].base_address, length = desc[i].length; |
| |
| if (!length) { |
| pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n", |
| start); |
| continue; |
| } |
| |
| end = start + length - 1; |
| |
| /* Check for address overlap */ |
| for (j = i + 1; j < count; j++) { |
| u64 e_start = desc[j].base_address; |
| u64 e_end = e_start + desc[j].length - 1; |
| |
| if (start <= e_end && end >= e_start) |
| pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n", |
| start, end); |
| } |
| } |
| } |
| |
| /* |
| * Please note, we will keep the already allocated RMR reserve |
| * regions in case of a memory allocation failure. |
| */ |
| static void iort_get_rmrs(struct acpi_iort_node *node, |
| struct acpi_iort_node *smmu, |
| u32 *sids, u32 num_sids, |
| struct list_head *head) |
| { |
| struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data; |
| struct acpi_iort_rmr_desc *rmr_desc; |
| int i; |
| |
| rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node, |
| rmr->rmr_offset); |
| |
| iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count); |
| |
| for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) { |
| struct iommu_iort_rmr_data *rmr_data; |
| enum iommu_resv_type type; |
| int prot = IOMMU_READ | IOMMU_WRITE; |
| |
| if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED) |
| type = IOMMU_RESV_DIRECT_RELAXABLE; |
| else |
| type = IOMMU_RESV_DIRECT; |
| |
| if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE) |
| prot |= IOMMU_PRIV; |
| |
| /* Attributes 0x00 - 0x03 represents device memory */ |
| if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <= |
| ACPI_IORT_RMR_ATTR_DEVICE_GRE) |
| prot |= IOMMU_MMIO; |
| else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) == |
| ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB) |
| prot |= IOMMU_CACHE; |
| |
| rmr_data = iort_rmr_alloc(rmr_desc, prot, type, |
| sids, num_sids); |
| if (!rmr_data) |
| return; |
| |
| list_add_tail(&rmr_data->rr.list, head); |
| } |
| } |
| |
| static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start, |
| u32 new_count) |
| { |
| u32 *new_sids; |
| u32 total_count = count + new_count; |
| int i; |
| |
| new_sids = krealloc_array(sids, count + new_count, |
| sizeof(*new_sids), GFP_KERNEL); |
| if (!new_sids) |
| return NULL; |
| |
| for (i = count; i < total_count; i++) |
| new_sids[i] = id_start++; |
| |
| return new_sids; |
| } |
| |
| static bool iort_rmr_has_dev(struct device *dev, u32 id_start, |
| u32 id_count) |
| { |
| int i; |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| |
| /* |
| * Make sure the kernel has preserved the boot firmware PCIe |
| * configuration. This is required to ensure that the RMR PCIe |
| * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5). |
| */ |
| if (dev_is_pci(dev)) { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus); |
| |
| if (!host->preserve_config) |
| return false; |
| } |
| |
| for (i = 0; i < fwspec->num_ids; i++) { |
| if (fwspec->ids[i] >= id_start && |
| fwspec->ids[i] <= id_start + id_count) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void iort_node_get_rmr_info(struct acpi_iort_node *node, |
| struct acpi_iort_node *iommu, |
| struct device *dev, struct list_head *head) |
| { |
| struct acpi_iort_node *smmu = NULL; |
| struct acpi_iort_rmr *rmr; |
| struct acpi_iort_id_mapping *map; |
| u32 *sids = NULL; |
| u32 num_sids = 0; |
| int i; |
| |
| if (!node->mapping_offset || !node->mapping_count) { |
| pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n", |
| node); |
| return; |
| } |
| |
| rmr = (struct acpi_iort_rmr *)node->node_data; |
| if (!rmr->rmr_offset || !rmr->rmr_count) |
| return; |
| |
| map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node, |
| node->mapping_offset); |
| |
| /* |
| * Go through the ID mappings and see if we have a match for SMMU |
| * and dev(if !NULL). If found, get the sids for the Node. |
| * Please note, id_count is equal to the number of IDs in the |
| * range minus one. |
| */ |
| for (i = 0; i < node->mapping_count; i++, map++) { |
| struct acpi_iort_node *parent; |
| |
| if (!map->id_count) |
| continue; |
| |
| parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table, |
| map->output_reference); |
| if (parent != iommu) |
| continue; |
| |
| /* If dev is valid, check RMR node corresponds to the dev SID */ |
| if (dev && !iort_rmr_has_dev(dev, map->output_base, |
| map->id_count)) |
| continue; |
| |
| /* Retrieve SIDs associated with the Node. */ |
| sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base, |
| map->id_count + 1); |
| if (!sids) |
| return; |
| |
| num_sids += map->id_count + 1; |
| } |
| |
| if (!sids) |
| return; |
| |
| iort_get_rmrs(node, smmu, sids, num_sids, head); |
| kfree(sids); |
| } |
| |
| static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev, |
| struct list_head *head) |
| { |
| struct acpi_table_iort *iort; |
| struct acpi_iort_node *iort_node, *iort_end; |
| int i; |
| |
| /* Only supports ARM DEN 0049E.d onwards */ |
| if (iort_table->revision < 5) |
| return; |
| |
| iort = (struct acpi_table_iort *)iort_table; |
| |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, |
| iort->node_offset); |
| iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, |
| iort_table->length); |
| |
| for (i = 0; i < iort->node_count; i++) { |
| if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND, |
| "IORT node pointer overflows, bad table!\n")) |
| return; |
| |
| if (iort_node->type == ACPI_IORT_NODE_RMR) |
| iort_node_get_rmr_info(iort_node, iommu, dev, head); |
| |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, |
| iort_node->length); |
| } |
| } |
| |
| /* |
| * Populate the RMR list associated with a given IOMMU and dev(if provided). |
| * If dev is NULL, the function populates all the RMRs associated with the |
| * given IOMMU. |
| */ |
| static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode, |
| struct device *dev, |
| struct list_head *head) |
| { |
| struct acpi_iort_node *iommu; |
| |
| iommu = iort_get_iort_node(iommu_fwnode); |
| if (!iommu) |
| return; |
| |
| iort_find_rmrs(iommu, dev, head); |
| } |
| |
| static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev) |
| { |
| struct acpi_iort_node *iommu; |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| |
| iommu = iort_get_iort_node(fwspec->iommu_fwnode); |
| |
| if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) { |
| struct acpi_iort_smmu_v3 *smmu; |
| |
| smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data; |
| if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X) |
| return iommu; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Retrieve platform specific HW MSI reserve regions. |
| * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K) |
| * associated with the device are the HW MSI reserved regions. |
| */ |
| static void iort_iommu_msi_get_resv_regions(struct device *dev, |
| struct list_head *head) |
| { |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| struct acpi_iort_its_group *its; |
| struct acpi_iort_node *iommu_node, *its_node = NULL; |
| int i; |
| |
| iommu_node = iort_get_msi_resv_iommu(dev); |
| if (!iommu_node) |
| return; |
| |
| /* |
| * Current logic to reserve ITS regions relies on HW topologies |
| * where a given PCI or named component maps its IDs to only one |
| * ITS group; if a PCI or named component can map its IDs to |
| * different ITS groups through IORT mappings this function has |
| * to be reworked to ensure we reserve regions for all ITS groups |
| * a given PCI or named component may map IDs to. |
| */ |
| |
| for (i = 0; i < fwspec->num_ids; i++) { |
| its_node = iort_node_map_id(iommu_node, |
| fwspec->ids[i], |
| NULL, IORT_MSI_TYPE); |
| if (its_node) |
| break; |
| } |
| |
| if (!its_node) |
| return; |
| |
| /* Move to ITS specific data */ |
| its = (struct acpi_iort_its_group *)its_node->node_data; |
| |
| for (i = 0; i < its->its_count; i++) { |
| phys_addr_t base; |
| |
| if (!iort_find_its_base(its->identifiers[i], &base)) { |
| int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; |
| struct iommu_resv_region *region; |
| |
| region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K, |
| prot, IOMMU_RESV_MSI, |
| GFP_KERNEL); |
| if (region) |
| list_add_tail(®ion->list, head); |
| } |
| } |
| } |
| |
| /** |
| * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions. |
| * @dev: Device from iommu_get_resv_regions() |
| * @head: Reserved region list from iommu_get_resv_regions() |
| */ |
| void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) |
| { |
| struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); |
| |
| iort_iommu_msi_get_resv_regions(dev, head); |
| iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head); |
| } |
| |
| /** |
| * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with |
| * associated StreamIDs information. |
| * @iommu_fwnode: fwnode associated with IOMMU |
| * @head: Resereved region list |
| */ |
| void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode, |
| struct list_head *head) |
| { |
| iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head); |
| } |
| EXPORT_SYMBOL_GPL(iort_get_rmr_sids); |
| |
| /** |
| * iort_put_rmr_sids - Free memory allocated for RMR reserved regions. |
| * @iommu_fwnode: fwnode associated with IOMMU |
| * @head: Resereved region list |
| */ |
| void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode, |
| struct list_head *head) |
| { |
| struct iommu_resv_region *entry, *next; |
| |
| list_for_each_entry_safe(entry, next, head, list) |
| entry->free(NULL, entry); |
| } |
| EXPORT_SYMBOL_GPL(iort_put_rmr_sids); |
| |
| static inline bool iort_iommu_driver_enabled(u8 type) |
| { |
| switch (type) { |
| case ACPI_IORT_NODE_SMMU_V3: |
| return IS_ENABLED(CONFIG_ARM_SMMU_V3); |
| case ACPI_IORT_NODE_SMMU: |
| return IS_ENABLED(CONFIG_ARM_SMMU); |
| default: |
| pr_warn("IORT node type %u does not describe an SMMU\n", type); |
| return false; |
| } |
| } |
| |
| static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node) |
| { |
| struct acpi_iort_root_complex *pci_rc; |
| |
| pci_rc = (struct acpi_iort_root_complex *)node->node_data; |
| return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED; |
| } |
| |
| static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node, |
| u32 streamid) |
| { |
| const struct iommu_ops *ops; |
| struct fwnode_handle *iort_fwnode; |
| |
| if (!node) |
| return -ENODEV; |
| |
| iort_fwnode = iort_get_fwnode(node); |
| if (!iort_fwnode) |
| return -ENODEV; |
| |
| /* |
| * If the ops look-up fails, this means that either |
| * the SMMU drivers have not been probed yet or that |
| * the SMMU drivers are not built in the kernel; |
| * Depending on whether the SMMU drivers are built-in |
| * in the kernel or not, defer the IOMMU configuration |
| * or just abort it. |
| */ |
| ops = iommu_ops_from_fwnode(iort_fwnode); |
| if (!ops) |
| return iort_iommu_driver_enabled(node->type) ? |
| -EPROBE_DEFER : -ENODEV; |
| |
| return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode, ops); |
| } |
| |
| struct iort_pci_alias_info { |
| struct device *dev; |
| struct acpi_iort_node *node; |
| }; |
| |
| static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data) |
| { |
| struct iort_pci_alias_info *info = data; |
| struct acpi_iort_node *parent; |
| u32 streamid; |
| |
| parent = iort_node_map_id(info->node, alias, &streamid, |
| IORT_IOMMU_TYPE); |
| return iort_iommu_xlate(info->dev, parent, streamid); |
| } |
| |
| static void iort_named_component_init(struct device *dev, |
| struct acpi_iort_node *node) |
| { |
| struct property_entry props[3] = {}; |
| struct acpi_iort_named_component *nc; |
| |
| nc = (struct acpi_iort_named_component *)node->node_data; |
| props[0] = PROPERTY_ENTRY_U32("pasid-num-bits", |
| FIELD_GET(ACPI_IORT_NC_PASID_BITS, |
| nc->node_flags)); |
| if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED) |
| props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall"); |
| |
| if (device_create_managed_software_node(dev, props, NULL)) |
| dev_warn(dev, "Could not add device properties\n"); |
| } |
| |
| static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node) |
| { |
| struct acpi_iort_node *parent; |
| int err = -ENODEV, i = 0; |
| u32 streamid = 0; |
| |
| do { |
| |
| parent = iort_node_map_platform_id(node, &streamid, |
| IORT_IOMMU_TYPE, |
| i++); |
| |
| if (parent) |
| err = iort_iommu_xlate(dev, parent, streamid); |
| } while (parent && !err); |
| |
| return err; |
| } |
| |
| static int iort_nc_iommu_map_id(struct device *dev, |
| struct acpi_iort_node *node, |
| const u32 *in_id) |
| { |
| struct acpi_iort_node *parent; |
| u32 streamid; |
| |
| parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE); |
| if (parent) |
| return iort_iommu_xlate(dev, parent, streamid); |
| |
| return -ENODEV; |
| } |
| |
| |
| /** |
| * iort_iommu_configure_id - Set-up IOMMU configuration for a device. |
| * |
| * @dev: device to configure |
| * @id_in: optional input id const value pointer |
| * |
| * Returns: 0 on success, <0 on failure |
| */ |
| int iort_iommu_configure_id(struct device *dev, const u32 *id_in) |
| { |
| struct acpi_iort_node *node; |
| int err = -ENODEV; |
| |
| if (dev_is_pci(dev)) { |
| struct iommu_fwspec *fwspec; |
| struct pci_bus *bus = to_pci_dev(dev)->bus; |
| struct iort_pci_alias_info info = { .dev = dev }; |
| |
| node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, |
| iort_match_node_callback, &bus->dev); |
| if (!node) |
| return -ENODEV; |
| |
| info.node = node; |
| err = pci_for_each_dma_alias(to_pci_dev(dev), |
| iort_pci_iommu_init, &info); |
| |
| fwspec = dev_iommu_fwspec_get(dev); |
| if (fwspec && iort_pci_rc_supports_ats(node)) |
| fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS; |
| } else { |
| node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, |
| iort_match_node_callback, dev); |
| if (!node) |
| return -ENODEV; |
| |
| err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) : |
| iort_nc_iommu_map(dev, node); |
| |
| if (!err) |
| iort_named_component_init(dev, node); |
| } |
| |
| return err; |
| } |
| |
| #else |
| void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head) |
| { } |
| int iort_iommu_configure_id(struct device *dev, const u32 *input_id) |
| { return -ENODEV; } |
| #endif |
| |
| static int nc_dma_get_range(struct device *dev, u64 *size) |
| { |
| struct acpi_iort_node *node; |
| struct acpi_iort_named_component *ncomp; |
| |
| node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT, |
| iort_match_node_callback, dev); |
| if (!node) |
| return -ENODEV; |
| |
| ncomp = (struct acpi_iort_named_component *)node->node_data; |
| |
| if (!ncomp->memory_address_limit) { |
| pr_warn(FW_BUG "Named component missing memory address limit\n"); |
| return -EINVAL; |
| } |
| |
| *size = ncomp->memory_address_limit >= 64 ? U64_MAX : |
| 1ULL<<ncomp->memory_address_limit; |
| |
| return 0; |
| } |
| |
| static int rc_dma_get_range(struct device *dev, u64 *size) |
| { |
| struct acpi_iort_node *node; |
| struct acpi_iort_root_complex *rc; |
| struct pci_bus *pbus = to_pci_dev(dev)->bus; |
| |
| node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX, |
| iort_match_node_callback, &pbus->dev); |
| if (!node || node->revision < 1) |
| return -ENODEV; |
| |
| rc = (struct acpi_iort_root_complex *)node->node_data; |
| |
| if (!rc->memory_address_limit) { |
| pr_warn(FW_BUG "Root complex missing memory address limit\n"); |
| return -EINVAL; |
| } |
| |
| *size = rc->memory_address_limit >= 64 ? U64_MAX : |
| 1ULL<<rc->memory_address_limit; |
| |
| return 0; |
| } |
| |
| /** |
| * iort_dma_get_ranges() - Look up DMA addressing limit for the device |
| * @dev: device to lookup |
| * @size: DMA range size result pointer |
| * |
| * Return: 0 on success, an error otherwise. |
| */ |
| int iort_dma_get_ranges(struct device *dev, u64 *size) |
| { |
| if (dev_is_pci(dev)) |
| return rc_dma_get_range(dev, size); |
| else |
| return nc_dma_get_range(dev, size); |
| } |
| |
| static void __init acpi_iort_register_irq(int hwirq, const char *name, |
| int trigger, |
| struct resource *res) |
| { |
| int irq = acpi_register_gsi(NULL, hwirq, trigger, |
| ACPI_ACTIVE_HIGH); |
| |
| if (irq <= 0) { |
| pr_err("could not register gsi hwirq %d name [%s]\n", hwirq, |
| name); |
| return; |
| } |
| |
| res->start = irq; |
| res->end = irq; |
| res->flags = IORESOURCE_IRQ; |
| res->name = name; |
| } |
| |
| static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu_v3 *smmu; |
| /* Always present mem resource */ |
| int num_res = 1; |
| |
| /* Retrieve SMMUv3 specific data */ |
| smmu = (struct acpi_iort_smmu_v3 *)node->node_data; |
| |
| if (smmu->event_gsiv) |
| num_res++; |
| |
| if (smmu->pri_gsiv) |
| num_res++; |
| |
| if (smmu->gerr_gsiv) |
| num_res++; |
| |
| if (smmu->sync_gsiv) |
| num_res++; |
| |
| return num_res; |
| } |
| |
| static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu) |
| { |
| /* |
| * Cavium ThunderX2 implementation doesn't not support unique |
| * irq line. Use single irq line for all the SMMUv3 interrupts. |
| */ |
| if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) |
| return false; |
| |
| /* |
| * ThunderX2 doesn't support MSIs from the SMMU, so we're checking |
| * SPI numbers here. |
| */ |
| return smmu->event_gsiv == smmu->pri_gsiv && |
| smmu->event_gsiv == smmu->gerr_gsiv && |
| smmu->event_gsiv == smmu->sync_gsiv; |
| } |
| |
| static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu) |
| { |
| /* |
| * Override the size, for Cavium ThunderX2 implementation |
| * which doesn't support the page 1 SMMU register space. |
| */ |
| if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX) |
| return SZ_64K; |
| |
| return SZ_128K; |
| } |
| |
| static void __init arm_smmu_v3_init_resources(struct resource *res, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu_v3 *smmu; |
| int num_res = 0; |
| |
| /* Retrieve SMMUv3 specific data */ |
| smmu = (struct acpi_iort_smmu_v3 *)node->node_data; |
| |
| res[num_res].start = smmu->base_address; |
| res[num_res].end = smmu->base_address + |
| arm_smmu_v3_resource_size(smmu) - 1; |
| res[num_res].flags = IORESOURCE_MEM; |
| |
| num_res++; |
| if (arm_smmu_v3_is_combined_irq(smmu)) { |
| if (smmu->event_gsiv) |
| acpi_iort_register_irq(smmu->event_gsiv, "combined", |
| ACPI_EDGE_SENSITIVE, |
| &res[num_res++]); |
| } else { |
| |
| if (smmu->event_gsiv) |
| acpi_iort_register_irq(smmu->event_gsiv, "eventq", |
| ACPI_EDGE_SENSITIVE, |
| &res[num_res++]); |
| |
| if (smmu->pri_gsiv) |
| acpi_iort_register_irq(smmu->pri_gsiv, "priq", |
| ACPI_EDGE_SENSITIVE, |
| &res[num_res++]); |
| |
| if (smmu->gerr_gsiv) |
| acpi_iort_register_irq(smmu->gerr_gsiv, "gerror", |
| ACPI_EDGE_SENSITIVE, |
| &res[num_res++]); |
| |
| if (smmu->sync_gsiv) |
| acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync", |
| ACPI_EDGE_SENSITIVE, |
| &res[num_res++]); |
| } |
| } |
| |
| static void __init arm_smmu_v3_dma_configure(struct device *dev, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu_v3 *smmu; |
| enum dev_dma_attr attr; |
| |
| /* Retrieve SMMUv3 specific data */ |
| smmu = (struct acpi_iort_smmu_v3 *)node->node_data; |
| |
| attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ? |
| DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; |
| |
| /* We expect the dma masks to be equivalent for all SMMUv3 set-ups */ |
| dev->dma_mask = &dev->coherent_dma_mask; |
| |
| /* Configure DMA for the page table walker */ |
| acpi_dma_configure(dev, attr); |
| } |
| |
| #if defined(CONFIG_ACPI_NUMA) |
| /* |
| * set numa proximity domain for smmuv3 device |
| */ |
| static int __init arm_smmu_v3_set_proximity(struct device *dev, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu_v3 *smmu; |
| |
| smmu = (struct acpi_iort_smmu_v3 *)node->node_data; |
| if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) { |
| int dev_node = pxm_to_node(smmu->pxm); |
| |
| if (dev_node != NUMA_NO_NODE && !node_online(dev_node)) |
| return -EINVAL; |
| |
| set_dev_node(dev, dev_node); |
| pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n", |
| smmu->base_address, |
| smmu->pxm); |
| } |
| return 0; |
| } |
| #else |
| #define arm_smmu_v3_set_proximity NULL |
| #endif |
| |
| static int __init arm_smmu_count_resources(struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu *smmu; |
| |
| /* Retrieve SMMU specific data */ |
| smmu = (struct acpi_iort_smmu *)node->node_data; |
| |
| /* |
| * Only consider the global fault interrupt and ignore the |
| * configuration access interrupt. |
| * |
| * MMIO address and global fault interrupt resources are always |
| * present so add them to the context interrupt count as a static |
| * value. |
| */ |
| return smmu->context_interrupt_count + 2; |
| } |
| |
| static void __init arm_smmu_init_resources(struct resource *res, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu *smmu; |
| int i, hw_irq, trigger, num_res = 0; |
| u64 *ctx_irq, *glb_irq; |
| |
| /* Retrieve SMMU specific data */ |
| smmu = (struct acpi_iort_smmu *)node->node_data; |
| |
| res[num_res].start = smmu->base_address; |
| res[num_res].end = smmu->base_address + smmu->span - 1; |
| res[num_res].flags = IORESOURCE_MEM; |
| num_res++; |
| |
| glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset); |
| /* Global IRQs */ |
| hw_irq = IORT_IRQ_MASK(glb_irq[0]); |
| trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]); |
| |
| acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger, |
| &res[num_res++]); |
| |
| /* Context IRQs */ |
| ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset); |
| for (i = 0; i < smmu->context_interrupt_count; i++) { |
| hw_irq = IORT_IRQ_MASK(ctx_irq[i]); |
| trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]); |
| |
| acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger, |
| &res[num_res++]); |
| } |
| } |
| |
| static void __init arm_smmu_dma_configure(struct device *dev, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_smmu *smmu; |
| enum dev_dma_attr attr; |
| |
| /* Retrieve SMMU specific data */ |
| smmu = (struct acpi_iort_smmu *)node->node_data; |
| |
| attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ? |
| DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT; |
| |
| /* We expect the dma masks to be equivalent for SMMU set-ups */ |
| dev->dma_mask = &dev->coherent_dma_mask; |
| |
| /* Configure DMA for the page table walker */ |
| acpi_dma_configure(dev, attr); |
| } |
| |
| static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node) |
| { |
| struct acpi_iort_pmcg *pmcg; |
| |
| /* Retrieve PMCG specific data */ |
| pmcg = (struct acpi_iort_pmcg *)node->node_data; |
| |
| /* |
| * There are always 2 memory resources. |
| * If the overflow_gsiv is present then add that for a total of 3. |
| */ |
| return pmcg->overflow_gsiv ? 3 : 2; |
| } |
| |
| static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res, |
| struct acpi_iort_node *node) |
| { |
| struct acpi_iort_pmcg *pmcg; |
| |
| /* Retrieve PMCG specific data */ |
| pmcg = (struct acpi_iort_pmcg *)node->node_data; |
| |
| res[0].start = pmcg->page0_base_address; |
| res[0].end = pmcg->page0_base_address + SZ_4K - 1; |
| res[0].flags = IORESOURCE_MEM; |
| /* |
| * The initial version in DEN0049C lacked a way to describe register |
| * page 1, which makes it broken for most PMCG implementations; in |
| * that case, just let the driver fail gracefully if it expects to |
| * find a second memory resource. |
| */ |
| if (node->revision > 0) { |
| res[1].start = pmcg->page1_base_address; |
| res[1].end = pmcg->page1_base_address + SZ_4K - 1; |
| res[1].flags = IORESOURCE_MEM; |
| } |
| |
| if (pmcg->overflow_gsiv) |
| acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow", |
| ACPI_EDGE_SENSITIVE, &res[2]); |
| } |
| |
| static struct acpi_platform_list pmcg_plat_info[] __initdata = { |
| /* HiSilicon Hip08 Platform */ |
| {"HISI ", "HIP08 ", 0, ACPI_SIG_IORT, greater_than_or_equal, |
| "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08}, |
| { } |
| }; |
| |
| static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev) |
| { |
| u32 model; |
| int idx; |
| |
| idx = acpi_match_platform_list(pmcg_plat_info); |
| if (idx >= 0) |
| model = pmcg_plat_info[idx].data; |
| else |
| model = IORT_SMMU_V3_PMCG_GENERIC; |
| |
| return platform_device_add_data(pdev, &model, sizeof(model)); |
| } |
| |
| struct iort_dev_config { |
| const char *name; |
| int (*dev_init)(struct acpi_iort_node *node); |
| void (*dev_dma_configure)(struct device *dev, |
| struct acpi_iort_node *node); |
| int (*dev_count_resources)(struct acpi_iort_node *node); |
| void (*dev_init_resources)(struct resource *res, |
| struct acpi_iort_node *node); |
| int (*dev_set_proximity)(struct device *dev, |
| struct acpi_iort_node *node); |
| int (*dev_add_platdata)(struct platform_device *pdev); |
| }; |
| |
| static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = { |
| .name = "arm-smmu-v3", |
| .dev_dma_configure = arm_smmu_v3_dma_configure, |
| .dev_count_resources = arm_smmu_v3_count_resources, |
| .dev_init_resources = arm_smmu_v3_init_resources, |
| .dev_set_proximity = arm_smmu_v3_set_proximity, |
| }; |
| |
| static const struct iort_dev_config iort_arm_smmu_cfg __initconst = { |
| .name = "arm-smmu", |
| .dev_dma_configure = arm_smmu_dma_configure, |
| .dev_count_resources = arm_smmu_count_resources, |
| .dev_init_resources = arm_smmu_init_resources, |
| }; |
| |
| static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = { |
| .name = "arm-smmu-v3-pmcg", |
| .dev_count_resources = arm_smmu_v3_pmcg_count_resources, |
| .dev_init_resources = arm_smmu_v3_pmcg_init_resources, |
| .dev_add_platdata = arm_smmu_v3_pmcg_add_platdata, |
| }; |
| |
| static __init const struct iort_dev_config *iort_get_dev_cfg( |
| struct acpi_iort_node *node) |
| { |
| switch (node->type) { |
| case ACPI_IORT_NODE_SMMU_V3: |
| return &iort_arm_smmu_v3_cfg; |
| case ACPI_IORT_NODE_SMMU: |
| return &iort_arm_smmu_cfg; |
| case ACPI_IORT_NODE_PMCG: |
| return &iort_arm_smmu_v3_pmcg_cfg; |
| default: |
| return NULL; |
| } |
| } |
| |
| /** |
| * iort_add_platform_device() - Allocate a platform device for IORT node |
| * @node: Pointer to device ACPI IORT node |
| * @ops: Pointer to IORT device config struct |
| * |
| * Returns: 0 on success, <0 failure |
| */ |
| static int __init iort_add_platform_device(struct acpi_iort_node *node, |
| const struct iort_dev_config *ops) |
| { |
| struct fwnode_handle *fwnode; |
| struct platform_device *pdev; |
| struct resource *r; |
| int ret, count; |
| |
| pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO); |
| if (!pdev) |
| return -ENOMEM; |
| |
| if (ops->dev_set_proximity) { |
| ret = ops->dev_set_proximity(&pdev->dev, node); |
| if (ret) |
| goto dev_put; |
| } |
| |
| count = ops->dev_count_resources(node); |
| |
| r = kcalloc(count, sizeof(*r), GFP_KERNEL); |
| if (!r) { |
| ret = -ENOMEM; |
| goto dev_put; |
| } |
| |
| ops->dev_init_resources(r, node); |
| |
| ret = platform_device_add_resources(pdev, r, count); |
| /* |
| * Resources are duplicated in platform_device_add_resources, |
| * free their allocated memory |
| */ |
| kfree(r); |
| |
| if (ret) |
| goto dev_put; |
| |
| /* |
| * Platform devices based on PMCG nodes uses platform_data to |
| * pass the hardware model info to the driver. For others, add |
| * a copy of IORT node pointer to platform_data to be used to |
| * retrieve IORT data information. |
| */ |
| if (ops->dev_add_platdata) |
| ret = ops->dev_add_platdata(pdev); |
| else |
| ret = platform_device_add_data(pdev, &node, sizeof(node)); |
| |
| if (ret) |
| goto dev_put; |
| |
| fwnode = iort_get_fwnode(node); |
| |
| if (!fwnode) { |
| ret = -ENODEV; |
| goto dev_put; |
| } |
| |
| pdev->dev.fwnode = fwnode; |
| |
| if (ops->dev_dma_configure) |
| ops->dev_dma_configure(&pdev->dev, node); |
| |
| iort_set_device_domain(&pdev->dev, node); |
| |
| ret = platform_device_add(pdev); |
| if (ret) |
| goto dma_deconfigure; |
| |
| return 0; |
| |
| dma_deconfigure: |
| arch_teardown_dma_ops(&pdev->dev); |
| dev_put: |
| platform_device_put(pdev); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_PCI |
| static void __init iort_enable_acs(struct acpi_iort_node *iort_node) |
| { |
| static bool acs_enabled __initdata; |
| |
| if (acs_enabled) |
| return; |
| |
| if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) { |
| struct acpi_iort_node *parent; |
| struct acpi_iort_id_mapping *map; |
| int i; |
| |
| map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node, |
| iort_node->mapping_offset); |
| |
| for (i = 0; i < iort_node->mapping_count; i++, map++) { |
| if (!map->output_reference) |
| continue; |
| |
| parent = ACPI_ADD_PTR(struct acpi_iort_node, |
| iort_table, map->output_reference); |
| /* |
| * If we detect a RC->SMMU mapping, make sure |
| * we enable ACS on the system. |
| */ |
| if ((parent->type == ACPI_IORT_NODE_SMMU) || |
| (parent->type == ACPI_IORT_NODE_SMMU_V3)) { |
| pci_request_acs(); |
| acs_enabled = true; |
| return; |
| } |
| } |
| } |
| } |
| #else |
| static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { } |
| #endif |
| |
| static void __init iort_init_platform_devices(void) |
| { |
| struct acpi_iort_node *iort_node, *iort_end; |
| struct acpi_table_iort *iort; |
| struct fwnode_handle *fwnode; |
| int i, ret; |
| const struct iort_dev_config *ops; |
| |
| /* |
| * iort_table and iort both point to the start of IORT table, but |
| * have different struct types |
| */ |
| iort = (struct acpi_table_iort *)iort_table; |
| |
| /* Get the first IORT node */ |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort, |
| iort->node_offset); |
| iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort, |
| iort_table->length); |
| |
| for (i = 0; i < iort->node_count; i++) { |
| if (iort_node >= iort_end) { |
| pr_err("iort node pointer overflows, bad table\n"); |
| return; |
| } |
| |
| iort_enable_acs(iort_node); |
| |
| ops = iort_get_dev_cfg(iort_node); |
| if (ops) { |
| fwnode = acpi_alloc_fwnode_static(); |
| if (!fwnode) |
| return; |
| |
| iort_set_fwnode(iort_node, fwnode); |
| |
| ret = iort_add_platform_device(iort_node, ops); |
| if (ret) { |
| iort_delete_fwnode(iort_node); |
| acpi_free_fwnode_static(fwnode); |
| return; |
| } |
| } |
| |
| iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node, |
| iort_node->length); |
| } |
| } |
| |
| void __init acpi_iort_init(void) |
| { |
| acpi_status status; |
| |
| /* iort_table will be used at runtime after the iort init, |
| * so we don't need to call acpi_put_table() to release |
| * the IORT table mapping. |
| */ |
| status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table); |
| if (ACPI_FAILURE(status)) { |
| if (status != AE_NOT_FOUND) { |
| const char *msg = acpi_format_exception(status); |
| |
| pr_err("Failed to get table, %s\n", msg); |
| } |
| |
| return; |
| } |
| |
| iort_init_platform_devices(); |
| } |
| |
| #ifdef CONFIG_ZONE_DMA |
| /* |
| * Extract the highest CPU physical address accessible to all DMA masters in |
| * the system. PHYS_ADDR_MAX is returned when no constrained device is found. |
| */ |
| phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void) |
| { |
| phys_addr_t limit = PHYS_ADDR_MAX; |
| struct acpi_iort_node *node, *end; |
| struct acpi_table_iort *iort; |
| acpi_status status; |
| int i; |
| |
| if (acpi_disabled) |
| return limit; |
| |
| status = acpi_get_table(ACPI_SIG_IORT, 0, |
| (struct acpi_table_header **)&iort); |
| if (ACPI_FAILURE(status)) |
| return limit; |
| |
| node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset); |
| end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length); |
| |
| for (i = 0; i < iort->node_count; i++) { |
| if (node >= end) |
| break; |
| |
| switch (node->type) { |
| struct acpi_iort_named_component *ncomp; |
| struct acpi_iort_root_complex *rc; |
| phys_addr_t local_limit; |
| |
| case ACPI_IORT_NODE_NAMED_COMPONENT: |
| ncomp = (struct acpi_iort_named_component *)node->node_data; |
| local_limit = DMA_BIT_MASK(ncomp->memory_address_limit); |
| limit = min_not_zero(limit, local_limit); |
| break; |
| |
| case ACPI_IORT_NODE_PCI_ROOT_COMPLEX: |
| if (node->revision < 1) |
| break; |
| |
| rc = (struct acpi_iort_root_complex *)node->node_data; |
| local_limit = DMA_BIT_MASK(rc->memory_address_limit); |
| limit = min_not_zero(limit, local_limit); |
| break; |
| } |
| node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length); |
| } |
| acpi_put_table(&iort->header); |
| return limit; |
| } |
| #endif |