| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019, Intel Corporation. */ |
| |
| #include <linux/bpf_trace.h> |
| #include <net/xdp_sock.h> |
| #include <net/xdp.h> |
| #include "ice.h" |
| #include "ice_base.h" |
| #include "ice_type.h" |
| #include "ice_xsk.h" |
| #include "ice_txrx.h" |
| #include "ice_txrx_lib.h" |
| #include "ice_lib.h" |
| |
| /** |
| * ice_qp_reset_stats - Resets all stats for rings of given index |
| * @vsi: VSI that contains rings of interest |
| * @q_idx: ring index in array |
| */ |
| static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) |
| { |
| memset(&vsi->rx_rings[q_idx]->rx_stats, 0, |
| sizeof(vsi->rx_rings[q_idx]->rx_stats)); |
| memset(&vsi->tx_rings[q_idx]->stats, 0, |
| sizeof(vsi->tx_rings[q_idx]->stats)); |
| if (ice_is_xdp_ena_vsi(vsi)) |
| memset(&vsi->xdp_rings[q_idx]->stats, 0, |
| sizeof(vsi->xdp_rings[q_idx]->stats)); |
| } |
| |
| /** |
| * ice_qp_clean_rings - Cleans all the rings of a given index |
| * @vsi: VSI that contains rings of interest |
| * @q_idx: ring index in array |
| */ |
| static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) |
| { |
| ice_clean_tx_ring(vsi->tx_rings[q_idx]); |
| if (ice_is_xdp_ena_vsi(vsi)) |
| ice_clean_tx_ring(vsi->xdp_rings[q_idx]); |
| ice_clean_rx_ring(vsi->rx_rings[q_idx]); |
| } |
| |
| /** |
| * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector |
| * @vsi: VSI that has netdev |
| * @q_vector: q_vector that has NAPI context |
| * @enable: true for enable, false for disable |
| */ |
| static void |
| ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, |
| bool enable) |
| { |
| if (!vsi->netdev || !q_vector) |
| return; |
| |
| if (enable) |
| napi_enable(&q_vector->napi); |
| else |
| napi_disable(&q_vector->napi); |
| } |
| |
| /** |
| * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring |
| * @vsi: the VSI that contains queue vector being un-configured |
| * @rx_ring: Rx ring that will have its IRQ disabled |
| * @q_vector: queue vector |
| */ |
| static void |
| ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring, |
| struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| int base = vsi->base_vector; |
| u16 reg; |
| u32 val; |
| |
| /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle |
| * here only QINT_RQCTL |
| */ |
| reg = rx_ring->reg_idx; |
| val = rd32(hw, QINT_RQCTL(reg)); |
| val &= ~QINT_RQCTL_CAUSE_ENA_M; |
| wr32(hw, QINT_RQCTL(reg), val); |
| |
| if (q_vector) { |
| u16 v_idx = q_vector->v_idx; |
| |
| wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); |
| ice_flush(hw); |
| synchronize_irq(pf->msix_entries[v_idx + base].vector); |
| } |
| } |
| |
| /** |
| * ice_qvec_cfg_msix - Enable IRQ for given queue vector |
| * @vsi: the VSI that contains queue vector |
| * @q_vector: queue vector |
| */ |
| static void |
| ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) |
| { |
| u16 reg_idx = q_vector->reg_idx; |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| struct ice_ring *ring; |
| |
| ice_cfg_itr(hw, q_vector); |
| |
| wr32(hw, GLINT_RATE(reg_idx), |
| ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); |
| |
| ice_for_each_ring(ring, q_vector->tx) |
| ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx, |
| q_vector->tx.itr_idx); |
| |
| ice_for_each_ring(ring, q_vector->rx) |
| ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx, |
| q_vector->rx.itr_idx); |
| |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_qvec_ena_irq - Enable IRQ for given queue vector |
| * @vsi: the VSI that contains queue vector |
| * @q_vector: queue vector |
| */ |
| static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct ice_hw *hw = &pf->hw; |
| |
| ice_irq_dynamic_ena(hw, vsi, q_vector); |
| |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_qp_dis - Disables a queue pair |
| * @vsi: VSI of interest |
| * @q_idx: ring index in array |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) |
| { |
| struct ice_txq_meta txq_meta = { }; |
| struct ice_ring *tx_ring, *rx_ring; |
| struct ice_q_vector *q_vector; |
| int timeout = 50; |
| int err; |
| |
| if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) |
| return -EINVAL; |
| |
| tx_ring = vsi->tx_rings[q_idx]; |
| rx_ring = vsi->rx_rings[q_idx]; |
| q_vector = rx_ring->q_vector; |
| |
| while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) { |
| timeout--; |
| if (!timeout) |
| return -EBUSY; |
| usleep_range(1000, 2000); |
| } |
| netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); |
| |
| ice_qvec_dis_irq(vsi, rx_ring, q_vector); |
| |
| ice_fill_txq_meta(vsi, tx_ring, &txq_meta); |
| err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); |
| if (err) |
| return err; |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; |
| |
| memset(&txq_meta, 0, sizeof(txq_meta)); |
| ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); |
| err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, |
| &txq_meta); |
| if (err) |
| return err; |
| } |
| err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx); |
| if (err) |
| return err; |
| |
| ice_qvec_toggle_napi(vsi, q_vector, false); |
| ice_qp_clean_rings(vsi, q_idx); |
| ice_qp_reset_stats(vsi, q_idx); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_qp_ena - Enables a queue pair |
| * @vsi: VSI of interest |
| * @q_idx: ring index in array |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) |
| { |
| struct ice_aqc_add_tx_qgrp *qg_buf; |
| struct ice_ring *tx_ring, *rx_ring; |
| struct ice_q_vector *q_vector; |
| int err; |
| |
| if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) |
| return -EINVAL; |
| |
| qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL); |
| if (!qg_buf) |
| return -ENOMEM; |
| |
| qg_buf->num_txqs = 1; |
| |
| tx_ring = vsi->tx_rings[q_idx]; |
| rx_ring = vsi->rx_rings[q_idx]; |
| q_vector = rx_ring->q_vector; |
| |
| err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); |
| if (err) |
| goto free_buf; |
| |
| if (ice_is_xdp_ena_vsi(vsi)) { |
| struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; |
| |
| memset(qg_buf, 0, sizeof(*qg_buf)); |
| qg_buf->num_txqs = 1; |
| err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); |
| if (err) |
| goto free_buf; |
| ice_set_ring_xdp(xdp_ring); |
| xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); |
| } |
| |
| err = ice_setup_rx_ctx(rx_ring); |
| if (err) |
| goto free_buf; |
| |
| ice_qvec_cfg_msix(vsi, q_vector); |
| |
| err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx); |
| if (err) |
| goto free_buf; |
| |
| clear_bit(__ICE_CFG_BUSY, vsi->state); |
| ice_qvec_toggle_napi(vsi, q_vector, true); |
| ice_qvec_ena_irq(vsi, q_vector); |
| |
| netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); |
| free_buf: |
| kfree(qg_buf); |
| return err; |
| } |
| |
| /** |
| * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket |
| * @vsi: VSI to allocate the UMEM on |
| * |
| * Returns 0 on success, negative on error |
| */ |
| static int ice_xsk_alloc_umems(struct ice_vsi *vsi) |
| { |
| if (vsi->xsk_umems) |
| return 0; |
| |
| vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems), |
| GFP_KERNEL); |
| |
| if (!vsi->xsk_umems) { |
| vsi->num_xsk_umems = 0; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_add_umem - add a UMEM region for XDP sockets |
| * @vsi: VSI to which the UMEM will be added |
| * @umem: pointer to a requested UMEM region |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on error |
| */ |
| static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) |
| { |
| int err; |
| |
| err = ice_xsk_alloc_umems(vsi); |
| if (err) |
| return err; |
| |
| vsi->xsk_umems[qid] = umem; |
| vsi->num_xsk_umems_used++; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid |
| * @vsi: VSI from which the VSI will be removed |
| * @qid: Ring/qid associated with the UMEM |
| */ |
| static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid) |
| { |
| vsi->xsk_umems[qid] = NULL; |
| vsi->num_xsk_umems_used--; |
| |
| if (vsi->num_xsk_umems_used == 0) { |
| kfree(vsi->xsk_umems); |
| vsi->xsk_umems = NULL; |
| vsi->num_xsk_umems = 0; |
| } |
| } |
| |
| /** |
| * ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets |
| * @vsi: VSI to map the UMEM region |
| * @umem: UMEM to map |
| * |
| * Returns 0 on success, negative on error |
| */ |
| static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct device *dev; |
| unsigned int i; |
| |
| dev = &pf->pdev->dev; |
| for (i = 0; i < umem->npgs; i++) { |
| dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0, |
| PAGE_SIZE, |
| DMA_BIDIRECTIONAL, |
| ICE_RX_DMA_ATTR); |
| if (dma_mapping_error(dev, dma)) { |
| dev_dbg(dev, |
| "XSK UMEM DMA mapping error on page num %d", i); |
| goto out_unmap; |
| } |
| |
| umem->pages[i].dma = dma; |
| } |
| |
| return 0; |
| |
| out_unmap: |
| for (; i > 0; i--) { |
| dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, |
| DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR); |
| umem->pages[i].dma = 0; |
| } |
| |
| return -EFAULT; |
| } |
| |
| /** |
| * ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets |
| * @vsi: VSI from which the UMEM will be unmapped |
| * @umem: UMEM to unmap |
| */ |
| static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem) |
| { |
| struct ice_pf *pf = vsi->back; |
| struct device *dev; |
| unsigned int i; |
| |
| dev = &pf->pdev->dev; |
| for (i = 0; i < umem->npgs; i++) { |
| dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE, |
| DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR); |
| |
| umem->pages[i].dma = 0; |
| } |
| } |
| |
| /** |
| * ice_xsk_umem_disable - disable a UMEM region |
| * @vsi: Current VSI |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid) |
| { |
| if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems || |
| !vsi->xsk_umems[qid]) |
| return -EINVAL; |
| |
| ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]); |
| ice_xsk_remove_umem(vsi, qid); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_umem_enable - enable a UMEM region |
| * @vsi: Current VSI |
| * @umem: pointer to a requested UMEM region |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| static int |
| ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) |
| { |
| struct xdp_umem_fq_reuse *reuseq; |
| int err; |
| |
| if (vsi->type != ICE_VSI_PF) |
| return -EINVAL; |
| |
| vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq); |
| if (qid >= vsi->num_xsk_umems) |
| return -EINVAL; |
| |
| if (vsi->xsk_umems && vsi->xsk_umems[qid]) |
| return -EBUSY; |
| |
| reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count); |
| if (!reuseq) |
| return -ENOMEM; |
| |
| xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq)); |
| |
| err = ice_xsk_umem_dma_map(vsi, umem); |
| if (err) |
| return err; |
| |
| err = ice_xsk_add_umem(vsi, umem, qid); |
| if (err) |
| return err; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state |
| * @vsi: Current VSI |
| * @umem: UMEM to enable/associate to a ring, NULL to disable |
| * @qid: queue ID |
| * |
| * Returns 0 on success, negative on failure |
| */ |
| int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) |
| { |
| bool if_running, umem_present = !!umem; |
| int ret = 0, umem_failure = 0; |
| |
| if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); |
| |
| if (if_running) { |
| ret = ice_qp_dis(vsi, qid); |
| if (ret) { |
| netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret); |
| goto xsk_umem_if_up; |
| } |
| } |
| |
| umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) : |
| ice_xsk_umem_disable(vsi, qid); |
| |
| xsk_umem_if_up: |
| if (if_running) { |
| ret = ice_qp_ena(vsi, qid); |
| if (!ret && umem_present) |
| napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); |
| else if (ret) |
| netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret); |
| } |
| |
| if (umem_failure) { |
| netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d", |
| umem_present ? "en" : "dis", umem_failure); |
| return umem_failure; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations |
| * @zca: zero-cpoy allocator |
| * @handle: Buffer handle |
| */ |
| void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle) |
| { |
| struct ice_rx_buf *rx_buf; |
| struct ice_ring *rx_ring; |
| struct xdp_umem *umem; |
| u64 hr, mask; |
| u16 nta; |
| |
| rx_ring = container_of(zca, struct ice_ring, zca); |
| umem = rx_ring->xsk_umem; |
| hr = umem->headroom + XDP_PACKET_HEADROOM; |
| |
| mask = umem->chunk_mask; |
| |
| nta = rx_ring->next_to_alloc; |
| rx_buf = &rx_ring->rx_buf[nta]; |
| |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| handle &= mask; |
| |
| rx_buf->dma = xdp_umem_get_dma(umem, handle); |
| rx_buf->dma += hr; |
| |
| rx_buf->addr = xdp_umem_get_data(umem, handle); |
| rx_buf->addr += hr; |
| |
| rx_buf->handle = (u64)handle + umem->headroom; |
| } |
| |
| /** |
| * ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem |
| * @rx_ring: ring with an xdp_umem bound to it |
| * @rx_buf: buffer to which xsk page address will be assigned |
| * |
| * This function allocates an Rx buffer in the hot path. |
| * The buffer can come from fill queue or recycle queue. |
| * |
| * Returns true if an assignment was successful, false if not. |
| */ |
| static __always_inline bool |
| ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) |
| { |
| struct xdp_umem *umem = rx_ring->xsk_umem; |
| void *addr = rx_buf->addr; |
| u64 handle, hr; |
| |
| if (addr) { |
| rx_ring->rx_stats.page_reuse_count++; |
| return true; |
| } |
| |
| if (!xsk_umem_peek_addr(umem, &handle)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| hr = umem->headroom + XDP_PACKET_HEADROOM; |
| |
| rx_buf->dma = xdp_umem_get_dma(umem, handle); |
| rx_buf->dma += hr; |
| |
| rx_buf->addr = xdp_umem_get_data(umem, handle); |
| rx_buf->addr += hr; |
| |
| rx_buf->handle = handle + umem->headroom; |
| |
| xsk_umem_discard_addr(umem); |
| return true; |
| } |
| |
| /** |
| * ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem |
| * @rx_ring: ring with an xdp_umem bound to it |
| * @rx_buf: buffer to which xsk page address will be assigned |
| * |
| * This function allocates an Rx buffer in the slow path. |
| * The buffer can come from fill queue or recycle queue. |
| * |
| * Returns true if an assignment was successful, false if not. |
| */ |
| static __always_inline bool |
| ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) |
| { |
| struct xdp_umem *umem = rx_ring->xsk_umem; |
| u64 handle, headroom; |
| |
| if (!xsk_umem_peek_addr_rq(umem, &handle)) { |
| rx_ring->rx_stats.alloc_page_failed++; |
| return false; |
| } |
| |
| handle &= umem->chunk_mask; |
| headroom = umem->headroom + XDP_PACKET_HEADROOM; |
| |
| rx_buf->dma = xdp_umem_get_dma(umem, handle); |
| rx_buf->dma += headroom; |
| |
| rx_buf->addr = xdp_umem_get_data(umem, handle); |
| rx_buf->addr += headroom; |
| |
| rx_buf->handle = handle + umem->headroom; |
| |
| xsk_umem_discard_addr_rq(umem); |
| return true; |
| } |
| |
| /** |
| * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers |
| * @rx_ring: Rx ring |
| * @count: The number of buffers to allocate |
| * @alloc: the function pointer to call for allocation |
| * |
| * This function allocates a number of Rx buffers from the fill ring |
| * or the internal recycle mechanism and places them on the Rx ring. |
| * |
| * Returns false if all allocations were successful, true if any fail. |
| */ |
| static bool |
| ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count, |
| bool alloc(struct ice_ring *, struct ice_rx_buf *)) |
| { |
| union ice_32b_rx_flex_desc *rx_desc; |
| u16 ntu = rx_ring->next_to_use; |
| struct ice_rx_buf *rx_buf; |
| bool ret = false; |
| |
| if (!count) |
| return false; |
| |
| rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| rx_buf = &rx_ring->rx_buf[ntu]; |
| |
| do { |
| if (!alloc(rx_ring, rx_buf)) { |
| ret = true; |
| break; |
| } |
| |
| dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0, |
| rx_ring->rx_buf_len, |
| DMA_BIDIRECTIONAL); |
| |
| rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma); |
| rx_desc->wb.status_error0 = 0; |
| |
| rx_desc++; |
| rx_buf++; |
| ntu++; |
| |
| if (unlikely(ntu == rx_ring->count)) { |
| rx_desc = ICE_RX_DESC(rx_ring, 0); |
| rx_buf = rx_ring->rx_buf; |
| ntu = 0; |
| } |
| } while (--count); |
| |
| if (rx_ring->next_to_use != ntu) |
| ice_release_rx_desc(rx_ring, ntu); |
| |
| return ret; |
| } |
| |
| /** |
| * ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path |
| * @rx_ring: Rx ring |
| * @count: number of bufs to allocate |
| * |
| * Returns false on success, true on failure. |
| */ |
| static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count) |
| { |
| return ice_alloc_rx_bufs_zc(rx_ring, count, |
| ice_alloc_buf_fast_zc); |
| } |
| |
| /** |
| * ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path |
| * @rx_ring: Rx ring |
| * @count: number of bufs to allocate |
| * |
| * Returns false on success, true on failure. |
| */ |
| bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count) |
| { |
| return ice_alloc_rx_bufs_zc(rx_ring, count, |
| ice_alloc_buf_slow_zc); |
| } |
| |
| /** |
| * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring |
| * @rx_ring: Rx ring |
| */ |
| static void ice_bump_ntc(struct ice_ring *rx_ring) |
| { |
| int ntc = rx_ring->next_to_clean + 1; |
| |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| prefetch(ICE_RX_DESC(rx_ring, ntc)); |
| } |
| |
| /** |
| * ice_get_rx_buf_zc - Fetch the current Rx buffer |
| * @rx_ring: Rx ring |
| * @size: size of a buffer |
| * |
| * This function returns the current, received Rx buffer and does |
| * DMA synchronization. |
| * |
| * Returns a pointer to the received Rx buffer. |
| */ |
| static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size) |
| { |
| struct ice_rx_buf *rx_buf; |
| |
| rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; |
| |
| dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0, |
| size, DMA_BIDIRECTIONAL); |
| |
| return rx_buf; |
| } |
| |
| /** |
| * ice_reuse_rx_buf_zc - reuse an Rx buffer |
| * @rx_ring: Rx ring |
| * @old_buf: The buffer to recycle |
| * |
| * This function recycles a finished Rx buffer, and places it on the recycle |
| * queue (next_to_alloc). |
| */ |
| static void |
| ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) |
| { |
| unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask; |
| u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM; |
| u16 nta = rx_ring->next_to_alloc; |
| struct ice_rx_buf *new_buf; |
| |
| new_buf = &rx_ring->rx_buf[nta++]; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| new_buf->dma = old_buf->dma & mask; |
| new_buf->dma += hr; |
| |
| new_buf->addr = (void *)((unsigned long)old_buf->addr & mask); |
| new_buf->addr += hr; |
| |
| new_buf->handle = old_buf->handle & mask; |
| new_buf->handle += rx_ring->xsk_umem->headroom; |
| |
| old_buf->addr = NULL; |
| } |
| |
| /** |
| * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer |
| * @rx_ring: Rx ring |
| * @rx_buf: zero-copy Rx buffer |
| * @xdp: XDP buffer |
| * |
| * This function allocates a new skb from a zero-copy Rx buffer. |
| * |
| * Returns the skb on success, NULL on failure. |
| */ |
| static struct sk_buff * |
| ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| struct xdp_buff *xdp) |
| { |
| unsigned int metasize = xdp->data - xdp->data_meta; |
| unsigned int datasize = xdp->data_end - xdp->data; |
| unsigned int datasize_hard = xdp->data_end - |
| xdp->data_hard_start; |
| struct sk_buff *skb; |
| |
| skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, |
| GFP_ATOMIC | __GFP_NOWARN); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| skb_reserve(skb, xdp->data - xdp->data_hard_start); |
| memcpy(__skb_put(skb, datasize), xdp->data, datasize); |
| if (metasize) |
| skb_metadata_set(skb, metasize); |
| |
| ice_reuse_rx_buf_zc(rx_ring, rx_buf); |
| |
| return skb; |
| } |
| |
| /** |
| * ice_run_xdp_zc - Executes an XDP program in zero-copy path |
| * @rx_ring: Rx ring |
| * @xdp: xdp_buff used as input to the XDP program |
| * |
| * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} |
| */ |
| static int |
| ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp) |
| { |
| int err, result = ICE_XDP_PASS; |
| struct bpf_prog *xdp_prog; |
| struct ice_ring *xdp_ring; |
| u32 act; |
| |
| rcu_read_lock(); |
| xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| if (!xdp_prog) { |
| rcu_read_unlock(); |
| return ICE_XDP_PASS; |
| } |
| |
| act = bpf_prog_run_xdp(xdp_prog, xdp); |
| xdp->handle += xdp->data - xdp->data_hard_start; |
| switch (act) { |
| case XDP_PASS: |
| break; |
| case XDP_TX: |
| xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; |
| result = ice_xmit_xdp_buff(xdp, xdp_ring); |
| break; |
| case XDP_REDIRECT: |
| err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); |
| result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; |
| break; |
| default: |
| bpf_warn_invalid_xdp_action(act); |
| /* fallthrough -- not supported action */ |
| case XDP_ABORTED: |
| trace_xdp_exception(rx_ring->netdev, xdp_prog, act); |
| /* fallthrough -- handle aborts by dropping frame */ |
| case XDP_DROP: |
| result = ICE_XDP_CONSUMED; |
| break; |
| } |
| |
| rcu_read_unlock(); |
| return result; |
| } |
| |
| /** |
| * ice_clean_rx_irq_zc - consumes packets from the hardware ring |
| * @rx_ring: AF_XDP Rx ring |
| * @budget: NAPI budget |
| * |
| * Returns number of processed packets on success, remaining budget on failure. |
| */ |
| int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget) |
| { |
| unsigned int total_rx_bytes = 0, total_rx_packets = 0; |
| u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); |
| unsigned int xdp_xmit = 0; |
| struct xdp_buff xdp; |
| bool failure = 0; |
| |
| xdp.rxq = &rx_ring->xdp_rxq; |
| |
| while (likely(total_rx_packets < (unsigned int)budget)) { |
| union ice_32b_rx_flex_desc *rx_desc; |
| unsigned int size, xdp_res = 0; |
| struct ice_rx_buf *rx_buf; |
| struct sk_buff *skb; |
| u16 stat_err_bits; |
| u16 vlan_tag = 0; |
| u8 rx_ptype; |
| |
| if (cleaned_count >= ICE_RX_BUF_WRITE) { |
| failure |= ice_alloc_rx_bufs_fast_zc(rx_ring, |
| cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| if (!ice_test_staterr(rx_desc, stat_err_bits)) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we have |
| * verified the descriptor has been written back. |
| */ |
| dma_rmb(); |
| |
| size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| ICE_RX_FLX_DESC_PKT_LEN_M; |
| if (!size) |
| break; |
| |
| rx_buf = ice_get_rx_buf_zc(rx_ring, size); |
| if (!rx_buf->addr) |
| break; |
| |
| xdp.data = rx_buf->addr; |
| xdp.data_meta = xdp.data; |
| xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; |
| xdp.data_end = xdp.data + size; |
| xdp.handle = rx_buf->handle; |
| |
| xdp_res = ice_run_xdp_zc(rx_ring, &xdp); |
| if (xdp_res) { |
| if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { |
| xdp_xmit |= xdp_res; |
| rx_buf->addr = NULL; |
| } else { |
| ice_reuse_rx_buf_zc(rx_ring, rx_buf); |
| } |
| |
| total_rx_bytes += size; |
| total_rx_packets++; |
| cleaned_count++; |
| |
| ice_bump_ntc(rx_ring); |
| continue; |
| } |
| |
| /* XDP_PASS path */ |
| skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp); |
| if (!skb) { |
| rx_ring->rx_stats.alloc_buf_failed++; |
| break; |
| } |
| |
| cleaned_count++; |
| ice_bump_ntc(rx_ring); |
| |
| if (eth_skb_pad(skb)) { |
| skb = NULL; |
| continue; |
| } |
| |
| total_rx_bytes += skb->len; |
| total_rx_packets++; |
| |
| stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); |
| if (ice_test_staterr(rx_desc, stat_err_bits)) |
| vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); |
| |
| rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & |
| ICE_RX_FLEX_DESC_PTYPE_M; |
| |
| ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| ice_receive_skb(rx_ring, skb, vlan_tag); |
| } |
| |
| ice_finalize_xdp_rx(rx_ring, xdp_xmit); |
| ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); |
| |
| return failure ? budget : (int)total_rx_packets; |
| } |
| |
| /** |
| * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries |
| * @xdp_ring: XDP Tx ring |
| * @budget: max number of frames to xmit |
| * |
| * Returns true if cleanup/transmission is done. |
| */ |
| static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget) |
| { |
| struct ice_tx_desc *tx_desc = NULL; |
| bool work_done = true; |
| struct xdp_desc desc; |
| dma_addr_t dma; |
| |
| while (likely(budget-- > 0)) { |
| struct ice_tx_buf *tx_buf; |
| |
| if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { |
| xdp_ring->tx_stats.tx_busy++; |
| work_done = false; |
| break; |
| } |
| |
| tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; |
| |
| if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) |
| break; |
| |
| dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr); |
| |
| dma_sync_single_for_device(xdp_ring->dev, dma, desc.len, |
| DMA_BIDIRECTIONAL); |
| |
| tx_buf->bytecount = desc.len; |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); |
| tx_desc->buf_addr = cpu_to_le64(dma); |
| tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD, |
| 0, desc.len, 0); |
| |
| xdp_ring->next_to_use++; |
| if (xdp_ring->next_to_use == xdp_ring->count) |
| xdp_ring->next_to_use = 0; |
| } |
| |
| if (tx_desc) { |
| ice_xdp_ring_update_tail(xdp_ring); |
| xsk_umem_consume_tx_done(xdp_ring->xsk_umem); |
| } |
| |
| return budget > 0 && work_done; |
| } |
| |
| /** |
| * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer |
| * @xdp_ring: XDP Tx ring |
| * @tx_buf: Tx buffer to clean |
| */ |
| static void |
| ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf) |
| { |
| xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); |
| dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), |
| dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buf, len, 0); |
| } |
| |
| /** |
| * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries |
| * @xdp_ring: XDP Tx ring |
| * @budget: NAPI budget |
| * |
| * Returns true if cleanup/tranmission is done. |
| */ |
| bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget) |
| { |
| int total_packets = 0, total_bytes = 0; |
| s16 ntc = xdp_ring->next_to_clean; |
| struct ice_tx_desc *tx_desc; |
| struct ice_tx_buf *tx_buf; |
| bool xmit_done = true; |
| u32 xsk_frames = 0; |
| |
| tx_desc = ICE_TX_DESC(xdp_ring, ntc); |
| tx_buf = &xdp_ring->tx_buf[ntc]; |
| ntc -= xdp_ring->count; |
| |
| do { |
| if (!(tx_desc->cmd_type_offset_bsz & |
| cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| break; |
| |
| total_bytes += tx_buf->bytecount; |
| total_packets++; |
| |
| if (tx_buf->raw_buf) { |
| ice_clean_xdp_tx_buf(xdp_ring, tx_buf); |
| tx_buf->raw_buf = NULL; |
| } else { |
| xsk_frames++; |
| } |
| |
| tx_desc->cmd_type_offset_bsz = 0; |
| tx_buf++; |
| tx_desc++; |
| ntc++; |
| |
| if (unlikely(!ntc)) { |
| ntc -= xdp_ring->count; |
| tx_buf = xdp_ring->tx_buf; |
| tx_desc = ICE_TX_DESC(xdp_ring, 0); |
| } |
| |
| prefetch(tx_desc); |
| |
| } while (likely(--budget)); |
| |
| ntc += xdp_ring->count; |
| xdp_ring->next_to_clean = ntc; |
| |
| if (xsk_frames) |
| xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); |
| |
| ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); |
| xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); |
| |
| return budget > 0 && xmit_done; |
| } |
| |
| /** |
| * ice_xsk_wakeup - Implements ndo_xsk_wakeup |
| * @netdev: net_device |
| * @queue_id: queue to wake up |
| * @flags: ignored in our case, since we have Rx and Tx in the same NAPI |
| * |
| * Returns negative on error, zero otherwise. |
| */ |
| int |
| ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, |
| u32 __always_unused flags) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_q_vector *q_vector; |
| struct ice_vsi *vsi = np->vsi; |
| struct ice_ring *ring; |
| |
| if (test_bit(__ICE_DOWN, vsi->state)) |
| return -ENETDOWN; |
| |
| if (!ice_is_xdp_ena_vsi(vsi)) |
| return -ENXIO; |
| |
| if (queue_id >= vsi->num_txq) |
| return -ENXIO; |
| |
| if (!vsi->xdp_rings[queue_id]->xsk_umem) |
| return -ENXIO; |
| |
| ring = vsi->xdp_rings[queue_id]; |
| |
| /* The idea here is that if NAPI is running, mark a miss, so |
| * it will run again. If not, trigger an interrupt and |
| * schedule the NAPI from interrupt context. If NAPI would be |
| * scheduled here, the interrupt affinity would not be |
| * honored. |
| */ |
| q_vector = ring->q_vector; |
| if (!napi_if_scheduled_mark_missed(&q_vector->napi)) |
| ice_trigger_sw_intr(&vsi->back->hw, q_vector); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached |
| * @vsi: VSI to be checked |
| * |
| * Returns true if any of the Rx rings has an AF_XDP UMEM attached |
| */ |
| bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) |
| { |
| int i; |
| |
| if (!vsi->xsk_umems) |
| return false; |
| |
| for (i = 0; i < vsi->num_xsk_umems; i++) { |
| if (vsi->xsk_umems[i]) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring |
| * @rx_ring: ring to be cleaned |
| */ |
| void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring) |
| { |
| u16 i; |
| |
| for (i = 0; i < rx_ring->count; i++) { |
| struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; |
| |
| if (!rx_buf->addr) |
| continue; |
| |
| xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle); |
| rx_buf->addr = NULL; |
| } |
| } |
| |
| /** |
| * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues |
| * @xdp_ring: XDP_Tx ring |
| */ |
| void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring) |
| { |
| u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; |
| u32 xsk_frames = 0; |
| |
| while (ntc != ntu) { |
| struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; |
| |
| if (tx_buf->raw_buf) |
| ice_clean_xdp_tx_buf(xdp_ring, tx_buf); |
| else |
| xsk_frames++; |
| |
| tx_buf->raw_buf = NULL; |
| |
| ntc++; |
| if (ntc >= xdp_ring->count) |
| ntc = 0; |
| } |
| |
| if (xsk_frames) |
| xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); |
| } |