blob: e17edf7e68335396d3de606681e61681d4ae0192 [file] [log] [blame]
/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <brcm_hw_ids.h>
#include <chipcommon.h>
#include <aiutils.h>
#include <d11.h>
#include <phy_shim.h>
#include "phy_hal.h"
#include "phy_int.h"
#include "phy_radio.h"
#include "phy_lcn.h"
#include "phyreg_n.h"
#define VALID_N_RADIO(radioid) ((radioid == BCM2055_ID) || \
(radioid == BCM2056_ID) || \
(radioid == BCM2057_ID))
#define VALID_LCN_RADIO(radioid) (radioid == BCM2064_ID)
#define VALID_RADIO(pi, radioid) ( \
(ISNPHY(pi) ? VALID_N_RADIO(radioid) : false) || \
(ISLCNPHY(pi) ? VALID_LCN_RADIO(radioid) : false))
/* basic mux operation - can be optimized on several architectures */
#define MUX(pred, true, false) ((pred) ? (true) : (false))
/* modulo inc/dec - assumes x E [0, bound - 1] */
#define MODINC(x, bound) MUX((x) == (bound) - 1, 0, (x) + 1)
/* modulo inc/dec, bound = 2^k */
#define MODDEC_POW2(x, bound) (((x) - 1) & ((bound) - 1))
#define MODINC_POW2(x, bound) (((x) + 1) & ((bound) - 1))
struct chan_info_basic {
u16 chan;
u16 freq;
};
static const struct chan_info_basic chan_info_all[] = {
{1, 2412},
{2, 2417},
{3, 2422},
{4, 2427},
{5, 2432},
{6, 2437},
{7, 2442},
{8, 2447},
{9, 2452},
{10, 2457},
{11, 2462},
{12, 2467},
{13, 2472},
{14, 2484},
{34, 5170},
{38, 5190},
{42, 5210},
{46, 5230},
{36, 5180},
{40, 5200},
{44, 5220},
{48, 5240},
{52, 5260},
{56, 5280},
{60, 5300},
{64, 5320},
{100, 5500},
{104, 5520},
{108, 5540},
{112, 5560},
{116, 5580},
{120, 5600},
{124, 5620},
{128, 5640},
{132, 5660},
{136, 5680},
{140, 5700},
{149, 5745},
{153, 5765},
{157, 5785},
{161, 5805},
{165, 5825},
{184, 4920},
{188, 4940},
{192, 4960},
{196, 4980},
{200, 5000},
{204, 5020},
{208, 5040},
{212, 5060},
{216, 50800}
};
static const u8 ofdm_rate_lookup[] = {
BRCM_RATE_48M,
BRCM_RATE_24M,
BRCM_RATE_12M,
BRCM_RATE_6M,
BRCM_RATE_54M,
BRCM_RATE_36M,
BRCM_RATE_18M,
BRCM_RATE_9M
};
#define PHY_WREG_LIMIT 24
void wlc_phyreg_enter(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
wlapi_bmac_ucode_wake_override_phyreg_set(pi->sh->physhim);
}
void wlc_phyreg_exit(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
wlapi_bmac_ucode_wake_override_phyreg_clear(pi->sh->physhim);
}
void wlc_radioreg_enter(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
wlapi_bmac_mctrl(pi->sh->physhim, MCTL_LOCK_RADIO, MCTL_LOCK_RADIO);
udelay(10);
}
void wlc_radioreg_exit(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
u16 dummy;
dummy = R_REG(&pi->regs->phyversion);
pi->phy_wreg = 0;
wlapi_bmac_mctrl(pi->sh->physhim, MCTL_LOCK_RADIO, 0);
}
u16 read_radio_reg(struct brcms_phy *pi, u16 addr)
{
u16 data;
if ((addr == RADIO_IDCODE))
return 0xffff;
switch (pi->pubpi.phy_type) {
case PHY_TYPE_N:
if (!CONF_HAS(PHYTYPE, PHY_TYPE_N))
break;
if (NREV_GE(pi->pubpi.phy_rev, 7))
addr |= RADIO_2057_READ_OFF;
else
addr |= RADIO_2055_READ_OFF;
break;
case PHY_TYPE_LCN:
if (!CONF_HAS(PHYTYPE, PHY_TYPE_LCN))
break;
addr |= RADIO_2064_READ_OFF;
break;
default:
break;
}
if ((D11REV_GE(pi->sh->corerev, 24)) ||
(D11REV_IS(pi->sh->corerev, 22)
&& (pi->pubpi.phy_type != PHY_TYPE_SSN))) {
W_REG_FLUSH(&pi->regs->radioregaddr, addr);
data = R_REG(&pi->regs->radioregdata);
} else {
W_REG_FLUSH(&pi->regs->phy4waddr, addr);
data = R_REG(&pi->regs->phy4wdatalo);
}
pi->phy_wreg = 0;
return data;
}
void write_radio_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
if ((D11REV_GE(pi->sh->corerev, 24)) ||
(D11REV_IS(pi->sh->corerev, 22)
&& (pi->pubpi.phy_type != PHY_TYPE_SSN))) {
W_REG_FLUSH(&pi->regs->radioregaddr, addr);
W_REG(&pi->regs->radioregdata, val);
} else {
W_REG_FLUSH(&pi->regs->phy4waddr, addr);
W_REG(&pi->regs->phy4wdatalo, val);
}
if (++pi->phy_wreg >= pi->phy_wreg_limit) {
(void)R_REG(&pi->regs->maccontrol);
pi->phy_wreg = 0;
}
}
static u32 read_radio_id(struct brcms_phy *pi)
{
u32 id;
if (D11REV_GE(pi->sh->corerev, 24)) {
u32 b0, b1, b2;
W_REG_FLUSH(&pi->regs->radioregaddr, 0);
b0 = (u32) R_REG(&pi->regs->radioregdata);
W_REG_FLUSH(&pi->regs->radioregaddr, 1);
b1 = (u32) R_REG(&pi->regs->radioregdata);
W_REG_FLUSH(&pi->regs->radioregaddr, 2);
b2 = (u32) R_REG(&pi->regs->radioregdata);
id = ((b0 & 0xf) << 28) | (((b2 << 8) | b1) << 12) | ((b0 >> 4)
& 0xf);
} else {
W_REG_FLUSH(&pi->regs->phy4waddr, RADIO_IDCODE);
id = (u32) R_REG(&pi->regs->phy4wdatalo);
id |= (u32) R_REG(&pi->regs->phy4wdatahi) << 16;
}
pi->phy_wreg = 0;
return id;
}
void and_radio_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
u16 rval;
rval = read_radio_reg(pi, addr);
write_radio_reg(pi, addr, (rval & val));
}
void or_radio_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
u16 rval;
rval = read_radio_reg(pi, addr);
write_radio_reg(pi, addr, (rval | val));
}
void xor_radio_reg(struct brcms_phy *pi, u16 addr, u16 mask)
{
u16 rval;
rval = read_radio_reg(pi, addr);
write_radio_reg(pi, addr, (rval ^ mask));
}
void mod_radio_reg(struct brcms_phy *pi, u16 addr, u16 mask, u16 val)
{
u16 rval;
rval = read_radio_reg(pi, addr);
write_radio_reg(pi, addr, (rval & ~mask) | (val & mask));
}
void write_phy_channel_reg(struct brcms_phy *pi, uint val)
{
W_REG(&pi->regs->phychannel, val);
}
u16 read_phy_reg(struct brcms_phy *pi, u16 addr)
{
struct d11regs __iomem *regs;
regs = pi->regs;
W_REG_FLUSH(&regs->phyregaddr, addr);
pi->phy_wreg = 0;
return R_REG(&regs->phyregdata);
}
void write_phy_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
struct d11regs __iomem *regs;
regs = pi->regs;
#ifdef CONFIG_BCM47XX
W_REG_FLUSH(&regs->phyregaddr, addr);
W_REG(&regs->phyregdata, val);
if (addr == 0x72)
(void)R_REG(&regs->phyregdata);
#else
W_REG((u32 __iomem *)(&regs->phyregaddr), addr | (val << 16));
if (++pi->phy_wreg >= pi->phy_wreg_limit) {
pi->phy_wreg = 0;
(void)R_REG(&regs->phyversion);
}
#endif
}
void and_phy_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
struct d11regs __iomem *regs;
regs = pi->regs;
W_REG_FLUSH(&regs->phyregaddr, addr);
W_REG(&regs->phyregdata, (R_REG(&regs->phyregdata) & val));
pi->phy_wreg = 0;
}
void or_phy_reg(struct brcms_phy *pi, u16 addr, u16 val)
{
struct d11regs __iomem *regs;
regs = pi->regs;
W_REG_FLUSH(&regs->phyregaddr, addr);
W_REG(&regs->phyregdata, (R_REG(&regs->phyregdata) | val));
pi->phy_wreg = 0;
}
void mod_phy_reg(struct brcms_phy *pi, u16 addr, u16 mask, u16 val)
{
struct d11regs __iomem *regs;
regs = pi->regs;
W_REG_FLUSH(&regs->phyregaddr, addr);
W_REG(&regs->phyregdata,
((R_REG(&regs->phyregdata) & ~mask) | (val & mask)));
pi->phy_wreg = 0;
}
static void wlc_set_phy_uninitted(struct brcms_phy *pi)
{
int i, j;
pi->initialized = false;
pi->tx_vos = 0xffff;
pi->nrssi_table_delta = 0x7fffffff;
pi->rc_cal = 0xffff;
pi->mintxbias = 0xffff;
pi->txpwridx = -1;
if (ISNPHY(pi)) {
pi->phy_spuravoid = SPURAVOID_DISABLE;
if (NREV_GE(pi->pubpi.phy_rev, 3)
&& NREV_LT(pi->pubpi.phy_rev, 7))
pi->phy_spuravoid = SPURAVOID_AUTO;
pi->nphy_papd_skip = 0;
pi->nphy_papd_epsilon_offset[0] = 0xf588;
pi->nphy_papd_epsilon_offset[1] = 0xf588;
pi->nphy_txpwr_idx[0] = 128;
pi->nphy_txpwr_idx[1] = 128;
pi->nphy_txpwrindex[0].index_internal = 40;
pi->nphy_txpwrindex[1].index_internal = 40;
pi->phy_pabias = 0;
} else {
pi->phy_spuravoid = SPURAVOID_AUTO;
}
pi->radiopwr = 0xffff;
for (i = 0; i < STATIC_NUM_RF; i++) {
for (j = 0; j < STATIC_NUM_BB; j++)
pi->stats_11b_txpower[i][j] = -1;
}
}
struct shared_phy *wlc_phy_shared_attach(struct shared_phy_params *shp)
{
struct shared_phy *sh;
sh = kzalloc(sizeof(struct shared_phy), GFP_ATOMIC);
if (sh == NULL)
return NULL;
sh->sih = shp->sih;
sh->physhim = shp->physhim;
sh->unit = shp->unit;
sh->corerev = shp->corerev;
sh->vid = shp->vid;
sh->did = shp->did;
sh->chip = shp->chip;
sh->chiprev = shp->chiprev;
sh->chippkg = shp->chippkg;
sh->sromrev = shp->sromrev;
sh->boardtype = shp->boardtype;
sh->boardrev = shp->boardrev;
sh->boardvendor = shp->boardvendor;
sh->boardflags = shp->boardflags;
sh->boardflags2 = shp->boardflags2;
sh->buscorerev = shp->buscorerev;
sh->fast_timer = PHY_SW_TIMER_FAST;
sh->slow_timer = PHY_SW_TIMER_SLOW;
sh->glacial_timer = PHY_SW_TIMER_GLACIAL;
sh->rssi_mode = RSSI_ANT_MERGE_MAX;
return sh;
}
static void wlc_phy_timercb_phycal(struct brcms_phy *pi)
{
uint delay = 5;
if (PHY_PERICAL_MPHASE_PENDING(pi)) {
if (!pi->sh->up) {
wlc_phy_cal_perical_mphase_reset(pi);
return;
}
if (SCAN_RM_IN_PROGRESS(pi) || PLT_INPROG_PHY(pi)) {
delay = 1000;
wlc_phy_cal_perical_mphase_restart(pi);
} else
wlc_phy_cal_perical_nphy_run(pi, PHY_PERICAL_AUTO);
wlapi_add_timer(pi->phycal_timer, delay, 0);
return;
}
}
static u32 wlc_phy_get_radio_ver(struct brcms_phy *pi)
{
u32 ver;
ver = read_radio_id(pi);
return ver;
}
struct brcms_phy_pub *
wlc_phy_attach(struct shared_phy *sh, struct d11regs __iomem *regs,
int bandtype, struct wiphy *wiphy)
{
struct brcms_phy *pi;
u32 sflags = 0;
uint phyversion;
u32 idcode;
int i;
if (D11REV_IS(sh->corerev, 4))
sflags = SISF_2G_PHY | SISF_5G_PHY;
else
sflags = ai_core_sflags(sh->sih, 0, 0);
if (bandtype == BRCM_BAND_5G) {
if ((sflags & (SISF_5G_PHY | SISF_DB_PHY)) == 0)
return NULL;
}
pi = sh->phy_head;
if ((sflags & SISF_DB_PHY) && pi) {
wlapi_bmac_corereset(pi->sh->physhim, pi->pubpi.coreflags);
pi->refcnt++;
return &pi->pubpi_ro;
}
pi = kzalloc(sizeof(struct brcms_phy), GFP_ATOMIC);
if (pi == NULL)
return NULL;
pi->wiphy = wiphy;
pi->regs = regs;
pi->sh = sh;
pi->phy_init_por = true;
pi->phy_wreg_limit = PHY_WREG_LIMIT;
pi->txpwr_percent = 100;
pi->do_initcal = true;
pi->phycal_tempdelta = 0;
if (bandtype == BRCM_BAND_2G && (sflags & SISF_2G_PHY))
pi->pubpi.coreflags = SICF_GMODE;
wlapi_bmac_corereset(pi->sh->physhim, pi->pubpi.coreflags);
phyversion = R_REG(&pi->regs->phyversion);
pi->pubpi.phy_type = PHY_TYPE(phyversion);
pi->pubpi.phy_rev = phyversion & PV_PV_MASK;
if (pi->pubpi.phy_type == PHY_TYPE_LCNXN) {
pi->pubpi.phy_type = PHY_TYPE_N;
pi->pubpi.phy_rev += LCNXN_BASEREV;
}
pi->pubpi.phy_corenum = PHY_CORE_NUM_2;
pi->pubpi.ana_rev = (phyversion & PV_AV_MASK) >> PV_AV_SHIFT;
if (!pi->pubpi.phy_type == PHY_TYPE_N &&
!pi->pubpi.phy_type == PHY_TYPE_LCN)
goto err;
if (bandtype == BRCM_BAND_5G) {
if (!ISNPHY(pi))
goto err;
} else if (!ISNPHY(pi) && !ISLCNPHY(pi)) {
goto err;
}
wlc_phy_anacore((struct brcms_phy_pub *) pi, ON);
idcode = wlc_phy_get_radio_ver(pi);
pi->pubpi.radioid =
(idcode & IDCODE_ID_MASK) >> IDCODE_ID_SHIFT;
pi->pubpi.radiorev =
(idcode & IDCODE_REV_MASK) >> IDCODE_REV_SHIFT;
pi->pubpi.radiover =
(idcode & IDCODE_VER_MASK) >> IDCODE_VER_SHIFT;
if (!VALID_RADIO(pi, pi->pubpi.radioid))
goto err;
wlc_phy_switch_radio((struct brcms_phy_pub *) pi, OFF);
wlc_set_phy_uninitted(pi);
pi->bw = WL_CHANSPEC_BW_20;
pi->radio_chanspec = (bandtype == BRCM_BAND_2G) ?
ch20mhz_chspec(1) : ch20mhz_chspec(36);
pi->rxiq_samps = PHY_NOISE_SAMPLE_LOG_NUM_NPHY;
pi->rxiq_antsel = ANT_RX_DIV_DEF;
pi->watchdog_override = true;
pi->cal_type_override = PHY_PERICAL_AUTO;
pi->nphy_saved_noisevars.bufcount = 0;
if (ISNPHY(pi))
pi->min_txpower = PHY_TXPWR_MIN_NPHY;
else
pi->min_txpower = PHY_TXPWR_MIN;
pi->sh->phyrxchain = 0x3;
pi->rx2tx_biasentry = -1;
pi->phy_txcore_disable_temp = PHY_CHAIN_TX_DISABLE_TEMP;
pi->phy_txcore_enable_temp =
PHY_CHAIN_TX_DISABLE_TEMP - PHY_HYSTERESIS_DELTATEMP;
pi->phy_tempsense_offset = 0;
pi->phy_txcore_heatedup = false;
pi->nphy_lastcal_temp = -50;
pi->phynoise_polling = true;
if (ISNPHY(pi) || ISLCNPHY(pi))
pi->phynoise_polling = false;
for (i = 0; i < TXP_NUM_RATES; i++) {
pi->txpwr_limit[i] = BRCMS_TXPWR_MAX;
pi->txpwr_env_limit[i] = BRCMS_TXPWR_MAX;
pi->tx_user_target[i] = BRCMS_TXPWR_MAX;
}
pi->radiopwr_override = RADIOPWR_OVERRIDE_DEF;
pi->user_txpwr_at_rfport = false;
if (ISNPHY(pi)) {
pi->phycal_timer = wlapi_init_timer(pi->sh->physhim,
wlc_phy_timercb_phycal,
pi, "phycal");
if (!pi->phycal_timer)
goto err;
if (!wlc_phy_attach_nphy(pi))
goto err;
} else if (ISLCNPHY(pi)) {
if (!wlc_phy_attach_lcnphy(pi))
goto err;
}
pi->refcnt++;
pi->next = pi->sh->phy_head;
sh->phy_head = pi;
memcpy(&pi->pubpi_ro, &pi->pubpi, sizeof(struct brcms_phy_pub));
return &pi->pubpi_ro;
err:
kfree(pi);
return NULL;
}
void wlc_phy_detach(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (pih) {
if (--pi->refcnt)
return;
if (pi->phycal_timer) {
wlapi_free_timer(pi->phycal_timer);
pi->phycal_timer = NULL;
}
if (pi->sh->phy_head == pi)
pi->sh->phy_head = pi->next;
else if (pi->sh->phy_head->next == pi)
pi->sh->phy_head->next = NULL;
if (pi->pi_fptr.detach)
(pi->pi_fptr.detach)(pi);
kfree(pi);
}
}
bool
wlc_phy_get_phyversion(struct brcms_phy_pub *pih, u16 *phytype, u16 *phyrev,
u16 *radioid, u16 *radiover)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
*phytype = (u16) pi->pubpi.phy_type;
*phyrev = (u16) pi->pubpi.phy_rev;
*radioid = pi->pubpi.radioid;
*radiover = pi->pubpi.radiorev;
return true;
}
bool wlc_phy_get_encore(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
return pi->pubpi.abgphy_encore;
}
u32 wlc_phy_get_coreflags(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
return pi->pubpi.coreflags;
}
void wlc_phy_anacore(struct brcms_phy_pub *pih, bool on)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (ISNPHY(pi)) {
if (on) {
if (NREV_GE(pi->pubpi.phy_rev, 3)) {
write_phy_reg(pi, 0xa6, 0x0d);
write_phy_reg(pi, 0x8f, 0x0);
write_phy_reg(pi, 0xa7, 0x0d);
write_phy_reg(pi, 0xa5, 0x0);
} else {
write_phy_reg(pi, 0xa5, 0x0);
}
} else {
if (NREV_GE(pi->pubpi.phy_rev, 3)) {
write_phy_reg(pi, 0x8f, 0x07ff);
write_phy_reg(pi, 0xa6, 0x0fd);
write_phy_reg(pi, 0xa5, 0x07ff);
write_phy_reg(pi, 0xa7, 0x0fd);
} else {
write_phy_reg(pi, 0xa5, 0x7fff);
}
}
} else if (ISLCNPHY(pi)) {
if (on) {
and_phy_reg(pi, 0x43b,
~((0x1 << 0) | (0x1 << 1) | (0x1 << 2)));
} else {
or_phy_reg(pi, 0x43c,
(0x1 << 0) | (0x1 << 1) | (0x1 << 2));
or_phy_reg(pi, 0x43b,
(0x1 << 0) | (0x1 << 1) | (0x1 << 2));
}
}
}
u32 wlc_phy_clk_bwbits(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
u32 phy_bw_clkbits = 0;
if (pi && (ISNPHY(pi) || ISLCNPHY(pi))) {
switch (pi->bw) {
case WL_CHANSPEC_BW_10:
phy_bw_clkbits = SICF_BW10;
break;
case WL_CHANSPEC_BW_20:
phy_bw_clkbits = SICF_BW20;
break;
case WL_CHANSPEC_BW_40:
phy_bw_clkbits = SICF_BW40;
break;
default:
break;
}
}
return phy_bw_clkbits;
}
void wlc_phy_por_inform(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->phy_init_por = true;
}
void wlc_phy_edcrs_lock(struct brcms_phy_pub *pih, bool lock)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->edcrs_threshold_lock = lock;
write_phy_reg(pi, 0x22c, 0x46b);
write_phy_reg(pi, 0x22d, 0x46b);
write_phy_reg(pi, 0x22e, 0x3c0);
write_phy_reg(pi, 0x22f, 0x3c0);
}
void wlc_phy_initcal_enable(struct brcms_phy_pub *pih, bool initcal)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->do_initcal = initcal;
}
void wlc_phy_hw_clk_state_upd(struct brcms_phy_pub *pih, bool newstate)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (!pi || !pi->sh)
return;
pi->sh->clk = newstate;
}
void wlc_phy_hw_state_upd(struct brcms_phy_pub *pih, bool newstate)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (!pi || !pi->sh)
return;
pi->sh->up = newstate;
}
void wlc_phy_init(struct brcms_phy_pub *pih, u16 chanspec)
{
u32 mc;
void (*phy_init)(struct brcms_phy *) = NULL;
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (pi->init_in_progress)
return;
pi->init_in_progress = true;
pi->radio_chanspec = chanspec;
mc = R_REG(&pi->regs->maccontrol);
if (WARN(mc & MCTL_EN_MAC, "HW error MAC running on init"))
return;
if (!(pi->measure_hold & PHY_HOLD_FOR_SCAN))
pi->measure_hold |= PHY_HOLD_FOR_NOT_ASSOC;
if (WARN(!(ai_core_sflags(pi->sh->sih, 0, 0) & SISF_FCLKA),
"HW error SISF_FCLKA\n"))
return;
phy_init = pi->pi_fptr.init;
if (phy_init == NULL)
return;
wlc_phy_anacore(pih, ON);
if (CHSPEC_BW(pi->radio_chanspec) != pi->bw)
wlapi_bmac_bw_set(pi->sh->physhim,
CHSPEC_BW(pi->radio_chanspec));
pi->nphy_gain_boost = true;
wlc_phy_switch_radio((struct brcms_phy_pub *) pi, ON);
(*phy_init)(pi);
pi->phy_init_por = false;
if (D11REV_IS(pi->sh->corerev, 11) || D11REV_IS(pi->sh->corerev, 12))
wlc_phy_do_dummy_tx(pi, true, OFF);
if (!(ISNPHY(pi)))
wlc_phy_txpower_update_shm(pi);
wlc_phy_ant_rxdiv_set((struct brcms_phy_pub *) pi, pi->sh->rx_antdiv);
pi->init_in_progress = false;
}
void wlc_phy_cal_init(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
void (*cal_init)(struct brcms_phy *) = NULL;
if (WARN((R_REG(&pi->regs->maccontrol) & MCTL_EN_MAC) != 0,
"HW error: MAC enabled during phy cal\n"))
return;
if (!pi->initialized) {
cal_init = pi->pi_fptr.calinit;
if (cal_init)
(*cal_init)(pi);
pi->initialized = true;
}
}
int wlc_phy_down(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
int callbacks = 0;
if (pi->phycal_timer
&& !wlapi_del_timer(pi->phycal_timer))
callbacks++;
pi->nphy_iqcal_chanspec_2G = 0;
pi->nphy_iqcal_chanspec_5G = 0;
return callbacks;
}
void
wlc_phy_table_addr(struct brcms_phy *pi, uint tbl_id, uint tbl_offset,
u16 tblAddr, u16 tblDataHi, u16 tblDataLo)
{
write_phy_reg(pi, tblAddr, (tbl_id << 10) | tbl_offset);
pi->tbl_data_hi = tblDataHi;
pi->tbl_data_lo = tblDataLo;
if (pi->sh->chip == BCM43224_CHIP_ID &&
pi->sh->chiprev == 1) {
pi->tbl_addr = tblAddr;
pi->tbl_save_id = tbl_id;
pi->tbl_save_offset = tbl_offset;
}
}
void wlc_phy_table_data_write(struct brcms_phy *pi, uint width, u32 val)
{
if ((pi->sh->chip == BCM43224_CHIP_ID) &&
(pi->sh->chiprev == 1) &&
(pi->tbl_save_id == NPHY_TBL_ID_ANTSWCTRLLUT)) {
read_phy_reg(pi, pi->tbl_data_lo);
write_phy_reg(pi, pi->tbl_addr,
(pi->tbl_save_id << 10) | pi->tbl_save_offset);
pi->tbl_save_offset++;
}
if (width == 32) {
write_phy_reg(pi, pi->tbl_data_hi, (u16) (val >> 16));
write_phy_reg(pi, pi->tbl_data_lo, (u16) val);
} else {
write_phy_reg(pi, pi->tbl_data_lo, (u16) val);
}
}
void
wlc_phy_write_table(struct brcms_phy *pi, const struct phytbl_info *ptbl_info,
u16 tblAddr, u16 tblDataHi, u16 tblDataLo)
{
uint idx;
uint tbl_id = ptbl_info->tbl_id;
uint tbl_offset = ptbl_info->tbl_offset;
uint tbl_width = ptbl_info->tbl_width;
const u8 *ptbl_8b = (const u8 *)ptbl_info->tbl_ptr;
const u16 *ptbl_16b = (const u16 *)ptbl_info->tbl_ptr;
const u32 *ptbl_32b = (const u32 *)ptbl_info->tbl_ptr;
write_phy_reg(pi, tblAddr, (tbl_id << 10) | tbl_offset);
for (idx = 0; idx < ptbl_info->tbl_len; idx++) {
if ((pi->sh->chip == BCM43224_CHIP_ID) &&
(pi->sh->chiprev == 1) &&
(tbl_id == NPHY_TBL_ID_ANTSWCTRLLUT)) {
read_phy_reg(pi, tblDataLo);
write_phy_reg(pi, tblAddr,
(tbl_id << 10) | (tbl_offset + idx));
}
if (tbl_width == 32) {
write_phy_reg(pi, tblDataHi,
(u16) (ptbl_32b[idx] >> 16));
write_phy_reg(pi, tblDataLo, (u16) ptbl_32b[idx]);
} else if (tbl_width == 16) {
write_phy_reg(pi, tblDataLo, ptbl_16b[idx]);
} else {
write_phy_reg(pi, tblDataLo, ptbl_8b[idx]);
}
}
}
void
wlc_phy_read_table(struct brcms_phy *pi, const struct phytbl_info *ptbl_info,
u16 tblAddr, u16 tblDataHi, u16 tblDataLo)
{
uint idx;
uint tbl_id = ptbl_info->tbl_id;
uint tbl_offset = ptbl_info->tbl_offset;
uint tbl_width = ptbl_info->tbl_width;
u8 *ptbl_8b = (u8 *)ptbl_info->tbl_ptr;
u16 *ptbl_16b = (u16 *)ptbl_info->tbl_ptr;
u32 *ptbl_32b = (u32 *)ptbl_info->tbl_ptr;
write_phy_reg(pi, tblAddr, (tbl_id << 10) | tbl_offset);
for (idx = 0; idx < ptbl_info->tbl_len; idx++) {
if ((pi->sh->chip == BCM43224_CHIP_ID) &&
(pi->sh->chiprev == 1)) {
(void)read_phy_reg(pi, tblDataLo);
write_phy_reg(pi, tblAddr,
(tbl_id << 10) | (tbl_offset + idx));
}
if (tbl_width == 32) {
ptbl_32b[idx] = read_phy_reg(pi, tblDataLo);
ptbl_32b[idx] |= (read_phy_reg(pi, tblDataHi) << 16);
} else if (tbl_width == 16) {
ptbl_16b[idx] = read_phy_reg(pi, tblDataLo);
} else {
ptbl_8b[idx] = (u8) read_phy_reg(pi, tblDataLo);
}
}
}
uint
wlc_phy_init_radio_regs_allbands(struct brcms_phy *pi,
struct radio_20xx_regs *radioregs)
{
uint i = 0;
do {
if (radioregs[i].do_init)
write_radio_reg(pi, radioregs[i].address,
(u16) radioregs[i].init);
i++;
} while (radioregs[i].address != 0xffff);
return i;
}
uint
wlc_phy_init_radio_regs(struct brcms_phy *pi,
const struct radio_regs *radioregs,
u16 core_offset)
{
uint i = 0;
uint count = 0;
do {
if (CHSPEC_IS5G(pi->radio_chanspec)) {
if (radioregs[i].do_init_a) {
write_radio_reg(pi,
radioregs[i].
address | core_offset,
(u16) radioregs[i].init_a);
if (ISNPHY(pi) && (++count % 4 == 0))
BRCMS_PHY_WAR_PR51571(pi);
}
} else {
if (radioregs[i].do_init_g) {
write_radio_reg(pi,
radioregs[i].
address | core_offset,
(u16) radioregs[i].init_g);
if (ISNPHY(pi) && (++count % 4 == 0))
BRCMS_PHY_WAR_PR51571(pi);
}
}
i++;
} while (radioregs[i].address != 0xffff);
return i;
}
void wlc_phy_do_dummy_tx(struct brcms_phy *pi, bool ofdm, bool pa_on)
{
#define DUMMY_PKT_LEN 20
struct d11regs __iomem *regs = pi->regs;
int i, count;
u8 ofdmpkt[DUMMY_PKT_LEN] = {
0xcc, 0x01, 0x02, 0x00, 0x00, 0x00, 0xd4, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00
};
u8 cckpkt[DUMMY_PKT_LEN] = {
0x6e, 0x84, 0x0b, 0x00, 0x00, 0x00, 0xd4, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00
};
u32 *dummypkt;
dummypkt = (u32 *) (ofdm ? ofdmpkt : cckpkt);
wlapi_bmac_write_template_ram(pi->sh->physhim, 0, DUMMY_PKT_LEN,
dummypkt);
W_REG(&regs->xmtsel, 0);
if (D11REV_GE(pi->sh->corerev, 11))
W_REG(&regs->wepctl, 0x100);
else
W_REG(&regs->wepctl, 0);
W_REG(&regs->txe_phyctl, (ofdm ? 1 : 0) | PHY_TXC_ANT_0);
if (ISNPHY(pi) || ISLCNPHY(pi))
W_REG(&regs->txe_phyctl1, 0x1A02);
W_REG(&regs->txe_wm_0, 0);
W_REG(&regs->txe_wm_1, 0);
W_REG(&regs->xmttplatetxptr, 0);
W_REG(&regs->xmttxcnt, DUMMY_PKT_LEN);
W_REG(&regs->xmtsel, ((8 << 8) | (1 << 5) | (1 << 2) | 2));
W_REG(&regs->txe_ctl, 0);
if (!pa_on) {
if (ISNPHY(pi))
wlc_phy_pa_override_nphy(pi, OFF);
}
if (ISNPHY(pi) || ISLCNPHY(pi))
W_REG(&regs->txe_aux, 0xD0);
else
W_REG(&regs->txe_aux, ((1 << 5) | (1 << 4)));
(void)R_REG(&regs->txe_aux);
i = 0;
count = ofdm ? 30 : 250;
while ((i++ < count)
&& (R_REG(&regs->txe_status) & (1 << 7)))
udelay(10);
i = 0;
while ((i++ < 10)
&& ((R_REG(&regs->txe_status) & (1 << 10)) == 0))
udelay(10);
i = 0;
while ((i++ < 10) && ((R_REG(&regs->ifsstat) & (1 << 8))))
udelay(10);
if (!pa_on) {
if (ISNPHY(pi))
wlc_phy_pa_override_nphy(pi, ON);
}
}
void wlc_phy_hold_upd(struct brcms_phy_pub *pih, u32 id, bool set)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (set)
mboolset(pi->measure_hold, id);
else
mboolclr(pi->measure_hold, id);
return;
}
void wlc_phy_mute_upd(struct brcms_phy_pub *pih, bool mute, u32 flags)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (mute)
mboolset(pi->measure_hold, PHY_HOLD_FOR_MUTE);
else
mboolclr(pi->measure_hold, PHY_HOLD_FOR_MUTE);
if (!mute && (flags & PHY_MUTE_FOR_PREISM))
pi->nphy_perical_last = pi->sh->now - pi->sh->glacial_timer;
return;
}
void wlc_phy_clear_tssi(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (ISNPHY(pi)) {
return;
} else {
wlapi_bmac_write_shm(pi->sh->physhim, M_B_TSSI_0, NULL_TSSI_W);
wlapi_bmac_write_shm(pi->sh->physhim, M_B_TSSI_1, NULL_TSSI_W);
wlapi_bmac_write_shm(pi->sh->physhim, M_G_TSSI_0, NULL_TSSI_W);
wlapi_bmac_write_shm(pi->sh->physhim, M_G_TSSI_1, NULL_TSSI_W);
}
}
static bool wlc_phy_cal_txpower_recalc_sw(struct brcms_phy *pi)
{
return false;
}
void wlc_phy_switch_radio(struct brcms_phy_pub *pih, bool on)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
(void)R_REG(&pi->regs->maccontrol);
if (ISNPHY(pi)) {
wlc_phy_switch_radio_nphy(pi, on);
} else if (ISLCNPHY(pi)) {
if (on) {
and_phy_reg(pi, 0x44c,
~((0x1 << 8) |
(0x1 << 9) |
(0x1 << 10) | (0x1 << 11) | (0x1 << 12)));
and_phy_reg(pi, 0x4b0, ~((0x1 << 3) | (0x1 << 11)));
and_phy_reg(pi, 0x4f9, ~(0x1 << 3));
} else {
and_phy_reg(pi, 0x44d,
~((0x1 << 10) |
(0x1 << 11) |
(0x1 << 12) | (0x1 << 13) | (0x1 << 14)));
or_phy_reg(pi, 0x44c,
(0x1 << 8) |
(0x1 << 9) |
(0x1 << 10) | (0x1 << 11) | (0x1 << 12));
and_phy_reg(pi, 0x4b7, ~((0x7f << 8)));
and_phy_reg(pi, 0x4b1, ~((0x1 << 13)));
or_phy_reg(pi, 0x4b0, (0x1 << 3) | (0x1 << 11));
and_phy_reg(pi, 0x4fa, ~((0x1 << 3)));
or_phy_reg(pi, 0x4f9, (0x1 << 3));
}
}
}
u16 wlc_phy_bw_state_get(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
return pi->bw;
}
void wlc_phy_bw_state_set(struct brcms_phy_pub *ppi, u16 bw)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->bw = bw;
}
void wlc_phy_chanspec_radio_set(struct brcms_phy_pub *ppi, u16 newch)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->radio_chanspec = newch;
}
u16 wlc_phy_chanspec_get(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
return pi->radio_chanspec;
}
void wlc_phy_chanspec_set(struct brcms_phy_pub *ppi, u16 chanspec)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
u16 m_cur_channel;
void (*chanspec_set)(struct brcms_phy *, u16) = NULL;
m_cur_channel = CHSPEC_CHANNEL(chanspec);
if (CHSPEC_IS5G(chanspec))
m_cur_channel |= D11_CURCHANNEL_5G;
if (CHSPEC_IS40(chanspec))
m_cur_channel |= D11_CURCHANNEL_40;
wlapi_bmac_write_shm(pi->sh->physhim, M_CURCHANNEL, m_cur_channel);
chanspec_set = pi->pi_fptr.chanset;
if (chanspec_set)
(*chanspec_set)(pi, chanspec);
}
int wlc_phy_chanspec_freq2bandrange_lpssn(uint freq)
{
int range = -1;
if (freq < 2500)
range = WL_CHAN_FREQ_RANGE_2G;
else if (freq <= 5320)
range = WL_CHAN_FREQ_RANGE_5GL;
else if (freq <= 5700)
range = WL_CHAN_FREQ_RANGE_5GM;
else
range = WL_CHAN_FREQ_RANGE_5GH;
return range;
}
int wlc_phy_chanspec_bandrange_get(struct brcms_phy *pi, u16 chanspec)
{
int range = -1;
uint channel = CHSPEC_CHANNEL(chanspec);
uint freq = wlc_phy_channel2freq(channel);
if (ISNPHY(pi))
range = wlc_phy_get_chan_freq_range_nphy(pi, channel);
else if (ISLCNPHY(pi))
range = wlc_phy_chanspec_freq2bandrange_lpssn(freq);
return range;
}
void wlc_phy_chanspec_ch14_widefilter_set(struct brcms_phy_pub *ppi,
bool wide_filter)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->channel_14_wide_filter = wide_filter;
}
int wlc_phy_channel2freq(uint channel)
{
uint i;
for (i = 0; i < ARRAY_SIZE(chan_info_all); i++)
if (chan_info_all[i].chan == channel)
return chan_info_all[i].freq;
return 0;
}
void
wlc_phy_chanspec_band_validch(struct brcms_phy_pub *ppi, uint band,
struct brcms_chanvec *channels)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
uint i;
uint channel;
memset(channels, 0, sizeof(struct brcms_chanvec));
for (i = 0; i < ARRAY_SIZE(chan_info_all); i++) {
channel = chan_info_all[i].chan;
if ((pi->a_band_high_disable) && (channel >= FIRST_REF5_CHANNUM)
&& (channel <= LAST_REF5_CHANNUM))
continue;
if ((band == BRCM_BAND_2G && channel <= CH_MAX_2G_CHANNEL) ||
(band == BRCM_BAND_5G && channel > CH_MAX_2G_CHANNEL))
setbit(channels->vec, channel);
}
}
u16 wlc_phy_chanspec_band_firstch(struct brcms_phy_pub *ppi, uint band)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
uint i;
uint channel;
u16 chspec;
for (i = 0; i < ARRAY_SIZE(chan_info_all); i++) {
channel = chan_info_all[i].chan;
if (ISNPHY(pi) && pi->bw == WL_CHANSPEC_BW_40) {
uint j;
for (j = 0; j < ARRAY_SIZE(chan_info_all); j++) {
if (chan_info_all[j].chan ==
channel + CH_10MHZ_APART)
break;
}
if (j == ARRAY_SIZE(chan_info_all))
continue;
channel = upper_20_sb(channel);
chspec = channel | WL_CHANSPEC_BW_40 |
WL_CHANSPEC_CTL_SB_LOWER;
if (band == BRCM_BAND_2G)
chspec |= WL_CHANSPEC_BAND_2G;
else
chspec |= WL_CHANSPEC_BAND_5G;
} else
chspec = ch20mhz_chspec(channel);
if ((pi->a_band_high_disable) && (channel >= FIRST_REF5_CHANNUM)
&& (channel <= LAST_REF5_CHANNUM))
continue;
if ((band == BRCM_BAND_2G && channel <= CH_MAX_2G_CHANNEL) ||
(band == BRCM_BAND_5G && channel > CH_MAX_2G_CHANNEL))
return chspec;
}
return (u16) INVCHANSPEC;
}
int wlc_phy_txpower_get(struct brcms_phy_pub *ppi, uint *qdbm, bool *override)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
*qdbm = pi->tx_user_target[0];
if (override != NULL)
*override = pi->txpwroverride;
return 0;
}
void wlc_phy_txpower_target_set(struct brcms_phy_pub *ppi,
struct txpwr_limits *txpwr)
{
bool mac_enabled = false;
struct brcms_phy *pi = (struct brcms_phy *) ppi;
memcpy(&pi->tx_user_target[TXP_FIRST_CCK],
&txpwr->cck[0], BRCMS_NUM_RATES_CCK);
memcpy(&pi->tx_user_target[TXP_FIRST_OFDM],
&txpwr->ofdm[0], BRCMS_NUM_RATES_OFDM);
memcpy(&pi->tx_user_target[TXP_FIRST_OFDM_20_CDD],
&txpwr->ofdm_cdd[0], BRCMS_NUM_RATES_OFDM);
memcpy(&pi->tx_user_target[TXP_FIRST_OFDM_40_SISO],
&txpwr->ofdm_40_siso[0], BRCMS_NUM_RATES_OFDM);
memcpy(&pi->tx_user_target[TXP_FIRST_OFDM_40_CDD],
&txpwr->ofdm_40_cdd[0], BRCMS_NUM_RATES_OFDM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_20_SISO],
&txpwr->mcs_20_siso[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_20_CDD],
&txpwr->mcs_20_cdd[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_20_STBC],
&txpwr->mcs_20_stbc[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_20_SDM],
&txpwr->mcs_20_mimo[0], BRCMS_NUM_RATES_MCS_2_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_40_SISO],
&txpwr->mcs_40_siso[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_40_CDD],
&txpwr->mcs_40_cdd[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_40_STBC],
&txpwr->mcs_40_stbc[0], BRCMS_NUM_RATES_MCS_1_STREAM);
memcpy(&pi->tx_user_target[TXP_FIRST_MCS_40_SDM],
&txpwr->mcs_40_mimo[0], BRCMS_NUM_RATES_MCS_2_STREAM);
if (R_REG(&pi->regs->maccontrol) & MCTL_EN_MAC)
mac_enabled = true;
if (mac_enabled)
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_phy_txpower_recalc_target(pi);
wlc_phy_cal_txpower_recalc_sw(pi);
if (mac_enabled)
wlapi_enable_mac(pi->sh->physhim);
}
int wlc_phy_txpower_set(struct brcms_phy_pub *ppi, uint qdbm, bool override)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
int i;
if (qdbm > 127)
return -EINVAL;
for (i = 0; i < TXP_NUM_RATES; i++)
pi->tx_user_target[i] = (u8) qdbm;
pi->txpwroverride = false;
if (pi->sh->up) {
if (!SCAN_INPROG_PHY(pi)) {
bool suspend;
suspend = (0 == (R_REG(&pi->regs->maccontrol) &
MCTL_EN_MAC));
if (!suspend)
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_phy_txpower_recalc_target(pi);
wlc_phy_cal_txpower_recalc_sw(pi);
if (!suspend)
wlapi_enable_mac(pi->sh->physhim);
}
}
return 0;
}
void
wlc_phy_txpower_sromlimit(struct brcms_phy_pub *ppi, uint channel, u8 *min_pwr,
u8 *max_pwr, int txp_rate_idx)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
uint i;
*min_pwr = pi->min_txpower * BRCMS_TXPWR_DB_FACTOR;
if (ISNPHY(pi)) {
if (txp_rate_idx < 0)
txp_rate_idx = TXP_FIRST_CCK;
wlc_phy_txpower_sromlimit_get_nphy(pi, channel, max_pwr,
(u8) txp_rate_idx);
} else if ((channel <= CH_MAX_2G_CHANNEL)) {
if (txp_rate_idx < 0)
txp_rate_idx = TXP_FIRST_CCK;
*max_pwr = pi->tx_srom_max_rate_2g[txp_rate_idx];
} else {
*max_pwr = BRCMS_TXPWR_MAX;
if (txp_rate_idx < 0)
txp_rate_idx = TXP_FIRST_OFDM;
for (i = 0; i < ARRAY_SIZE(chan_info_all); i++) {
if (channel == chan_info_all[i].chan)
break;
}
if (pi->hwtxpwr) {
*max_pwr = pi->hwtxpwr[i];
} else {
if ((i >= FIRST_MID_5G_CHAN) && (i <= LAST_MID_5G_CHAN))
*max_pwr =
pi->tx_srom_max_rate_5g_mid[txp_rate_idx];
if ((i >= FIRST_HIGH_5G_CHAN)
&& (i <= LAST_HIGH_5G_CHAN))
*max_pwr =
pi->tx_srom_max_rate_5g_hi[txp_rate_idx];
if ((i >= FIRST_LOW_5G_CHAN) && (i <= LAST_LOW_5G_CHAN))
*max_pwr =
pi->tx_srom_max_rate_5g_low[txp_rate_idx];
}
}
}
void
wlc_phy_txpower_sromlimit_max_get(struct brcms_phy_pub *ppi, uint chan,
u8 *max_txpwr, u8 *min_txpwr)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
u8 tx_pwr_max = 0;
u8 tx_pwr_min = 255;
u8 max_num_rate;
u8 maxtxpwr, mintxpwr, rate, pactrl;
pactrl = 0;
max_num_rate = ISNPHY(pi) ? TXP_NUM_RATES :
ISLCNPHY(pi) ? (TXP_LAST_SISO_MCS_20 +
1) : (TXP_LAST_OFDM + 1);
for (rate = 0; rate < max_num_rate; rate++) {
wlc_phy_txpower_sromlimit(ppi, chan, &mintxpwr, &maxtxpwr,
rate);
maxtxpwr = (maxtxpwr > pactrl) ? (maxtxpwr - pactrl) : 0;
maxtxpwr = (maxtxpwr > 6) ? (maxtxpwr - 6) : 0;
tx_pwr_max = max(tx_pwr_max, maxtxpwr);
tx_pwr_min = min(tx_pwr_min, maxtxpwr);
}
*max_txpwr = tx_pwr_max;
*min_txpwr = tx_pwr_min;
}
void
wlc_phy_txpower_boardlimit_band(struct brcms_phy_pub *ppi, uint bandunit,
s32 *max_pwr, s32 *min_pwr, u32 *step_pwr)
{
return;
}
u8 wlc_phy_txpower_get_target_min(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
return pi->tx_power_min;
}
u8 wlc_phy_txpower_get_target_max(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
return pi->tx_power_max;
}
static s8 wlc_phy_env_measure_vbat(struct brcms_phy *pi)
{
if (ISLCNPHY(pi))
return wlc_lcnphy_vbatsense(pi, 0);
else
return 0;
}
static s8 wlc_phy_env_measure_temperature(struct brcms_phy *pi)
{
if (ISLCNPHY(pi))
return wlc_lcnphy_tempsense_degree(pi, 0);
else
return 0;
}
static void wlc_phy_upd_env_txpwr_rate_limits(struct brcms_phy *pi, u32 band)
{
u8 i;
s8 temp, vbat;
for (i = 0; i < TXP_NUM_RATES; i++)
pi->txpwr_env_limit[i] = BRCMS_TXPWR_MAX;
vbat = wlc_phy_env_measure_vbat(pi);
temp = wlc_phy_env_measure_temperature(pi);
}
static s8
wlc_user_txpwr_antport_to_rfport(struct brcms_phy *pi, uint chan, u32 band,
u8 rate)
{
s8 offset = 0;
if (!pi->user_txpwr_at_rfport)
return offset;
return offset;
}
void wlc_phy_txpower_recalc_target(struct brcms_phy *pi)
{
u8 maxtxpwr, mintxpwr, rate, pactrl;
uint target_chan;
u8 tx_pwr_target[TXP_NUM_RATES];
u8 tx_pwr_max = 0;
u8 tx_pwr_min = 255;
u8 tx_pwr_max_rate_ind = 0;
u8 max_num_rate;
u8 start_rate = 0;
u16 chspec;
u32 band = CHSPEC2BAND(pi->radio_chanspec);
void (*txpwr_recalc_fn)(struct brcms_phy *) = NULL;
chspec = pi->radio_chanspec;
if (CHSPEC_CTL_SB(chspec) == WL_CHANSPEC_CTL_SB_NONE)
target_chan = CHSPEC_CHANNEL(chspec);
else if (CHSPEC_CTL_SB(chspec) == WL_CHANSPEC_CTL_SB_UPPER)
target_chan = upper_20_sb(CHSPEC_CHANNEL(chspec));
else
target_chan = lower_20_sb(CHSPEC_CHANNEL(chspec));
pactrl = 0;
if (ISLCNPHY(pi)) {
u32 offset_mcs, i;
if (CHSPEC_IS40(pi->radio_chanspec)) {
offset_mcs = pi->mcs40_po;
for (i = TXP_FIRST_SISO_MCS_20;
i <= TXP_LAST_SISO_MCS_20; i++) {
pi->tx_srom_max_rate_2g[i - 8] =
pi->tx_srom_max_2g -
((offset_mcs & 0xf) * 2);
offset_mcs >>= 4;
}
} else {
offset_mcs = pi->mcs20_po;
for (i = TXP_FIRST_SISO_MCS_20;
i <= TXP_LAST_SISO_MCS_20; i++) {
pi->tx_srom_max_rate_2g[i - 8] =
pi->tx_srom_max_2g -
((offset_mcs & 0xf) * 2);
offset_mcs >>= 4;
}
}
}
max_num_rate = ((ISNPHY(pi)) ? (TXP_NUM_RATES) :
((ISLCNPHY(pi)) ?
(TXP_LAST_SISO_MCS_20 + 1) : (TXP_LAST_OFDM + 1)));
wlc_phy_upd_env_txpwr_rate_limits(pi, band);
for (rate = start_rate; rate < max_num_rate; rate++) {
tx_pwr_target[rate] = pi->tx_user_target[rate];
if (pi->user_txpwr_at_rfport)
tx_pwr_target[rate] +=
wlc_user_txpwr_antport_to_rfport(pi,
target_chan,
band,
rate);
wlc_phy_txpower_sromlimit((struct brcms_phy_pub *) pi,
target_chan,
&mintxpwr, &maxtxpwr, rate);
maxtxpwr = min(maxtxpwr, pi->txpwr_limit[rate]);
maxtxpwr = (maxtxpwr > pactrl) ? (maxtxpwr - pactrl) : 0;
maxtxpwr = (maxtxpwr > 6) ? (maxtxpwr - 6) : 0;
maxtxpwr = min(maxtxpwr, tx_pwr_target[rate]);
if (pi->txpwr_percent <= 100)
maxtxpwr = (maxtxpwr * pi->txpwr_percent) / 100;
tx_pwr_target[rate] = max(maxtxpwr, mintxpwr);
tx_pwr_target[rate] =
min(tx_pwr_target[rate], pi->txpwr_env_limit[rate]);
if (tx_pwr_target[rate] > tx_pwr_max)
tx_pwr_max_rate_ind = rate;
tx_pwr_max = max(tx_pwr_max, tx_pwr_target[rate]);
tx_pwr_min = min(tx_pwr_min, tx_pwr_target[rate]);
}
memset(pi->tx_power_offset, 0, sizeof(pi->tx_power_offset));
pi->tx_power_max = tx_pwr_max;
pi->tx_power_min = tx_pwr_min;
pi->tx_power_max_rate_ind = tx_pwr_max_rate_ind;
for (rate = 0; rate < max_num_rate; rate++) {
pi->tx_power_target[rate] = tx_pwr_target[rate];
if (!pi->hwpwrctrl || ISNPHY(pi))
pi->tx_power_offset[rate] =
pi->tx_power_max - pi->tx_power_target[rate];
else
pi->tx_power_offset[rate] =
pi->tx_power_target[rate] - pi->tx_power_min;
}
txpwr_recalc_fn = pi->pi_fptr.txpwrrecalc;
if (txpwr_recalc_fn)
(*txpwr_recalc_fn)(pi);
}
static void
wlc_phy_txpower_reg_limit_calc(struct brcms_phy *pi, struct txpwr_limits *txpwr,
u16 chanspec)
{
u8 tmp_txpwr_limit[2 * BRCMS_NUM_RATES_OFDM];
u8 *txpwr_ptr1 = NULL, *txpwr_ptr2 = NULL;
int rate_start_index = 0, rate1, rate2, k;
for (rate1 = WL_TX_POWER_CCK_FIRST, rate2 = 0;
rate2 < WL_TX_POWER_CCK_NUM; rate1++, rate2++)
pi->txpwr_limit[rate1] = txpwr->cck[rate2];
for (rate1 = WL_TX_POWER_OFDM_FIRST, rate2 = 0;
rate2 < WL_TX_POWER_OFDM_NUM; rate1++, rate2++)
pi->txpwr_limit[rate1] = txpwr->ofdm[rate2];
if (ISNPHY(pi)) {
for (k = 0; k < 4; k++) {
switch (k) {
case 0:
txpwr_ptr1 = txpwr->mcs_20_siso;
txpwr_ptr2 = txpwr->ofdm;
rate_start_index = WL_TX_POWER_OFDM_FIRST;
break;
case 1:
txpwr_ptr1 = txpwr->mcs_20_cdd;
txpwr_ptr2 = txpwr->ofdm_cdd;
rate_start_index = WL_TX_POWER_OFDM20_CDD_FIRST;
break;
case 2:
txpwr_ptr1 = txpwr->mcs_40_siso;
txpwr_ptr2 = txpwr->ofdm_40_siso;
rate_start_index =
WL_TX_POWER_OFDM40_SISO_FIRST;
break;
case 3:
txpwr_ptr1 = txpwr->mcs_40_cdd;
txpwr_ptr2 = txpwr->ofdm_40_cdd;
rate_start_index = WL_TX_POWER_OFDM40_CDD_FIRST;
break;
}
for (rate2 = 0; rate2 < BRCMS_NUM_RATES_OFDM;
rate2++) {
tmp_txpwr_limit[rate2] = 0;
tmp_txpwr_limit[BRCMS_NUM_RATES_OFDM + rate2] =
txpwr_ptr1[rate2];
}
wlc_phy_mcs_to_ofdm_powers_nphy(
tmp_txpwr_limit, 0,
BRCMS_NUM_RATES_OFDM -
1, BRCMS_NUM_RATES_OFDM);
for (rate1 = rate_start_index, rate2 = 0;
rate2 < BRCMS_NUM_RATES_OFDM; rate1++, rate2++)
pi->txpwr_limit[rate1] =
min(txpwr_ptr2[rate2],
tmp_txpwr_limit[rate2]);
}
for (k = 0; k < 4; k++) {
switch (k) {
case 0:
txpwr_ptr1 = txpwr->ofdm;
txpwr_ptr2 = txpwr->mcs_20_siso;
rate_start_index = WL_TX_POWER_MCS20_SISO_FIRST;
break;
case 1:
txpwr_ptr1 = txpwr->ofdm_cdd;
txpwr_ptr2 = txpwr->mcs_20_cdd;
rate_start_index = WL_TX_POWER_MCS20_CDD_FIRST;
break;
case 2:
txpwr_ptr1 = txpwr->ofdm_40_siso;
txpwr_ptr2 = txpwr->mcs_40_siso;
rate_start_index = WL_TX_POWER_MCS40_SISO_FIRST;
break;
case 3:
txpwr_ptr1 = txpwr->ofdm_40_cdd;
txpwr_ptr2 = txpwr->mcs_40_cdd;
rate_start_index = WL_TX_POWER_MCS40_CDD_FIRST;
break;
}
for (rate2 = 0; rate2 < BRCMS_NUM_RATES_OFDM;
rate2++) {
tmp_txpwr_limit[rate2] = 0;
tmp_txpwr_limit[BRCMS_NUM_RATES_OFDM + rate2] =
txpwr_ptr1[rate2];
}
wlc_phy_ofdm_to_mcs_powers_nphy(
tmp_txpwr_limit, 0,
BRCMS_NUM_RATES_OFDM -
1, BRCMS_NUM_RATES_OFDM);
for (rate1 = rate_start_index, rate2 = 0;
rate2 < BRCMS_NUM_RATES_MCS_1_STREAM;
rate1++, rate2++)
pi->txpwr_limit[rate1] =
min(txpwr_ptr2[rate2],
tmp_txpwr_limit[rate2]);
}
for (k = 0; k < 2; k++) {
switch (k) {
case 0:
rate_start_index = WL_TX_POWER_MCS20_STBC_FIRST;
txpwr_ptr1 = txpwr->mcs_20_stbc;
break;
case 1:
rate_start_index = WL_TX_POWER_MCS40_STBC_FIRST;
txpwr_ptr1 = txpwr->mcs_40_stbc;
break;
}
for (rate1 = rate_start_index, rate2 = 0;
rate2 < BRCMS_NUM_RATES_MCS_1_STREAM;
rate1++, rate2++)
pi->txpwr_limit[rate1] = txpwr_ptr1[rate2];
}
for (k = 0; k < 2; k++) {
switch (k) {
case 0:
rate_start_index = WL_TX_POWER_MCS20_SDM_FIRST;
txpwr_ptr1 = txpwr->mcs_20_mimo;
break;
case 1:
rate_start_index = WL_TX_POWER_MCS40_SDM_FIRST;
txpwr_ptr1 = txpwr->mcs_40_mimo;
break;
}
for (rate1 = rate_start_index, rate2 = 0;
rate2 < BRCMS_NUM_RATES_MCS_2_STREAM;
rate1++, rate2++)
pi->txpwr_limit[rate1] = txpwr_ptr1[rate2];
}
pi->txpwr_limit[WL_TX_POWER_MCS_32] = txpwr->mcs32;
pi->txpwr_limit[WL_TX_POWER_MCS40_CDD_FIRST] =
min(pi->txpwr_limit[WL_TX_POWER_MCS40_CDD_FIRST],
pi->txpwr_limit[WL_TX_POWER_MCS_32]);
pi->txpwr_limit[WL_TX_POWER_MCS_32] =
pi->txpwr_limit[WL_TX_POWER_MCS40_CDD_FIRST];
}
}
void wlc_phy_txpwr_percent_set(struct brcms_phy_pub *ppi, u8 txpwr_percent)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->txpwr_percent = txpwr_percent;
}
void wlc_phy_machwcap_set(struct brcms_phy_pub *ppi, u32 machwcap)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->sh->machwcap = machwcap;
}
void wlc_phy_runbist_config(struct brcms_phy_pub *ppi, bool start_end)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
u16 rxc;
rxc = 0;
if (start_end == ON) {
if (!ISNPHY(pi))
return;
if (NREV_IS(pi->pubpi.phy_rev, 3)
|| NREV_IS(pi->pubpi.phy_rev, 4)) {
W_REG(&pi->regs->phyregaddr, 0xa0);
(void)R_REG(&pi->regs->phyregaddr);
rxc = R_REG(&pi->regs->phyregdata);
W_REG(&pi->regs->phyregdata,
(0x1 << 15) | rxc);
}
} else {
if (NREV_IS(pi->pubpi.phy_rev, 3)
|| NREV_IS(pi->pubpi.phy_rev, 4)) {
W_REG(&pi->regs->phyregaddr, 0xa0);
(void)R_REG(&pi->regs->phyregaddr);
W_REG(&pi->regs->phyregdata, rxc);
}
wlc_phy_por_inform(ppi);
}
}
void
wlc_phy_txpower_limit_set(struct brcms_phy_pub *ppi, struct txpwr_limits *txpwr,
u16 chanspec)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
wlc_phy_txpower_reg_limit_calc(pi, txpwr, chanspec);
if (ISLCNPHY(pi)) {
int i, j;
for (i = TXP_FIRST_OFDM_20_CDD, j = 0;
j < BRCMS_NUM_RATES_MCS_1_STREAM; i++, j++) {
if (txpwr->mcs_20_siso[j])
pi->txpwr_limit[i] = txpwr->mcs_20_siso[j];
else
pi->txpwr_limit[i] = txpwr->ofdm[j];
}
}
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_phy_txpower_recalc_target(pi);
wlc_phy_cal_txpower_recalc_sw(pi);
wlapi_enable_mac(pi->sh->physhim);
}
void wlc_phy_ofdm_rateset_war(struct brcms_phy_pub *pih, bool war)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->ofdm_rateset_war = war;
}
void wlc_phy_bf_preempt_enable(struct brcms_phy_pub *pih, bool bf_preempt)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->bf_preempt_4306 = bf_preempt;
}
void wlc_phy_txpower_update_shm(struct brcms_phy *pi)
{
int j;
if (ISNPHY(pi))
return;
if (!pi->sh->clk)
return;
if (pi->hwpwrctrl) {
u16 offset;
wlapi_bmac_write_shm(pi->sh->physhim, M_TXPWR_MAX, 63);
wlapi_bmac_write_shm(pi->sh->physhim, M_TXPWR_N,
1 << NUM_TSSI_FRAMES);
wlapi_bmac_write_shm(pi->sh->physhim, M_TXPWR_TARGET,
pi->tx_power_min << NUM_TSSI_FRAMES);
wlapi_bmac_write_shm(pi->sh->physhim, M_TXPWR_CUR,
pi->hwpwr_txcur);
for (j = TXP_FIRST_OFDM; j <= TXP_LAST_OFDM; j++) {
const u8 ucode_ofdm_rates[] = {
0x0c, 0x12, 0x18, 0x24, 0x30, 0x48, 0x60, 0x6c
};
offset = wlapi_bmac_rate_shm_offset(
pi->sh->physhim,
ucode_ofdm_rates[j - TXP_FIRST_OFDM]);
wlapi_bmac_write_shm(pi->sh->physhim, offset + 6,
pi->tx_power_offset[j]);
wlapi_bmac_write_shm(pi->sh->physhim, offset + 14,
-(pi->tx_power_offset[j] / 2));
}
wlapi_bmac_mhf(pi->sh->physhim, MHF2, MHF2_HWPWRCTL,
MHF2_HWPWRCTL, BRCM_BAND_ALL);
} else {
int i;
for (i = TXP_FIRST_OFDM; i <= TXP_LAST_OFDM; i++)
pi->tx_power_offset[i] =
(u8) roundup(pi->tx_power_offset[i], 8);
wlapi_bmac_write_shm(pi->sh->physhim, M_OFDM_OFFSET,
(u16)
((pi->tx_power_offset[TXP_FIRST_OFDM]
+ 7) >> 3));
}
}
bool wlc_phy_txpower_hw_ctrl_get(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
if (ISNPHY(pi))
return pi->nphy_txpwrctrl;
else
return pi->hwpwrctrl;
}
void wlc_phy_txpower_hw_ctrl_set(struct brcms_phy_pub *ppi, bool hwpwrctrl)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
bool suspend;
if (!pi->hwpwrctrl_capable)
return;
pi->hwpwrctrl = hwpwrctrl;
pi->nphy_txpwrctrl = hwpwrctrl;
pi->txpwrctrl = hwpwrctrl;
if (ISNPHY(pi)) {
suspend = (0 == (R_REG(&pi->regs->maccontrol) & MCTL_EN_MAC));
if (!suspend)
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_phy_txpwrctrl_enable_nphy(pi, pi->nphy_txpwrctrl);
if (pi->nphy_txpwrctrl == PHY_TPC_HW_OFF)
wlc_phy_txpwr_fixpower_nphy(pi);
else
mod_phy_reg(pi, 0x1e7, (0x7f << 0),
pi->saved_txpwr_idx);
if (!suspend)
wlapi_enable_mac(pi->sh->physhim);
}
}
void wlc_phy_txpower_ipa_upd(struct brcms_phy *pi)
{
if (NREV_GE(pi->pubpi.phy_rev, 3)) {
pi->ipa2g_on = (pi->srom_fem2g.extpagain == 2);
pi->ipa5g_on = (pi->srom_fem5g.extpagain == 2);
} else {
pi->ipa2g_on = false;
pi->ipa5g_on = false;
}
}
static u32 wlc_phy_txpower_est_power_nphy(struct brcms_phy *pi)
{
s16 tx0_status, tx1_status;
u16 estPower1, estPower2;
u8 pwr0, pwr1, adj_pwr0, adj_pwr1;
u32 est_pwr;
estPower1 = read_phy_reg(pi, 0x118);
estPower2 = read_phy_reg(pi, 0x119);
if ((estPower1 & (0x1 << 8)) == (0x1 << 8))
pwr0 = (u8) (estPower1 & (0xff << 0)) >> 0;
else
pwr0 = 0x80;
if ((estPower2 & (0x1 << 8)) == (0x1 << 8))
pwr1 = (u8) (estPower2 & (0xff << 0)) >> 0;
else
pwr1 = 0x80;
tx0_status = read_phy_reg(pi, 0x1ed);
tx1_status = read_phy_reg(pi, 0x1ee);
if ((tx0_status & (0x1 << 15)) == (0x1 << 15))
adj_pwr0 = (u8) (tx0_status & (0xff << 0)) >> 0;
else
adj_pwr0 = 0x80;
if ((tx1_status & (0x1 << 15)) == (0x1 << 15))
adj_pwr1 = (u8) (tx1_status & (0xff << 0)) >> 0;
else
adj_pwr1 = 0x80;
est_pwr = (u32) ((pwr0 << 24) | (pwr1 << 16) | (adj_pwr0 << 8) |
adj_pwr1);
return est_pwr;
}
void
wlc_phy_txpower_get_current(struct brcms_phy_pub *ppi, struct tx_power *power,
uint channel)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
uint rate, num_rates;
u8 min_pwr, max_pwr;
#if WL_TX_POWER_RATES != TXP_NUM_RATES
#error "struct tx_power out of sync with this fn"
#endif
if (ISNPHY(pi)) {
power->rf_cores = 2;
power->flags |= (WL_TX_POWER_F_MIMO);
if (pi->nphy_txpwrctrl == PHY_TPC_HW_ON)
power->flags |=
(WL_TX_POWER_F_ENABLED | WL_TX_POWER_F_HW);
} else if (ISLCNPHY(pi)) {
power->rf_cores = 1;
power->flags |= (WL_TX_POWER_F_SISO);
if (pi->radiopwr_override == RADIOPWR_OVERRIDE_DEF)
power->flags |= WL_TX_POWER_F_ENABLED;
if (pi->hwpwrctrl)
power->flags |= WL_TX_POWER_F_HW;
}
num_rates = ((ISNPHY(pi)) ? (TXP_NUM_RATES) :
((ISLCNPHY(pi)) ?
(TXP_LAST_OFDM_20_CDD + 1) : (TXP_LAST_OFDM + 1)));
for (rate = 0; rate < num_rates; rate++) {
power->user_limit[rate] = pi->tx_user_target[rate];
wlc_phy_txpower_sromlimit(ppi, channel, &min_pwr, &max_pwr,
rate);
power->board_limit[rate] = (u8) max_pwr;
power->target[rate] = pi->tx_power_target[rate];
}
if (ISNPHY(pi)) {
u32 est_pout;
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_phyreg_enter((struct brcms_phy_pub *) pi);
est_pout = wlc_phy_txpower_est_power_nphy(pi);
wlc_phyreg_exit((struct brcms_phy_pub *) pi);
wlapi_enable_mac(pi->sh->physhim);
power->est_Pout[0] = (est_pout >> 8) & 0xff;
power->est_Pout[1] = est_pout & 0xff;
power->est_Pout_act[0] = est_pout >> 24;
power->est_Pout_act[1] = (est_pout >> 16) & 0xff;
if (power->est_Pout[0] == 0x80)
power->est_Pout[0] = 0;
if (power->est_Pout[1] == 0x80)
power->est_Pout[1] = 0;
if (power->est_Pout_act[0] == 0x80)
power->est_Pout_act[0] = 0;
if (power->est_Pout_act[1] == 0x80)
power->est_Pout_act[1] = 0;
power->est_Pout_cck = 0;
power->tx_power_max[0] = pi->tx_power_max;
power->tx_power_max[1] = pi->tx_power_max;
power->tx_power_max_rate_ind[0] = pi->tx_power_max_rate_ind;
power->tx_power_max_rate_ind[1] = pi->tx_power_max_rate_ind;
} else if (pi->hwpwrctrl && pi->sh->up) {
wlc_phyreg_enter(ppi);
if (ISLCNPHY(pi)) {
power->tx_power_max[0] = pi->tx_power_max;
power->tx_power_max[1] = pi->tx_power_max;
power->tx_power_max_rate_ind[0] =
pi->tx_power_max_rate_ind;
power->tx_power_max_rate_ind[1] =
pi->tx_power_max_rate_ind;
if (wlc_phy_tpc_isenabled_lcnphy(pi))
power->flags |=
(WL_TX_POWER_F_HW |
WL_TX_POWER_F_ENABLED);
else
power->flags &=
~(WL_TX_POWER_F_HW |
WL_TX_POWER_F_ENABLED);
wlc_lcnphy_get_tssi(pi, (s8 *) &power->est_Pout[0],
(s8 *) &power->est_Pout_cck);
}
wlc_phyreg_exit(ppi);
}
}
void wlc_phy_antsel_type_set(struct brcms_phy_pub *ppi, u8 antsel_type)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
pi->antsel_type = antsel_type;
}
bool wlc_phy_test_ison(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
return pi->phytest_on;
}
void wlc_phy_ant_rxdiv_set(struct brcms_phy_pub *ppi, u8 val)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
bool suspend;
pi->sh->rx_antdiv = val;
if (!(ISNPHY(pi) && D11REV_IS(pi->sh->corerev, 16))) {
if (val > ANT_RX_DIV_FORCE_1)
wlapi_bmac_mhf(pi->sh->physhim, MHF1, MHF1_ANTDIV,
MHF1_ANTDIV, BRCM_BAND_ALL);
else
wlapi_bmac_mhf(pi->sh->physhim, MHF1, MHF1_ANTDIV, 0,
BRCM_BAND_ALL);
}
if (ISNPHY(pi))
return;
if (!pi->sh->clk)
return;
suspend = (0 == (R_REG(&pi->regs->maccontrol) & MCTL_EN_MAC));
if (!suspend)
wlapi_suspend_mac_and_wait(pi->sh->physhim);
if (ISLCNPHY(pi)) {
if (val > ANT_RX_DIV_FORCE_1) {
mod_phy_reg(pi, 0x410, (0x1 << 1), 0x01 << 1);
mod_phy_reg(pi, 0x410,
(0x1 << 0),
((ANT_RX_DIV_START_1 == val) ? 1 : 0) << 0);
} else {
mod_phy_reg(pi, 0x410, (0x1 << 1), 0x00 << 1);
mod_phy_reg(pi, 0x410, (0x1 << 0), (u16) val << 0);
}
}
if (!suspend)
wlapi_enable_mac(pi->sh->physhim);
return;
}
static bool
wlc_phy_noise_calc_phy(struct brcms_phy *pi, u32 *cmplx_pwr, s8 *pwr_ant)
{
s8 cmplx_pwr_dbm[PHY_CORE_MAX];
u8 i;
memset((u8 *) cmplx_pwr_dbm, 0, sizeof(cmplx_pwr_dbm));
wlc_phy_compute_dB(cmplx_pwr, cmplx_pwr_dbm, pi->pubpi.phy_corenum);
for (i = 0; i < pi->pubpi.phy_corenum; i++) {
if (NREV_GE(pi->pubpi.phy_rev, 3))
cmplx_pwr_dbm[i] += (s8) PHY_NOISE_OFFSETFACT_4322;
else
cmplx_pwr_dbm[i] += (s8) (16 - (15) * 3 - 70);
}
for (i = 0; i < pi->pubpi.phy_corenum; i++) {
pi->nphy_noise_win[i][pi->nphy_noise_index] = cmplx_pwr_dbm[i];
pwr_ant[i] = cmplx_pwr_dbm[i];
}
pi->nphy_noise_index =
MODINC_POW2(pi->nphy_noise_index, PHY_NOISE_WINDOW_SZ);
return true;
}
static void wlc_phy_noise_cb(struct brcms_phy *pi, u8 channel, s8 noise_dbm)
{
if (!pi->phynoise_state)
return;
if (pi->phynoise_state & PHY_NOISE_STATE_MON) {
if (pi->phynoise_chan_watchdog == channel) {
pi->sh->phy_noise_window[pi->sh->phy_noise_index] =
noise_dbm;
pi->sh->phy_noise_index =
MODINC(pi->sh->phy_noise_index, MA_WINDOW_SZ);
}
pi->phynoise_state &= ~PHY_NOISE_STATE_MON;
}
if (pi->phynoise_state & PHY_NOISE_STATE_EXTERNAL)
pi->phynoise_state &= ~PHY_NOISE_STATE_EXTERNAL;
}
static s8 wlc_phy_noise_read_shmem(struct brcms_phy *pi)
{
u32 cmplx_pwr[PHY_CORE_MAX];
s8 noise_dbm_ant[PHY_CORE_MAX];
u16 lo, hi;
u32 cmplx_pwr_tot = 0;
s8 noise_dbm = PHY_NOISE_FIXED_VAL_NPHY;
u8 idx, core;
memset((u8 *) cmplx_pwr, 0, sizeof(cmplx_pwr));
memset((u8 *) noise_dbm_ant, 0, sizeof(noise_dbm_ant));
for (idx = 0, core = 0; core < pi->pubpi.phy_corenum; idx += 2,
core++) {
lo = wlapi_bmac_read_shm(pi->sh->physhim, M_PWRIND_MAP(idx));
hi = wlapi_bmac_read_shm(pi->sh->physhim,
M_PWRIND_MAP(idx + 1));
cmplx_pwr[core] = (hi << 16) + lo;
cmplx_pwr_tot += cmplx_pwr[core];
if (cmplx_pwr[core] == 0)
noise_dbm_ant[core] = PHY_NOISE_FIXED_VAL_NPHY;
else
cmplx_pwr[core] >>= PHY_NOISE_SAMPLE_LOG_NUM_UCODE;
}
if (cmplx_pwr_tot != 0)
wlc_phy_noise_calc_phy(pi, cmplx_pwr, noise_dbm_ant);
for (core = 0; core < pi->pubpi.phy_corenum; core++) {
pi->nphy_noise_win[core][pi->nphy_noise_index] =
noise_dbm_ant[core];
if (noise_dbm_ant[core] > noise_dbm)
noise_dbm = noise_dbm_ant[core];
}
pi->nphy_noise_index =
MODINC_POW2(pi->nphy_noise_index, PHY_NOISE_WINDOW_SZ);
return noise_dbm;
}
void wlc_phy_noise_sample_intr(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
u16 jssi_aux;
u8 channel = 0;
s8 noise_dbm = PHY_NOISE_FIXED_VAL_NPHY;
if (ISLCNPHY(pi)) {
u32 cmplx_pwr, cmplx_pwr0, cmplx_pwr1;
u16 lo, hi;
s32 pwr_offset_dB, gain_dB;
u16 status_0, status_1;
jssi_aux = wlapi_bmac_read_shm(pi->sh->physhim, M_JSSI_AUX);
channel = jssi_aux & D11_CURCHANNEL_MAX;
lo = wlapi_bmac_read_shm(pi->sh->physhim, M_PWRIND_MAP0);
hi = wlapi_bmac_read_shm(pi->sh->physhim, M_PWRIND_MAP1);
cmplx_pwr0 = (hi << 16) + lo;
lo = wlapi_bmac_read_shm(pi->sh->physhim, M_PWRIND_MAP2);
hi = wlapi_bmac_read_shm(pi->sh->physhim, M_PWRIND_MAP3);
cmplx_pwr1 = (hi << 16) + lo;
cmplx_pwr = (cmplx_pwr0 + cmplx_pwr1) >> 6;
status_0 = 0x44;
status_1 = wlapi_bmac_read_shm(pi->sh->physhim, M_JSSI_0);
if ((cmplx_pwr > 0 && cmplx_pwr < 500)
&& ((status_1 & 0xc000) == 0x4000)) {
wlc_phy_compute_dB(&cmplx_pwr, &noise_dbm,
pi->pubpi.phy_corenum);
pwr_offset_dB = (read_phy_reg(pi, 0x434) & 0xFF);
if (pwr_offset_dB > 127)
pwr_offset_dB -= 256;
noise_dbm += (s8) (pwr_offset_dB - 30);
gain_dB = (status_0 & 0x1ff);
noise_dbm -= (s8) (gain_dB);
} else {
noise_dbm = PHY_NOISE_FIXED_VAL_LCNPHY;
}
} else if (ISNPHY(pi)) {
jssi_aux = wlapi_bmac_read_shm(pi->sh->physhim, M_JSSI_AUX);
channel = jssi_aux & D11_CURCHANNEL_MAX;
noise_dbm = wlc_phy_noise_read_shmem(pi);
}
wlc_phy_noise_cb(pi, channel, noise_dbm);
}
static void
wlc_phy_noise_sample_request(struct brcms_phy_pub *pih, u8 reason, u8 ch)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
s8 noise_dbm = PHY_NOISE_FIXED_VAL_NPHY;
bool sampling_in_progress = (pi->phynoise_state != 0);
bool wait_for_intr = true;
switch (reason) {
case PHY_NOISE_SAMPLE_MON:
pi->phynoise_chan_watchdog = ch;
pi->phynoise_state |= PHY_NOISE_STATE_MON;
break;
case PHY_NOISE_SAMPLE_EXTERNAL:
pi->phynoise_state |= PHY_NOISE_STATE_EXTERNAL;
break;
default:
break;
}
if (sampling_in_progress)
return;
pi->phynoise_now = pi->sh->now;
if (pi->phy_fixed_noise) {
if (ISNPHY(pi)) {
pi->nphy_noise_win[WL_ANT_IDX_1][pi->nphy_noise_index] =
PHY_NOISE_FIXED_VAL_NPHY;
pi->nphy_noise_win[WL_ANT_IDX_2][pi->nphy_noise_index] =
PHY_NOISE_FIXED_VAL_NPHY;
pi->nphy_noise_index = MODINC_POW2(pi->nphy_noise_index,
PHY_NOISE_WINDOW_SZ);
noise_dbm = PHY_NOISE_FIXED_VAL_NPHY;
} else {
noise_dbm = PHY_NOISE_FIXED_VAL;
}
wait_for_intr = false;
goto done;
}
if (ISLCNPHY(pi)) {
if (!pi->phynoise_polling
|| (reason == PHY_NOISE_SAMPLE_EXTERNAL)) {
wlapi_bmac_write_shm(pi->sh->physhim, M_JSSI_0, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP0, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP1, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP2, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP3, 0);
OR_REG(&pi->regs->maccommand,
MCMD_BG_NOISE);
} else {
wlapi_suspend_mac_and_wait(pi->sh->physhim);
wlc_lcnphy_deaf_mode(pi, (bool) 0);
noise_dbm = (s8) wlc_lcnphy_rx_signal_power(pi, 20);
wlc_lcnphy_deaf_mode(pi, (bool) 1);
wlapi_enable_mac(pi->sh->physhim);
wait_for_intr = false;
}
} else if (ISNPHY(pi)) {
if (!pi->phynoise_polling
|| (reason == PHY_NOISE_SAMPLE_EXTERNAL)) {
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP0, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP1, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP2, 0);
wlapi_bmac_write_shm(pi->sh->physhim, M_PWRIND_MAP3, 0);
OR_REG(&pi->regs->maccommand,
MCMD_BG_NOISE);
} else {
struct phy_iq_est est[PHY_CORE_MAX];
u32 cmplx_pwr[PHY_CORE_MAX];
s8 noise_dbm_ant[PHY_CORE_MAX];
u16 log_num_samps, num_samps, classif_state = 0;
u8 wait_time = 32;
u8 wait_crs = 0;
u8 i;
memset((u8 *) est, 0, sizeof(est));
memset((u8 *) cmplx_pwr, 0, sizeof(cmplx_pwr));
memset((u8 *) noise_dbm_ant, 0, sizeof(noise_dbm_ant));
log_num_samps = PHY_NOISE_SAMPLE_LOG_NUM_NPHY;
num_samps = 1 << log_num_samps;
wlapi_suspend_mac_and_wait(pi->sh->physhim);
classif_state = wlc_phy_classifier_nphy(pi, 0, 0);
wlc_phy_classifier_nphy(pi, 3, 0);
wlc_phy_rx_iq_est_nphy(pi, est, num_samps, wait_time,
wait_crs);
wlc_phy_classifier_nphy(pi, (0x7 << 0), classif_state);
wlapi_enable_mac(pi->sh->physhim);
for (i = 0; i < pi->pubpi.phy_corenum; i++)
cmplx_pwr[i] = (est[i].i_pwr + est[i].q_pwr) >>
log_num_samps;
wlc_phy_noise_calc_phy(pi, cmplx_pwr, noise_dbm_ant);
for (i = 0; i < pi->pubpi.phy_corenum; i++) {
pi->nphy_noise_win[i][pi->nphy_noise_index] =
noise_dbm_ant[i];
if (noise_dbm_ant[i] > noise_dbm)
noise_dbm = noise_dbm_ant[i];
}
pi->nphy_noise_index = MODINC_POW2(pi->nphy_noise_index,
PHY_NOISE_WINDOW_SZ);
wait_for_intr = false;
}
}
done:
if (!wait_for_intr)
wlc_phy_noise_cb(pi, ch, noise_dbm);
}
void wlc_phy_noise_sample_request_external(struct brcms_phy_pub *pih)
{
u8 channel;
channel = CHSPEC_CHANNEL(wlc_phy_chanspec_get(pih));
wlc_phy_noise_sample_request(pih, PHY_NOISE_SAMPLE_EXTERNAL, channel);
}
static const s8 lcnphy_gain_index_offset_for_pkt_rssi[] = {
8,
8,
8,
8,
8,
8,
8,
9,
10,
8,
8,
7,
7,
1,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
1,
1,
0,
0,
0,
0
};
void wlc_phy_compute_dB(u32 *cmplx_pwr, s8 *p_cmplx_pwr_dB, u8 core)
{
u8 msb, secondmsb, i;
u32 tmp;
for (i = 0; i < core; i++) {
secondmsb = 0;
tmp = cmplx_pwr[i];
msb = fls(tmp);
if (msb)
secondmsb = (u8) ((tmp >> (--msb - 1)) & 1);
p_cmplx_pwr_dB[i] = (s8) (3 * msb + 2 * secondmsb);
}
}
int wlc_phy_rssi_compute(struct brcms_phy_pub *pih,
struct d11rxhdr *rxh)
{
int rssi = rxh->PhyRxStatus_1 & PRXS1_JSSI_MASK;
uint radioid = pih->radioid;
struct brcms_phy *pi = (struct brcms_phy *) pih;
if ((pi->sh->corerev >= 11)
&& !(rxh->RxStatus2 & RXS_PHYRXST_VALID)) {
rssi = BRCMS_RSSI_INVALID;
goto end;
}
if (ISLCNPHY(pi)) {
u8 gidx = (rxh->PhyRxStatus_2 & 0xFC00) >> 10;
struct brcms_phy_lcnphy *pi_lcn = pi->u.pi_lcnphy;
if (rssi > 127)
rssi -= 256;
rssi = rssi + lcnphy_gain_index_offset_for_pkt_rssi[gidx];
if ((rssi > -46) && (gidx > 18))
rssi = rssi + 7;
rssi = rssi + pi_lcn->lcnphy_pkteng_rssi_slope;
rssi = rssi + 2;
}
if (ISLCNPHY(pi)) {
if (rssi > 127)
rssi -= 256;
} else if (radioid == BCM2055_ID || radioid == BCM2056_ID
|| radioid == BCM2057_ID) {
rssi = wlc_phy_rssi_compute_nphy(pi, rxh);
}
end:
return rssi;
}
void wlc_phy_freqtrack_start(struct brcms_phy_pub *pih)
{
return;
}
void wlc_phy_freqtrack_end(struct brcms_phy_pub *pih)
{
return;
}
void wlc_phy_set_deaf(struct brcms_phy_pub *ppi, bool user_flag)
{
struct brcms_phy *pi;
pi = (struct brcms_phy *) ppi;
if (ISLCNPHY(pi))
wlc_lcnphy_deaf_mode(pi, true);
else if (ISNPHY(pi))
wlc_nphy_deaf_mode(pi, true);
}
void wlc_phy_watchdog(struct brcms_phy_pub *pih)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
bool delay_phy_cal = false;
pi->sh->now++;
if (!pi->watchdog_override)
return;
if (!(SCAN_RM_IN_PROGRESS(pi) || PLT_INPROG_PHY(pi)))
wlc_phy_noise_sample_request((struct brcms_phy_pub *) pi,
PHY_NOISE_SAMPLE_MON,
CHSPEC_CHANNEL(pi->
radio_chanspec));
if (pi->phynoise_state && (pi->sh->now - pi->phynoise_now) > 5)
pi->phynoise_state = 0;
if ((!pi->phycal_txpower) ||
((pi->sh->now - pi->phycal_txpower) >= pi->sh->fast_timer)) {
if (!SCAN_INPROG_PHY(pi) && wlc_phy_cal_txpower_recalc_sw(pi))
pi->phycal_txpower = pi->sh->now;
}
if ((SCAN_RM_IN_PROGRESS(pi) || PLT_INPROG_PHY(pi)
|| ASSOC_INPROG_PHY(pi)))
return;
if (ISNPHY(pi) && !pi->disable_percal && !delay_phy_cal) {
if ((pi->nphy_perical != PHY_PERICAL_DISABLE) &&
(pi->nphy_perical != PHY_PERICAL_MANUAL) &&
((pi->sh->now - pi->nphy_perical_last) >=
pi->sh->glacial_timer))
wlc_phy_cal_perical((struct brcms_phy_pub *) pi,
PHY_PERICAL_WATCHDOG);
wlc_phy_txpwr_papd_cal_nphy(pi);
}
if (ISLCNPHY(pi)) {
if (pi->phy_forcecal ||
((pi->sh->now - pi->phy_lastcal) >=
pi->sh->glacial_timer)) {
if (!(SCAN_RM_IN_PROGRESS(pi) || ASSOC_INPROG_PHY(pi)))
wlc_lcnphy_calib_modes(
pi,
LCNPHY_PERICAL_TEMPBASED_TXPWRCTRL);
if (!
(SCAN_RM_IN_PROGRESS(pi) || PLT_INPROG_PHY(pi)
|| ASSOC_INPROG_PHY(pi)
|| pi->carrier_suppr_disable
|| pi->disable_percal))
wlc_lcnphy_calib_modes(pi,
PHY_PERICAL_WATCHDOG);
}
}
}
void wlc_phy_BSSinit(struct brcms_phy_pub *pih, bool bonlyap, int rssi)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
uint i;
uint k;
for (i = 0; i < MA_WINDOW_SZ; i++)
pi->sh->phy_noise_window[i] = (s8) (rssi & 0xff);
if (ISLCNPHY(pi)) {
for (i = 0; i < MA_WINDOW_SZ; i++)
pi->sh->phy_noise_window[i] =
PHY_NOISE_FIXED_VAL_LCNPHY;
}
pi->sh->phy_noise_index = 0;
for (i = 0; i < PHY_NOISE_WINDOW_SZ; i++) {
for (k = WL_ANT_IDX_1; k < WL_ANT_RX_MAX; k++)
pi->nphy_noise_win[k][i] = PHY_NOISE_FIXED_VAL_NPHY;
}
pi->nphy_noise_index = 0;
}
void
wlc_phy_papd_decode_epsilon(u32 epsilon, s32 *eps_real, s32 *eps_imag)
{
*eps_imag = (epsilon >> 13);
if (*eps_imag > 0xfff)
*eps_imag -= 0x2000;
*eps_real = (epsilon & 0x1fff);
if (*eps_real > 0xfff)
*eps_real -= 0x2000;
}
void wlc_phy_cal_perical_mphase_reset(struct brcms_phy *pi)
{
wlapi_del_timer(pi->phycal_timer);
pi->cal_type_override = PHY_PERICAL_AUTO;
pi->mphase_cal_phase_id = MPHASE_CAL_STATE_IDLE;
pi->mphase_txcal_cmdidx = 0;
}
static void
wlc_phy_cal_perical_mphase_schedule(struct brcms_phy *pi, uint delay)
{
if ((pi->nphy_perical != PHY_PERICAL_MPHASE) &&
(pi->nphy_perical != PHY_PERICAL_MANUAL))
return;
wlapi_del_timer(pi->phycal_timer);
pi->mphase_cal_phase_id = MPHASE_CAL_STATE_INIT;
wlapi_add_timer(pi->phycal_timer, delay, 0);
}
void wlc_phy_cal_perical(struct brcms_phy_pub *pih, u8 reason)
{
s16 nphy_currtemp = 0;
s16 delta_temp = 0;
bool do_periodic_cal = true;
struct brcms_phy *pi = (struct brcms_phy *) pih;
if (!ISNPHY(pi))
return;
if ((pi->nphy_perical == PHY_PERICAL_DISABLE) ||
(pi->nphy_perical == PHY_PERICAL_MANUAL))
return;
switch (reason) {
case PHY_PERICAL_DRIVERUP:
break;
case PHY_PERICAL_PHYINIT:
if (pi->nphy_perical == PHY_PERICAL_MPHASE) {
if (PHY_PERICAL_MPHASE_PENDING(pi))
wlc_phy_cal_perical_mphase_reset(pi);
wlc_phy_cal_perical_mphase_schedule(
pi,
PHY_PERICAL_INIT_DELAY);
}
break;
case PHY_PERICAL_JOIN_BSS:
case PHY_PERICAL_START_IBSS:
case PHY_PERICAL_UP_BSS:
if ((pi->nphy_perical == PHY_PERICAL_MPHASE) &&
PHY_PERICAL_MPHASE_PENDING(pi))
wlc_phy_cal_perical_mphase_reset(pi);
pi->first_cal_after_assoc = true;
pi->cal_type_override = PHY_PERICAL_FULL;
if (pi->phycal_tempdelta)
pi->nphy_lastcal_temp = wlc_phy_tempsense_nphy(pi);
wlc_phy_cal_perical_nphy_run(pi, PHY_PERICAL_FULL);
break;
case PHY_PERICAL_WATCHDOG:
if (pi->phycal_tempdelta) {
nphy_currtemp = wlc_phy_tempsense_nphy(pi);
delta_temp =
(nphy_currtemp > pi->nphy_lastcal_temp) ?
nphy_currtemp - pi->nphy_lastcal_temp :
pi->nphy_lastcal_temp - nphy_currtemp;
if ((delta_temp < (s16) pi->phycal_tempdelta) &&
(pi->nphy_txiqlocal_chanspec ==
pi->radio_chanspec))
do_periodic_cal = false;
else
pi->nphy_lastcal_temp = nphy_currtemp;
}
if (do_periodic_cal) {
if (pi->nphy_perical == PHY_PERICAL_MPHASE) {
if (!PHY_PERICAL_MPHASE_PENDING(pi))
wlc_phy_cal_perical_mphase_schedule(
pi,
PHY_PERICAL_WDOG_DELAY);
} else if (pi->nphy_perical == PHY_PERICAL_SPHASE)
wlc_phy_cal_perical_nphy_run(pi,
PHY_PERICAL_AUTO);
}
break;
default:
break;
}
}
void wlc_phy_cal_perical_mphase_restart(struct brcms_phy *pi)
{
pi->mphase_cal_phase_id = MPHASE_CAL_STATE_INIT;
pi->mphase_txcal_cmdidx = 0;
}
u8 wlc_phy_nbits(s32 value)
{
s32 abs_val;
u8 nbits = 0;
abs_val = abs(value);
while ((abs_val >> nbits) > 0)
nbits++;
return nbits;
}
void wlc_phy_stf_chain_init(struct brcms_phy_pub *pih, u8 txchain, u8 rxchain)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->sh->hw_phytxchain = txchain;
pi->sh->hw_phyrxchain = rxchain;
pi->sh->phytxchain = txchain;
pi->sh->phyrxchain = rxchain;
pi->pubpi.phy_corenum = (u8)hweight8(pi->sh->phyrxchain);
}
void wlc_phy_stf_chain_set(struct brcms_phy_pub *pih, u8 txchain, u8 rxchain)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
pi->sh->phytxchain = txchain;
if (ISNPHY(pi))
wlc_phy_rxcore_setstate_nphy(pih, rxchain);
pi->pubpi.phy_corenum = (u8)hweight8(pi->sh->phyrxchain);
}
void wlc_phy_stf_chain_get(struct brcms_phy_pub *pih, u8 *txchain, u8 *rxchain)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
*txchain = pi->sh->phytxchain;
*rxchain = pi->sh->phyrxchain;
}
u8 wlc_phy_stf_chain_active_get(struct brcms_phy_pub *pih)
{
s16 nphy_currtemp;
u8 active_bitmap;
struct brcms_phy *pi = (struct brcms_phy *) pih;
active_bitmap = (pi->phy_txcore_heatedup) ? 0x31 : 0x33;
if (!pi->watchdog_override)
return active_bitmap;
if (NREV_GE(pi->pubpi.phy_rev, 6)) {
wlapi_suspend_mac_and_wait(pi->sh->physhim);
nphy_currtemp = wlc_phy_tempsense_nphy(pi);
wlapi_enable_mac(pi->sh->physhim);
if (!pi->phy_txcore_heatedup) {
if (nphy_currtemp >= pi->phy_txcore_disable_temp) {
active_bitmap &= 0xFD;
pi->phy_txcore_heatedup = true;
}
} else {
if (nphy_currtemp <= pi->phy_txcore_enable_temp) {
active_bitmap |= 0x2;
pi->phy_txcore_heatedup = false;
}
}
}
return active_bitmap;
}
s8 wlc_phy_stf_ssmode_get(struct brcms_phy_pub *pih, u16 chanspec)
{
struct brcms_phy *pi = (struct brcms_phy *) pih;
u8 siso_mcs_id, cdd_mcs_id;
siso_mcs_id =
(CHSPEC_IS40(chanspec)) ? TXP_FIRST_MCS_40_SISO :
TXP_FIRST_MCS_20_SISO;
cdd_mcs_id =
(CHSPEC_IS40(chanspec)) ? TXP_FIRST_MCS_40_CDD :
TXP_FIRST_MCS_20_CDD;
if (pi->tx_power_target[siso_mcs_id] >
(pi->tx_power_target[cdd_mcs_id] + 12))
return PHY_TXC1_MODE_SISO;
else
return PHY_TXC1_MODE_CDD;
}
const u8 *wlc_phy_get_ofdm_rate_lookup(void)
{
return ofdm_rate_lookup;
}
void wlc_lcnphy_epa_switch(struct brcms_phy *pi, bool mode)
{
if ((pi->sh->chip == BCM4313_CHIP_ID) &&
(pi->sh->boardflags & BFL_FEM)) {
if (mode) {
u16 txant = 0;
txant = wlapi_bmac_get_txant(pi->sh->physhim);
if (txant == 1) {
mod_phy_reg(pi, 0x44d, (0x1 << 2), (1) << 2);
mod_phy_reg(pi, 0x44c, (0x1 << 2), (1) << 2);
}
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpiocontrol),
~0x0, 0x0);
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpioout), 0x40,
0x40);
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpioouten), 0x40,
0x40);
} else {
mod_phy_reg(pi, 0x44c, (0x1 << 2), (0) << 2);
mod_phy_reg(pi, 0x44d, (0x1 << 2), (0) << 2);
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpioout), 0x40,
0x00);
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpioouten), 0x40,
0x0);
ai_corereg(pi->sh->sih, SI_CC_IDX,
offsetof(struct chipcregs, gpiocontrol),
~0x0, 0x40);
}
}
}
void wlc_phy_ldpc_override_set(struct brcms_phy_pub *ppi, bool ldpc)
{
return;
}
void
wlc_phy_get_pwrdet_offsets(struct brcms_phy *pi, s8 *cckoffset, s8 *ofdmoffset)
{
*cckoffset = 0;
*ofdmoffset = 0;
}
s8 wlc_phy_upd_rssi_offset(struct brcms_phy *pi, s8 rssi, u16 chanspec)
{
return rssi;
}
bool wlc_phy_txpower_ipa_ison(struct brcms_phy_pub *ppi)
{
struct brcms_phy *pi = (struct brcms_phy *) ppi;
if (ISNPHY(pi))
return wlc_phy_n_txpower_ipa_ison(pi);
else
return 0;
}