| /* |
| * Copyright 2002-2005, Instant802 Networks, Inc. |
| * Copyright 2005-2006, Devicescape Software, Inc. |
| * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /** |
| * DOC: Wireless regulatory infrastructure |
| * |
| * The usual implementation is for a driver to read a device EEPROM to |
| * determine which regulatory domain it should be operating under, then |
| * looking up the allowable channels in a driver-local table and finally |
| * registering those channels in the wiphy structure. |
| * |
| * Another set of compliance enforcement is for drivers to use their |
| * own compliance limits which can be stored on the EEPROM. The host |
| * driver or firmware may ensure these are used. |
| * |
| * In addition to all this we provide an extra layer of regulatory |
| * conformance. For drivers which do not have any regulatory |
| * information CRDA provides the complete regulatory solution. |
| * For others it provides a community effort on further restrictions |
| * to enhance compliance. |
| * |
| * Note: When number of rules --> infinity we will not be able to |
| * index on alpha2 any more, instead we'll probably have to |
| * rely on some SHA1 checksum of the regdomain for example. |
| * |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/random.h> |
| #include <linux/ctype.h> |
| #include <linux/nl80211.h> |
| #include <linux/platform_device.h> |
| #include <linux/moduleparam.h> |
| #include <net/cfg80211.h> |
| #include "core.h" |
| #include "reg.h" |
| #include "regdb.h" |
| #include "nl80211.h" |
| |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| #define REG_DBG_PRINT(format, args...) \ |
| printk(KERN_DEBUG pr_fmt(format), ##args) |
| #else |
| #define REG_DBG_PRINT(args...) |
| #endif |
| |
| /* Receipt of information from last regulatory request */ |
| static struct regulatory_request *last_request; |
| |
| /* To trigger userspace events */ |
| static struct platform_device *reg_pdev; |
| |
| static struct device_type reg_device_type = { |
| .uevent = reg_device_uevent, |
| }; |
| |
| /* |
| * Central wireless core regulatory domains, we only need two, |
| * the current one and a world regulatory domain in case we have no |
| * information to give us an alpha2 |
| */ |
| const struct ieee80211_regdomain *cfg80211_regdomain; |
| |
| /* |
| * Protects static reg.c components: |
| * - cfg80211_world_regdom |
| * - cfg80211_regdom |
| * - last_request |
| */ |
| static DEFINE_MUTEX(reg_mutex); |
| |
| static inline void assert_reg_lock(void) |
| { |
| lockdep_assert_held(®_mutex); |
| } |
| |
| /* Used to queue up regulatory hints */ |
| static LIST_HEAD(reg_requests_list); |
| static spinlock_t reg_requests_lock; |
| |
| /* Used to queue up beacon hints for review */ |
| static LIST_HEAD(reg_pending_beacons); |
| static spinlock_t reg_pending_beacons_lock; |
| |
| /* Used to keep track of processed beacon hints */ |
| static LIST_HEAD(reg_beacon_list); |
| |
| struct reg_beacon { |
| struct list_head list; |
| struct ieee80211_channel chan; |
| }; |
| |
| static void reg_todo(struct work_struct *work); |
| static DECLARE_WORK(reg_work, reg_todo); |
| |
| static void reg_timeout_work(struct work_struct *work); |
| static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); |
| |
| /* We keep a static world regulatory domain in case of the absence of CRDA */ |
| static const struct ieee80211_regdomain world_regdom = { |
| .n_reg_rules = 5, |
| .alpha2 = "00", |
| .reg_rules = { |
| /* IEEE 802.11b/g, channels 1..11 */ |
| REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), |
| /* IEEE 802.11b/g, channels 12..13. No HT40 |
| * channel fits here. */ |
| REG_RULE(2467-10, 2472+10, 20, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN | |
| NL80211_RRF_NO_IBSS), |
| /* IEEE 802.11 channel 14 - Only JP enables |
| * this and for 802.11b only */ |
| REG_RULE(2484-10, 2484+10, 20, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN | |
| NL80211_RRF_NO_IBSS | |
| NL80211_RRF_NO_OFDM), |
| /* IEEE 802.11a, channel 36..48 */ |
| REG_RULE(5180-10, 5240+10, 40, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN | |
| NL80211_RRF_NO_IBSS), |
| |
| /* NB: 5260 MHz - 5700 MHz requies DFS */ |
| |
| /* IEEE 802.11a, channel 149..165 */ |
| REG_RULE(5745-10, 5825+10, 40, 6, 20, |
| NL80211_RRF_PASSIVE_SCAN | |
| NL80211_RRF_NO_IBSS), |
| } |
| }; |
| |
| static const struct ieee80211_regdomain *cfg80211_world_regdom = |
| &world_regdom; |
| |
| static char *ieee80211_regdom = "00"; |
| static char user_alpha2[2]; |
| |
| module_param(ieee80211_regdom, charp, 0444); |
| MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); |
| |
| static void reset_regdomains(void) |
| { |
| /* avoid freeing static information or freeing something twice */ |
| if (cfg80211_regdomain == cfg80211_world_regdom) |
| cfg80211_regdomain = NULL; |
| if (cfg80211_world_regdom == &world_regdom) |
| cfg80211_world_regdom = NULL; |
| if (cfg80211_regdomain == &world_regdom) |
| cfg80211_regdomain = NULL; |
| |
| kfree(cfg80211_regdomain); |
| kfree(cfg80211_world_regdom); |
| |
| cfg80211_world_regdom = &world_regdom; |
| cfg80211_regdomain = NULL; |
| } |
| |
| /* |
| * Dynamic world regulatory domain requested by the wireless |
| * core upon initialization |
| */ |
| static void update_world_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| BUG_ON(!last_request); |
| |
| reset_regdomains(); |
| |
| cfg80211_world_regdom = rd; |
| cfg80211_regdomain = rd; |
| } |
| |
| bool is_world_regdom(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (alpha2[0] == '0' && alpha2[1] == '0') |
| return true; |
| return false; |
| } |
| |
| static bool is_alpha2_set(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (alpha2[0] != 0 && alpha2[1] != 0) |
| return true; |
| return false; |
| } |
| |
| static bool is_unknown_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* |
| * Special case where regulatory domain was built by driver |
| * but a specific alpha2 cannot be determined |
| */ |
| if (alpha2[0] == '9' && alpha2[1] == '9') |
| return true; |
| return false; |
| } |
| |
| static bool is_intersected_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| /* |
| * Special case where regulatory domain is the |
| * result of an intersection between two regulatory domain |
| * structures |
| */ |
| if (alpha2[0] == '9' && alpha2[1] == '8') |
| return true; |
| return false; |
| } |
| |
| static bool is_an_alpha2(const char *alpha2) |
| { |
| if (!alpha2) |
| return false; |
| if (isalpha(alpha2[0]) && isalpha(alpha2[1])) |
| return true; |
| return false; |
| } |
| |
| static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) |
| { |
| if (!alpha2_x || !alpha2_y) |
| return false; |
| if (alpha2_x[0] == alpha2_y[0] && |
| alpha2_x[1] == alpha2_y[1]) |
| return true; |
| return false; |
| } |
| |
| static bool regdom_changes(const char *alpha2) |
| { |
| assert_cfg80211_lock(); |
| |
| if (!cfg80211_regdomain) |
| return true; |
| if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets |
| * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER |
| * has ever been issued. |
| */ |
| static bool is_user_regdom_saved(void) |
| { |
| if (user_alpha2[0] == '9' && user_alpha2[1] == '7') |
| return false; |
| |
| /* This would indicate a mistake on the design */ |
| if (WARN((!is_world_regdom(user_alpha2) && |
| !is_an_alpha2(user_alpha2)), |
| "Unexpected user alpha2: %c%c\n", |
| user_alpha2[0], |
| user_alpha2[1])) |
| return false; |
| |
| return true; |
| } |
| |
| static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, |
| const struct ieee80211_regdomain *src_regd) |
| { |
| struct ieee80211_regdomain *regd; |
| int size_of_regd = 0; |
| unsigned int i; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); |
| |
| regd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!regd) |
| return -ENOMEM; |
| |
| memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); |
| |
| for (i = 0; i < src_regd->n_reg_rules; i++) |
| memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], |
| sizeof(struct ieee80211_reg_rule)); |
| |
| *dst_regd = regd; |
| return 0; |
| } |
| |
| #ifdef CONFIG_CFG80211_INTERNAL_REGDB |
| struct reg_regdb_search_request { |
| char alpha2[2]; |
| struct list_head list; |
| }; |
| |
| static LIST_HEAD(reg_regdb_search_list); |
| static DEFINE_MUTEX(reg_regdb_search_mutex); |
| |
| static void reg_regdb_search(struct work_struct *work) |
| { |
| struct reg_regdb_search_request *request; |
| const struct ieee80211_regdomain *curdom, *regdom; |
| int i, r; |
| |
| mutex_lock(®_regdb_search_mutex); |
| while (!list_empty(®_regdb_search_list)) { |
| request = list_first_entry(®_regdb_search_list, |
| struct reg_regdb_search_request, |
| list); |
| list_del(&request->list); |
| |
| for (i=0; i<reg_regdb_size; i++) { |
| curdom = reg_regdb[i]; |
| |
| if (!memcmp(request->alpha2, curdom->alpha2, 2)) { |
| r = reg_copy_regd(®dom, curdom); |
| if (r) |
| break; |
| mutex_lock(&cfg80211_mutex); |
| set_regdom(regdom); |
| mutex_unlock(&cfg80211_mutex); |
| break; |
| } |
| } |
| |
| kfree(request); |
| } |
| mutex_unlock(®_regdb_search_mutex); |
| } |
| |
| static DECLARE_WORK(reg_regdb_work, reg_regdb_search); |
| |
| static void reg_regdb_query(const char *alpha2) |
| { |
| struct reg_regdb_search_request *request; |
| |
| if (!alpha2) |
| return; |
| |
| request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); |
| if (!request) |
| return; |
| |
| memcpy(request->alpha2, alpha2, 2); |
| |
| mutex_lock(®_regdb_search_mutex); |
| list_add_tail(&request->list, ®_regdb_search_list); |
| mutex_unlock(®_regdb_search_mutex); |
| |
| schedule_work(®_regdb_work); |
| } |
| #else |
| static inline void reg_regdb_query(const char *alpha2) {} |
| #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ |
| |
| /* |
| * This lets us keep regulatory code which is updated on a regulatory |
| * basis in userspace. Country information is filled in by |
| * reg_device_uevent |
| */ |
| static int call_crda(const char *alpha2) |
| { |
| if (!is_world_regdom((char *) alpha2)) |
| pr_info("Calling CRDA for country: %c%c\n", |
| alpha2[0], alpha2[1]); |
| else |
| pr_info("Calling CRDA to update world regulatory domain\n"); |
| |
| /* query internal regulatory database (if it exists) */ |
| reg_regdb_query(alpha2); |
| |
| return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); |
| } |
| |
| /* Used by nl80211 before kmalloc'ing our regulatory domain */ |
| bool reg_is_valid_request(const char *alpha2) |
| { |
| assert_cfg80211_lock(); |
| |
| if (!last_request) |
| return false; |
| |
| return alpha2_equal(last_request->alpha2, alpha2); |
| } |
| |
| /* Sanity check on a regulatory rule */ |
| static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) |
| { |
| const struct ieee80211_freq_range *freq_range = &rule->freq_range; |
| u32 freq_diff; |
| |
| if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) |
| return false; |
| |
| if (freq_range->start_freq_khz > freq_range->end_freq_khz) |
| return false; |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| |
| if (freq_range->end_freq_khz <= freq_range->start_freq_khz || |
| freq_range->max_bandwidth_khz > freq_diff) |
| return false; |
| |
| return true; |
| } |
| |
| static bool is_valid_rd(const struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| unsigned int i; |
| |
| if (!rd->n_reg_rules) |
| return false; |
| |
| if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) |
| return false; |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| if (!is_valid_reg_rule(reg_rule)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, |
| u32 center_freq_khz, |
| u32 bw_khz) |
| { |
| u32 start_freq_khz, end_freq_khz; |
| |
| start_freq_khz = center_freq_khz - (bw_khz/2); |
| end_freq_khz = center_freq_khz + (bw_khz/2); |
| |
| if (start_freq_khz >= freq_range->start_freq_khz && |
| end_freq_khz <= freq_range->end_freq_khz) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * freq_in_rule_band - tells us if a frequency is in a frequency band |
| * @freq_range: frequency rule we want to query |
| * @freq_khz: frequency we are inquiring about |
| * |
| * This lets us know if a specific frequency rule is or is not relevant to |
| * a specific frequency's band. Bands are device specific and artificial |
| * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is |
| * safe for now to assume that a frequency rule should not be part of a |
| * frequency's band if the start freq or end freq are off by more than 2 GHz. |
| * This resolution can be lowered and should be considered as we add |
| * regulatory rule support for other "bands". |
| **/ |
| static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, |
| u32 freq_khz) |
| { |
| #define ONE_GHZ_IN_KHZ 1000000 |
| if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) |
| return true; |
| if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) |
| return true; |
| return false; |
| #undef ONE_GHZ_IN_KHZ |
| } |
| |
| /* |
| * Helper for regdom_intersect(), this does the real |
| * mathematical intersection fun |
| */ |
| static int reg_rules_intersect( |
| const struct ieee80211_reg_rule *rule1, |
| const struct ieee80211_reg_rule *rule2, |
| struct ieee80211_reg_rule *intersected_rule) |
| { |
| const struct ieee80211_freq_range *freq_range1, *freq_range2; |
| struct ieee80211_freq_range *freq_range; |
| const struct ieee80211_power_rule *power_rule1, *power_rule2; |
| struct ieee80211_power_rule *power_rule; |
| u32 freq_diff; |
| |
| freq_range1 = &rule1->freq_range; |
| freq_range2 = &rule2->freq_range; |
| freq_range = &intersected_rule->freq_range; |
| |
| power_rule1 = &rule1->power_rule; |
| power_rule2 = &rule2->power_rule; |
| power_rule = &intersected_rule->power_rule; |
| |
| freq_range->start_freq_khz = max(freq_range1->start_freq_khz, |
| freq_range2->start_freq_khz); |
| freq_range->end_freq_khz = min(freq_range1->end_freq_khz, |
| freq_range2->end_freq_khz); |
| freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, |
| freq_range2->max_bandwidth_khz); |
| |
| freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; |
| if (freq_range->max_bandwidth_khz > freq_diff) |
| freq_range->max_bandwidth_khz = freq_diff; |
| |
| power_rule->max_eirp = min(power_rule1->max_eirp, |
| power_rule2->max_eirp); |
| power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, |
| power_rule2->max_antenna_gain); |
| |
| intersected_rule->flags = (rule1->flags | rule2->flags); |
| |
| if (!is_valid_reg_rule(intersected_rule)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * regdom_intersect - do the intersection between two regulatory domains |
| * @rd1: first regulatory domain |
| * @rd2: second regulatory domain |
| * |
| * Use this function to get the intersection between two regulatory domains. |
| * Once completed we will mark the alpha2 for the rd as intersected, "98", |
| * as no one single alpha2 can represent this regulatory domain. |
| * |
| * Returns a pointer to the regulatory domain structure which will hold the |
| * resulting intersection of rules between rd1 and rd2. We will |
| * kzalloc() this structure for you. |
| */ |
| static struct ieee80211_regdomain *regdom_intersect( |
| const struct ieee80211_regdomain *rd1, |
| const struct ieee80211_regdomain *rd2) |
| { |
| int r, size_of_regd; |
| unsigned int x, y; |
| unsigned int num_rules = 0, rule_idx = 0; |
| const struct ieee80211_reg_rule *rule1, *rule2; |
| struct ieee80211_reg_rule *intersected_rule; |
| struct ieee80211_regdomain *rd; |
| /* This is just a dummy holder to help us count */ |
| struct ieee80211_reg_rule irule; |
| |
| /* Uses the stack temporarily for counter arithmetic */ |
| intersected_rule = &irule; |
| |
| memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); |
| |
| if (!rd1 || !rd2) |
| return NULL; |
| |
| /* |
| * First we get a count of the rules we'll need, then we actually |
| * build them. This is to so we can malloc() and free() a |
| * regdomain once. The reason we use reg_rules_intersect() here |
| * is it will return -EINVAL if the rule computed makes no sense. |
| * All rules that do check out OK are valid. |
| */ |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| if (!reg_rules_intersect(rule1, rule2, |
| intersected_rule)) |
| num_rules++; |
| memset(intersected_rule, 0, |
| sizeof(struct ieee80211_reg_rule)); |
| } |
| } |
| |
| if (!num_rules) |
| return NULL; |
| |
| size_of_regd = sizeof(struct ieee80211_regdomain) + |
| ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); |
| |
| rd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!rd) |
| return NULL; |
| |
| for (x = 0; x < rd1->n_reg_rules; x++) { |
| rule1 = &rd1->reg_rules[x]; |
| for (y = 0; y < rd2->n_reg_rules; y++) { |
| rule2 = &rd2->reg_rules[y]; |
| /* |
| * This time around instead of using the stack lets |
| * write to the target rule directly saving ourselves |
| * a memcpy() |
| */ |
| intersected_rule = &rd->reg_rules[rule_idx]; |
| r = reg_rules_intersect(rule1, rule2, |
| intersected_rule); |
| /* |
| * No need to memset here the intersected rule here as |
| * we're not using the stack anymore |
| */ |
| if (r) |
| continue; |
| rule_idx++; |
| } |
| } |
| |
| if (rule_idx != num_rules) { |
| kfree(rd); |
| return NULL; |
| } |
| |
| rd->n_reg_rules = num_rules; |
| rd->alpha2[0] = '9'; |
| rd->alpha2[1] = '8'; |
| |
| return rd; |
| } |
| |
| /* |
| * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may |
| * want to just have the channel structure use these |
| */ |
| static u32 map_regdom_flags(u32 rd_flags) |
| { |
| u32 channel_flags = 0; |
| if (rd_flags & NL80211_RRF_PASSIVE_SCAN) |
| channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; |
| if (rd_flags & NL80211_RRF_NO_IBSS) |
| channel_flags |= IEEE80211_CHAN_NO_IBSS; |
| if (rd_flags & NL80211_RRF_DFS) |
| channel_flags |= IEEE80211_CHAN_RADAR; |
| return channel_flags; |
| } |
| |
| static int freq_reg_info_regd(struct wiphy *wiphy, |
| u32 center_freq, |
| u32 desired_bw_khz, |
| const struct ieee80211_reg_rule **reg_rule, |
| const struct ieee80211_regdomain *custom_regd) |
| { |
| int i; |
| bool band_rule_found = false; |
| const struct ieee80211_regdomain *regd; |
| bool bw_fits = false; |
| |
| if (!desired_bw_khz) |
| desired_bw_khz = MHZ_TO_KHZ(20); |
| |
| regd = custom_regd ? custom_regd : cfg80211_regdomain; |
| |
| /* |
| * Follow the driver's regulatory domain, if present, unless a country |
| * IE has been processed or a user wants to help complaince further |
| */ |
| if (!custom_regd && |
| last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| last_request->initiator != NL80211_REGDOM_SET_BY_USER && |
| wiphy->regd) |
| regd = wiphy->regd; |
| |
| if (!regd) |
| return -EINVAL; |
| |
| for (i = 0; i < regd->n_reg_rules; i++) { |
| const struct ieee80211_reg_rule *rr; |
| const struct ieee80211_freq_range *fr = NULL; |
| |
| rr = ®d->reg_rules[i]; |
| fr = &rr->freq_range; |
| |
| /* |
| * We only need to know if one frequency rule was |
| * was in center_freq's band, that's enough, so lets |
| * not overwrite it once found |
| */ |
| if (!band_rule_found) |
| band_rule_found = freq_in_rule_band(fr, center_freq); |
| |
| bw_fits = reg_does_bw_fit(fr, |
| center_freq, |
| desired_bw_khz); |
| |
| if (band_rule_found && bw_fits) { |
| *reg_rule = rr; |
| return 0; |
| } |
| } |
| |
| if (!band_rule_found) |
| return -ERANGE; |
| |
| return -EINVAL; |
| } |
| |
| int freq_reg_info(struct wiphy *wiphy, |
| u32 center_freq, |
| u32 desired_bw_khz, |
| const struct ieee80211_reg_rule **reg_rule) |
| { |
| assert_cfg80211_lock(); |
| return freq_reg_info_regd(wiphy, |
| center_freq, |
| desired_bw_khz, |
| reg_rule, |
| NULL); |
| } |
| EXPORT_SYMBOL(freq_reg_info); |
| |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) |
| { |
| switch (initiator) { |
| case NL80211_REGDOM_SET_BY_CORE: |
| return "Set by core"; |
| case NL80211_REGDOM_SET_BY_USER: |
| return "Set by user"; |
| case NL80211_REGDOM_SET_BY_DRIVER: |
| return "Set by driver"; |
| case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| return "Set by country IE"; |
| default: |
| WARN_ON(1); |
| return "Set by bug"; |
| } |
| } |
| |
| static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, |
| u32 desired_bw_khz, |
| const struct ieee80211_reg_rule *reg_rule) |
| { |
| const struct ieee80211_power_rule *power_rule; |
| const struct ieee80211_freq_range *freq_range; |
| char max_antenna_gain[32]; |
| |
| power_rule = ®_rule->power_rule; |
| freq_range = ®_rule->freq_range; |
| |
| if (!power_rule->max_antenna_gain) |
| snprintf(max_antenna_gain, 32, "N/A"); |
| else |
| snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); |
| |
| REG_DBG_PRINT("Updating information on frequency %d MHz " |
| "for a %d MHz width channel with regulatory rule:\n", |
| chan->center_freq, |
| KHZ_TO_MHZ(desired_bw_khz)); |
| |
| REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| freq_range->max_bandwidth_khz, |
| max_antenna_gain, |
| power_rule->max_eirp); |
| } |
| #else |
| static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, |
| u32 desired_bw_khz, |
| const struct ieee80211_reg_rule *reg_rule) |
| { |
| return; |
| } |
| #endif |
| |
| /* |
| * Note that right now we assume the desired channel bandwidth |
| * is always 20 MHz for each individual channel (HT40 uses 20 MHz |
| * per channel, the primary and the extension channel). To support |
| * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a |
| * new ieee80211_channel.target_bw and re run the regulatory check |
| * on the wiphy with the target_bw specified. Then we can simply use |
| * that below for the desired_bw_khz below. |
| */ |
| static void handle_channel(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator, |
| enum ieee80211_band band, |
| unsigned int chan_idx) |
| { |
| int r; |
| u32 flags, bw_flags = 0; |
| u32 desired_bw_khz = MHZ_TO_KHZ(20); |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| const struct ieee80211_freq_range *freq_range = NULL; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| struct wiphy *request_wiphy = NULL; |
| |
| assert_cfg80211_lock(); |
| |
| request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); |
| |
| sband = wiphy->bands[band]; |
| BUG_ON(chan_idx >= sband->n_channels); |
| chan = &sband->channels[chan_idx]; |
| |
| flags = chan->orig_flags; |
| |
| r = freq_reg_info(wiphy, |
| MHZ_TO_KHZ(chan->center_freq), |
| desired_bw_khz, |
| ®_rule); |
| |
| if (r) { |
| /* |
| * We will disable all channels that do not match our |
| * received regulatory rule unless the hint is coming |
| * from a Country IE and the Country IE had no information |
| * about a band. The IEEE 802.11 spec allows for an AP |
| * to send only a subset of the regulatory rules allowed, |
| * so an AP in the US that only supports 2.4 GHz may only send |
| * a country IE with information for the 2.4 GHz band |
| * while 5 GHz is still supported. |
| */ |
| if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| r == -ERANGE) |
| return; |
| |
| REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); |
| chan->flags = IEEE80211_CHAN_DISABLED; |
| return; |
| } |
| |
| chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); |
| |
| power_rule = ®_rule->power_rule; |
| freq_range = ®_rule->freq_range; |
| |
| if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) |
| bw_flags = IEEE80211_CHAN_NO_HT40; |
| |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| request_wiphy && request_wiphy == wiphy && |
| request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { |
| /* |
| * This guarantees the driver's requested regulatory domain |
| * will always be used as a base for further regulatory |
| * settings |
| */ |
| chan->flags = chan->orig_flags = |
| map_regdom_flags(reg_rule->flags) | bw_flags; |
| chan->max_antenna_gain = chan->orig_mag = |
| (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_power = chan->orig_mpwr = |
| (int) MBM_TO_DBM(power_rule->max_eirp); |
| return; |
| } |
| |
| chan->beacon_found = false; |
| chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); |
| chan->max_antenna_gain = min(chan->orig_mag, |
| (int) MBI_TO_DBI(power_rule->max_antenna_gain)); |
| if (chan->orig_mpwr) |
| chan->max_power = min(chan->orig_mpwr, |
| (int) MBM_TO_DBM(power_rule->max_eirp)); |
| else |
| chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| } |
| |
| static void handle_band(struct wiphy *wiphy, |
| enum ieee80211_band band, |
| enum nl80211_reg_initiator initiator) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| BUG_ON(!wiphy->bands[band]); |
| sband = wiphy->bands[band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel(wiphy, initiator, band, i); |
| } |
| |
| static bool ignore_reg_update(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator) |
| { |
| if (!last_request) { |
| REG_DBG_PRINT("Ignoring regulatory request %s since " |
| "last_request is not set\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| if (initiator == NL80211_REGDOM_SET_BY_CORE && |
| wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { |
| REG_DBG_PRINT("Ignoring regulatory request %s " |
| "since the driver uses its own custom " |
| "regulatory domain\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| /* |
| * wiphy->regd will be set once the device has its own |
| * desired regulatory domain set |
| */ |
| if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && |
| initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| !is_world_regdom(last_request->alpha2)) { |
| REG_DBG_PRINT("Ignoring regulatory request %s " |
| "since the driver requires its own regulatory " |
| "domain to be set first\n", |
| reg_initiator_name(initiator)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void handle_reg_beacon(struct wiphy *wiphy, |
| unsigned int chan_idx, |
| struct reg_beacon *reg_beacon) |
| { |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| bool channel_changed = false; |
| struct ieee80211_channel chan_before; |
| |
| assert_cfg80211_lock(); |
| |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| chan = &sband->channels[chan_idx]; |
| |
| if (likely(chan->center_freq != reg_beacon->chan.center_freq)) |
| return; |
| |
| if (chan->beacon_found) |
| return; |
| |
| chan->beacon_found = true; |
| |
| if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) |
| return; |
| |
| chan_before.center_freq = chan->center_freq; |
| chan_before.flags = chan->flags; |
| |
| if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { |
| chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; |
| channel_changed = true; |
| } |
| |
| if (chan->flags & IEEE80211_CHAN_NO_IBSS) { |
| chan->flags &= ~IEEE80211_CHAN_NO_IBSS; |
| channel_changed = true; |
| } |
| |
| if (channel_changed) |
| nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); |
| } |
| |
| /* |
| * Called when a scan on a wiphy finds a beacon on |
| * new channel |
| */ |
| static void wiphy_update_new_beacon(struct wiphy *wiphy, |
| struct reg_beacon *reg_beacon) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| assert_cfg80211_lock(); |
| |
| if (!wiphy->bands[reg_beacon->chan.band]) |
| return; |
| |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_reg_beacon(wiphy, i, reg_beacon); |
| } |
| |
| /* |
| * Called upon reg changes or a new wiphy is added |
| */ |
| static void wiphy_update_beacon_reg(struct wiphy *wiphy) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| struct reg_beacon *reg_beacon; |
| |
| assert_cfg80211_lock(); |
| |
| if (list_empty(®_beacon_list)) |
| return; |
| |
| list_for_each_entry(reg_beacon, ®_beacon_list, list) { |
| if (!wiphy->bands[reg_beacon->chan.band]) |
| continue; |
| sband = wiphy->bands[reg_beacon->chan.band]; |
| for (i = 0; i < sband->n_channels; i++) |
| handle_reg_beacon(wiphy, i, reg_beacon); |
| } |
| } |
| |
| static bool reg_is_world_roaming(struct wiphy *wiphy) |
| { |
| if (is_world_regdom(cfg80211_regdomain->alpha2) || |
| (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) |
| return true; |
| if (last_request && |
| last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) |
| return true; |
| return false; |
| } |
| |
| /* Reap the advantages of previously found beacons */ |
| static void reg_process_beacons(struct wiphy *wiphy) |
| { |
| /* |
| * Means we are just firing up cfg80211, so no beacons would |
| * have been processed yet. |
| */ |
| if (!last_request) |
| return; |
| if (!reg_is_world_roaming(wiphy)) |
| return; |
| wiphy_update_beacon_reg(wiphy); |
| } |
| |
| static bool is_ht40_not_allowed(struct ieee80211_channel *chan) |
| { |
| if (!chan) |
| return true; |
| if (chan->flags & IEEE80211_CHAN_DISABLED) |
| return true; |
| /* This would happen when regulatory rules disallow HT40 completely */ |
| if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) |
| return true; |
| return false; |
| } |
| |
| static void reg_process_ht_flags_channel(struct wiphy *wiphy, |
| enum ieee80211_band band, |
| unsigned int chan_idx) |
| { |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *channel; |
| struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; |
| unsigned int i; |
| |
| assert_cfg80211_lock(); |
| |
| sband = wiphy->bands[band]; |
| BUG_ON(chan_idx >= sband->n_channels); |
| channel = &sband->channels[chan_idx]; |
| |
| if (is_ht40_not_allowed(channel)) { |
| channel->flags |= IEEE80211_CHAN_NO_HT40; |
| return; |
| } |
| |
| /* |
| * We need to ensure the extension channels exist to |
| * be able to use HT40- or HT40+, this finds them (or not) |
| */ |
| for (i = 0; i < sband->n_channels; i++) { |
| struct ieee80211_channel *c = &sband->channels[i]; |
| if (c->center_freq == (channel->center_freq - 20)) |
| channel_before = c; |
| if (c->center_freq == (channel->center_freq + 20)) |
| channel_after = c; |
| } |
| |
| /* |
| * Please note that this assumes target bandwidth is 20 MHz, |
| * if that ever changes we also need to change the below logic |
| * to include that as well. |
| */ |
| if (is_ht40_not_allowed(channel_before)) |
| channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; |
| else |
| channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| |
| if (is_ht40_not_allowed(channel_after)) |
| channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; |
| else |
| channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| } |
| |
| static void reg_process_ht_flags_band(struct wiphy *wiphy, |
| enum ieee80211_band band) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| BUG_ON(!wiphy->bands[band]); |
| sband = wiphy->bands[band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| reg_process_ht_flags_channel(wiphy, band, i); |
| } |
| |
| static void reg_process_ht_flags(struct wiphy *wiphy) |
| { |
| enum ieee80211_band band; |
| |
| if (!wiphy) |
| return; |
| |
| for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| if (wiphy->bands[band]) |
| reg_process_ht_flags_band(wiphy, band); |
| } |
| |
| } |
| |
| static void wiphy_update_regulatory(struct wiphy *wiphy, |
| enum nl80211_reg_initiator initiator) |
| { |
| enum ieee80211_band band; |
| |
| assert_reg_lock(); |
| |
| if (ignore_reg_update(wiphy, initiator)) |
| return; |
| |
| last_request->dfs_region = cfg80211_regdomain->dfs_region; |
| |
| for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| if (wiphy->bands[band]) |
| handle_band(wiphy, band, initiator); |
| } |
| |
| reg_process_beacons(wiphy); |
| reg_process_ht_flags(wiphy); |
| if (wiphy->reg_notifier) |
| wiphy->reg_notifier(wiphy, last_request); |
| } |
| |
| void regulatory_update(struct wiphy *wiphy, |
| enum nl80211_reg_initiator setby) |
| { |
| mutex_lock(®_mutex); |
| wiphy_update_regulatory(wiphy, setby); |
| mutex_unlock(®_mutex); |
| } |
| |
| static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) |
| { |
| struct cfg80211_registered_device *rdev; |
| |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| wiphy_update_regulatory(&rdev->wiphy, initiator); |
| } |
| |
| static void handle_channel_custom(struct wiphy *wiphy, |
| enum ieee80211_band band, |
| unsigned int chan_idx, |
| const struct ieee80211_regdomain *regd) |
| { |
| int r; |
| u32 desired_bw_khz = MHZ_TO_KHZ(20); |
| u32 bw_flags = 0; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| const struct ieee80211_freq_range *freq_range = NULL; |
| struct ieee80211_supported_band *sband; |
| struct ieee80211_channel *chan; |
| |
| assert_reg_lock(); |
| |
| sband = wiphy->bands[band]; |
| BUG_ON(chan_idx >= sband->n_channels); |
| chan = &sband->channels[chan_idx]; |
| |
| r = freq_reg_info_regd(wiphy, |
| MHZ_TO_KHZ(chan->center_freq), |
| desired_bw_khz, |
| ®_rule, |
| regd); |
| |
| if (r) { |
| REG_DBG_PRINT("Disabling freq %d MHz as custom " |
| "regd has no rule that fits a %d MHz " |
| "wide channel\n", |
| chan->center_freq, |
| KHZ_TO_MHZ(desired_bw_khz)); |
| chan->flags = IEEE80211_CHAN_DISABLED; |
| return; |
| } |
| |
| chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); |
| |
| power_rule = ®_rule->power_rule; |
| freq_range = ®_rule->freq_range; |
| |
| if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) |
| bw_flags = IEEE80211_CHAN_NO_HT40; |
| |
| chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; |
| chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); |
| chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); |
| } |
| |
| static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, |
| const struct ieee80211_regdomain *regd) |
| { |
| unsigned int i; |
| struct ieee80211_supported_band *sband; |
| |
| BUG_ON(!wiphy->bands[band]); |
| sband = wiphy->bands[band]; |
| |
| for (i = 0; i < sband->n_channels; i++) |
| handle_channel_custom(wiphy, band, i, regd); |
| } |
| |
| /* Used by drivers prior to wiphy registration */ |
| void wiphy_apply_custom_regulatory(struct wiphy *wiphy, |
| const struct ieee80211_regdomain *regd) |
| { |
| enum ieee80211_band band; |
| unsigned int bands_set = 0; |
| |
| mutex_lock(®_mutex); |
| for (band = 0; band < IEEE80211_NUM_BANDS; band++) { |
| if (!wiphy->bands[band]) |
| continue; |
| handle_band_custom(wiphy, band, regd); |
| bands_set++; |
| } |
| mutex_unlock(®_mutex); |
| |
| /* |
| * no point in calling this if it won't have any effect |
| * on your device's supportd bands. |
| */ |
| WARN_ON(!bands_set); |
| } |
| EXPORT_SYMBOL(wiphy_apply_custom_regulatory); |
| |
| /* |
| * Return value which can be used by ignore_request() to indicate |
| * it has been determined we should intersect two regulatory domains |
| */ |
| #define REG_INTERSECT 1 |
| |
| /* This has the logic which determines when a new request |
| * should be ignored. */ |
| static int ignore_request(struct wiphy *wiphy, |
| struct regulatory_request *pending_request) |
| { |
| struct wiphy *last_wiphy = NULL; |
| |
| assert_cfg80211_lock(); |
| |
| /* All initial requests are respected */ |
| if (!last_request) |
| return 0; |
| |
| switch (pending_request->initiator) { |
| case NL80211_REGDOM_SET_BY_CORE: |
| return 0; |
| case NL80211_REGDOM_SET_BY_COUNTRY_IE: |
| |
| last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); |
| |
| if (unlikely(!is_an_alpha2(pending_request->alpha2))) |
| return -EINVAL; |
| if (last_request->initiator == |
| NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| if (last_wiphy != wiphy) { |
| /* |
| * Two cards with two APs claiming different |
| * Country IE alpha2s. We could |
| * intersect them, but that seems unlikely |
| * to be correct. Reject second one for now. |
| */ |
| if (regdom_changes(pending_request->alpha2)) |
| return -EOPNOTSUPP; |
| return -EALREADY; |
| } |
| /* |
| * Two consecutive Country IE hints on the same wiphy. |
| * This should be picked up early by the driver/stack |
| */ |
| if (WARN_ON(regdom_changes(pending_request->alpha2))) |
| return 0; |
| return -EALREADY; |
| } |
| return 0; |
| case NL80211_REGDOM_SET_BY_DRIVER: |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { |
| if (regdom_changes(pending_request->alpha2)) |
| return 0; |
| return -EALREADY; |
| } |
| |
| /* |
| * This would happen if you unplug and plug your card |
| * back in or if you add a new device for which the previously |
| * loaded card also agrees on the regulatory domain. |
| */ |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| !regdom_changes(pending_request->alpha2)) |
| return -EALREADY; |
| |
| return REG_INTERSECT; |
| case NL80211_REGDOM_SET_BY_USER: |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) |
| return REG_INTERSECT; |
| /* |
| * If the user knows better the user should set the regdom |
| * to their country before the IE is picked up |
| */ |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && |
| last_request->intersect) |
| return -EOPNOTSUPP; |
| /* |
| * Process user requests only after previous user/driver/core |
| * requests have been processed |
| */ |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || |
| last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || |
| last_request->initiator == NL80211_REGDOM_SET_BY_USER) { |
| if (regdom_changes(last_request->alpha2)) |
| return -EAGAIN; |
| } |
| |
| if (!regdom_changes(pending_request->alpha2)) |
| return -EALREADY; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static void reg_set_request_processed(void) |
| { |
| bool need_more_processing = false; |
| |
| last_request->processed = true; |
| |
| spin_lock(®_requests_lock); |
| if (!list_empty(®_requests_list)) |
| need_more_processing = true; |
| spin_unlock(®_requests_lock); |
| |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) |
| cancel_delayed_work_sync(®_timeout); |
| |
| if (need_more_processing) |
| schedule_work(®_work); |
| } |
| |
| /** |
| * __regulatory_hint - hint to the wireless core a regulatory domain |
| * @wiphy: if the hint comes from country information from an AP, this |
| * is required to be set to the wiphy that received the information |
| * @pending_request: the regulatory request currently being processed |
| * |
| * The Wireless subsystem can use this function to hint to the wireless core |
| * what it believes should be the current regulatory domain. |
| * |
| * Returns zero if all went fine, %-EALREADY if a regulatory domain had |
| * already been set or other standard error codes. |
| * |
| * Caller must hold &cfg80211_mutex and ®_mutex |
| */ |
| static int __regulatory_hint(struct wiphy *wiphy, |
| struct regulatory_request *pending_request) |
| { |
| bool intersect = false; |
| int r = 0; |
| |
| assert_cfg80211_lock(); |
| |
| r = ignore_request(wiphy, pending_request); |
| |
| if (r == REG_INTERSECT) { |
| if (pending_request->initiator == |
| NL80211_REGDOM_SET_BY_DRIVER) { |
| r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); |
| if (r) { |
| kfree(pending_request); |
| return r; |
| } |
| } |
| intersect = true; |
| } else if (r) { |
| /* |
| * If the regulatory domain being requested by the |
| * driver has already been set just copy it to the |
| * wiphy |
| */ |
| if (r == -EALREADY && |
| pending_request->initiator == |
| NL80211_REGDOM_SET_BY_DRIVER) { |
| r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); |
| if (r) { |
| kfree(pending_request); |
| return r; |
| } |
| r = -EALREADY; |
| goto new_request; |
| } |
| kfree(pending_request); |
| return r; |
| } |
| |
| new_request: |
| kfree(last_request); |
| |
| last_request = pending_request; |
| last_request->intersect = intersect; |
| |
| pending_request = NULL; |
| |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { |
| user_alpha2[0] = last_request->alpha2[0]; |
| user_alpha2[1] = last_request->alpha2[1]; |
| } |
| |
| /* When r == REG_INTERSECT we do need to call CRDA */ |
| if (r < 0) { |
| /* |
| * Since CRDA will not be called in this case as we already |
| * have applied the requested regulatory domain before we just |
| * inform userspace we have processed the request |
| */ |
| if (r == -EALREADY) { |
| nl80211_send_reg_change_event(last_request); |
| reg_set_request_processed(); |
| } |
| return r; |
| } |
| |
| return call_crda(last_request->alpha2); |
| } |
| |
| /* This processes *all* regulatory hints */ |
| static void reg_process_hint(struct regulatory_request *reg_request) |
| { |
| int r = 0; |
| struct wiphy *wiphy = NULL; |
| enum nl80211_reg_initiator initiator = reg_request->initiator; |
| |
| BUG_ON(!reg_request->alpha2); |
| |
| if (wiphy_idx_valid(reg_request->wiphy_idx)) |
| wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); |
| |
| if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && |
| !wiphy) { |
| kfree(reg_request); |
| return; |
| } |
| |
| r = __regulatory_hint(wiphy, reg_request); |
| /* This is required so that the orig_* parameters are saved */ |
| if (r == -EALREADY && wiphy && |
| wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { |
| wiphy_update_regulatory(wiphy, initiator); |
| return; |
| } |
| |
| /* |
| * We only time out user hints, given that they should be the only |
| * source of bogus requests. |
| */ |
| if (r != -EALREADY && |
| reg_request->initiator == NL80211_REGDOM_SET_BY_USER) |
| schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); |
| } |
| |
| /* |
| * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* |
| * Regulatory hints come on a first come first serve basis and we |
| * must process each one atomically. |
| */ |
| static void reg_process_pending_hints(void) |
| { |
| struct regulatory_request *reg_request; |
| |
| mutex_lock(&cfg80211_mutex); |
| mutex_lock(®_mutex); |
| |
| /* When last_request->processed becomes true this will be rescheduled */ |
| if (last_request && !last_request->processed) { |
| REG_DBG_PRINT("Pending regulatory request, waiting " |
| "for it to be processed...\n"); |
| goto out; |
| } |
| |
| spin_lock(®_requests_lock); |
| |
| if (list_empty(®_requests_list)) { |
| spin_unlock(®_requests_lock); |
| goto out; |
| } |
| |
| reg_request = list_first_entry(®_requests_list, |
| struct regulatory_request, |
| list); |
| list_del_init(®_request->list); |
| |
| spin_unlock(®_requests_lock); |
| |
| reg_process_hint(reg_request); |
| |
| out: |
| mutex_unlock(®_mutex); |
| mutex_unlock(&cfg80211_mutex); |
| } |
| |
| /* Processes beacon hints -- this has nothing to do with country IEs */ |
| static void reg_process_pending_beacon_hints(void) |
| { |
| struct cfg80211_registered_device *rdev; |
| struct reg_beacon *pending_beacon, *tmp; |
| |
| /* |
| * No need to hold the reg_mutex here as we just touch wiphys |
| * and do not read or access regulatory variables. |
| */ |
| mutex_lock(&cfg80211_mutex); |
| |
| /* This goes through the _pending_ beacon list */ |
| spin_lock_bh(®_pending_beacons_lock); |
| |
| if (list_empty(®_pending_beacons)) { |
| spin_unlock_bh(®_pending_beacons_lock); |
| goto out; |
| } |
| |
| list_for_each_entry_safe(pending_beacon, tmp, |
| ®_pending_beacons, list) { |
| |
| list_del_init(&pending_beacon->list); |
| |
| /* Applies the beacon hint to current wiphys */ |
| list_for_each_entry(rdev, &cfg80211_rdev_list, list) |
| wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); |
| |
| /* Remembers the beacon hint for new wiphys or reg changes */ |
| list_add_tail(&pending_beacon->list, ®_beacon_list); |
| } |
| |
| spin_unlock_bh(®_pending_beacons_lock); |
| out: |
| mutex_unlock(&cfg80211_mutex); |
| } |
| |
| static void reg_todo(struct work_struct *work) |
| { |
| reg_process_pending_hints(); |
| reg_process_pending_beacon_hints(); |
| } |
| |
| static void queue_regulatory_request(struct regulatory_request *request) |
| { |
| if (isalpha(request->alpha2[0])) |
| request->alpha2[0] = toupper(request->alpha2[0]); |
| if (isalpha(request->alpha2[1])) |
| request->alpha2[1] = toupper(request->alpha2[1]); |
| |
| spin_lock(®_requests_lock); |
| list_add_tail(&request->list, ®_requests_list); |
| spin_unlock(®_requests_lock); |
| |
| schedule_work(®_work); |
| } |
| |
| /* |
| * Core regulatory hint -- happens during cfg80211_init() |
| * and when we restore regulatory settings. |
| */ |
| static int regulatory_hint_core(const char *alpha2) |
| { |
| struct regulatory_request *request; |
| |
| kfree(last_request); |
| last_request = NULL; |
| |
| request = kzalloc(sizeof(struct regulatory_request), |
| GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_CORE; |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| |
| /* User hints */ |
| int regulatory_hint_user(const char *alpha2) |
| { |
| struct regulatory_request *request; |
| |
| BUG_ON(!alpha2); |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->wiphy_idx = WIPHY_IDX_STALE; |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_USER; |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| |
| /* Driver hints */ |
| int regulatory_hint(struct wiphy *wiphy, const char *alpha2) |
| { |
| struct regulatory_request *request; |
| |
| BUG_ON(!alpha2); |
| BUG_ON(!wiphy); |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| return -ENOMEM; |
| |
| request->wiphy_idx = get_wiphy_idx(wiphy); |
| |
| /* Must have registered wiphy first */ |
| BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); |
| |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_DRIVER; |
| |
| queue_regulatory_request(request); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(regulatory_hint); |
| |
| /* |
| * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and |
| * therefore cannot iterate over the rdev list here. |
| */ |
| void regulatory_hint_11d(struct wiphy *wiphy, |
| enum ieee80211_band band, |
| u8 *country_ie, |
| u8 country_ie_len) |
| { |
| char alpha2[2]; |
| enum environment_cap env = ENVIRON_ANY; |
| struct regulatory_request *request; |
| |
| mutex_lock(®_mutex); |
| |
| if (unlikely(!last_request)) |
| goto out; |
| |
| /* IE len must be evenly divisible by 2 */ |
| if (country_ie_len & 0x01) |
| goto out; |
| |
| if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) |
| goto out; |
| |
| alpha2[0] = country_ie[0]; |
| alpha2[1] = country_ie[1]; |
| |
| if (country_ie[2] == 'I') |
| env = ENVIRON_INDOOR; |
| else if (country_ie[2] == 'O') |
| env = ENVIRON_OUTDOOR; |
| |
| /* |
| * We will run this only upon a successful connection on cfg80211. |
| * We leave conflict resolution to the workqueue, where can hold |
| * cfg80211_mutex. |
| */ |
| if (likely(last_request->initiator == |
| NL80211_REGDOM_SET_BY_COUNTRY_IE && |
| wiphy_idx_valid(last_request->wiphy_idx))) |
| goto out; |
| |
| request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); |
| if (!request) |
| goto out; |
| |
| request->wiphy_idx = get_wiphy_idx(wiphy); |
| request->alpha2[0] = alpha2[0]; |
| request->alpha2[1] = alpha2[1]; |
| request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; |
| request->country_ie_env = env; |
| |
| mutex_unlock(®_mutex); |
| |
| queue_regulatory_request(request); |
| |
| return; |
| |
| out: |
| mutex_unlock(®_mutex); |
| } |
| |
| static void restore_alpha2(char *alpha2, bool reset_user) |
| { |
| /* indicates there is no alpha2 to consider for restoration */ |
| alpha2[0] = '9'; |
| alpha2[1] = '7'; |
| |
| /* The user setting has precedence over the module parameter */ |
| if (is_user_regdom_saved()) { |
| /* Unless we're asked to ignore it and reset it */ |
| if (reset_user) { |
| REG_DBG_PRINT("Restoring regulatory settings " |
| "including user preference\n"); |
| user_alpha2[0] = '9'; |
| user_alpha2[1] = '7'; |
| |
| /* |
| * If we're ignoring user settings, we still need to |
| * check the module parameter to ensure we put things |
| * back as they were for a full restore. |
| */ |
| if (!is_world_regdom(ieee80211_regdom)) { |
| REG_DBG_PRINT("Keeping preference on " |
| "module parameter ieee80211_regdom: %c%c\n", |
| ieee80211_regdom[0], |
| ieee80211_regdom[1]); |
| alpha2[0] = ieee80211_regdom[0]; |
| alpha2[1] = ieee80211_regdom[1]; |
| } |
| } else { |
| REG_DBG_PRINT("Restoring regulatory settings " |
| "while preserving user preference for: %c%c\n", |
| user_alpha2[0], |
| user_alpha2[1]); |
| alpha2[0] = user_alpha2[0]; |
| alpha2[1] = user_alpha2[1]; |
| } |
| } else if (!is_world_regdom(ieee80211_regdom)) { |
| REG_DBG_PRINT("Keeping preference on " |
| "module parameter ieee80211_regdom: %c%c\n", |
| ieee80211_regdom[0], |
| ieee80211_regdom[1]); |
| alpha2[0] = ieee80211_regdom[0]; |
| alpha2[1] = ieee80211_regdom[1]; |
| } else |
| REG_DBG_PRINT("Restoring regulatory settings\n"); |
| } |
| |
| /* |
| * Restoring regulatory settings involves ingoring any |
| * possibly stale country IE information and user regulatory |
| * settings if so desired, this includes any beacon hints |
| * learned as we could have traveled outside to another country |
| * after disconnection. To restore regulatory settings we do |
| * exactly what we did at bootup: |
| * |
| * - send a core regulatory hint |
| * - send a user regulatory hint if applicable |
| * |
| * Device drivers that send a regulatory hint for a specific country |
| * keep their own regulatory domain on wiphy->regd so that does does |
| * not need to be remembered. |
| */ |
| static void restore_regulatory_settings(bool reset_user) |
| { |
| char alpha2[2]; |
| struct reg_beacon *reg_beacon, *btmp; |
| struct regulatory_request *reg_request, *tmp; |
| LIST_HEAD(tmp_reg_req_list); |
| |
| mutex_lock(&cfg80211_mutex); |
| mutex_lock(®_mutex); |
| |
| reset_regdomains(); |
| restore_alpha2(alpha2, reset_user); |
| |
| /* |
| * If there's any pending requests we simply |
| * stash them to a temporary pending queue and |
| * add then after we've restored regulatory |
| * settings. |
| */ |
| spin_lock(®_requests_lock); |
| if (!list_empty(®_requests_list)) { |
| list_for_each_entry_safe(reg_request, tmp, |
| ®_requests_list, list) { |
| if (reg_request->initiator != |
| NL80211_REGDOM_SET_BY_USER) |
| continue; |
| list_del(®_request->list); |
| list_add_tail(®_request->list, &tmp_reg_req_list); |
| } |
| } |
| spin_unlock(®_requests_lock); |
| |
| /* Clear beacon hints */ |
| spin_lock_bh(®_pending_beacons_lock); |
| if (!list_empty(®_pending_beacons)) { |
| list_for_each_entry_safe(reg_beacon, btmp, |
| ®_pending_beacons, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| } |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| if (!list_empty(®_beacon_list)) { |
| list_for_each_entry_safe(reg_beacon, btmp, |
| ®_beacon_list, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| } |
| |
| /* First restore to the basic regulatory settings */ |
| cfg80211_regdomain = cfg80211_world_regdom; |
| |
| mutex_unlock(®_mutex); |
| mutex_unlock(&cfg80211_mutex); |
| |
| regulatory_hint_core(cfg80211_regdomain->alpha2); |
| |
| /* |
| * This restores the ieee80211_regdom module parameter |
| * preference or the last user requested regulatory |
| * settings, user regulatory settings takes precedence. |
| */ |
| if (is_an_alpha2(alpha2)) |
| regulatory_hint_user(user_alpha2); |
| |
| if (list_empty(&tmp_reg_req_list)) |
| return; |
| |
| mutex_lock(&cfg80211_mutex); |
| mutex_lock(®_mutex); |
| |
| spin_lock(®_requests_lock); |
| list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { |
| REG_DBG_PRINT("Adding request for country %c%c back " |
| "into the queue\n", |
| reg_request->alpha2[0], |
| reg_request->alpha2[1]); |
| list_del(®_request->list); |
| list_add_tail(®_request->list, ®_requests_list); |
| } |
| spin_unlock(®_requests_lock); |
| |
| mutex_unlock(®_mutex); |
| mutex_unlock(&cfg80211_mutex); |
| |
| REG_DBG_PRINT("Kicking the queue\n"); |
| |
| schedule_work(®_work); |
| } |
| |
| void regulatory_hint_disconnect(void) |
| { |
| REG_DBG_PRINT("All devices are disconnected, going to " |
| "restore regulatory settings\n"); |
| restore_regulatory_settings(false); |
| } |
| |
| static bool freq_is_chan_12_13_14(u16 freq) |
| { |
| if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || |
| freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || |
| freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) |
| return true; |
| return false; |
| } |
| |
| int regulatory_hint_found_beacon(struct wiphy *wiphy, |
| struct ieee80211_channel *beacon_chan, |
| gfp_t gfp) |
| { |
| struct reg_beacon *reg_beacon; |
| |
| if (likely((beacon_chan->beacon_found || |
| (beacon_chan->flags & IEEE80211_CHAN_RADAR) || |
| (beacon_chan->band == IEEE80211_BAND_2GHZ && |
| !freq_is_chan_12_13_14(beacon_chan->center_freq))))) |
| return 0; |
| |
| reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); |
| if (!reg_beacon) |
| return -ENOMEM; |
| |
| REG_DBG_PRINT("Found new beacon on " |
| "frequency: %d MHz (Ch %d) on %s\n", |
| beacon_chan->center_freq, |
| ieee80211_frequency_to_channel(beacon_chan->center_freq), |
| wiphy_name(wiphy)); |
| |
| memcpy(®_beacon->chan, beacon_chan, |
| sizeof(struct ieee80211_channel)); |
| |
| |
| /* |
| * Since we can be called from BH or and non-BH context |
| * we must use spin_lock_bh() |
| */ |
| spin_lock_bh(®_pending_beacons_lock); |
| list_add_tail(®_beacon->list, ®_pending_beacons); |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| schedule_work(®_work); |
| |
| return 0; |
| } |
| |
| static void print_rd_rules(const struct ieee80211_regdomain *rd) |
| { |
| unsigned int i; |
| const struct ieee80211_reg_rule *reg_rule = NULL; |
| const struct ieee80211_freq_range *freq_range = NULL; |
| const struct ieee80211_power_rule *power_rule = NULL; |
| |
| pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); |
| |
| for (i = 0; i < rd->n_reg_rules; i++) { |
| reg_rule = &rd->reg_rules[i]; |
| freq_range = ®_rule->freq_range; |
| power_rule = ®_rule->power_rule; |
| |
| /* |
| * There may not be documentation for max antenna gain |
| * in certain regions |
| */ |
| if (power_rule->max_antenna_gain) |
| pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| freq_range->max_bandwidth_khz, |
| power_rule->max_antenna_gain, |
| power_rule->max_eirp); |
| else |
| pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", |
| freq_range->start_freq_khz, |
| freq_range->end_freq_khz, |
| freq_range->max_bandwidth_khz, |
| power_rule->max_eirp); |
| } |
| } |
| |
| bool reg_supported_dfs_region(u8 dfs_region) |
| { |
| switch (dfs_region) { |
| case NL80211_DFS_UNSET: |
| case NL80211_DFS_FCC: |
| case NL80211_DFS_ETSI: |
| case NL80211_DFS_JP: |
| return true; |
| default: |
| REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", |
| dfs_region); |
| return false; |
| } |
| } |
| |
| static void print_dfs_region(u8 dfs_region) |
| { |
| if (!dfs_region) |
| return; |
| |
| switch (dfs_region) { |
| case NL80211_DFS_FCC: |
| pr_info(" DFS Master region FCC"); |
| break; |
| case NL80211_DFS_ETSI: |
| pr_info(" DFS Master region ETSI"); |
| break; |
| case NL80211_DFS_JP: |
| pr_info(" DFS Master region JP"); |
| break; |
| default: |
| pr_info(" DFS Master region Uknown"); |
| break; |
| } |
| } |
| |
| static void print_regdomain(const struct ieee80211_regdomain *rd) |
| { |
| |
| if (is_intersected_alpha2(rd->alpha2)) { |
| |
| if (last_request->initiator == |
| NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| struct cfg80211_registered_device *rdev; |
| rdev = cfg80211_rdev_by_wiphy_idx( |
| last_request->wiphy_idx); |
| if (rdev) { |
| pr_info("Current regulatory domain updated by AP to: %c%c\n", |
| rdev->country_ie_alpha2[0], |
| rdev->country_ie_alpha2[1]); |
| } else |
| pr_info("Current regulatory domain intersected:\n"); |
| } else |
| pr_info("Current regulatory domain intersected:\n"); |
| } else if (is_world_regdom(rd->alpha2)) |
| pr_info("World regulatory domain updated:\n"); |
| else { |
| if (is_unknown_alpha2(rd->alpha2)) |
| pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); |
| else |
| pr_info("Regulatory domain changed to country: %c%c\n", |
| rd->alpha2[0], rd->alpha2[1]); |
| } |
| print_dfs_region(rd->dfs_region); |
| print_rd_rules(rd); |
| } |
| |
| static void print_regdomain_info(const struct ieee80211_regdomain *rd) |
| { |
| pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); |
| print_rd_rules(rd); |
| } |
| |
| /* Takes ownership of rd only if it doesn't fail */ |
| static int __set_regdom(const struct ieee80211_regdomain *rd) |
| { |
| const struct ieee80211_regdomain *intersected_rd = NULL; |
| struct cfg80211_registered_device *rdev = NULL; |
| struct wiphy *request_wiphy; |
| /* Some basic sanity checks first */ |
| |
| if (is_world_regdom(rd->alpha2)) { |
| if (WARN_ON(!reg_is_valid_request(rd->alpha2))) |
| return -EINVAL; |
| update_world_regdomain(rd); |
| return 0; |
| } |
| |
| if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && |
| !is_unknown_alpha2(rd->alpha2)) |
| return -EINVAL; |
| |
| if (!last_request) |
| return -EINVAL; |
| |
| /* |
| * Lets only bother proceeding on the same alpha2 if the current |
| * rd is non static (it means CRDA was present and was used last) |
| * and the pending request came in from a country IE |
| */ |
| if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| /* |
| * If someone else asked us to change the rd lets only bother |
| * checking if the alpha2 changes if CRDA was already called |
| */ |
| if (!regdom_changes(rd->alpha2)) |
| return -EINVAL; |
| } |
| |
| /* |
| * Now lets set the regulatory domain, update all driver channels |
| * and finally inform them of what we have done, in case they want |
| * to review or adjust their own settings based on their own |
| * internal EEPROM data |
| */ |
| |
| if (WARN_ON(!reg_is_valid_request(rd->alpha2))) |
| return -EINVAL; |
| |
| if (!is_valid_rd(rd)) { |
| pr_err("Invalid regulatory domain detected:\n"); |
| print_regdomain_info(rd); |
| return -EINVAL; |
| } |
| |
| request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); |
| if (!request_wiphy) { |
| reg_set_request_processed(); |
| return -ENODEV; |
| } |
| |
| if (!last_request->intersect) { |
| int r; |
| |
| if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { |
| reset_regdomains(); |
| cfg80211_regdomain = rd; |
| return 0; |
| } |
| |
| /* |
| * For a driver hint, lets copy the regulatory domain the |
| * driver wanted to the wiphy to deal with conflicts |
| */ |
| |
| /* |
| * Userspace could have sent two replies with only |
| * one kernel request. |
| */ |
| if (request_wiphy->regd) |
| return -EALREADY; |
| |
| r = reg_copy_regd(&request_wiphy->regd, rd); |
| if (r) |
| return r; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = rd; |
| return 0; |
| } |
| |
| /* Intersection requires a bit more work */ |
| |
| if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { |
| |
| intersected_rd = regdom_intersect(rd, cfg80211_regdomain); |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| /* |
| * We can trash what CRDA provided now. |
| * However if a driver requested this specific regulatory |
| * domain we keep it for its private use |
| */ |
| if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) |
| request_wiphy->regd = rd; |
| else |
| kfree(rd); |
| |
| rd = NULL; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = intersected_rd; |
| |
| return 0; |
| } |
| |
| if (!intersected_rd) |
| return -EINVAL; |
| |
| rdev = wiphy_to_dev(request_wiphy); |
| |
| rdev->country_ie_alpha2[0] = rd->alpha2[0]; |
| rdev->country_ie_alpha2[1] = rd->alpha2[1]; |
| rdev->env = last_request->country_ie_env; |
| |
| BUG_ON(intersected_rd == rd); |
| |
| kfree(rd); |
| rd = NULL; |
| |
| reset_regdomains(); |
| cfg80211_regdomain = intersected_rd; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Use this call to set the current regulatory domain. Conflicts with |
| * multiple drivers can be ironed out later. Caller must've already |
| * kmalloc'd the rd structure. Caller must hold cfg80211_mutex |
| */ |
| int set_regdom(const struct ieee80211_regdomain *rd) |
| { |
| int r; |
| |
| assert_cfg80211_lock(); |
| |
| mutex_lock(®_mutex); |
| |
| /* Note that this doesn't update the wiphys, this is done below */ |
| r = __set_regdom(rd); |
| if (r) { |
| kfree(rd); |
| mutex_unlock(®_mutex); |
| return r; |
| } |
| |
| /* This would make this whole thing pointless */ |
| if (!last_request->intersect) |
| BUG_ON(rd != cfg80211_regdomain); |
| |
| /* update all wiphys now with the new established regulatory domain */ |
| update_all_wiphy_regulatory(last_request->initiator); |
| |
| print_regdomain(cfg80211_regdomain); |
| |
| nl80211_send_reg_change_event(last_request); |
| |
| reg_set_request_processed(); |
| |
| mutex_unlock(®_mutex); |
| |
| return r; |
| } |
| |
| #ifdef CONFIG_HOTPLUG |
| int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) |
| { |
| if (last_request && !last_request->processed) { |
| if (add_uevent_var(env, "COUNTRY=%c%c", |
| last_request->alpha2[0], |
| last_request->alpha2[1])) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| #else |
| int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) |
| { |
| return -ENODEV; |
| } |
| #endif /* CONFIG_HOTPLUG */ |
| |
| /* Caller must hold cfg80211_mutex */ |
| void reg_device_remove(struct wiphy *wiphy) |
| { |
| struct wiphy *request_wiphy = NULL; |
| |
| assert_cfg80211_lock(); |
| |
| mutex_lock(®_mutex); |
| |
| kfree(wiphy->regd); |
| |
| if (last_request) |
| request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); |
| |
| if (!request_wiphy || request_wiphy != wiphy) |
| goto out; |
| |
| last_request->wiphy_idx = WIPHY_IDX_STALE; |
| last_request->country_ie_env = ENVIRON_ANY; |
| out: |
| mutex_unlock(®_mutex); |
| } |
| |
| static void reg_timeout_work(struct work_struct *work) |
| { |
| REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " |
| "restoring regulatory settings\n"); |
| restore_regulatory_settings(true); |
| } |
| |
| int __init regulatory_init(void) |
| { |
| int err = 0; |
| |
| reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); |
| if (IS_ERR(reg_pdev)) |
| return PTR_ERR(reg_pdev); |
| |
| reg_pdev->dev.type = ®_device_type; |
| |
| spin_lock_init(®_requests_lock); |
| spin_lock_init(®_pending_beacons_lock); |
| |
| cfg80211_regdomain = cfg80211_world_regdom; |
| |
| user_alpha2[0] = '9'; |
| user_alpha2[1] = '7'; |
| |
| /* We always try to get an update for the static regdomain */ |
| err = regulatory_hint_core(cfg80211_regdomain->alpha2); |
| if (err) { |
| if (err == -ENOMEM) |
| return err; |
| /* |
| * N.B. kobject_uevent_env() can fail mainly for when we're out |
| * memory which is handled and propagated appropriately above |
| * but it can also fail during a netlink_broadcast() or during |
| * early boot for call_usermodehelper(). For now treat these |
| * errors as non-fatal. |
| */ |
| pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); |
| #ifdef CONFIG_CFG80211_REG_DEBUG |
| /* We want to find out exactly why when debugging */ |
| WARN_ON(err); |
| #endif |
| } |
| |
| /* |
| * Finally, if the user set the module parameter treat it |
| * as a user hint. |
| */ |
| if (!is_world_regdom(ieee80211_regdom)) |
| regulatory_hint_user(ieee80211_regdom); |
| |
| return 0; |
| } |
| |
| void /* __init_or_exit */ regulatory_exit(void) |
| { |
| struct regulatory_request *reg_request, *tmp; |
| struct reg_beacon *reg_beacon, *btmp; |
| |
| cancel_work_sync(®_work); |
| cancel_delayed_work_sync(®_timeout); |
| |
| mutex_lock(&cfg80211_mutex); |
| mutex_lock(®_mutex); |
| |
| reset_regdomains(); |
| |
| kfree(last_request); |
| |
| last_request = NULL; |
| dev_set_uevent_suppress(®_pdev->dev, true); |
| |
| platform_device_unregister(reg_pdev); |
| |
| spin_lock_bh(®_pending_beacons_lock); |
| if (!list_empty(®_pending_beacons)) { |
| list_for_each_entry_safe(reg_beacon, btmp, |
| ®_pending_beacons, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| } |
| spin_unlock_bh(®_pending_beacons_lock); |
| |
| if (!list_empty(®_beacon_list)) { |
| list_for_each_entry_safe(reg_beacon, btmp, |
| ®_beacon_list, list) { |
| list_del(®_beacon->list); |
| kfree(reg_beacon); |
| } |
| } |
| |
| spin_lock(®_requests_lock); |
| if (!list_empty(®_requests_list)) { |
| list_for_each_entry_safe(reg_request, tmp, |
| ®_requests_list, list) { |
| list_del(®_request->list); |
| kfree(reg_request); |
| } |
| } |
| spin_unlock(®_requests_lock); |
| |
| mutex_unlock(®_mutex); |
| mutex_unlock(&cfg80211_mutex); |
| } |