| /* |
| * Per core/cpu state |
| * |
| * Used to coordinate shared registers between HT threads or |
| * among events on a single PMU. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/stddef.h> |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/cpufeature.h> |
| #include <asm/hardirq.h> |
| #include <asm/intel-family.h> |
| #include <asm/apic.h> |
| |
| #include "../perf_event.h" |
| |
| /* |
| * Intel PerfMon, used on Core and later. |
| */ |
| static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = |
| { |
| [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, |
| [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, |
| [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, |
| [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, |
| [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, |
| [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, |
| [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ |
| }; |
| |
| static struct event_constraint intel_core_event_constraints[] __read_mostly = |
| { |
| INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ |
| INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ |
| INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_core2_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ |
| INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ |
| INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ |
| INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ |
| INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ |
| INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ |
| INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ |
| INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ |
| INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ |
| INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ |
| INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ |
| INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ |
| INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ |
| INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ |
| INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ |
| INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ |
| INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct event_constraint intel_westmere_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ |
| INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ |
| INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ |
| INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_snb_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ |
| INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| |
| /* |
| * When HT is off these events can only run on the bottom 4 counters |
| * When HT is on, they are impacted by the HT bug and require EXCL access |
| */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_ivb_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ |
| INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ |
| INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ |
| INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| |
| /* |
| * When HT is off these events can only run on the bottom 4 counters |
| * When HT is on, they are impacted by the HT bug and require EXCL access |
| */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_westmere_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct event_constraint intel_v1_event_constraints[] __read_mostly = |
| { |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_gen_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_slm_event_constraints[] __read_mostly = |
| { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_skl_event_constraints[] = { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| |
| /* |
| * when HT is off, these can only run on the bottom 4 counters |
| */ |
| INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct extra_reg intel_knl_extra_regs[] __read_mostly = { |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct extra_reg intel_snb_extra_regs[] __read_mostly = { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), |
| EVENT_EXTRA_END |
| }; |
| |
| static struct extra_reg intel_skl_extra_regs[] __read_mostly = { |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), |
| INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), |
| /* |
| * Note the low 8 bits eventsel code is not a continuous field, containing |
| * some #GPing bits. These are masked out. |
| */ |
| INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE), |
| EVENT_EXTRA_END |
| }; |
| |
| EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); |
| EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); |
| EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); |
| |
| static struct attribute *nhm_mem_events_attrs[] = { |
| EVENT_PTR(mem_ld_nhm), |
| NULL, |
| }; |
| |
| /* |
| * topdown events for Intel Core CPUs. |
| * |
| * The events are all in slots, which is a free slot in a 4 wide |
| * pipeline. Some events are already reported in slots, for cycle |
| * events we multiply by the pipeline width (4). |
| * |
| * With Hyper Threading on, topdown metrics are either summed or averaged |
| * between the threads of a core: (count_t0 + count_t1). |
| * |
| * For the average case the metric is always scaled to pipeline width, |
| * so we use factor 2 ((count_t0 + count_t1) / 2 * 4) |
| */ |
| |
| EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots, |
| "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */ |
| "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */ |
| EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2"); |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued, |
| "event=0xe,umask=0x1"); /* uops_issued.any */ |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired, |
| "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */ |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles, |
| "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */ |
| EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles, |
| "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */ |
| "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */ |
| EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale, |
| "4", "2"); |
| |
| static struct attribute *snb_events_attrs[] = { |
| EVENT_PTR(td_slots_issued), |
| EVENT_PTR(td_slots_retired), |
| EVENT_PTR(td_fetch_bubbles), |
| EVENT_PTR(td_total_slots), |
| EVENT_PTR(td_total_slots_scale), |
| EVENT_PTR(td_recovery_bubbles), |
| EVENT_PTR(td_recovery_bubbles_scale), |
| NULL, |
| }; |
| |
| static struct attribute *snb_mem_events_attrs[] = { |
| EVENT_PTR(mem_ld_snb), |
| EVENT_PTR(mem_st_snb), |
| NULL, |
| }; |
| |
| static struct event_constraint intel_hsw_event_constraints[] = { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ |
| /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), |
| /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ |
| INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), |
| /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ |
| INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), |
| |
| /* |
| * When HT is off these events can only run on the bottom 4 counters |
| * When HT is on, they are impacted by the HT bug and require EXCL access |
| */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static struct event_constraint intel_bdw_event_constraints[] = { |
| FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ |
| FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ |
| FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ |
| INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */ |
| INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */ |
| /* |
| * when HT is off, these can only run on the bottom 4 counters |
| */ |
| INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ |
| INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| EVENT_CONSTRAINT_END |
| }; |
| |
| static u64 intel_pmu_event_map(int hw_event) |
| { |
| return intel_perfmon_event_map[hw_event]; |
| } |
| |
| /* |
| * Notes on the events: |
| * - data reads do not include code reads (comparable to earlier tables) |
| * - data counts include speculative execution (except L1 write, dtlb, bpu) |
| * - remote node access includes remote memory, remote cache, remote mmio. |
| * - prefetches are not included in the counts. |
| * - icache miss does not include decoded icache |
| */ |
| |
| #define SKL_DEMAND_DATA_RD BIT_ULL(0) |
| #define SKL_DEMAND_RFO BIT_ULL(1) |
| #define SKL_ANY_RESPONSE BIT_ULL(16) |
| #define SKL_SUPPLIER_NONE BIT_ULL(17) |
| #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26) |
| #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27) |
| #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28) |
| #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29) |
| #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \ |
| SKL_L3_MISS_REMOTE_HOP0_DRAM| \ |
| SKL_L3_MISS_REMOTE_HOP1_DRAM| \ |
| SKL_L3_MISS_REMOTE_HOP2P_DRAM) |
| #define SKL_SPL_HIT BIT_ULL(30) |
| #define SKL_SNOOP_NONE BIT_ULL(31) |
| #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32) |
| #define SKL_SNOOP_MISS BIT_ULL(33) |
| #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34) |
| #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35) |
| #define SKL_SNOOP_HITM BIT_ULL(36) |
| #define SKL_SNOOP_NON_DRAM BIT_ULL(37) |
| #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \ |
| SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ |
| SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ |
| SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM) |
| #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD |
| #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \ |
| SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \ |
| SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \ |
| SKL_SNOOP_HITM|SKL_SPL_HIT) |
| #define SKL_DEMAND_WRITE SKL_DEMAND_RFO |
| #define SKL_LLC_ACCESS SKL_ANY_RESPONSE |
| #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \ |
| SKL_L3_MISS_REMOTE_HOP1_DRAM| \ |
| SKL_L3_MISS_REMOTE_HOP2P_DRAM) |
| |
| static __initconst const u64 skl_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */ |
| [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 skl_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| |
| SKL_LLC_ACCESS|SKL_ANY_SNOOP, |
| [ C(RESULT_MISS) ] = SKL_DEMAND_READ| |
| SKL_L3_MISS|SKL_ANY_SNOOP| |
| SKL_SUPPLIER_NONE, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| |
| SKL_LLC_ACCESS|SKL_ANY_SNOOP, |
| [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| |
| SKL_L3_MISS|SKL_ANY_SNOOP| |
| SKL_SUPPLIER_NONE, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ| |
| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, |
| [ C(RESULT_MISS) ] = SKL_DEMAND_READ| |
| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE| |
| SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM, |
| [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE| |
| SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| }; |
| |
| #define SNB_DMND_DATA_RD (1ULL << 0) |
| #define SNB_DMND_RFO (1ULL << 1) |
| #define SNB_DMND_IFETCH (1ULL << 2) |
| #define SNB_DMND_WB (1ULL << 3) |
| #define SNB_PF_DATA_RD (1ULL << 4) |
| #define SNB_PF_RFO (1ULL << 5) |
| #define SNB_PF_IFETCH (1ULL << 6) |
| #define SNB_LLC_DATA_RD (1ULL << 7) |
| #define SNB_LLC_RFO (1ULL << 8) |
| #define SNB_LLC_IFETCH (1ULL << 9) |
| #define SNB_BUS_LOCKS (1ULL << 10) |
| #define SNB_STRM_ST (1ULL << 11) |
| #define SNB_OTHER (1ULL << 15) |
| #define SNB_RESP_ANY (1ULL << 16) |
| #define SNB_NO_SUPP (1ULL << 17) |
| #define SNB_LLC_HITM (1ULL << 18) |
| #define SNB_LLC_HITE (1ULL << 19) |
| #define SNB_LLC_HITS (1ULL << 20) |
| #define SNB_LLC_HITF (1ULL << 21) |
| #define SNB_LOCAL (1ULL << 22) |
| #define SNB_REMOTE (0xffULL << 23) |
| #define SNB_SNP_NONE (1ULL << 31) |
| #define SNB_SNP_NOT_NEEDED (1ULL << 32) |
| #define SNB_SNP_MISS (1ULL << 33) |
| #define SNB_NO_FWD (1ULL << 34) |
| #define SNB_SNP_FWD (1ULL << 35) |
| #define SNB_HITM (1ULL << 36) |
| #define SNB_NON_DRAM (1ULL << 37) |
| |
| #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) |
| #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) |
| #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) |
| |
| #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ |
| SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ |
| SNB_HITM) |
| |
| #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) |
| #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) |
| |
| #define SNB_L3_ACCESS SNB_RESP_ANY |
| #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) |
| |
| static __initconst const u64 snb_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, |
| [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, |
| [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 snb_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ |
| [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| |
| }; |
| |
| /* |
| * Notes on the events: |
| * - data reads do not include code reads (comparable to earlier tables) |
| * - data counts include speculative execution (except L1 write, dtlb, bpu) |
| * - remote node access includes remote memory, remote cache, remote mmio. |
| * - prefetches are not included in the counts because they are not |
| * reliably counted. |
| */ |
| |
| #define HSW_DEMAND_DATA_RD BIT_ULL(0) |
| #define HSW_DEMAND_RFO BIT_ULL(1) |
| #define HSW_ANY_RESPONSE BIT_ULL(16) |
| #define HSW_SUPPLIER_NONE BIT_ULL(17) |
| #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22) |
| #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27) |
| #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28) |
| #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29) |
| #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \ |
| HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ |
| HSW_L3_MISS_REMOTE_HOP2P) |
| #define HSW_SNOOP_NONE BIT_ULL(31) |
| #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32) |
| #define HSW_SNOOP_MISS BIT_ULL(33) |
| #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34) |
| #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35) |
| #define HSW_SNOOP_HITM BIT_ULL(36) |
| #define HSW_SNOOP_NON_DRAM BIT_ULL(37) |
| #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \ |
| HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \ |
| HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \ |
| HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM) |
| #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM) |
| #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD |
| #define HSW_DEMAND_WRITE HSW_DEMAND_RFO |
| #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\ |
| HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P) |
| #define HSW_LLC_ACCESS HSW_ANY_RESPONSE |
| |
| #define BDW_L3_MISS_LOCAL BIT(26) |
| #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \ |
| HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \ |
| HSW_L3_MISS_REMOTE_HOP2P) |
| |
| |
| static __initconst const u64 hsw_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */ |
| [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 hsw_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| |
| HSW_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = HSW_DEMAND_READ| |
| HSW_L3_MISS|HSW_ANY_SNOOP, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| |
| HSW_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| |
| HSW_L3_MISS|HSW_ANY_SNOOP, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ| |
| HSW_L3_MISS_LOCAL_DRAM| |
| HSW_SNOOP_DRAM, |
| [ C(RESULT_MISS) ] = HSW_DEMAND_READ| |
| HSW_L3_MISS_REMOTE| |
| HSW_SNOOP_DRAM, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE| |
| HSW_L3_MISS_LOCAL_DRAM| |
| HSW_SNOOP_DRAM, |
| [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE| |
| HSW_L3_MISS_REMOTE| |
| HSW_SNOOP_DRAM, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 westmere_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| /* |
| * Use RFO, not WRITEBACK, because a write miss would typically occur |
| * on RFO. |
| */ |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| }; |
| |
| /* |
| * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; |
| * See IA32 SDM Vol 3B 30.6.1.3 |
| */ |
| |
| #define NHM_DMND_DATA_RD (1 << 0) |
| #define NHM_DMND_RFO (1 << 1) |
| #define NHM_DMND_IFETCH (1 << 2) |
| #define NHM_DMND_WB (1 << 3) |
| #define NHM_PF_DATA_RD (1 << 4) |
| #define NHM_PF_DATA_RFO (1 << 5) |
| #define NHM_PF_IFETCH (1 << 6) |
| #define NHM_OFFCORE_OTHER (1 << 7) |
| #define NHM_UNCORE_HIT (1 << 8) |
| #define NHM_OTHER_CORE_HIT_SNP (1 << 9) |
| #define NHM_OTHER_CORE_HITM (1 << 10) |
| /* reserved */ |
| #define NHM_REMOTE_CACHE_FWD (1 << 12) |
| #define NHM_REMOTE_DRAM (1 << 13) |
| #define NHM_LOCAL_DRAM (1 << 14) |
| #define NHM_NON_DRAM (1 << 15) |
| |
| #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) |
| #define NHM_REMOTE (NHM_REMOTE_DRAM) |
| |
| #define NHM_DMND_READ (NHM_DMND_DATA_RD) |
| #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) |
| #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) |
| |
| #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) |
| #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) |
| #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) |
| |
| static __initconst const u64 nehalem_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, |
| [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, |
| [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 nehalem_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ |
| [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ |
| [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| /* |
| * Use RFO, not WRITEBACK, because a write miss would typically occur |
| * on RFO. |
| */ |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0x0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(NODE) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 core2_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 atom_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ |
| [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ |
| [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ |
| [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ |
| [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c"); |
| EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2"); |
| /* no_alloc_cycles.not_delivered */ |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm, |
| "event=0xca,umask=0x50"); |
| EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2"); |
| /* uops_retired.all */ |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm, |
| "event=0xc2,umask=0x10"); |
| /* uops_retired.all */ |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm, |
| "event=0xc2,umask=0x10"); |
| |
| static struct attribute *slm_events_attrs[] = { |
| EVENT_PTR(td_total_slots_slm), |
| EVENT_PTR(td_total_slots_scale_slm), |
| EVENT_PTR(td_fetch_bubbles_slm), |
| EVENT_PTR(td_fetch_bubbles_scale_slm), |
| EVENT_PTR(td_slots_issued_slm), |
| EVENT_PTR(td_slots_retired_slm), |
| NULL |
| }; |
| |
| static struct extra_reg intel_slm_extra_regs[] __read_mostly = |
| { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1), |
| EVENT_EXTRA_END |
| }; |
| |
| #define SLM_DMND_READ SNB_DMND_DATA_RD |
| #define SLM_DMND_WRITE SNB_DMND_RFO |
| #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) |
| |
| #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) |
| #define SLM_LLC_ACCESS SNB_RESP_ANY |
| #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) |
| |
| static __initconst const u64 slm_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, |
| [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 slm_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| { |
| [ C(L1D) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(L1I ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ |
| [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(LL ) ] = { |
| [ C(OP_READ) ] = { |
| /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_WRITE) ] = { |
| /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ |
| [ C(RESULT_ACCESS) ] = 0x01b7, |
| /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ |
| [ C(RESULT_MISS) ] = 0x01b7, |
| }, |
| }, |
| [ C(DTLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = 0, |
| [ C(RESULT_MISS) ] = 0, |
| }, |
| }, |
| [ C(ITLB) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| [ C(BPU ) ] = { |
| [ C(OP_READ) ] = { |
| [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ |
| [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ |
| }, |
| [ C(OP_WRITE) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| [ C(OP_PREFETCH) ] = { |
| [ C(RESULT_ACCESS) ] = -1, |
| [ C(RESULT_MISS) ] = -1, |
| }, |
| }, |
| }; |
| |
| EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c"); |
| EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3"); |
| /* UOPS_NOT_DELIVERED.ANY */ |
| EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c"); |
| /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */ |
| EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02"); |
| /* UOPS_RETIRED.ANY */ |
| EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2"); |
| /* UOPS_ISSUED.ANY */ |
| EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e"); |
| |
| static struct attribute *glm_events_attrs[] = { |
| EVENT_PTR(td_total_slots_glm), |
| EVENT_PTR(td_total_slots_scale_glm), |
| EVENT_PTR(td_fetch_bubbles_glm), |
| EVENT_PTR(td_recovery_bubbles_glm), |
| EVENT_PTR(td_slots_issued_glm), |
| EVENT_PTR(td_slots_retired_glm), |
| NULL |
| }; |
| |
| static struct extra_reg intel_glm_extra_regs[] __read_mostly = { |
| /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ |
| INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0), |
| INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1), |
| EVENT_EXTRA_END |
| }; |
| |
| #define GLM_DEMAND_DATA_RD BIT_ULL(0) |
| #define GLM_DEMAND_RFO BIT_ULL(1) |
| #define GLM_ANY_RESPONSE BIT_ULL(16) |
| #define GLM_SNP_NONE_OR_MISS BIT_ULL(33) |
| #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD |
| #define GLM_DEMAND_WRITE GLM_DEMAND_RFO |
| #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) |
| #define GLM_LLC_ACCESS GLM_ANY_RESPONSE |
| #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM) |
| #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM) |
| |
| static __initconst const u64 glm_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ |
| [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 glm_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = GLM_DEMAND_READ| |
| GLM_LLC_ACCESS, |
| [C(RESULT_MISS)] = GLM_DEMAND_READ| |
| GLM_LLC_MISS, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| |
| GLM_LLC_ACCESS, |
| [C(RESULT_MISS)] = GLM_DEMAND_WRITE| |
| GLM_LLC_MISS, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH| |
| GLM_LLC_ACCESS, |
| [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH| |
| GLM_LLC_MISS, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 glp_hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(L1D)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(L1I)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */ |
| [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */ |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(DTLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */ |
| [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */ |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| [C(ITLB)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */ |
| [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| }, |
| [C(BPU)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ |
| [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = -1, |
| [C(RESULT_MISS)] = -1, |
| }, |
| }, |
| }; |
| |
| static __initconst const u64 glp_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = GLM_DEMAND_READ| |
| GLM_LLC_ACCESS, |
| [C(RESULT_MISS)] = GLM_DEMAND_READ| |
| GLM_LLC_MISS, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE| |
| GLM_LLC_ACCESS, |
| [C(RESULT_MISS)] = GLM_DEMAND_WRITE| |
| GLM_LLC_MISS, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = 0x0, |
| [C(RESULT_MISS)] = 0x0, |
| }, |
| }, |
| }; |
| |
| #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */ |
| #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */ |
| #define KNL_MCDRAM_LOCAL BIT_ULL(21) |
| #define KNL_MCDRAM_FAR BIT_ULL(22) |
| #define KNL_DDR_LOCAL BIT_ULL(23) |
| #define KNL_DDR_FAR BIT_ULL(24) |
| #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \ |
| KNL_DDR_LOCAL | KNL_DDR_FAR) |
| #define KNL_L2_READ SLM_DMND_READ |
| #define KNL_L2_WRITE SLM_DMND_WRITE |
| #define KNL_L2_PREFETCH SLM_DMND_PREFETCH |
| #define KNL_L2_ACCESS SLM_LLC_ACCESS |
| #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \ |
| KNL_DRAM_ANY | SNB_SNP_ANY | \ |
| SNB_NON_DRAM) |
| |
| static __initconst const u64 knl_hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| [C(LL)] = { |
| [C(OP_READ)] = { |
| [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS, |
| [C(RESULT_MISS)] = 0, |
| }, |
| [C(OP_WRITE)] = { |
| [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS, |
| [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS, |
| }, |
| [C(OP_PREFETCH)] = { |
| [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS, |
| [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS, |
| }, |
| }, |
| }; |
| |
| /* |
| * Used from PMIs where the LBRs are already disabled. |
| * |
| * This function could be called consecutively. It is required to remain in |
| * disabled state if called consecutively. |
| * |
| * During consecutive calls, the same disable value will be written to related |
| * registers, so the PMU state remains unchanged. |
| * |
| * intel_bts events don't coexist with intel PMU's BTS events because of |
| * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them |
| * disabled around intel PMU's event batching etc, only inside the PMI handler. |
| */ |
| static void __intel_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| |
| if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) |
| intel_pmu_disable_bts(); |
| |
| intel_pmu_pebs_disable_all(); |
| } |
| |
| static void intel_pmu_disable_all(void) |
| { |
| __intel_pmu_disable_all(); |
| intel_pmu_lbr_disable_all(); |
| } |
| |
| static void __intel_pmu_enable_all(int added, bool pmi) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| intel_pmu_pebs_enable_all(); |
| intel_pmu_lbr_enable_all(pmi); |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, |
| x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); |
| |
| if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { |
| struct perf_event *event = |
| cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; |
| |
| if (WARN_ON_ONCE(!event)) |
| return; |
| |
| intel_pmu_enable_bts(event->hw.config); |
| } |
| } |
| |
| static void intel_pmu_enable_all(int added) |
| { |
| __intel_pmu_enable_all(added, false); |
| } |
| |
| /* |
| * Workaround for: |
| * Intel Errata AAK100 (model 26) |
| * Intel Errata AAP53 (model 30) |
| * Intel Errata BD53 (model 44) |
| * |
| * The official story: |
| * These chips need to be 'reset' when adding counters by programming the |
| * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either |
| * in sequence on the same PMC or on different PMCs. |
| * |
| * In practise it appears some of these events do in fact count, and |
| * we need to program all 4 events. |
| */ |
| static void intel_pmu_nhm_workaround(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| static const unsigned long nhm_magic[4] = { |
| 0x4300B5, |
| 0x4300D2, |
| 0x4300B1, |
| 0x4300B1 |
| }; |
| struct perf_event *event; |
| int i; |
| |
| /* |
| * The Errata requires below steps: |
| * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; |
| * 2) Configure 4 PERFEVTSELx with the magic events and clear |
| * the corresponding PMCx; |
| * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; |
| * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; |
| * 5) Clear 4 pairs of ERFEVTSELx and PMCx; |
| */ |
| |
| /* |
| * The real steps we choose are a little different from above. |
| * A) To reduce MSR operations, we don't run step 1) as they |
| * are already cleared before this function is called; |
| * B) Call x86_perf_event_update to save PMCx before configuring |
| * PERFEVTSELx with magic number; |
| * C) With step 5), we do clear only when the PERFEVTSELx is |
| * not used currently. |
| * D) Call x86_perf_event_set_period to restore PMCx; |
| */ |
| |
| /* We always operate 4 pairs of PERF Counters */ |
| for (i = 0; i < 4; i++) { |
| event = cpuc->events[i]; |
| if (event) |
| x86_perf_event_update(event); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); |
| wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); |
| } |
| |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); |
| |
| for (i = 0; i < 4; i++) { |
| event = cpuc->events[i]; |
| |
| if (event) { |
| x86_perf_event_set_period(event); |
| __x86_pmu_enable_event(&event->hw, |
| ARCH_PERFMON_EVENTSEL_ENABLE); |
| } else |
| wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); |
| } |
| } |
| |
| static void intel_pmu_nhm_enable_all(int added) |
| { |
| if (added) |
| intel_pmu_nhm_workaround(); |
| intel_pmu_enable_all(added); |
| } |
| |
| static void enable_counter_freeze(void) |
| { |
| update_debugctlmsr(get_debugctlmsr() | |
| DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); |
| } |
| |
| static void disable_counter_freeze(void) |
| { |
| update_debugctlmsr(get_debugctlmsr() & |
| ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI); |
| } |
| |
| static inline u64 intel_pmu_get_status(void) |
| { |
| u64 status; |
| |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| |
| return status; |
| } |
| |
| static inline void intel_pmu_ack_status(u64 ack) |
| { |
| wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); |
| } |
| |
| static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) |
| { |
| int idx = hwc->idx - INTEL_PMC_IDX_FIXED; |
| u64 ctrl_val, mask; |
| |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static inline bool event_is_checkpointed(struct perf_event *event) |
| { |
| return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; |
| } |
| |
| static void intel_pmu_disable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { |
| intel_pmu_disable_bts(); |
| intel_pmu_drain_bts_buffer(); |
| return; |
| } |
| |
| cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); |
| cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); |
| cpuc->intel_cp_status &= ~(1ull << hwc->idx); |
| |
| if (unlikely(event->attr.precise_ip)) |
| intel_pmu_pebs_disable(event); |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_disable_fixed(hwc); |
| return; |
| } |
| |
| x86_pmu_disable_event(event); |
| } |
| |
| static void intel_pmu_del_event(struct perf_event *event) |
| { |
| if (needs_branch_stack(event)) |
| intel_pmu_lbr_del(event); |
| if (event->attr.precise_ip) |
| intel_pmu_pebs_del(event); |
| } |
| |
| static void intel_pmu_read_event(struct perf_event *event) |
| { |
| if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| intel_pmu_auto_reload_read(event); |
| else |
| x86_perf_event_update(event); |
| } |
| |
| static void intel_pmu_enable_fixed(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int idx = hwc->idx - INTEL_PMC_IDX_FIXED; |
| u64 ctrl_val, mask, bits = 0; |
| |
| /* |
| * Enable IRQ generation (0x8), if not PEBS, |
| * and enable ring-3 counting (0x2) and ring-0 counting (0x1) |
| * if requested: |
| */ |
| if (!event->attr.precise_ip) |
| bits |= 0x8; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) |
| bits |= 0x2; |
| if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) |
| bits |= 0x1; |
| |
| /* |
| * ANY bit is supported in v3 and up |
| */ |
| if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) |
| bits |= 0x4; |
| |
| bits <<= (idx * 4); |
| mask = 0xfULL << (idx * 4); |
| |
| rdmsrl(hwc->config_base, ctrl_val); |
| ctrl_val &= ~mask; |
| ctrl_val |= bits; |
| wrmsrl(hwc->config_base, ctrl_val); |
| } |
| |
| static void intel_pmu_enable_event(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { |
| if (!__this_cpu_read(cpu_hw_events.enabled)) |
| return; |
| |
| intel_pmu_enable_bts(hwc->config); |
| return; |
| } |
| |
| if (event->attr.exclude_host) |
| cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); |
| if (event->attr.exclude_guest) |
| cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); |
| |
| if (unlikely(event_is_checkpointed(event))) |
| cpuc->intel_cp_status |= (1ull << hwc->idx); |
| |
| if (unlikely(event->attr.precise_ip)) |
| intel_pmu_pebs_enable(event); |
| |
| if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { |
| intel_pmu_enable_fixed(event); |
| return; |
| } |
| |
| __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| |
| static void intel_pmu_add_event(struct perf_event *event) |
| { |
| if (event->attr.precise_ip) |
| intel_pmu_pebs_add(event); |
| if (needs_branch_stack(event)) |
| intel_pmu_lbr_add(event); |
| } |
| |
| /* |
| * Save and restart an expired event. Called by NMI contexts, |
| * so it has to be careful about preempting normal event ops: |
| */ |
| int intel_pmu_save_and_restart(struct perf_event *event) |
| { |
| x86_perf_event_update(event); |
| /* |
| * For a checkpointed counter always reset back to 0. This |
| * avoids a situation where the counter overflows, aborts the |
| * transaction and is then set back to shortly before the |
| * overflow, and overflows and aborts again. |
| */ |
| if (unlikely(event_is_checkpointed(event))) { |
| /* No race with NMIs because the counter should not be armed */ |
| wrmsrl(event->hw.event_base, 0); |
| local64_set(&event->hw.prev_count, 0); |
| } |
| return x86_perf_event_set_period(event); |
| } |
| |
| static void intel_pmu_reset(void) |
| { |
| struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); |
| unsigned long flags; |
| int idx; |
| |
| if (!x86_pmu.num_counters) |
| return; |
| |
| local_irq_save(flags); |
| |
| pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); |
| wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); |
| } |
| for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) |
| wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); |
| |
| if (ds) |
| ds->bts_index = ds->bts_buffer_base; |
| |
| /* Ack all overflows and disable fixed counters */ |
| if (x86_pmu.version >= 2) { |
| intel_pmu_ack_status(intel_pmu_get_status()); |
| wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| } |
| |
| /* Reset LBRs and LBR freezing */ |
| if (x86_pmu.lbr_nr) { |
| update_debugctlmsr(get_debugctlmsr() & |
| ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR)); |
| } |
| |
| local_irq_restore(flags); |
| } |
| |
| static int handle_pmi_common(struct pt_regs *regs, u64 status) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int bit; |
| int handled = 0; |
| |
| inc_irq_stat(apic_perf_irqs); |
| |
| /* |
| * Ignore a range of extra bits in status that do not indicate |
| * overflow by themselves. |
| */ |
| status &= ~(GLOBAL_STATUS_COND_CHG | |
| GLOBAL_STATUS_ASIF | |
| GLOBAL_STATUS_LBRS_FROZEN); |
| if (!status) |
| return 0; |
| /* |
| * In case multiple PEBS events are sampled at the same time, |
| * it is possible to have GLOBAL_STATUS bit 62 set indicating |
| * PEBS buffer overflow and also seeing at most 3 PEBS counters |
| * having their bits set in the status register. This is a sign |
| * that there was at least one PEBS record pending at the time |
| * of the PMU interrupt. PEBS counters must only be processed |
| * via the drain_pebs() calls and not via the regular sample |
| * processing loop coming after that the function, otherwise |
| * phony regular samples may be generated in the sampling buffer |
| * not marked with the EXACT tag. Another possibility is to have |
| * one PEBS event and at least one non-PEBS event whic hoverflows |
| * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will |
| * not be set, yet the overflow status bit for the PEBS counter will |
| * be on Skylake. |
| * |
| * To avoid this problem, we systematically ignore the PEBS-enabled |
| * counters from the GLOBAL_STATUS mask and we always process PEBS |
| * events via drain_pebs(). |
| */ |
| if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| status &= ~cpuc->pebs_enabled; |
| else |
| status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK); |
| |
| /* |
| * PEBS overflow sets bit 62 in the global status register |
| */ |
| if (__test_and_clear_bit(62, (unsigned long *)&status)) { |
| handled++; |
| x86_pmu.drain_pebs(regs); |
| status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI; |
| } |
| |
| /* |
| * Intel PT |
| */ |
| if (__test_and_clear_bit(55, (unsigned long *)&status)) { |
| handled++; |
| intel_pt_interrupt(); |
| } |
| |
| /* |
| * Checkpointed counters can lead to 'spurious' PMIs because the |
| * rollback caused by the PMI will have cleared the overflow status |
| * bit. Therefore always force probe these counters. |
| */ |
| status |= cpuc->intel_cp_status; |
| |
| for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { |
| struct perf_event *event = cpuc->events[bit]; |
| |
| handled++; |
| |
| if (!test_bit(bit, cpuc->active_mask)) |
| continue; |
| |
| if (!intel_pmu_save_and_restart(event)) |
| continue; |
| |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| if (has_branch_stack(event)) |
| data.br_stack = &cpuc->lbr_stack; |
| |
| if (perf_event_overflow(event, &data, regs)) |
| x86_pmu_stop(event, 0); |
| } |
| |
| return handled; |
| } |
| |
| static bool disable_counter_freezing = true; |
| static int __init intel_perf_counter_freezing_setup(char *s) |
| { |
| bool res; |
| |
| if (kstrtobool(s, &res)) |
| return -EINVAL; |
| |
| disable_counter_freezing = !res; |
| return 1; |
| } |
| __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup); |
| |
| /* |
| * Simplified handler for Arch Perfmon v4: |
| * - We rely on counter freezing/unfreezing to enable/disable the PMU. |
| * This is done automatically on PMU ack. |
| * - Ack the PMU only after the APIC. |
| */ |
| |
| static int intel_pmu_handle_irq_v4(struct pt_regs *regs) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int handled = 0; |
| bool bts = false; |
| u64 status; |
| int pmu_enabled = cpuc->enabled; |
| int loops = 0; |
| |
| /* PMU has been disabled because of counter freezing */ |
| cpuc->enabled = 0; |
| if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { |
| bts = true; |
| intel_bts_disable_local(); |
| handled = intel_pmu_drain_bts_buffer(); |
| handled += intel_bts_interrupt(); |
| } |
| status = intel_pmu_get_status(); |
| if (!status) |
| goto done; |
| again: |
| intel_pmu_lbr_read(); |
| if (++loops > 100) { |
| static bool warned; |
| |
| if (!warned) { |
| WARN(1, "perfevents: irq loop stuck!\n"); |
| perf_event_print_debug(); |
| warned = true; |
| } |
| intel_pmu_reset(); |
| goto done; |
| } |
| |
| |
| handled += handle_pmi_common(regs, status); |
| done: |
| /* Ack the PMI in the APIC */ |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| |
| /* |
| * The counters start counting immediately while ack the status. |
| * Make it as close as possible to IRET. This avoids bogus |
| * freezing on Skylake CPUs. |
| */ |
| if (status) { |
| intel_pmu_ack_status(status); |
| } else { |
| /* |
| * CPU may issues two PMIs very close to each other. |
| * When the PMI handler services the first one, the |
| * GLOBAL_STATUS is already updated to reflect both. |
| * When it IRETs, the second PMI is immediately |
| * handled and it sees clear status. At the meantime, |
| * there may be a third PMI, because the freezing bit |
| * isn't set since the ack in first PMI handlers. |
| * Double check if there is more work to be done. |
| */ |
| status = intel_pmu_get_status(); |
| if (status) |
| goto again; |
| } |
| |
| if (bts) |
| intel_bts_enable_local(); |
| cpuc->enabled = pmu_enabled; |
| return handled; |
| } |
| |
| /* |
| * This handler is triggered by the local APIC, so the APIC IRQ handling |
| * rules apply: |
| */ |
| static int intel_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct cpu_hw_events *cpuc; |
| int loops; |
| u64 status; |
| int handled; |
| int pmu_enabled; |
| |
| cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| /* |
| * Save the PMU state. |
| * It needs to be restored when leaving the handler. |
| */ |
| pmu_enabled = cpuc->enabled; |
| /* |
| * No known reason to not always do late ACK, |
| * but just in case do it opt-in. |
| */ |
| if (!x86_pmu.late_ack) |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| intel_bts_disable_local(); |
| cpuc->enabled = 0; |
| __intel_pmu_disable_all(); |
| handled = intel_pmu_drain_bts_buffer(); |
| handled += intel_bts_interrupt(); |
| status = intel_pmu_get_status(); |
| if (!status) |
| goto done; |
| |
| loops = 0; |
| again: |
| intel_pmu_lbr_read(); |
| intel_pmu_ack_status(status); |
| if (++loops > 100) { |
| static bool warned; |
| |
| if (!warned) { |
| WARN(1, "perfevents: irq loop stuck!\n"); |
| perf_event_print_debug(); |
| warned = true; |
| } |
| intel_pmu_reset(); |
| goto done; |
| } |
| |
| handled += handle_pmi_common(regs, status); |
| |
| /* |
| * Repeat if there is more work to be done: |
| */ |
| status = intel_pmu_get_status(); |
| if (status) |
| goto again; |
| |
| done: |
| /* Only restore PMU state when it's active. See x86_pmu_disable(). */ |
| cpuc->enabled = pmu_enabled; |
| if (pmu_enabled) |
| __intel_pmu_enable_all(0, true); |
| intel_bts_enable_local(); |
| |
| /* |
| * Only unmask the NMI after the overflow counters |
| * have been reset. This avoids spurious NMIs on |
| * Haswell CPUs. |
| */ |
| if (x86_pmu.late_ack) |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| return handled; |
| } |
| |
| static struct event_constraint * |
| intel_bts_constraints(struct perf_event *event) |
| { |
| if (unlikely(intel_pmu_has_bts(event))) |
| return &bts_constraint; |
| |
| return NULL; |
| } |
| |
| static int intel_alt_er(int idx, u64 config) |
| { |
| int alt_idx = idx; |
| |
| if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1)) |
| return idx; |
| |
| if (idx == EXTRA_REG_RSP_0) |
| alt_idx = EXTRA_REG_RSP_1; |
| |
| if (idx == EXTRA_REG_RSP_1) |
| alt_idx = EXTRA_REG_RSP_0; |
| |
| if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask) |
| return idx; |
| |
| return alt_idx; |
| } |
| |
| static void intel_fixup_er(struct perf_event *event, int idx) |
| { |
| event->hw.extra_reg.idx = idx; |
| |
| if (idx == EXTRA_REG_RSP_0) { |
| event->hw.config &= ~INTEL_ARCH_EVENT_MASK; |
| event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; |
| event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; |
| } else if (idx == EXTRA_REG_RSP_1) { |
| event->hw.config &= ~INTEL_ARCH_EVENT_MASK; |
| event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; |
| event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; |
| } |
| } |
| |
| /* |
| * manage allocation of shared extra msr for certain events |
| * |
| * sharing can be: |
| * per-cpu: to be shared between the various events on a single PMU |
| * per-core: per-cpu + shared by HT threads |
| */ |
| static struct event_constraint * |
| __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event, |
| struct hw_perf_event_extra *reg) |
| { |
| struct event_constraint *c = &emptyconstraint; |
| struct er_account *era; |
| unsigned long flags; |
| int idx = reg->idx; |
| |
| /* |
| * reg->alloc can be set due to existing state, so for fake cpuc we |
| * need to ignore this, otherwise we might fail to allocate proper fake |
| * state for this extra reg constraint. Also see the comment below. |
| */ |
| if (reg->alloc && !cpuc->is_fake) |
| return NULL; /* call x86_get_event_constraint() */ |
| |
| again: |
| era = &cpuc->shared_regs->regs[idx]; |
| /* |
| * we use spin_lock_irqsave() to avoid lockdep issues when |
| * passing a fake cpuc |
| */ |
| raw_spin_lock_irqsave(&era->lock, flags); |
| |
| if (!atomic_read(&era->ref) || era->config == reg->config) { |
| |
| /* |
| * If its a fake cpuc -- as per validate_{group,event}() we |
| * shouldn't touch event state and we can avoid doing so |
| * since both will only call get_event_constraints() once |
| * on each event, this avoids the need for reg->alloc. |
| * |
| * Not doing the ER fixup will only result in era->reg being |
| * wrong, but since we won't actually try and program hardware |
| * this isn't a problem either. |
| */ |
| if (!cpuc->is_fake) { |
| if (idx != reg->idx) |
| intel_fixup_er(event, idx); |
| |
| /* |
| * x86_schedule_events() can call get_event_constraints() |
| * multiple times on events in the case of incremental |
| * scheduling(). reg->alloc ensures we only do the ER |
| * allocation once. |
| */ |
| reg->alloc = 1; |
| } |
| |
| /* lock in msr value */ |
| era->config = reg->config; |
| era->reg = reg->reg; |
| |
| /* one more user */ |
| atomic_inc(&era->ref); |
| |
| /* |
| * need to call x86_get_event_constraint() |
| * to check if associated event has constraints |
| */ |
| c = NULL; |
| } else { |
| idx = intel_alt_er(idx, reg->config); |
| if (idx != reg->idx) { |
| raw_spin_unlock_irqrestore(&era->lock, flags); |
| goto again; |
| } |
| } |
| raw_spin_unlock_irqrestore(&era->lock, flags); |
| |
| return c; |
| } |
| |
| static void |
| __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, |
| struct hw_perf_event_extra *reg) |
| { |
| struct er_account *era; |
| |
| /* |
| * Only put constraint if extra reg was actually allocated. Also takes |
| * care of event which do not use an extra shared reg. |
| * |
| * Also, if this is a fake cpuc we shouldn't touch any event state |
| * (reg->alloc) and we don't care about leaving inconsistent cpuc state |
| * either since it'll be thrown out. |
| */ |
| if (!reg->alloc || cpuc->is_fake) |
| return; |
| |
| era = &cpuc->shared_regs->regs[reg->idx]; |
| |
| /* one fewer user */ |
| atomic_dec(&era->ref); |
| |
| /* allocate again next time */ |
| reg->alloc = 0; |
| } |
| |
| static struct event_constraint * |
| intel_shared_regs_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct event_constraint *c = NULL, *d; |
| struct hw_perf_event_extra *xreg, *breg; |
| |
| xreg = &event->hw.extra_reg; |
| if (xreg->idx != EXTRA_REG_NONE) { |
| c = __intel_shared_reg_get_constraints(cpuc, event, xreg); |
| if (c == &emptyconstraint) |
| return c; |
| } |
| breg = &event->hw.branch_reg; |
| if (breg->idx != EXTRA_REG_NONE) { |
| d = __intel_shared_reg_get_constraints(cpuc, event, breg); |
| if (d == &emptyconstraint) { |
| __intel_shared_reg_put_constraints(cpuc, xreg); |
| c = d; |
| } |
| } |
| return c; |
| } |
| |
| struct event_constraint * |
| x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx, |
| struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| if (x86_pmu.event_constraints) { |
| for_each_event_constraint(c, x86_pmu.event_constraints) { |
| if ((event->hw.config & c->cmask) == c->code) { |
| event->hw.flags |= c->flags; |
| return c; |
| } |
| } |
| } |
| |
| return &unconstrained; |
| } |
| |
| static struct event_constraint * |
| __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, |
| struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| c = intel_bts_constraints(event); |
| if (c) |
| return c; |
| |
| c = intel_shared_regs_constraints(cpuc, event); |
| if (c) |
| return c; |
| |
| c = intel_pebs_constraints(event); |
| if (c) |
| return c; |
| |
| return x86_get_event_constraints(cpuc, idx, event); |
| } |
| |
| static void |
| intel_start_scheduling(struct cpu_hw_events *cpuc) |
| { |
| struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; |
| struct intel_excl_states *xl; |
| int tid = cpuc->excl_thread_id; |
| |
| /* |
| * nothing needed if in group validation mode |
| */ |
| if (cpuc->is_fake || !is_ht_workaround_enabled()) |
| return; |
| |
| /* |
| * no exclusion needed |
| */ |
| if (WARN_ON_ONCE(!excl_cntrs)) |
| return; |
| |
| xl = &excl_cntrs->states[tid]; |
| |
| xl->sched_started = true; |
| /* |
| * lock shared state until we are done scheduling |
| * in stop_event_scheduling() |
| * makes scheduling appear as a transaction |
| */ |
| raw_spin_lock(&excl_cntrs->lock); |
| } |
| |
| static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr) |
| { |
| struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; |
| struct event_constraint *c = cpuc->event_constraint[idx]; |
| struct intel_excl_states *xl; |
| int tid = cpuc->excl_thread_id; |
| |
| if (cpuc->is_fake || !is_ht_workaround_enabled()) |
| return; |
| |
| if (WARN_ON_ONCE(!excl_cntrs)) |
| return; |
| |
| if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) |
| return; |
| |
| xl = &excl_cntrs->states[tid]; |
| |
| lockdep_assert_held(&excl_cntrs->lock); |
| |
| if (c->flags & PERF_X86_EVENT_EXCL) |
| xl->state[cntr] = INTEL_EXCL_EXCLUSIVE; |
| else |
| xl->state[cntr] = INTEL_EXCL_SHARED; |
| } |
| |
| static void |
| intel_stop_scheduling(struct cpu_hw_events *cpuc) |
| { |
| struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; |
| struct intel_excl_states *xl; |
| int tid = cpuc->excl_thread_id; |
| |
| /* |
| * nothing needed if in group validation mode |
| */ |
| if (cpuc->is_fake || !is_ht_workaround_enabled()) |
| return; |
| /* |
| * no exclusion needed |
| */ |
| if (WARN_ON_ONCE(!excl_cntrs)) |
| return; |
| |
| xl = &excl_cntrs->states[tid]; |
| |
| xl->sched_started = false; |
| /* |
| * release shared state lock (acquired in intel_start_scheduling()) |
| */ |
| raw_spin_unlock(&excl_cntrs->lock); |
| } |
| |
| static struct event_constraint * |
| intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, |
| int idx, struct event_constraint *c) |
| { |
| struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; |
| struct intel_excl_states *xlo; |
| int tid = cpuc->excl_thread_id; |
| int is_excl, i; |
| |
| /* |
| * validating a group does not require |
| * enforcing cross-thread exclusion |
| */ |
| if (cpuc->is_fake || !is_ht_workaround_enabled()) |
| return c; |
| |
| /* |
| * no exclusion needed |
| */ |
| if (WARN_ON_ONCE(!excl_cntrs)) |
| return c; |
| |
| /* |
| * because we modify the constraint, we need |
| * to make a copy. Static constraints come |
| * from static const tables. |
| * |
| * only needed when constraint has not yet |
| * been cloned (marked dynamic) |
| */ |
| if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) { |
| struct event_constraint *cx; |
| |
| /* |
| * grab pre-allocated constraint entry |
| */ |
| cx = &cpuc->constraint_list[idx]; |
| |
| /* |
| * initialize dynamic constraint |
| * with static constraint |
| */ |
| *cx = *c; |
| |
| /* |
| * mark constraint as dynamic, so we |
| * can free it later on |
| */ |
| cx->flags |= PERF_X86_EVENT_DYNAMIC; |
| c = cx; |
| } |
| |
| /* |
| * From here on, the constraint is dynamic. |
| * Either it was just allocated above, or it |
| * was allocated during a earlier invocation |
| * of this function |
| */ |
| |
| /* |
| * state of sibling HT |
| */ |
| xlo = &excl_cntrs->states[tid ^ 1]; |
| |
| /* |
| * event requires exclusive counter access |
| * across HT threads |
| */ |
| is_excl = c->flags & PERF_X86_EVENT_EXCL; |
| if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) { |
| event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT; |
| if (!cpuc->n_excl++) |
| WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1); |
| } |
| |
| /* |
| * Modify static constraint with current dynamic |
| * state of thread |
| * |
| * EXCLUSIVE: sibling counter measuring exclusive event |
| * SHARED : sibling counter measuring non-exclusive event |
| * UNUSED : sibling counter unused |
| */ |
| for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) { |
| /* |
| * exclusive event in sibling counter |
| * our corresponding counter cannot be used |
| * regardless of our event |
| */ |
| if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) |
| __clear_bit(i, c->idxmsk); |
| /* |
| * if measuring an exclusive event, sibling |
| * measuring non-exclusive, then counter cannot |
| * be used |
| */ |
| if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) |
| __clear_bit(i, c->idxmsk); |
| } |
| |
| /* |
| * recompute actual bit weight for scheduling algorithm |
| */ |
| c->weight = hweight64(c->idxmsk64); |
| |
| /* |
| * if we return an empty mask, then switch |
| * back to static empty constraint to avoid |
| * the cost of freeing later on |
| */ |
| if (c->weight == 0) |
| c = &emptyconstraint; |
| |
| return c; |
| } |
| |
| static struct event_constraint * |
| intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx, |
| struct perf_event *event) |
| { |
| struct event_constraint *c1 = NULL; |
| struct event_constraint *c2; |
| |
| if (idx >= 0) /* fake does < 0 */ |
| c1 = cpuc->event_constraint[idx]; |
| |
| /* |
| * first time only |
| * - static constraint: no change across incremental scheduling calls |
| * - dynamic constraint: handled by intel_get_excl_constraints() |
| */ |
| c2 = __intel_get_event_constraints(cpuc, idx, event); |
| if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) { |
| bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX); |
| c1->weight = c2->weight; |
| c2 = c1; |
| } |
| |
| if (cpuc->excl_cntrs) |
| return intel_get_excl_constraints(cpuc, event, idx, c2); |
| |
| return c2; |
| } |
| |
| static void intel_put_excl_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs; |
| int tid = cpuc->excl_thread_id; |
| struct intel_excl_states *xl; |
| |
| /* |
| * nothing needed if in group validation mode |
| */ |
| if (cpuc->is_fake) |
| return; |
| |
| if (WARN_ON_ONCE(!excl_cntrs)) |
| return; |
| |
| if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) { |
| hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT; |
| if (!--cpuc->n_excl) |
| WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0); |
| } |
| |
| /* |
| * If event was actually assigned, then mark the counter state as |
| * unused now. |
| */ |
| if (hwc->idx >= 0) { |
| xl = &excl_cntrs->states[tid]; |
| |
| /* |
| * put_constraint may be called from x86_schedule_events() |
| * which already has the lock held so here make locking |
| * conditional. |
| */ |
| if (!xl->sched_started) |
| raw_spin_lock(&excl_cntrs->lock); |
| |
| xl->state[hwc->idx] = INTEL_EXCL_UNUSED; |
| |
| if (!xl->sched_started) |
| raw_spin_unlock(&excl_cntrs->lock); |
| } |
| } |
| |
| static void |
| intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| struct hw_perf_event_extra *reg; |
| |
| reg = &event->hw.extra_reg; |
| if (reg->idx != EXTRA_REG_NONE) |
| __intel_shared_reg_put_constraints(cpuc, reg); |
| |
| reg = &event->hw.branch_reg; |
| if (reg->idx != EXTRA_REG_NONE) |
| __intel_shared_reg_put_constraints(cpuc, reg); |
| } |
| |
| static void intel_put_event_constraints(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| intel_put_shared_regs_event_constraints(cpuc, event); |
| |
| /* |
| * is PMU has exclusive counter restrictions, then |
| * all events are subject to and must call the |
| * put_excl_constraints() routine |
| */ |
| if (cpuc->excl_cntrs) |
| intel_put_excl_constraints(cpuc, event); |
| } |
| |
| static void intel_pebs_aliases_core2(struct perf_event *event) |
| { |
| if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { |
| /* |
| * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P |
| * (0x003c) so that we can use it with PEBS. |
| * |
| * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't |
| * PEBS capable. However we can use INST_RETIRED.ANY_P |
| * (0x00c0), which is a PEBS capable event, to get the same |
| * count. |
| * |
| * INST_RETIRED.ANY_P counts the number of cycles that retires |
| * CNTMASK instructions. By setting CNTMASK to a value (16) |
| * larger than the maximum number of instructions that can be |
| * retired per cycle (4) and then inverting the condition, we |
| * count all cycles that retire 16 or less instructions, which |
| * is every cycle. |
| * |
| * Thereby we gain a PEBS capable cycle counter. |
| */ |
| u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); |
| |
| alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); |
| event->hw.config = alt_config; |
| } |
| } |
| |
| static void intel_pebs_aliases_snb(struct perf_event *event) |
| { |
| if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { |
| /* |
| * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P |
| * (0x003c) so that we can use it with PEBS. |
| * |
| * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't |
| * PEBS capable. However we can use UOPS_RETIRED.ALL |
| * (0x01c2), which is a PEBS capable event, to get the same |
| * count. |
| * |
| * UOPS_RETIRED.ALL counts the number of cycles that retires |
| * CNTMASK micro-ops. By setting CNTMASK to a value (16) |
| * larger than the maximum number of micro-ops that can be |
| * retired per cycle (4) and then inverting the condition, we |
| * count all cycles that retire 16 or less micro-ops, which |
| * is every cycle. |
| * |
| * Thereby we gain a PEBS capable cycle counter. |
| */ |
| u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); |
| |
| alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); |
| event->hw.config = alt_config; |
| } |
| } |
| |
| static void intel_pebs_aliases_precdist(struct perf_event *event) |
| { |
| if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { |
| /* |
| * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P |
| * (0x003c) so that we can use it with PEBS. |
| * |
| * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't |
| * PEBS capable. However we can use INST_RETIRED.PREC_DIST |
| * (0x01c0), which is a PEBS capable event, to get the same |
| * count. |
| * |
| * The PREC_DIST event has special support to minimize sample |
| * shadowing effects. One drawback is that it can be |
| * only programmed on counter 1, but that seems like an |
| * acceptable trade off. |
| */ |
| u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16); |
| |
| alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); |
| event->hw.config = alt_config; |
| } |
| } |
| |
| static void intel_pebs_aliases_ivb(struct perf_event *event) |
| { |
| if (event->attr.precise_ip < 3) |
| return intel_pebs_aliases_snb(event); |
| return intel_pebs_aliases_precdist(event); |
| } |
| |
| static void intel_pebs_aliases_skl(struct perf_event *event) |
| { |
| if (event->attr.precise_ip < 3) |
| return intel_pebs_aliases_core2(event); |
| return intel_pebs_aliases_precdist(event); |
| } |
| |
| static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event) |
| { |
| unsigned long flags = x86_pmu.large_pebs_flags; |
| |
| if (event->attr.use_clockid) |
| flags &= ~PERF_SAMPLE_TIME; |
| if (!event->attr.exclude_kernel) |
| flags &= ~PERF_SAMPLE_REGS_USER; |
| if (event->attr.sample_regs_user & ~PEBS_REGS) |
| flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR); |
| return flags; |
| } |
| |
| static int intel_pmu_bts_config(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| |
| if (unlikely(intel_pmu_has_bts(event))) { |
| /* BTS is not supported by this architecture. */ |
| if (!x86_pmu.bts_active) |
| return -EOPNOTSUPP; |
| |
| /* BTS is currently only allowed for user-mode. */ |
| if (!attr->exclude_kernel) |
| return -EOPNOTSUPP; |
| |
| /* BTS is not allowed for precise events. */ |
| if (attr->precise_ip) |
| return -EOPNOTSUPP; |
| |
| /* disallow bts if conflicting events are present */ |
| if (x86_add_exclusive(x86_lbr_exclusive_lbr)) |
| return -EBUSY; |
| |
| event->destroy = hw_perf_lbr_event_destroy; |
| } |
| |
| return 0; |
| } |
| |
| static int core_pmu_hw_config(struct perf_event *event) |
| { |
| int ret = x86_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| |
| return intel_pmu_bts_config(event); |
| } |
| |
| static int intel_pmu_hw_config(struct perf_event *event) |
| { |
| int ret = x86_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| |
| ret = intel_pmu_bts_config(event); |
| if (ret) |
| return ret; |
| |
| if (event->attr.precise_ip) { |
| if (!event->attr.freq) { |
| event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD; |
| if (!(event->attr.sample_type & |
| ~intel_pmu_large_pebs_flags(event))) |
| event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS; |
| } |
| if (x86_pmu.pebs_aliases) |
| x86_pmu.pebs_aliases(event); |
| |
| if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) |
| event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY; |
| } |
| |
| if (needs_branch_stack(event)) { |
| ret = intel_pmu_setup_lbr_filter(event); |
| if (ret) |
| return ret; |
| |
| /* |
| * BTS is set up earlier in this path, so don't account twice |
| */ |
| if (!unlikely(intel_pmu_has_bts(event))) { |
| /* disallow lbr if conflicting events are present */ |
| if (x86_add_exclusive(x86_lbr_exclusive_lbr)) |
| return -EBUSY; |
| |
| event->destroy = hw_perf_lbr_event_destroy; |
| } |
| } |
| |
| if (event->attr.type != PERF_TYPE_RAW) |
| return 0; |
| |
| if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) |
| return 0; |
| |
| if (x86_pmu.version < 3) |
| return -EINVAL; |
| |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| |
| event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; |
| |
| return 0; |
| } |
| |
| struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) |
| { |
| if (x86_pmu.guest_get_msrs) |
| return x86_pmu.guest_get_msrs(nr); |
| *nr = 0; |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(perf_guest_get_msrs); |
| |
| static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; |
| |
| arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; |
| arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; |
| arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; |
| /* |
| * If PMU counter has PEBS enabled it is not enough to disable counter |
| * on a guest entry since PEBS memory write can overshoot guest entry |
| * and corrupt guest memory. Disabling PEBS solves the problem. |
| */ |
| arr[1].msr = MSR_IA32_PEBS_ENABLE; |
| arr[1].host = cpuc->pebs_enabled; |
| arr[1].guest = 0; |
| |
| *nr = 2; |
| return arr; |
| } |
| |
| static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct perf_event *event = cpuc->events[idx]; |
| |
| arr[idx].msr = x86_pmu_config_addr(idx); |
| arr[idx].host = arr[idx].guest = 0; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| arr[idx].host = arr[idx].guest = |
| event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; |
| |
| if (event->attr.exclude_host) |
| arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; |
| else if (event->attr.exclude_guest) |
| arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; |
| } |
| |
| *nr = x86_pmu.num_counters; |
| return arr; |
| } |
| |
| static void core_pmu_enable_event(struct perf_event *event) |
| { |
| if (!event->attr.exclude_host) |
| x86_pmu_enable_event(event); |
| } |
| |
| static void core_pmu_enable_all(int added) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct hw_perf_event *hwc = &cpuc->events[idx]->hw; |
| |
| if (!test_bit(idx, cpuc->active_mask) || |
| cpuc->events[idx]->attr.exclude_host) |
| continue; |
| |
| __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| } |
| |
| static int hsw_hw_config(struct perf_event *event) |
| { |
| int ret = intel_pmu_hw_config(event); |
| |
| if (ret) |
| return ret; |
| if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) |
| return 0; |
| event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); |
| |
| /* |
| * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with |
| * PEBS or in ANY thread mode. Since the results are non-sensical forbid |
| * this combination. |
| */ |
| if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && |
| ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || |
| event->attr.precise_ip > 0)) |
| return -EOPNOTSUPP; |
| |
| if (event_is_checkpointed(event)) { |
| /* |
| * Sampling of checkpointed events can cause situations where |
| * the CPU constantly aborts because of a overflow, which is |
| * then checkpointed back and ignored. Forbid checkpointing |
| * for sampling. |
| * |
| * But still allow a long sampling period, so that perf stat |
| * from KVM works. |
| */ |
| if (event->attr.sample_period > 0 && |
| event->attr.sample_period < 0x7fffffff) |
| return -EOPNOTSUPP; |
| } |
| return 0; |
| } |
| |
| static struct event_constraint counter0_constraint = |
| INTEL_ALL_EVENT_CONSTRAINT(0, 0x1); |
| |
| static struct event_constraint counter2_constraint = |
| EVENT_CONSTRAINT(0, 0x4, 0); |
| |
| static struct event_constraint * |
| hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx, |
| struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| c = intel_get_event_constraints(cpuc, idx, event); |
| |
| /* Handle special quirk on in_tx_checkpointed only in counter 2 */ |
| if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { |
| if (c->idxmsk64 & (1U << 2)) |
| return &counter2_constraint; |
| return &emptyconstraint; |
| } |
| |
| return c; |
| } |
| |
| static struct event_constraint * |
| glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx, |
| struct perf_event *event) |
| { |
| struct event_constraint *c; |
| |
| /* :ppp means to do reduced skid PEBS which is PMC0 only. */ |
| if (event->attr.precise_ip == 3) |
| return &counter0_constraint; |
| |
| c = intel_get_event_constraints(cpuc, idx, event); |
| |
| return c; |
| } |
| |
| /* |
| * Broadwell: |
| * |
| * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared |
| * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine |
| * the two to enforce a minimum period of 128 (the smallest value that has bits |
| * 0-5 cleared and >= 100). |
| * |
| * Because of how the code in x86_perf_event_set_period() works, the truncation |
| * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period |
| * to make up for the 'lost' events due to carrying the 'error' in period_left. |
| * |
| * Therefore the effective (average) period matches the requested period, |
| * despite coarser hardware granularity. |
| */ |
| static u64 bdw_limit_period(struct perf_event *event, u64 left) |
| { |
| if ((event->hw.config & INTEL_ARCH_EVENT_MASK) == |
| X86_CONFIG(.event=0xc0, .umask=0x01)) { |
| if (left < 128) |
| left = 128; |
| left &= ~0x3fULL; |
| } |
| return left; |
| } |
| |
| PMU_FORMAT_ATTR(event, "config:0-7" ); |
| PMU_FORMAT_ATTR(umask, "config:8-15" ); |
| PMU_FORMAT_ATTR(edge, "config:18" ); |
| PMU_FORMAT_ATTR(pc, "config:19" ); |
| PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ |
| PMU_FORMAT_ATTR(inv, "config:23" ); |
| PMU_FORMAT_ATTR(cmask, "config:24-31" ); |
| PMU_FORMAT_ATTR(in_tx, "config:32"); |
| PMU_FORMAT_ATTR(in_tx_cp, "config:33"); |
| |
| static struct attribute *intel_arch_formats_attr[] = { |
| &format_attr_event.attr, |
| &format_attr_umask.attr, |
| &format_attr_edge.attr, |
| &format_attr_pc.attr, |
| &format_attr_inv.attr, |
| &format_attr_cmask.attr, |
| NULL, |
| }; |
| |
| ssize_t intel_event_sysfs_show(char *page, u64 config) |
| { |
| u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); |
| |
| return x86_event_sysfs_show(page, config, event); |
| } |
| |
| struct intel_shared_regs *allocate_shared_regs(int cpu) |
| { |
| struct intel_shared_regs *regs; |
| int i; |
| |
| regs = kzalloc_node(sizeof(struct intel_shared_regs), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| if (regs) { |
| /* |
| * initialize the locks to keep lockdep happy |
| */ |
| for (i = 0; i < EXTRA_REG_MAX; i++) |
| raw_spin_lock_init(®s->regs[i].lock); |
| |
| regs->core_id = -1; |
| } |
| return regs; |
| } |
| |
| static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu) |
| { |
| struct intel_excl_cntrs *c; |
| |
| c = kzalloc_node(sizeof(struct intel_excl_cntrs), |
| GFP_KERNEL, cpu_to_node(cpu)); |
| if (c) { |
| raw_spin_lock_init(&c->lock); |
| c->core_id = -1; |
| } |
| return c; |
| } |
| |
| static int intel_pmu_cpu_prepare(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| |
| if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) { |
| cpuc->shared_regs = allocate_shared_regs(cpu); |
| if (!cpuc->shared_regs) |
| goto err; |
| } |
| |
| if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { |
| size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint); |
| |
| cpuc->constraint_list = kzalloc(sz, GFP_KERNEL); |
| if (!cpuc->constraint_list) |
| goto err_shared_regs; |
| |
| cpuc->excl_cntrs = allocate_excl_cntrs(cpu); |
| if (!cpuc->excl_cntrs) |
| goto err_constraint_list; |
| |
| cpuc->excl_thread_id = 0; |
| } |
| |
| return 0; |
| |
| err_constraint_list: |
| kfree(cpuc->constraint_list); |
| cpuc->constraint_list = NULL; |
| |
| err_shared_regs: |
| kfree(cpuc->shared_regs); |
| cpuc->shared_regs = NULL; |
| |
| err: |
| return -ENOMEM; |
| } |
| |
| static void flip_smm_bit(void *data) |
| { |
| unsigned long set = *(unsigned long *)data; |
| |
| if (set > 0) { |
| msr_set_bit(MSR_IA32_DEBUGCTLMSR, |
| DEBUGCTLMSR_FREEZE_IN_SMM_BIT); |
| } else { |
| msr_clear_bit(MSR_IA32_DEBUGCTLMSR, |
| DEBUGCTLMSR_FREEZE_IN_SMM_BIT); |
| } |
| } |
| |
| static void intel_pmu_cpu_starting(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| int core_id = topology_core_id(cpu); |
| int i; |
| |
| init_debug_store_on_cpu(cpu); |
| /* |
| * Deal with CPUs that don't clear their LBRs on power-up. |
| */ |
| intel_pmu_lbr_reset(); |
| |
| cpuc->lbr_sel = NULL; |
| |
| if (x86_pmu.version > 1) |
| flip_smm_bit(&x86_pmu.attr_freeze_on_smi); |
| |
| if (x86_pmu.counter_freezing) |
| enable_counter_freeze(); |
| |
| if (!cpuc->shared_regs) |
| return; |
| |
| if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) { |
| for_each_cpu(i, topology_sibling_cpumask(cpu)) { |
| struct intel_shared_regs *pc; |
| |
| pc = per_cpu(cpu_hw_events, i).shared_regs; |
| if (pc && pc->core_id == core_id) { |
| cpuc->kfree_on_online[0] = cpuc->shared_regs; |
| cpuc->shared_regs = pc; |
| break; |
| } |
| } |
| cpuc->shared_regs->core_id = core_id; |
| cpuc->shared_regs->refcnt++; |
| } |
| |
| if (x86_pmu.lbr_sel_map) |
| cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; |
| |
| if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) { |
| for_each_cpu(i, topology_sibling_cpumask(cpu)) { |
| struct cpu_hw_events *sibling; |
| struct intel_excl_cntrs *c; |
| |
| sibling = &per_cpu(cpu_hw_events, i); |
| c = sibling->excl_cntrs; |
| if (c && c->core_id == core_id) { |
| cpuc->kfree_on_online[1] = cpuc->excl_cntrs; |
| cpuc->excl_cntrs = c; |
| if (!sibling->excl_thread_id) |
| cpuc->excl_thread_id = 1; |
| break; |
| } |
| } |
| cpuc->excl_cntrs->core_id = core_id; |
| cpuc->excl_cntrs->refcnt++; |
| } |
| } |
| |
| static void free_excl_cntrs(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| struct intel_excl_cntrs *c; |
| |
| c = cpuc->excl_cntrs; |
| if (c) { |
| if (c->core_id == -1 || --c->refcnt == 0) |
| kfree(c); |
| cpuc->excl_cntrs = NULL; |
| kfree(cpuc->constraint_list); |
| cpuc->constraint_list = NULL; |
| } |
| } |
| |
| static void intel_pmu_cpu_dying(int cpu) |
| { |
| fini_debug_store_on_cpu(cpu); |
| |
| if (x86_pmu.counter_freezing) |
| disable_counter_freeze(); |
| } |
| |
| static void intel_pmu_cpu_dead(int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| struct intel_shared_regs *pc; |
| |
| pc = cpuc->shared_regs; |
| if (pc) { |
| if (pc->core_id == -1 || --pc->refcnt == 0) |
| kfree(pc); |
| cpuc->shared_regs = NULL; |
| } |
| |
| free_excl_cntrs(cpu); |
| } |
| |
| static void intel_pmu_sched_task(struct perf_event_context *ctx, |
| bool sched_in) |
| { |
| intel_pmu_pebs_sched_task(ctx, sched_in); |
| intel_pmu_lbr_sched_task(ctx, sched_in); |
| } |
| |
| PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); |
| |
| PMU_FORMAT_ATTR(ldlat, "config1:0-15"); |
| |
| PMU_FORMAT_ATTR(frontend, "config1:0-23"); |
| |
| static struct attribute *intel_arch3_formats_attr[] = { |
| &format_attr_event.attr, |
| &format_attr_umask.attr, |
| &format_attr_edge.attr, |
| &format_attr_pc.attr, |
| &format_attr_any.attr, |
| &format_attr_inv.attr, |
| &format_attr_cmask.attr, |
| NULL, |
| }; |
| |
| static struct attribute *hsw_format_attr[] = { |
| &format_attr_in_tx.attr, |
| &format_attr_in_tx_cp.attr, |
| &format_attr_offcore_rsp.attr, |
| &format_attr_ldlat.attr, |
| NULL |
| }; |
| |
| static struct attribute *nhm_format_attr[] = { |
| &format_attr_offcore_rsp.attr, |
| &format_attr_ldlat.attr, |
| NULL |
| }; |
| |
| static struct attribute *slm_format_attr[] = { |
| &format_attr_offcore_rsp.attr, |
| NULL |
| }; |
| |
| static struct attribute *skl_format_attr[] = { |
| &format_attr_frontend.attr, |
| NULL, |
| }; |
| |
| static __initconst const struct x86_pmu core_pmu = { |
| .name = "core", |
| .handle_irq = x86_pmu_handle_irq, |
| .disable_all = x86_pmu_disable_all, |
| .enable_all = core_pmu_enable_all, |
| .enable = core_pmu_enable_event, |
| .disable = x86_pmu_disable_event, |
| .hw_config = core_pmu_hw_config, |
| .schedule_events = x86_schedule_events, |
| .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, |
| .perfctr = MSR_ARCH_PERFMON_PERFCTR0, |
| .event_map = intel_pmu_event_map, |
| .max_events = ARRAY_SIZE(intel_perfmon_event_map), |
| .apic = 1, |
| .large_pebs_flags = LARGE_PEBS_FLAGS, |
| |
| /* |
| * Intel PMCs cannot be accessed sanely above 32-bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic event period: |
| */ |
| .max_period = (1ULL<<31) - 1, |
| .get_event_constraints = intel_get_event_constraints, |
| .put_event_constraints = intel_put_event_constraints, |
| .event_constraints = intel_core_event_constraints, |
| .guest_get_msrs = core_guest_get_msrs, |
| .format_attrs = intel_arch_formats_attr, |
| .events_sysfs_show = intel_event_sysfs_show, |
| |
| /* |
| * Virtual (or funny metal) CPU can define x86_pmu.extra_regs |
| * together with PMU version 1 and thus be using core_pmu with |
| * shared_regs. We need following callbacks here to allocate |
| * it properly. |
| */ |
| .cpu_prepare = intel_pmu_cpu_prepare, |
| .cpu_starting = intel_pmu_cpu_starting, |
| .cpu_dying = intel_pmu_cpu_dying, |
| .cpu_dead = intel_pmu_cpu_dead, |
| }; |
| |
| static struct attribute *intel_pmu_attrs[]; |
| |
| static __initconst const struct x86_pmu intel_pmu = { |
| .name = "Intel", |
| .handle_irq = intel_pmu_handle_irq, |
| .disable_all = intel_pmu_disable_all, |
| .enable_all = intel_pmu_enable_all, |
| .enable = intel_pmu_enable_event, |
| .disable = intel_pmu_disable_event, |
| .add = intel_pmu_add_event, |
| .del = intel_pmu_del_event, |
| .read = intel_pmu_read_event, |
| .hw_config = intel_pmu_hw_config, |
| .schedule_events = x86_schedule_events, |
| .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, |
| .perfctr = MSR_ARCH_PERFMON_PERFCTR0, |
| .event_map = intel_pmu_event_map, |
| .max_events = ARRAY_SIZE(intel_perfmon_event_map), |
| .apic = 1, |
| .large_pebs_flags = LARGE_PEBS_FLAGS, |
| /* |
| * Intel PMCs cannot be accessed sanely above 32 bit width, |
| * so we install an artificial 1<<31 period regardless of |
| * the generic event period: |
| */ |
| .max_period = (1ULL << 31) - 1, |
| .get_event_constraints = intel_get_event_constraints, |
| .put_event_constraints = intel_put_event_constraints, |
| .pebs_aliases = intel_pebs_aliases_core2, |
| |
| .format_attrs = intel_arch3_formats_attr, |
| .events_sysfs_show = intel_event_sysfs_show, |
| |
| .attrs = intel_pmu_attrs, |
| |
| .cpu_prepare = intel_pmu_cpu_prepare, |
| .cpu_starting = intel_pmu_cpu_starting, |
| .cpu_dying = intel_pmu_cpu_dying, |
| .cpu_dead = intel_pmu_cpu_dead, |
| |
| .guest_get_msrs = intel_guest_get_msrs, |
| .sched_task = intel_pmu_sched_task, |
| }; |
| |
| static __init void intel_clovertown_quirk(void) |
| { |
| /* |
| * PEBS is unreliable due to: |
| * |
| * AJ67 - PEBS may experience CPL leaks |
| * AJ68 - PEBS PMI may be delayed by one event |
| * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] |
| * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS |
| * |
| * AJ67 could be worked around by restricting the OS/USR flags. |
| * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. |
| * |
| * AJ106 could possibly be worked around by not allowing LBR |
| * usage from PEBS, including the fixup. |
| * AJ68 could possibly be worked around by always programming |
| * a pebs_event_reset[0] value and coping with the lost events. |
| * |
| * But taken together it might just make sense to not enable PEBS on |
| * these chips. |
| */ |
| pr_warn("PEBS disabled due to CPU errata\n"); |
| x86_pmu.pebs = 0; |
| x86_pmu.pebs_constraints = NULL; |
| } |
| |
| static int intel_snb_pebs_broken(int cpu) |
| { |
| u32 rev = UINT_MAX; /* default to broken for unknown models */ |
| |
| switch (cpu_data(cpu).x86_model) { |
| case INTEL_FAM6_SANDYBRIDGE: |
| rev = 0x28; |
| break; |
| |
| case INTEL_FAM6_SANDYBRIDGE_X: |
| switch (cpu_data(cpu).x86_stepping) { |
| case 6: rev = 0x618; break; |
| case 7: rev = 0x70c; break; |
| } |
| } |
| |
| return (cpu_data(cpu).microcode < rev); |
| } |
| |
| static void intel_snb_check_microcode(void) |
| { |
| int pebs_broken = 0; |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if ((pebs_broken = intel_snb_pebs_broken(cpu))) |
| break; |
| } |
| |
| if (pebs_broken == x86_pmu.pebs_broken) |
| return; |
| |
| /* |
| * Serialized by the microcode lock.. |
| */ |
| if (x86_pmu.pebs_broken) { |
| pr_info("PEBS enabled due to microcode update\n"); |
| x86_pmu.pebs_broken = 0; |
| } else { |
| pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); |
| x86_pmu.pebs_broken = 1; |
| } |
| } |
| |
| static bool is_lbr_from(unsigned long msr) |
| { |
| unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr; |
| |
| return x86_pmu.lbr_from <= msr && msr < lbr_from_nr; |
| } |
| |
| /* |
| * Under certain circumstances, access certain MSR may cause #GP. |
| * The function tests if the input MSR can be safely accessed. |
| */ |
| static bool check_msr(unsigned long msr, u64 mask) |
| { |
| u64 val_old, val_new, val_tmp; |
| |
| /* |
| * Read the current value, change it and read it back to see if it |
| * matches, this is needed to detect certain hardware emulators |
| * (qemu/kvm) that don't trap on the MSR access and always return 0s. |
| */ |
| if (rdmsrl_safe(msr, &val_old)) |
| return false; |
| |
| /* |
| * Only change the bits which can be updated by wrmsrl. |
| */ |
| val_tmp = val_old ^ mask; |
| |
| if (is_lbr_from(msr)) |
| val_tmp = lbr_from_signext_quirk_wr(val_tmp); |
| |
| if (wrmsrl_safe(msr, val_tmp) || |
| rdmsrl_safe(msr, &val_new)) |
| return false; |
| |
| /* |
| * Quirk only affects validation in wrmsr(), so wrmsrl()'s value |
| * should equal rdmsrl()'s even with the quirk. |
| */ |
| if (val_new != val_tmp) |
| return false; |
| |
| if (is_lbr_from(msr)) |
| val_old = lbr_from_signext_quirk_wr(val_old); |
| |
| /* Here it's sure that the MSR can be safely accessed. |
| * Restore the old value and return. |
| */ |
| wrmsrl(msr, val_old); |
| |
| return true; |
| } |
| |
| static __init void intel_sandybridge_quirk(void) |
| { |
| x86_pmu.check_microcode = intel_snb_check_microcode; |
| cpus_read_lock(); |
| intel_snb_check_microcode(); |
| cpus_read_unlock(); |
| } |
| |
| static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { |
| { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, |
| { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, |
| { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, |
| { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, |
| { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, |
| { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, |
| { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, |
| }; |
| |
| static __init void intel_arch_events_quirk(void) |
| { |
| int bit; |
| |
| /* disable event that reported as not presend by cpuid */ |
| for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { |
| intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; |
| pr_warn("CPUID marked event: \'%s\' unavailable\n", |
| intel_arch_events_map[bit].name); |
| } |
| } |
| |
| static __init void intel_nehalem_quirk(void) |
| { |
| union cpuid10_ebx ebx; |
| |
| ebx.full = x86_pmu.events_maskl; |
| if (ebx.split.no_branch_misses_retired) { |
| /* |
| * Erratum AAJ80 detected, we work it around by using |
| * the BR_MISP_EXEC.ANY event. This will over-count |
| * branch-misses, but it's still much better than the |
| * architectural event which is often completely bogus: |
| */ |
| intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; |
| ebx.split.no_branch_misses_retired = 0; |
| x86_pmu.events_maskl = ebx.full; |
| pr_info("CPU erratum AAJ80 worked around\n"); |
| } |
| } |
| |
| static bool intel_glp_counter_freezing_broken(int cpu) |
| { |
| u32 rev = UINT_MAX; /* default to broken for unknown stepping */ |
| |
| switch (cpu_data(cpu).x86_stepping) { |
| case 1: |
| rev = 0x28; |
| break; |
| case 8: |
| rev = 0x6; |
| break; |
| } |
| |
| return (cpu_data(cpu).microcode < rev); |
| } |
| |
| static __init void intel_glp_counter_freezing_quirk(void) |
| { |
| /* Check if it's already disabled */ |
| if (disable_counter_freezing) |
| return; |
| |
| /* |
| * If the system starts with the wrong ucode, leave the |
| * counter-freezing feature permanently disabled. |
| */ |
| if (intel_glp_counter_freezing_broken(raw_smp_processor_id())) { |
| pr_info("PMU counter freezing disabled due to CPU errata," |
| "please upgrade microcode\n"); |
| x86_pmu.counter_freezing = false; |
| x86_pmu.handle_irq = intel_pmu_handle_irq; |
| } |
| } |
| |
| /* |
| * enable software workaround for errata: |
| * SNB: BJ122 |
| * IVB: BV98 |
| * HSW: HSD29 |
| * |
| * Only needed when HT is enabled. However detecting |
| * if HT is enabled is difficult (model specific). So instead, |
| * we enable the workaround in the early boot, and verify if |
| * it is needed in a later initcall phase once we have valid |
| * topology information to check if HT is actually enabled |
| */ |
| static __init void intel_ht_bug(void) |
| { |
| x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED; |
| |
| x86_pmu.start_scheduling = intel_start_scheduling; |
| x86_pmu.commit_scheduling = intel_commit_scheduling; |
| x86_pmu.stop_scheduling = intel_stop_scheduling; |
| } |
| |
| EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); |
| EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") |
| |
| /* Haswell special events */ |
| EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); |
| EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); |
| EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); |
| EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); |
| EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); |
| EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); |
| EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); |
| EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); |
| EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); |
| EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); |
| EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); |
| EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); |
| |
| static struct attribute *hsw_events_attrs[] = { |
| EVENT_PTR(td_slots_issued), |
| EVENT_PTR(td_slots_retired), |
| EVENT_PTR(td_fetch_bubbles), |
| EVENT_PTR(td_total_slots), |
| EVENT_PTR(td_total_slots_scale), |
| EVENT_PTR(td_recovery_bubbles), |
| EVENT_PTR(td_recovery_bubbles_scale), |
| NULL |
| }; |
| |
| static struct attribute *hsw_mem_events_attrs[] = { |
| EVENT_PTR(mem_ld_hsw), |
| EVENT_PTR(mem_st_hsw), |
| NULL, |
| }; |
| |
| static struct attribute *hsw_tsx_events_attrs[] = { |
| EVENT_PTR(tx_start), |
| EVENT_PTR(tx_commit), |
| EVENT_PTR(tx_abort), |
| EVENT_PTR(tx_capacity), |
| EVENT_PTR(tx_conflict), |
| EVENT_PTR(el_start), |
| EVENT_PTR(el_commit), |
| EVENT_PTR(el_abort), |
| EVENT_PTR(el_capacity), |
| EVENT_PTR(el_conflict), |
| EVENT_PTR(cycles_t), |
| EVENT_PTR(cycles_ct), |
| NULL |
| }; |
| |
| static ssize_t freeze_on_smi_show(struct device *cdev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi); |
| } |
| |
| static DEFINE_MUTEX(freeze_on_smi_mutex); |
| |
| static ssize_t freeze_on_smi_store(struct device *cdev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret) |
| return ret; |
| |
| if (val > 1) |
| return -EINVAL; |
| |
| mutex_lock(&freeze_on_smi_mutex); |
| |
| if (x86_pmu.attr_freeze_on_smi == val) |
| goto done; |
| |
| x86_pmu.attr_freeze_on_smi = val; |
| |
| get_online_cpus(); |
| on_each_cpu(flip_smm_bit, &val, 1); |
| put_online_cpus(); |
| done: |
| mutex_unlock(&freeze_on_smi_mutex); |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(freeze_on_smi); |
| |
| static ssize_t branches_show(struct device *cdev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); |
| } |
| |
| static DEVICE_ATTR_RO(branches); |
| |
| static struct attribute *lbr_attrs[] = { |
| &dev_attr_branches.attr, |
| NULL |
| }; |
| |
| static char pmu_name_str[30]; |
| |
| static ssize_t pmu_name_show(struct device *cdev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str); |
| } |
| |
| static DEVICE_ATTR_RO(pmu_name); |
| |
| static struct attribute *intel_pmu_caps_attrs[] = { |
| &dev_attr_pmu_name.attr, |
| NULL |
| }; |
| |
| static struct attribute *intel_pmu_attrs[] = { |
| &dev_attr_freeze_on_smi.attr, |
| NULL, |
| }; |
| |
| static __init struct attribute ** |
| get_events_attrs(struct attribute **base, |
| struct attribute **mem, |
| struct attribute **tsx) |
| { |
| struct attribute **attrs = base; |
| struct attribute **old; |
| |
| if (mem && x86_pmu.pebs) |
| attrs = merge_attr(attrs, mem); |
| |
| if (tsx && boot_cpu_has(X86_FEATURE_RTM)) { |
| old = attrs; |
| attrs = merge_attr(attrs, tsx); |
| if (old != base) |
| kfree(old); |
| } |
| |
| return attrs; |
| } |
| |
| __init int intel_pmu_init(void) |
| { |
| struct attribute **extra_attr = NULL; |
| struct attribute **mem_attr = NULL; |
| struct attribute **tsx_attr = NULL; |
| struct attribute **to_free = NULL; |
| union cpuid10_edx edx; |
| union cpuid10_eax eax; |
| union cpuid10_ebx ebx; |
| struct event_constraint *c; |
| unsigned int unused; |
| struct extra_reg *er; |
| int version, i; |
| char *name; |
| |
| if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { |
| switch (boot_cpu_data.x86) { |
| case 0x6: |
| return p6_pmu_init(); |
| case 0xb: |
| return knc_pmu_init(); |
| case 0xf: |
| return p4_pmu_init(); |
| } |
| return -ENODEV; |
| } |
| |
| /* |
| * Check whether the Architectural PerfMon supports |
| * Branch Misses Retired hw_event or not. |
| */ |
| cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); |
| if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) |
| return -ENODEV; |
| |
| version = eax.split.version_id; |
| if (version < 2) |
| x86_pmu = core_pmu; |
| else |
| x86_pmu = intel_pmu; |
| |
| x86_pmu.version = version; |
| x86_pmu.num_counters = eax.split.num_counters; |
| x86_pmu.cntval_bits = eax.split.bit_width; |
| x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; |
| |
| x86_pmu.events_maskl = ebx.full; |
| x86_pmu.events_mask_len = eax.split.mask_length; |
| |
| x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); |
| |
| /* |
| * Quirk: v2 perfmon does not report fixed-purpose events, so |
| * assume at least 3 events, when not running in a hypervisor: |
| */ |
| if (version > 1) { |
| int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR); |
| |
| x86_pmu.num_counters_fixed = |
| max((int)edx.split.num_counters_fixed, assume); |
| } |
| |
| if (version >= 4) |
| x86_pmu.counter_freezing = !disable_counter_freezing; |
| |
| if (boot_cpu_has(X86_FEATURE_PDCM)) { |
| u64 capabilities; |
| |
| rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); |
| x86_pmu.intel_cap.capabilities = capabilities; |
| } |
| |
| intel_ds_init(); |
| |
| x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ |
| |
| /* |
| * Install the hw-cache-events table: |
| */ |
| switch (boot_cpu_data.x86_model) { |
| case INTEL_FAM6_CORE_YONAH: |
| pr_cont("Core events, "); |
| name = "core"; |
| break; |
| |
| case INTEL_FAM6_CORE2_MEROM: |
| x86_add_quirk(intel_clovertown_quirk); |
| case INTEL_FAM6_CORE2_MEROM_L: |
| case INTEL_FAM6_CORE2_PENRYN: |
| case INTEL_FAM6_CORE2_DUNNINGTON: |
| memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| intel_pmu_lbr_init_core(); |
| |
| x86_pmu.event_constraints = intel_core2_event_constraints; |
| x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; |
| pr_cont("Core2 events, "); |
| name = "core2"; |
| break; |
| |
| case INTEL_FAM6_NEHALEM: |
| case INTEL_FAM6_NEHALEM_EP: |
| case INTEL_FAM6_NEHALEM_EX: |
| memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_nhm(); |
| |
| x86_pmu.event_constraints = intel_nehalem_event_constraints; |
| x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; |
| x86_pmu.enable_all = intel_pmu_nhm_enable_all; |
| x86_pmu.extra_regs = intel_nehalem_extra_regs; |
| |
| mem_attr = nhm_mem_events_attrs; |
| |
| /* UOPS_ISSUED.STALLED_CYCLES */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); |
| |
| intel_pmu_pebs_data_source_nhm(); |
| x86_add_quirk(intel_nehalem_quirk); |
| x86_pmu.pebs_no_tlb = 1; |
| extra_attr = nhm_format_attr; |
| |
| pr_cont("Nehalem events, "); |
| name = "nehalem"; |
| break; |
| |
| case INTEL_FAM6_ATOM_BONNELL: |
| case INTEL_FAM6_ATOM_BONNELL_MID: |
| case INTEL_FAM6_ATOM_SALTWELL: |
| case INTEL_FAM6_ATOM_SALTWELL_MID: |
| case INTEL_FAM6_ATOM_SALTWELL_TABLET: |
| memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| |
| intel_pmu_lbr_init_atom(); |
| |
| x86_pmu.event_constraints = intel_gen_event_constraints; |
| x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_core2; |
| pr_cont("Atom events, "); |
| name = "bonnell"; |
| break; |
| |
| case INTEL_FAM6_ATOM_SILVERMONT: |
| case INTEL_FAM6_ATOM_SILVERMONT_X: |
| case INTEL_FAM6_ATOM_SILVERMONT_MID: |
| case INTEL_FAM6_ATOM_AIRMONT: |
| case INTEL_FAM6_ATOM_AIRMONT_MID: |
| memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_slm(); |
| |
| x86_pmu.event_constraints = intel_slm_event_constraints; |
| x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_slm_extra_regs; |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.cpu_events = slm_events_attrs; |
| extra_attr = slm_format_attr; |
| pr_cont("Silvermont events, "); |
| name = "silvermont"; |
| break; |
| |
| case INTEL_FAM6_ATOM_GOLDMONT: |
| case INTEL_FAM6_ATOM_GOLDMONT_X: |
| memcpy(hw_cache_event_ids, glm_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_skl(); |
| |
| x86_pmu.event_constraints = intel_slm_event_constraints; |
| x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_glm_extra_regs; |
| /* |
| * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS |
| * for precise cycles. |
| * :pp is identical to :ppp |
| */ |
| x86_pmu.pebs_aliases = NULL; |
| x86_pmu.pebs_prec_dist = true; |
| x86_pmu.lbr_pt_coexist = true; |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.cpu_events = glm_events_attrs; |
| extra_attr = slm_format_attr; |
| pr_cont("Goldmont events, "); |
| name = "goldmont"; |
| break; |
| |
| case INTEL_FAM6_ATOM_GOLDMONT_PLUS: |
| x86_add_quirk(intel_glp_counter_freezing_quirk); |
| memcpy(hw_cache_event_ids, glp_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_skl(); |
| |
| x86_pmu.event_constraints = intel_slm_event_constraints; |
| x86_pmu.extra_regs = intel_glm_extra_regs; |
| /* |
| * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS |
| * for precise cycles. |
| */ |
| x86_pmu.pebs_aliases = NULL; |
| x86_pmu.pebs_prec_dist = true; |
| x86_pmu.lbr_pt_coexist = true; |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_PEBS_ALL; |
| x86_pmu.get_event_constraints = glp_get_event_constraints; |
| x86_pmu.cpu_events = glm_events_attrs; |
| /* Goldmont Plus has 4-wide pipeline */ |
| event_attr_td_total_slots_scale_glm.event_str = "4"; |
| extra_attr = slm_format_attr; |
| pr_cont("Goldmont plus events, "); |
| name = "goldmont_plus"; |
| break; |
| |
| case INTEL_FAM6_WESTMERE: |
| case INTEL_FAM6_WESTMERE_EP: |
| case INTEL_FAM6_WESTMERE_EX: |
| memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_nhm(); |
| |
| x86_pmu.event_constraints = intel_westmere_event_constraints; |
| x86_pmu.enable_all = intel_pmu_nhm_enable_all; |
| x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_westmere_extra_regs; |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| |
| mem_attr = nhm_mem_events_attrs; |
| |
| /* UOPS_ISSUED.STALLED_CYCLES */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); |
| |
| intel_pmu_pebs_data_source_nhm(); |
| extra_attr = nhm_format_attr; |
| pr_cont("Westmere events, "); |
| name = "westmere"; |
| break; |
| |
| case INTEL_FAM6_SANDYBRIDGE: |
| case INTEL_FAM6_SANDYBRIDGE_X: |
| x86_add_quirk(intel_sandybridge_quirk); |
| x86_add_quirk(intel_ht_bug); |
| memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_snb(); |
| |
| x86_pmu.event_constraints = intel_snb_event_constraints; |
| x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_snb; |
| if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X) |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| else |
| x86_pmu.extra_regs = intel_snb_extra_regs; |
| |
| |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| |
| x86_pmu.cpu_events = snb_events_attrs; |
| mem_attr = snb_mem_events_attrs; |
| |
| /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = |
| X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); |
| |
| extra_attr = nhm_format_attr; |
| |
| pr_cont("SandyBridge events, "); |
| name = "sandybridge"; |
| break; |
| |
| case INTEL_FAM6_IVYBRIDGE: |
| case INTEL_FAM6_IVYBRIDGE_X: |
| x86_add_quirk(intel_ht_bug); |
| memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, |
| sizeof(hw_cache_event_ids)); |
| /* dTLB-load-misses on IVB is different than SNB */ |
| hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */ |
| |
| memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, |
| sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_snb(); |
| |
| x86_pmu.event_constraints = intel_ivb_event_constraints; |
| x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; |
| x86_pmu.pebs_prec_dist = true; |
| if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X) |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| else |
| x86_pmu.extra_regs = intel_snb_extra_regs; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| |
| x86_pmu.cpu_events = snb_events_attrs; |
| mem_attr = snb_mem_events_attrs; |
| |
| /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ |
| intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = |
| X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); |
| |
| extra_attr = nhm_format_attr; |
| |
| pr_cont("IvyBridge events, "); |
| name = "ivybridge"; |
| break; |
| |
| |
| case INTEL_FAM6_HASWELL_CORE: |
| case INTEL_FAM6_HASWELL_X: |
| case INTEL_FAM6_HASWELL_ULT: |
| case INTEL_FAM6_HASWELL_GT3E: |
| x86_add_quirk(intel_ht_bug); |
| x86_pmu.late_ack = true; |
| memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); |
| |
| intel_pmu_lbr_init_hsw(); |
| |
| x86_pmu.event_constraints = intel_hsw_event_constraints; |
| x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; |
| x86_pmu.pebs_prec_dist = true; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| |
| x86_pmu.hw_config = hsw_hw_config; |
| x86_pmu.get_event_constraints = hsw_get_event_constraints; |
| x86_pmu.cpu_events = hsw_events_attrs; |
| x86_pmu.lbr_double_abort = true; |
| extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? |
| hsw_format_attr : nhm_format_attr; |
| mem_attr = hsw_mem_events_attrs; |
| tsx_attr = hsw_tsx_events_attrs; |
| pr_cont("Haswell events, "); |
| name = "haswell"; |
| break; |
| |
| case INTEL_FAM6_BROADWELL_CORE: |
| case INTEL_FAM6_BROADWELL_XEON_D: |
| case INTEL_FAM6_BROADWELL_GT3E: |
| case INTEL_FAM6_BROADWELL_X: |
| x86_pmu.late_ack = true; |
| memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); |
| |
| /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */ |
| hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ | |
| BDW_L3_MISS|HSW_SNOOP_DRAM; |
| hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS| |
| HSW_SNOOP_DRAM; |
| hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ| |
| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; |
| hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE| |
| BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM; |
| |
| intel_pmu_lbr_init_hsw(); |
| |
| x86_pmu.event_constraints = intel_bdw_event_constraints; |
| x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_snbep_extra_regs; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_ivb; |
| x86_pmu.pebs_prec_dist = true; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| |
| x86_pmu.hw_config = hsw_hw_config; |
| x86_pmu.get_event_constraints = hsw_get_event_constraints; |
| x86_pmu.cpu_events = hsw_events_attrs; |
| x86_pmu.limit_period = bdw_limit_period; |
| extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? |
| hsw_format_attr : nhm_format_attr; |
| mem_attr = hsw_mem_events_attrs; |
| tsx_attr = hsw_tsx_events_attrs; |
| pr_cont("Broadwell events, "); |
| name = "broadwell"; |
| break; |
| |
| case INTEL_FAM6_XEON_PHI_KNL: |
| case INTEL_FAM6_XEON_PHI_KNM: |
| memcpy(hw_cache_event_ids, |
| slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, |
| knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); |
| intel_pmu_lbr_init_knl(); |
| |
| x86_pmu.event_constraints = intel_slm_event_constraints; |
| x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_knl_extra_regs; |
| |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| extra_attr = slm_format_attr; |
| pr_cont("Knights Landing/Mill events, "); |
| name = "knights-landing"; |
| break; |
| |
| case INTEL_FAM6_SKYLAKE_MOBILE: |
| case INTEL_FAM6_SKYLAKE_DESKTOP: |
| case INTEL_FAM6_SKYLAKE_X: |
| case INTEL_FAM6_KABYLAKE_MOBILE: |
| case INTEL_FAM6_KABYLAKE_DESKTOP: |
| x86_pmu.late_ack = true; |
| memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids)); |
| memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); |
| intel_pmu_lbr_init_skl(); |
| |
| /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */ |
| event_attr_td_recovery_bubbles.event_str_noht = |
| "event=0xd,umask=0x1,cmask=1"; |
| event_attr_td_recovery_bubbles.event_str_ht = |
| "event=0xd,umask=0x1,cmask=1,any=1"; |
| |
| x86_pmu.event_constraints = intel_skl_event_constraints; |
| x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints; |
| x86_pmu.extra_regs = intel_skl_extra_regs; |
| x86_pmu.pebs_aliases = intel_pebs_aliases_skl; |
| x86_pmu.pebs_prec_dist = true; |
| /* all extra regs are per-cpu when HT is on */ |
| x86_pmu.flags |= PMU_FL_HAS_RSP_1; |
| x86_pmu.flags |= PMU_FL_NO_HT_SHARING; |
| |
| x86_pmu.hw_config = hsw_hw_config; |
| x86_pmu.get_event_constraints = hsw_get_event_constraints; |
| extra_attr = boot_cpu_has(X86_FEATURE_RTM) ? |
| hsw_format_attr : nhm_format_attr; |
| extra_attr = merge_attr(extra_attr, skl_format_attr); |
| to_free = extra_attr; |
| x86_pmu.cpu_events = hsw_events_attrs; |
| mem_attr = hsw_mem_events_attrs; |
| tsx_attr = hsw_tsx_events_attrs; |
| intel_pmu_pebs_data_source_skl( |
| boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X); |
| pr_cont("Skylake events, "); |
| name = "skylake"; |
| break; |
| |
| default: |
| switch (x86_pmu.version) { |
| case 1: |
| x86_pmu.event_constraints = intel_v1_event_constraints; |
| pr_cont("generic architected perfmon v1, "); |
| name = "generic_arch_v1"; |
| break; |
| default: |
| /* |
| * default constraints for v2 and up |
| */ |
| x86_pmu.event_constraints = intel_gen_event_constraints; |
| pr_cont("generic architected perfmon, "); |
| name = "generic_arch_v2+"; |
| break; |
| } |
| } |
| |
| snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name); |
| |
| if (version >= 2 && extra_attr) { |
| x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr, |
| extra_attr); |
| WARN_ON(!x86_pmu.format_attrs); |
| } |
| |
| x86_pmu.cpu_events = get_events_attrs(x86_pmu.cpu_events, |
| mem_attr, tsx_attr); |
| |
| if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { |
| WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", |
| x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); |
| x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; |
| } |
| x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1; |
| |
| if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { |
| WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", |
| x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); |
| x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; |
| } |
| |
| x86_pmu.intel_ctrl |= |
| ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; |
| |
| if (x86_pmu.event_constraints) { |
| /* |
| * event on fixed counter2 (REF_CYCLES) only works on this |
| * counter, so do not extend mask to generic counters |
| */ |
| for_each_event_constraint(c, x86_pmu.event_constraints) { |
| if (c->cmask == FIXED_EVENT_FLAGS |
| && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) { |
| c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; |
| } |
| c->idxmsk64 &= |
| ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed)); |
| c->weight = hweight64(c->idxmsk64); |
| } |
| } |
| |
| /* |
| * Access LBR MSR may cause #GP under certain circumstances. |
| * E.g. KVM doesn't support LBR MSR |
| * Check all LBT MSR here. |
| * Disable LBR access if any LBR MSRs can not be accessed. |
| */ |
| if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL)) |
| x86_pmu.lbr_nr = 0; |
| for (i = 0; i < x86_pmu.lbr_nr; i++) { |
| if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) && |
| check_msr(x86_pmu.lbr_to + i, 0xffffUL))) |
| x86_pmu.lbr_nr = 0; |
| } |
| |
| x86_pmu.caps_attrs = intel_pmu_caps_attrs; |
| |
| if (x86_pmu.lbr_nr) { |
| x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs); |
| pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr); |
| } |
| |
| /* |
| * Access extra MSR may cause #GP under certain circumstances. |
| * E.g. KVM doesn't support offcore event |
| * Check all extra_regs here. |
| */ |
| if (x86_pmu.extra_regs) { |
| for (er = x86_pmu.extra_regs; er->msr; er++) { |
| er->extra_msr_access = check_msr(er->msr, 0x11UL); |
| /* Disable LBR select mapping */ |
| if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access) |
| x86_pmu.lbr_sel_map = NULL; |
| } |
| } |
| |
| /* Support full width counters using alternative MSR range */ |
| if (x86_pmu.intel_cap.full_width_write) { |
| x86_pmu.max_period = x86_pmu.cntval_mask >> 1; |
| x86_pmu.perfctr = MSR_IA32_PMC0; |
| pr_cont("full-width counters, "); |
| } |
| |
| /* |
| * For arch perfmon 4 use counter freezing to avoid |
| * several MSR accesses in the PMI. |
| */ |
| if (x86_pmu.counter_freezing) |
| x86_pmu.handle_irq = intel_pmu_handle_irq_v4; |
| |
| kfree(to_free); |
| return 0; |
| } |
| |
| /* |
| * HT bug: phase 2 init |
| * Called once we have valid topology information to check |
| * whether or not HT is enabled |
| * If HT is off, then we disable the workaround |
| */ |
| static __init int fixup_ht_bug(void) |
| { |
| int c; |
| /* |
| * problem not present on this CPU model, nothing to do |
| */ |
| if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED)) |
| return 0; |
| |
| if (topology_max_smt_threads() > 1) { |
| pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n"); |
| return 0; |
| } |
| |
| cpus_read_lock(); |
| |
| hardlockup_detector_perf_stop(); |
| |
| x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED); |
| |
| x86_pmu.start_scheduling = NULL; |
| x86_pmu.commit_scheduling = NULL; |
| x86_pmu.stop_scheduling = NULL; |
| |
| hardlockup_detector_perf_restart(); |
| |
| for_each_online_cpu(c) |
| free_excl_cntrs(c); |
| |
| cpus_read_unlock(); |
| pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n"); |
| return 0; |
| } |
| subsys_initcall(fixup_ht_bug) |