| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include <linux/frame.h> |
| #include <linux/percpu.h> |
| |
| #include <asm/debugreg.h> |
| #include <asm/mmu_context.h> |
| |
| #include "cpuid.h" |
| #include "hyperv.h" |
| #include "mmu.h" |
| #include "nested.h" |
| #include "trace.h" |
| #include "x86.h" |
| |
| static bool __read_mostly enable_shadow_vmcs = 1; |
| module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); |
| |
| static bool __read_mostly nested_early_check = 0; |
| module_param(nested_early_check, bool, S_IRUGO); |
| |
| /* |
| * Hyper-V requires all of these, so mark them as supported even though |
| * they are just treated the same as all-context. |
| */ |
| #define VMX_VPID_EXTENT_SUPPORTED_MASK \ |
| (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \ |
| VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \ |
| VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \ |
| VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT) |
| |
| #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 |
| |
| enum { |
| VMX_VMREAD_BITMAP, |
| VMX_VMWRITE_BITMAP, |
| VMX_BITMAP_NR |
| }; |
| static unsigned long *vmx_bitmap[VMX_BITMAP_NR]; |
| |
| #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP]) |
| #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP]) |
| |
| static u16 shadow_read_only_fields[] = { |
| #define SHADOW_FIELD_RO(x) x, |
| #include "vmcs_shadow_fields.h" |
| }; |
| static int max_shadow_read_only_fields = |
| ARRAY_SIZE(shadow_read_only_fields); |
| |
| static u16 shadow_read_write_fields[] = { |
| #define SHADOW_FIELD_RW(x) x, |
| #include "vmcs_shadow_fields.h" |
| }; |
| static int max_shadow_read_write_fields = |
| ARRAY_SIZE(shadow_read_write_fields); |
| |
| static void init_vmcs_shadow_fields(void) |
| { |
| int i, j; |
| |
| memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); |
| memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); |
| |
| for (i = j = 0; i < max_shadow_read_only_fields; i++) { |
| u16 field = shadow_read_only_fields[i]; |
| |
| if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && |
| (i + 1 == max_shadow_read_only_fields || |
| shadow_read_only_fields[i + 1] != field + 1)) |
| pr_err("Missing field from shadow_read_only_field %x\n", |
| field + 1); |
| |
| clear_bit(field, vmx_vmread_bitmap); |
| #ifdef CONFIG_X86_64 |
| if (field & 1) |
| continue; |
| #endif |
| if (j < i) |
| shadow_read_only_fields[j] = field; |
| j++; |
| } |
| max_shadow_read_only_fields = j; |
| |
| for (i = j = 0; i < max_shadow_read_write_fields; i++) { |
| u16 field = shadow_read_write_fields[i]; |
| |
| if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 && |
| (i + 1 == max_shadow_read_write_fields || |
| shadow_read_write_fields[i + 1] != field + 1)) |
| pr_err("Missing field from shadow_read_write_field %x\n", |
| field + 1); |
| |
| /* |
| * PML and the preemption timer can be emulated, but the |
| * processor cannot vmwrite to fields that don't exist |
| * on bare metal. |
| */ |
| switch (field) { |
| case GUEST_PML_INDEX: |
| if (!cpu_has_vmx_pml()) |
| continue; |
| break; |
| case VMX_PREEMPTION_TIMER_VALUE: |
| if (!cpu_has_vmx_preemption_timer()) |
| continue; |
| break; |
| case GUEST_INTR_STATUS: |
| if (!cpu_has_vmx_apicv()) |
| continue; |
| break; |
| default: |
| break; |
| } |
| |
| clear_bit(field, vmx_vmwrite_bitmap); |
| clear_bit(field, vmx_vmread_bitmap); |
| #ifdef CONFIG_X86_64 |
| if (field & 1) |
| continue; |
| #endif |
| if (j < i) |
| shadow_read_write_fields[j] = field; |
| j++; |
| } |
| max_shadow_read_write_fields = j; |
| } |
| |
| /* |
| * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), |
| * set the success or error code of an emulated VMX instruction (as specified |
| * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated |
| * instruction. |
| */ |
| static int nested_vmx_succeed(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu) |
| { |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_CF); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int nested_vmx_failValid(struct kvm_vcpu *vcpu, |
| u32 vm_instruction_error) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * failValid writes the error number to the current VMCS, which |
| * can't be done if there isn't a current VMCS. |
| */ |
| if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs) |
| return nested_vmx_failInvalid(vcpu); |
| |
| vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) |
| & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | |
| X86_EFLAGS_SF | X86_EFLAGS_OF)) |
| | X86_EFLAGS_ZF); |
| get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; |
| /* |
| * We don't need to force a shadow sync because |
| * VM_INSTRUCTION_ERROR is not shadowed |
| */ |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) |
| { |
| /* TODO: not to reset guest simply here. */ |
| kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator); |
| } |
| |
| static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx) |
| { |
| vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); |
| } |
| |
| static inline void nested_release_evmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx->nested.hv_evmcs) |
| return; |
| |
| kunmap(vmx->nested.hv_evmcs_page); |
| kvm_release_page_dirty(vmx->nested.hv_evmcs_page); |
| vmx->nested.hv_evmcs_vmptr = -1ull; |
| vmx->nested.hv_evmcs_page = NULL; |
| vmx->nested.hv_evmcs = NULL; |
| } |
| |
| /* |
| * Free whatever needs to be freed from vmx->nested when L1 goes down, or |
| * just stops using VMX. |
| */ |
| static void free_nested(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon) |
| return; |
| |
| hrtimer_cancel(&vmx->nested.preemption_timer); |
| vmx->nested.vmxon = false; |
| vmx->nested.smm.vmxon = false; |
| free_vpid(vmx->nested.vpid02); |
| vmx->nested.posted_intr_nv = -1; |
| vmx->nested.current_vmptr = -1ull; |
| if (enable_shadow_vmcs) { |
| vmx_disable_shadow_vmcs(vmx); |
| vmcs_clear(vmx->vmcs01.shadow_vmcs); |
| free_vmcs(vmx->vmcs01.shadow_vmcs); |
| vmx->vmcs01.shadow_vmcs = NULL; |
| } |
| kfree(vmx->nested.cached_vmcs12); |
| kfree(vmx->nested.cached_shadow_vmcs12); |
| /* Unpin physical memory we referred to in the vmcs02 */ |
| if (vmx->nested.apic_access_page) { |
| kvm_release_page_dirty(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = NULL; |
| } |
| if (vmx->nested.virtual_apic_page) { |
| kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| vmx->nested.virtual_apic_page = NULL; |
| } |
| if (vmx->nested.pi_desc_page) { |
| kunmap(vmx->nested.pi_desc_page); |
| kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| vmx->nested.pi_desc_page = NULL; |
| vmx->nested.pi_desc = NULL; |
| } |
| |
| kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); |
| |
| nested_release_evmcs(vcpu); |
| |
| free_loaded_vmcs(&vmx->nested.vmcs02); |
| } |
| |
| static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int cpu; |
| |
| if (vmx->loaded_vmcs == vmcs) |
| return; |
| |
| cpu = get_cpu(); |
| vmx_vcpu_put(vcpu); |
| vmx->loaded_vmcs = vmcs; |
| vmx_vcpu_load(vcpu, cpu); |
| put_cpu(); |
| |
| vm_entry_controls_reset_shadow(vmx); |
| vm_exit_controls_reset_shadow(vmx); |
| vmx_segment_cache_clear(vmx); |
| } |
| |
| /* |
| * Ensure that the current vmcs of the logical processor is the |
| * vmcs01 of the vcpu before calling free_nested(). |
| */ |
| void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| vcpu_load(vcpu); |
| vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01); |
| free_nested(vcpu); |
| vcpu_put(vcpu); |
| } |
| |
| static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, |
| struct x86_exception *fault) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 exit_reason; |
| unsigned long exit_qualification = vcpu->arch.exit_qualification; |
| |
| if (vmx->nested.pml_full) { |
| exit_reason = EXIT_REASON_PML_FULL; |
| vmx->nested.pml_full = false; |
| exit_qualification &= INTR_INFO_UNBLOCK_NMI; |
| } else if (fault->error_code & PFERR_RSVD_MASK) |
| exit_reason = EXIT_REASON_EPT_MISCONFIG; |
| else |
| exit_reason = EXIT_REASON_EPT_VIOLATION; |
| |
| nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification); |
| vmcs12->guest_physical_address = fault->address; |
| } |
| |
| static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| WARN_ON(mmu_is_nested(vcpu)); |
| |
| vcpu->arch.mmu = &vcpu->arch.guest_mmu; |
| kvm_init_shadow_ept_mmu(vcpu, |
| to_vmx(vcpu)->nested.msrs.ept_caps & |
| VMX_EPT_EXECUTE_ONLY_BIT, |
| nested_ept_ad_enabled(vcpu), |
| nested_ept_get_cr3(vcpu)); |
| vcpu->arch.mmu->set_cr3 = vmx_set_cr3; |
| vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3; |
| vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault; |
| vcpu->arch.mmu->get_pdptr = kvm_pdptr_read; |
| |
| vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; |
| } |
| |
| static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.mmu = &vcpu->arch.root_mmu; |
| vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; |
| } |
| |
| static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, |
| u16 error_code) |
| { |
| bool inequality, bit; |
| |
| bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; |
| inequality = |
| (error_code & vmcs12->page_fault_error_code_mask) != |
| vmcs12->page_fault_error_code_match; |
| return inequality ^ bit; |
| } |
| |
| |
| /* |
| * KVM wants to inject page-faults which it got to the guest. This function |
| * checks whether in a nested guest, we need to inject them to L1 or L2. |
| */ |
| static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned int nr = vcpu->arch.exception.nr; |
| bool has_payload = vcpu->arch.exception.has_payload; |
| unsigned long payload = vcpu->arch.exception.payload; |
| |
| if (nr == PF_VECTOR) { |
| if (vcpu->arch.exception.nested_apf) { |
| *exit_qual = vcpu->arch.apf.nested_apf_token; |
| return 1; |
| } |
| if (nested_vmx_is_page_fault_vmexit(vmcs12, |
| vcpu->arch.exception.error_code)) { |
| *exit_qual = has_payload ? payload : vcpu->arch.cr2; |
| return 1; |
| } |
| } else if (vmcs12->exception_bitmap & (1u << nr)) { |
| if (nr == DB_VECTOR) { |
| if (!has_payload) { |
| payload = vcpu->arch.dr6; |
| payload &= ~(DR6_FIXED_1 | DR6_BT); |
| payload ^= DR6_RTM; |
| } |
| *exit_qual = payload; |
| } else |
| *exit_qual = 0; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| |
| static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, |
| struct x86_exception *fault) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| WARN_ON(!is_guest_mode(vcpu)); |
| |
| if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) && |
| !to_vmx(vcpu)->nested.nested_run_pending) { |
| vmcs12->vm_exit_intr_error_code = fault->error_code; |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, |
| PF_VECTOR | INTR_TYPE_HARD_EXCEPTION | |
| INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK, |
| fault->address); |
| } else { |
| kvm_inject_page_fault(vcpu, fault); |
| } |
| } |
| |
| static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu)); |
| } |
| |
| static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| return 0; |
| |
| if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) || |
| !page_address_valid(vcpu, vmcs12->io_bitmap_b)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return 0; |
| |
| if (!page_address_valid(vcpu, vmcs12->msr_bitmap)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| return 0; |
| |
| if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Check if MSR is intercepted for L01 MSR bitmap. |
| */ |
| static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr) |
| { |
| unsigned long *msr_bitmap; |
| int f = sizeof(unsigned long); |
| |
| if (!cpu_has_vmx_msr_bitmap()) |
| return true; |
| |
| msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; |
| |
| if (msr <= 0x1fff) { |
| return !!test_bit(msr, msr_bitmap + 0x800 / f); |
| } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| msr &= 0x1fff; |
| return !!test_bit(msr, msr_bitmap + 0xc00 / f); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * If a msr is allowed by L0, we should check whether it is allowed by L1. |
| * The corresponding bit will be cleared unless both of L0 and L1 allow it. |
| */ |
| static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, |
| unsigned long *msr_bitmap_nested, |
| u32 msr, int type) |
| { |
| int f = sizeof(unsigned long); |
| |
| /* |
| * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals |
| * have the write-low and read-high bitmap offsets the wrong way round. |
| * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. |
| */ |
| if (msr <= 0x1fff) { |
| if (type & MSR_TYPE_R && |
| !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) |
| /* read-low */ |
| __clear_bit(msr, msr_bitmap_nested + 0x000 / f); |
| |
| if (type & MSR_TYPE_W && |
| !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) |
| /* write-low */ |
| __clear_bit(msr, msr_bitmap_nested + 0x800 / f); |
| |
| } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { |
| msr &= 0x1fff; |
| if (type & MSR_TYPE_R && |
| !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) |
| /* read-high */ |
| __clear_bit(msr, msr_bitmap_nested + 0x400 / f); |
| |
| if (type & MSR_TYPE_W && |
| !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) |
| /* write-high */ |
| __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); |
| |
| } |
| } |
| |
| /* |
| * Merge L0's and L1's MSR bitmap, return false to indicate that |
| * we do not use the hardware. |
| */ |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| int msr; |
| struct page *page; |
| unsigned long *msr_bitmap_l1; |
| unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap; |
| /* |
| * pred_cmd & spec_ctrl are trying to verify two things: |
| * |
| * 1. L0 gave a permission to L1 to actually passthrough the MSR. This |
| * ensures that we do not accidentally generate an L02 MSR bitmap |
| * from the L12 MSR bitmap that is too permissive. |
| * 2. That L1 or L2s have actually used the MSR. This avoids |
| * unnecessarily merging of the bitmap if the MSR is unused. This |
| * works properly because we only update the L01 MSR bitmap lazily. |
| * So even if L0 should pass L1 these MSRs, the L01 bitmap is only |
| * updated to reflect this when L1 (or its L2s) actually write to |
| * the MSR. |
| */ |
| bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD); |
| bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL); |
| |
| /* Nothing to do if the MSR bitmap is not in use. */ |
| if (!cpu_has_vmx_msr_bitmap() || |
| !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return false; |
| |
| if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| !pred_cmd && !spec_ctrl) |
| return false; |
| |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap); |
| if (is_error_page(page)) |
| return false; |
| |
| msr_bitmap_l1 = (unsigned long *)kmap(page); |
| if (nested_cpu_has_apic_reg_virt(vmcs12)) { |
| /* |
| * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it |
| * just lets the processor take the value from the virtual-APIC page; |
| * take those 256 bits directly from the L1 bitmap. |
| */ |
| for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { |
| unsigned word = msr / BITS_PER_LONG; |
| msr_bitmap_l0[word] = msr_bitmap_l1[word]; |
| msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; |
| } |
| } else { |
| for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { |
| unsigned word = msr / BITS_PER_LONG; |
| msr_bitmap_l0[word] = ~0; |
| msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0; |
| } |
| } |
| |
| nested_vmx_disable_intercept_for_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_TASKPRI), |
| MSR_TYPE_W); |
| |
| if (nested_cpu_has_vid(vmcs12)) { |
| nested_vmx_disable_intercept_for_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_EOI), |
| MSR_TYPE_W); |
| nested_vmx_disable_intercept_for_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| X2APIC_MSR(APIC_SELF_IPI), |
| MSR_TYPE_W); |
| } |
| |
| if (spec_ctrl) |
| nested_vmx_disable_intercept_for_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| MSR_IA32_SPEC_CTRL, |
| MSR_TYPE_R | MSR_TYPE_W); |
| |
| if (pred_cmd) |
| nested_vmx_disable_intercept_for_msr( |
| msr_bitmap_l1, msr_bitmap_l0, |
| MSR_IA32_PRED_CMD, |
| MSR_TYPE_W); |
| |
| kunmap(page); |
| kvm_release_page_clean(page); |
| |
| return true; |
| } |
| |
| static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vmcs12 *shadow; |
| struct page *page; |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12) || |
| vmcs12->vmcs_link_pointer == -1ull) |
| return; |
| |
| shadow = get_shadow_vmcs12(vcpu); |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); |
| |
| memcpy(shadow, kmap(page), VMCS12_SIZE); |
| |
| kunmap(page); |
| kvm_release_page_clean(page); |
| } |
| |
| static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12) || |
| vmcs12->vmcs_link_pointer == -1ull) |
| return; |
| |
| kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer, |
| get_shadow_vmcs12(vcpu), VMCS12_SIZE); |
| } |
| |
| /* |
| * In nested virtualization, check if L1 has set |
| * VM_EXIT_ACK_INTR_ON_EXIT |
| */ |
| static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) |
| { |
| return get_vmcs12(vcpu)->vm_exit_controls & |
| VM_EXIT_ACK_INTR_ON_EXIT; |
| } |
| |
| static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) |
| { |
| return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu)); |
| } |
| |
| static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && |
| !page_address_valid(vcpu, vmcs12->apic_access_addr)) |
| return -EINVAL; |
| else |
| return 0; |
| } |
| |
| static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| !nested_cpu_has_apic_reg_virt(vmcs12) && |
| !nested_cpu_has_vid(vmcs12) && |
| !nested_cpu_has_posted_intr(vmcs12)) |
| return 0; |
| |
| /* |
| * If virtualize x2apic mode is enabled, |
| * virtualize apic access must be disabled. |
| */ |
| if (nested_cpu_has_virt_x2apic_mode(vmcs12) && |
| nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| return -EINVAL; |
| |
| /* |
| * If virtual interrupt delivery is enabled, |
| * we must exit on external interrupts. |
| */ |
| if (nested_cpu_has_vid(vmcs12) && |
| !nested_exit_on_intr(vcpu)) |
| return -EINVAL; |
| |
| /* |
| * bits 15:8 should be zero in posted_intr_nv, |
| * the descriptor address has been already checked |
| * in nested_get_vmcs12_pages. |
| * |
| * bits 5:0 of posted_intr_desc_addr should be zero. |
| */ |
| if (nested_cpu_has_posted_intr(vmcs12) && |
| (!nested_cpu_has_vid(vmcs12) || |
| !nested_exit_intr_ack_set(vcpu) || |
| (vmcs12->posted_intr_nv & 0xff00) || |
| (vmcs12->posted_intr_desc_addr & 0x3f) || |
| (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))) |
| return -EINVAL; |
| |
| /* tpr shadow is needed by all apicv features. */ |
| if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, |
| u32 count, u64 addr) |
| { |
| int maxphyaddr; |
| |
| if (count == 0) |
| return 0; |
| maxphyaddr = cpuid_maxphyaddr(vcpu); |
| if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || |
| (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count, |
| vmcs12->vm_exit_msr_load_addr) || |
| nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count, |
| vmcs12->vm_exit_msr_store_addr)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count, |
| vmcs12->vm_entry_msr_load_addr)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_pml(vmcs12)) |
| return 0; |
| |
| if (!nested_cpu_has_ept(vmcs12) || |
| !page_address_valid(vcpu, vmcs12->pml_address)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) && |
| !nested_cpu_has_ept(vmcs12)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) && |
| !nested_cpu_has_ept(vmcs12)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_shadow_vmcs(vmcs12)) |
| return 0; |
| |
| if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) || |
| !page_address_valid(vcpu, vmcs12->vmwrite_bitmap)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| /* x2APIC MSR accesses are not allowed */ |
| if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) |
| return -EINVAL; |
| if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ |
| e->index == MSR_IA32_UCODE_REV) |
| return -EINVAL; |
| if (e->reserved != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| if (e->index == MSR_FS_BASE || |
| e->index == MSR_GS_BASE || |
| e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ |
| nested_vmx_msr_check_common(vcpu, e)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, |
| struct vmx_msr_entry *e) |
| { |
| if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ |
| nested_vmx_msr_check_common(vcpu, e)) |
| return -EINVAL; |
| return 0; |
| } |
| |
| /* |
| * Load guest's/host's msr at nested entry/exit. |
| * return 0 for success, entry index for failure. |
| */ |
| static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| { |
| u32 i; |
| struct vmx_msr_entry e; |
| struct msr_data msr; |
| |
| msr.host_initiated = false; |
| for (i = 0; i < count; i++) { |
| if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), |
| &e, sizeof(e))) { |
| pr_debug_ratelimited( |
| "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| __func__, i, gpa + i * sizeof(e)); |
| goto fail; |
| } |
| if (nested_vmx_load_msr_check(vcpu, &e)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, i, e.index, e.reserved); |
| goto fail; |
| } |
| msr.index = e.index; |
| msr.data = e.value; |
| if (kvm_set_msr(vcpu, &msr)) { |
| pr_debug_ratelimited( |
| "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| __func__, i, e.index, e.value); |
| goto fail; |
| } |
| } |
| return 0; |
| fail: |
| return i + 1; |
| } |
| |
| static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) |
| { |
| u32 i; |
| struct vmx_msr_entry e; |
| |
| for (i = 0; i < count; i++) { |
| struct msr_data msr_info; |
| if (kvm_vcpu_read_guest(vcpu, |
| gpa + i * sizeof(e), |
| &e, 2 * sizeof(u32))) { |
| pr_debug_ratelimited( |
| "%s cannot read MSR entry (%u, 0x%08llx)\n", |
| __func__, i, gpa + i * sizeof(e)); |
| return -EINVAL; |
| } |
| if (nested_vmx_store_msr_check(vcpu, &e)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, i, e.index, e.reserved); |
| return -EINVAL; |
| } |
| msr_info.host_initiated = false; |
| msr_info.index = e.index; |
| if (kvm_get_msr(vcpu, &msr_info)) { |
| pr_debug_ratelimited( |
| "%s cannot read MSR (%u, 0x%x)\n", |
| __func__, i, e.index); |
| return -EINVAL; |
| } |
| if (kvm_vcpu_write_guest(vcpu, |
| gpa + i * sizeof(e) + |
| offsetof(struct vmx_msr_entry, value), |
| &msr_info.data, sizeof(msr_info.data))) { |
| pr_debug_ratelimited( |
| "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", |
| __func__, i, e.index, msr_info.data); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val) |
| { |
| unsigned long invalid_mask; |
| |
| invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu); |
| return (val & invalid_mask) == 0; |
| } |
| |
| /* |
| * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are |
| * emulating VM entry into a guest with EPT enabled. |
| * Returns 0 on success, 1 on failure. Invalid state exit qualification code |
| * is assigned to entry_failure_code on failure. |
| */ |
| static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept, |
| u32 *entry_failure_code) |
| { |
| if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) { |
| if (!nested_cr3_valid(vcpu, cr3)) { |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| return 1; |
| } |
| |
| /* |
| * If PAE paging and EPT are both on, CR3 is not used by the CPU and |
| * must not be dereferenced. |
| */ |
| if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) && |
| !nested_ept) { |
| if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) { |
| *entry_failure_code = ENTRY_FAIL_PDPTE; |
| return 1; |
| } |
| } |
| } |
| |
| if (!nested_ept) |
| kvm_mmu_new_cr3(vcpu, cr3, false); |
| |
| vcpu->arch.cr3 = cr3; |
| __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| |
| kvm_init_mmu(vcpu, false); |
| |
| return 0; |
| } |
| |
| /* |
| * Returns if KVM is able to config CPU to tag TLB entries |
| * populated by L2 differently than TLB entries populated |
| * by L1. |
| * |
| * If L1 uses EPT, then TLB entries are tagged with different EPTP. |
| * |
| * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged |
| * with different VPID (L1 entries are tagged with vmx->vpid |
| * while L2 entries are tagged with vmx->nested.vpid02). |
| */ |
| static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| return nested_cpu_has_ept(vmcs12) || |
| (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02); |
| } |
| |
| static u16 nested_get_vpid02(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid; |
| } |
| |
| |
| static inline bool vmx_control_verify(u32 control, u32 low, u32 high) |
| { |
| return fixed_bits_valid(control, low, high); |
| } |
| |
| static inline u64 vmx_control_msr(u32 low, u32 high) |
| { |
| return low | ((u64)high << 32); |
| } |
| |
| static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask) |
| { |
| superset &= mask; |
| subset &= mask; |
| |
| return (superset | subset) == superset; |
| } |
| |
| static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data) |
| { |
| const u64 feature_and_reserved = |
| /* feature (except bit 48; see below) */ |
| BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) | |
| /* reserved */ |
| BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56); |
| u64 vmx_basic = vmx->nested.msrs.basic; |
| |
| if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved)) |
| return -EINVAL; |
| |
| /* |
| * KVM does not emulate a version of VMX that constrains physical |
| * addresses of VMX structures (e.g. VMCS) to 32-bits. |
| */ |
| if (data & BIT_ULL(48)) |
| return -EINVAL; |
| |
| if (vmx_basic_vmcs_revision_id(vmx_basic) != |
| vmx_basic_vmcs_revision_id(data)) |
| return -EINVAL; |
| |
| if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.basic = data; |
| return 0; |
| } |
| |
| static int |
| vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| { |
| u64 supported; |
| u32 *lowp, *highp; |
| |
| switch (msr_index) { |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| lowp = &vmx->nested.msrs.pinbased_ctls_low; |
| highp = &vmx->nested.msrs.pinbased_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| lowp = &vmx->nested.msrs.procbased_ctls_low; |
| highp = &vmx->nested.msrs.procbased_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| lowp = &vmx->nested.msrs.exit_ctls_low; |
| highp = &vmx->nested.msrs.exit_ctls_high; |
| break; |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| lowp = &vmx->nested.msrs.entry_ctls_low; |
| highp = &vmx->nested.msrs.entry_ctls_high; |
| break; |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| lowp = &vmx->nested.msrs.secondary_ctls_low; |
| highp = &vmx->nested.msrs.secondary_ctls_high; |
| break; |
| default: |
| BUG(); |
| } |
| |
| supported = vmx_control_msr(*lowp, *highp); |
| |
| /* Check must-be-1 bits are still 1. */ |
| if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0))) |
| return -EINVAL; |
| |
| /* Check must-be-0 bits are still 0. */ |
| if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32))) |
| return -EINVAL; |
| |
| *lowp = data; |
| *highp = data >> 32; |
| return 0; |
| } |
| |
| static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data) |
| { |
| const u64 feature_and_reserved_bits = |
| /* feature */ |
| BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) | |
| BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) | |
| /* reserved */ |
| GENMASK_ULL(13, 9) | BIT_ULL(31); |
| u64 vmx_misc; |
| |
| vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low, |
| vmx->nested.msrs.misc_high); |
| |
| if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits)) |
| return -EINVAL; |
| |
| if ((vmx->nested.msrs.pinbased_ctls_high & |
| PIN_BASED_VMX_PREEMPTION_TIMER) && |
| vmx_misc_preemption_timer_rate(data) != |
| vmx_misc_preemption_timer_rate(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc)) |
| return -EINVAL; |
| |
| if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.misc_low = data; |
| vmx->nested.msrs.misc_high = data >> 32; |
| |
| /* |
| * If L1 has read-only VM-exit information fields, use the |
| * less permissive vmx_vmwrite_bitmap to specify write |
| * permissions for the shadow VMCS. |
| */ |
| if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) |
| vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); |
| |
| return 0; |
| } |
| |
| static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data) |
| { |
| u64 vmx_ept_vpid_cap; |
| |
| vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps, |
| vmx->nested.msrs.vpid_caps); |
| |
| /* Every bit is either reserved or a feature bit. */ |
| if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL)) |
| return -EINVAL; |
| |
| vmx->nested.msrs.ept_caps = data; |
| vmx->nested.msrs.vpid_caps = data >> 32; |
| return 0; |
| } |
| |
| static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data) |
| { |
| u64 *msr; |
| |
| switch (msr_index) { |
| case MSR_IA32_VMX_CR0_FIXED0: |
| msr = &vmx->nested.msrs.cr0_fixed0; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED0: |
| msr = &vmx->nested.msrs.cr4_fixed0; |
| break; |
| default: |
| BUG(); |
| } |
| |
| /* |
| * 1 bits (which indicates bits which "must-be-1" during VMX operation) |
| * must be 1 in the restored value. |
| */ |
| if (!is_bitwise_subset(data, *msr, -1ULL)) |
| return -EINVAL; |
| |
| *msr = data; |
| return 0; |
| } |
| |
| /* |
| * Called when userspace is restoring VMX MSRs. |
| * |
| * Returns 0 on success, non-0 otherwise. |
| */ |
| int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * Don't allow changes to the VMX capability MSRs while the vCPU |
| * is in VMX operation. |
| */ |
| if (vmx->nested.vmxon) |
| return -EBUSY; |
| |
| switch (msr_index) { |
| case MSR_IA32_VMX_BASIC: |
| return vmx_restore_vmx_basic(vmx, data); |
| case MSR_IA32_VMX_PINBASED_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS: |
| case MSR_IA32_VMX_EXIT_CTLS: |
| case MSR_IA32_VMX_ENTRY_CTLS: |
| /* |
| * The "non-true" VMX capability MSRs are generated from the |
| * "true" MSRs, so we do not support restoring them directly. |
| * |
| * If userspace wants to emulate VMX_BASIC[55]=0, userspace |
| * should restore the "true" MSRs with the must-be-1 bits |
| * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND |
| * DEFAULT SETTINGS". |
| */ |
| return -EINVAL; |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| return vmx_restore_control_msr(vmx, msr_index, data); |
| case MSR_IA32_VMX_MISC: |
| return vmx_restore_vmx_misc(vmx, data); |
| case MSR_IA32_VMX_CR0_FIXED0: |
| case MSR_IA32_VMX_CR4_FIXED0: |
| return vmx_restore_fixed0_msr(vmx, msr_index, data); |
| case MSR_IA32_VMX_CR0_FIXED1: |
| case MSR_IA32_VMX_CR4_FIXED1: |
| /* |
| * These MSRs are generated based on the vCPU's CPUID, so we |
| * do not support restoring them directly. |
| */ |
| return -EINVAL; |
| case MSR_IA32_VMX_EPT_VPID_CAP: |
| return vmx_restore_vmx_ept_vpid_cap(vmx, data); |
| case MSR_IA32_VMX_VMCS_ENUM: |
| vmx->nested.msrs.vmcs_enum = data; |
| return 0; |
| default: |
| /* |
| * The rest of the VMX capability MSRs do not support restore. |
| */ |
| return -EINVAL; |
| } |
| } |
| |
| /* Returns 0 on success, non-0 otherwise. */ |
| int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata) |
| { |
| switch (msr_index) { |
| case MSR_IA32_VMX_BASIC: |
| *pdata = msrs->basic; |
| break; |
| case MSR_IA32_VMX_TRUE_PINBASED_CTLS: |
| case MSR_IA32_VMX_PINBASED_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->pinbased_ctls_low, |
| msrs->pinbased_ctls_high); |
| if (msr_index == MSR_IA32_VMX_PINBASED_CTLS) |
| *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: |
| case MSR_IA32_VMX_PROCBASED_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->procbased_ctls_low, |
| msrs->procbased_ctls_high); |
| if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS) |
| *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_EXIT_CTLS: |
| case MSR_IA32_VMX_EXIT_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->exit_ctls_low, |
| msrs->exit_ctls_high); |
| if (msr_index == MSR_IA32_VMX_EXIT_CTLS) |
| *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_TRUE_ENTRY_CTLS: |
| case MSR_IA32_VMX_ENTRY_CTLS: |
| *pdata = vmx_control_msr( |
| msrs->entry_ctls_low, |
| msrs->entry_ctls_high); |
| if (msr_index == MSR_IA32_VMX_ENTRY_CTLS) |
| *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| break; |
| case MSR_IA32_VMX_MISC: |
| *pdata = vmx_control_msr( |
| msrs->misc_low, |
| msrs->misc_high); |
| break; |
| case MSR_IA32_VMX_CR0_FIXED0: |
| *pdata = msrs->cr0_fixed0; |
| break; |
| case MSR_IA32_VMX_CR0_FIXED1: |
| *pdata = msrs->cr0_fixed1; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED0: |
| *pdata = msrs->cr4_fixed0; |
| break; |
| case MSR_IA32_VMX_CR4_FIXED1: |
| *pdata = msrs->cr4_fixed1; |
| break; |
| case MSR_IA32_VMX_VMCS_ENUM: |
| *pdata = msrs->vmcs_enum; |
| break; |
| case MSR_IA32_VMX_PROCBASED_CTLS2: |
| *pdata = vmx_control_msr( |
| msrs->secondary_ctls_low, |
| msrs->secondary_ctls_high); |
| break; |
| case MSR_IA32_VMX_EPT_VPID_CAP: |
| *pdata = msrs->ept_caps | |
| ((u64)msrs->vpid_caps << 32); |
| break; |
| case MSR_IA32_VMX_VMFUNC: |
| *pdata = msrs->vmfunc_controls; |
| break; |
| default: |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Copy the writable VMCS shadow fields back to the VMCS12, in case |
| * they have been modified by the L1 guest. Note that the "read-only" |
| * VM-exit information fields are actually writable if the vCPU is |
| * configured to support "VMWRITE to any supported field in the VMCS." |
| */ |
| static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) |
| { |
| const u16 *fields[] = { |
| shadow_read_write_fields, |
| shadow_read_only_fields |
| }; |
| const int max_fields[] = { |
| max_shadow_read_write_fields, |
| max_shadow_read_only_fields |
| }; |
| int i, q; |
| unsigned long field; |
| u64 field_value; |
| struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| |
| preempt_disable(); |
| |
| vmcs_load(shadow_vmcs); |
| |
| for (q = 0; q < ARRAY_SIZE(fields); q++) { |
| for (i = 0; i < max_fields[q]; i++) { |
| field = fields[q][i]; |
| field_value = __vmcs_readl(field); |
| vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value); |
| } |
| /* |
| * Skip the VM-exit information fields if they are read-only. |
| */ |
| if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu)) |
| break; |
| } |
| |
| vmcs_clear(shadow_vmcs); |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| |
| preempt_enable(); |
| } |
| |
| static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) |
| { |
| const u16 *fields[] = { |
| shadow_read_write_fields, |
| shadow_read_only_fields |
| }; |
| const int max_fields[] = { |
| max_shadow_read_write_fields, |
| max_shadow_read_only_fields |
| }; |
| int i, q; |
| unsigned long field; |
| u64 field_value = 0; |
| struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs; |
| |
| vmcs_load(shadow_vmcs); |
| |
| for (q = 0; q < ARRAY_SIZE(fields); q++) { |
| for (i = 0; i < max_fields[q]; i++) { |
| field = fields[q][i]; |
| vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value); |
| __vmcs_writel(field, field_value); |
| } |
| } |
| |
| vmcs_clear(shadow_vmcs); |
| vmcs_load(vmx->loaded_vmcs->vmcs); |
| } |
| |
| static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx) |
| { |
| struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; |
| struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; |
| |
| /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */ |
| vmcs12->tpr_threshold = evmcs->tpr_threshold; |
| vmcs12->guest_rip = evmcs->guest_rip; |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) { |
| vmcs12->guest_rsp = evmcs->guest_rsp; |
| vmcs12->guest_rflags = evmcs->guest_rflags; |
| vmcs12->guest_interruptibility_info = |
| evmcs->guest_interruptibility_info; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { |
| vmcs12->cpu_based_vm_exec_control = |
| evmcs->cpu_based_vm_exec_control; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) { |
| vmcs12->exception_bitmap = evmcs->exception_bitmap; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) { |
| vmcs12->vm_entry_controls = evmcs->vm_entry_controls; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) { |
| vmcs12->vm_entry_intr_info_field = |
| evmcs->vm_entry_intr_info_field; |
| vmcs12->vm_entry_exception_error_code = |
| evmcs->vm_entry_exception_error_code; |
| vmcs12->vm_entry_instruction_len = |
| evmcs->vm_entry_instruction_len; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { |
| vmcs12->host_ia32_pat = evmcs->host_ia32_pat; |
| vmcs12->host_ia32_efer = evmcs->host_ia32_efer; |
| vmcs12->host_cr0 = evmcs->host_cr0; |
| vmcs12->host_cr3 = evmcs->host_cr3; |
| vmcs12->host_cr4 = evmcs->host_cr4; |
| vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp; |
| vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip; |
| vmcs12->host_rip = evmcs->host_rip; |
| vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs; |
| vmcs12->host_es_selector = evmcs->host_es_selector; |
| vmcs12->host_cs_selector = evmcs->host_cs_selector; |
| vmcs12->host_ss_selector = evmcs->host_ss_selector; |
| vmcs12->host_ds_selector = evmcs->host_ds_selector; |
| vmcs12->host_fs_selector = evmcs->host_fs_selector; |
| vmcs12->host_gs_selector = evmcs->host_gs_selector; |
| vmcs12->host_tr_selector = evmcs->host_tr_selector; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) { |
| vmcs12->pin_based_vm_exec_control = |
| evmcs->pin_based_vm_exec_control; |
| vmcs12->vm_exit_controls = evmcs->vm_exit_controls; |
| vmcs12->secondary_vm_exec_control = |
| evmcs->secondary_vm_exec_control; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) { |
| vmcs12->io_bitmap_a = evmcs->io_bitmap_a; |
| vmcs12->io_bitmap_b = evmcs->io_bitmap_b; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) { |
| vmcs12->msr_bitmap = evmcs->msr_bitmap; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) { |
| vmcs12->guest_es_base = evmcs->guest_es_base; |
| vmcs12->guest_cs_base = evmcs->guest_cs_base; |
| vmcs12->guest_ss_base = evmcs->guest_ss_base; |
| vmcs12->guest_ds_base = evmcs->guest_ds_base; |
| vmcs12->guest_fs_base = evmcs->guest_fs_base; |
| vmcs12->guest_gs_base = evmcs->guest_gs_base; |
| vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base; |
| vmcs12->guest_tr_base = evmcs->guest_tr_base; |
| vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base; |
| vmcs12->guest_idtr_base = evmcs->guest_idtr_base; |
| vmcs12->guest_es_limit = evmcs->guest_es_limit; |
| vmcs12->guest_cs_limit = evmcs->guest_cs_limit; |
| vmcs12->guest_ss_limit = evmcs->guest_ss_limit; |
| vmcs12->guest_ds_limit = evmcs->guest_ds_limit; |
| vmcs12->guest_fs_limit = evmcs->guest_fs_limit; |
| vmcs12->guest_gs_limit = evmcs->guest_gs_limit; |
| vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit; |
| vmcs12->guest_tr_limit = evmcs->guest_tr_limit; |
| vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit; |
| vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit; |
| vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes; |
| vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes; |
| vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes; |
| vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes; |
| vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes; |
| vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes; |
| vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes; |
| vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes; |
| vmcs12->guest_es_selector = evmcs->guest_es_selector; |
| vmcs12->guest_cs_selector = evmcs->guest_cs_selector; |
| vmcs12->guest_ss_selector = evmcs->guest_ss_selector; |
| vmcs12->guest_ds_selector = evmcs->guest_ds_selector; |
| vmcs12->guest_fs_selector = evmcs->guest_fs_selector; |
| vmcs12->guest_gs_selector = evmcs->guest_gs_selector; |
| vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector; |
| vmcs12->guest_tr_selector = evmcs->guest_tr_selector; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) { |
| vmcs12->tsc_offset = evmcs->tsc_offset; |
| vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr; |
| vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) { |
| vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask; |
| vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask; |
| vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow; |
| vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow; |
| vmcs12->guest_cr0 = evmcs->guest_cr0; |
| vmcs12->guest_cr3 = evmcs->guest_cr3; |
| vmcs12->guest_cr4 = evmcs->guest_cr4; |
| vmcs12->guest_dr7 = evmcs->guest_dr7; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) { |
| vmcs12->host_fs_base = evmcs->host_fs_base; |
| vmcs12->host_gs_base = evmcs->host_gs_base; |
| vmcs12->host_tr_base = evmcs->host_tr_base; |
| vmcs12->host_gdtr_base = evmcs->host_gdtr_base; |
| vmcs12->host_idtr_base = evmcs->host_idtr_base; |
| vmcs12->host_rsp = evmcs->host_rsp; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) { |
| vmcs12->ept_pointer = evmcs->ept_pointer; |
| vmcs12->virtual_processor_id = evmcs->virtual_processor_id; |
| } |
| |
| if (unlikely(!(evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) { |
| vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer; |
| vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl; |
| vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat; |
| vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer; |
| vmcs12->guest_pdptr0 = evmcs->guest_pdptr0; |
| vmcs12->guest_pdptr1 = evmcs->guest_pdptr1; |
| vmcs12->guest_pdptr2 = evmcs->guest_pdptr2; |
| vmcs12->guest_pdptr3 = evmcs->guest_pdptr3; |
| vmcs12->guest_pending_dbg_exceptions = |
| evmcs->guest_pending_dbg_exceptions; |
| vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp; |
| vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip; |
| vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs; |
| vmcs12->guest_activity_state = evmcs->guest_activity_state; |
| vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs; |
| } |
| |
| /* |
| * Not used? |
| * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr; |
| * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr; |
| * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr; |
| * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0; |
| * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1; |
| * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2; |
| * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3; |
| * vmcs12->page_fault_error_code_mask = |
| * evmcs->page_fault_error_code_mask; |
| * vmcs12->page_fault_error_code_match = |
| * evmcs->page_fault_error_code_match; |
| * vmcs12->cr3_target_count = evmcs->cr3_target_count; |
| * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count; |
| * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count; |
| * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count; |
| */ |
| |
| /* |
| * Read only fields: |
| * vmcs12->guest_physical_address = evmcs->guest_physical_address; |
| * vmcs12->vm_instruction_error = evmcs->vm_instruction_error; |
| * vmcs12->vm_exit_reason = evmcs->vm_exit_reason; |
| * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info; |
| * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code; |
| * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field; |
| * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code; |
| * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len; |
| * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info; |
| * vmcs12->exit_qualification = evmcs->exit_qualification; |
| * vmcs12->guest_linear_address = evmcs->guest_linear_address; |
| * |
| * Not present in struct vmcs12: |
| * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx; |
| * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi; |
| * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi; |
| * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip; |
| */ |
| |
| return 0; |
| } |
| |
| static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx) |
| { |
| struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12; |
| struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs; |
| |
| /* |
| * Should not be changed by KVM: |
| * |
| * evmcs->host_es_selector = vmcs12->host_es_selector; |
| * evmcs->host_cs_selector = vmcs12->host_cs_selector; |
| * evmcs->host_ss_selector = vmcs12->host_ss_selector; |
| * evmcs->host_ds_selector = vmcs12->host_ds_selector; |
| * evmcs->host_fs_selector = vmcs12->host_fs_selector; |
| * evmcs->host_gs_selector = vmcs12->host_gs_selector; |
| * evmcs->host_tr_selector = vmcs12->host_tr_selector; |
| * evmcs->host_ia32_pat = vmcs12->host_ia32_pat; |
| * evmcs->host_ia32_efer = vmcs12->host_ia32_efer; |
| * evmcs->host_cr0 = vmcs12->host_cr0; |
| * evmcs->host_cr3 = vmcs12->host_cr3; |
| * evmcs->host_cr4 = vmcs12->host_cr4; |
| * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp; |
| * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip; |
| * evmcs->host_rip = vmcs12->host_rip; |
| * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs; |
| * evmcs->host_fs_base = vmcs12->host_fs_base; |
| * evmcs->host_gs_base = vmcs12->host_gs_base; |
| * evmcs->host_tr_base = vmcs12->host_tr_base; |
| * evmcs->host_gdtr_base = vmcs12->host_gdtr_base; |
| * evmcs->host_idtr_base = vmcs12->host_idtr_base; |
| * evmcs->host_rsp = vmcs12->host_rsp; |
| * sync_vmcs12() doesn't read these: |
| * evmcs->io_bitmap_a = vmcs12->io_bitmap_a; |
| * evmcs->io_bitmap_b = vmcs12->io_bitmap_b; |
| * evmcs->msr_bitmap = vmcs12->msr_bitmap; |
| * evmcs->ept_pointer = vmcs12->ept_pointer; |
| * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap; |
| * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr; |
| * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr; |
| * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr; |
| * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0; |
| * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1; |
| * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2; |
| * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3; |
| * evmcs->tpr_threshold = vmcs12->tpr_threshold; |
| * evmcs->virtual_processor_id = vmcs12->virtual_processor_id; |
| * evmcs->exception_bitmap = vmcs12->exception_bitmap; |
| * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer; |
| * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control; |
| * evmcs->vm_exit_controls = vmcs12->vm_exit_controls; |
| * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control; |
| * evmcs->page_fault_error_code_mask = |
| * vmcs12->page_fault_error_code_mask; |
| * evmcs->page_fault_error_code_match = |
| * vmcs12->page_fault_error_code_match; |
| * evmcs->cr3_target_count = vmcs12->cr3_target_count; |
| * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr; |
| * evmcs->tsc_offset = vmcs12->tsc_offset; |
| * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl; |
| * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask; |
| * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask; |
| * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow; |
| * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow; |
| * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count; |
| * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count; |
| * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count; |
| * |
| * Not present in struct vmcs12: |
| * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx; |
| * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi; |
| * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi; |
| * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip; |
| */ |
| |
| evmcs->guest_es_selector = vmcs12->guest_es_selector; |
| evmcs->guest_cs_selector = vmcs12->guest_cs_selector; |
| evmcs->guest_ss_selector = vmcs12->guest_ss_selector; |
| evmcs->guest_ds_selector = vmcs12->guest_ds_selector; |
| evmcs->guest_fs_selector = vmcs12->guest_fs_selector; |
| evmcs->guest_gs_selector = vmcs12->guest_gs_selector; |
| evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector; |
| evmcs->guest_tr_selector = vmcs12->guest_tr_selector; |
| |
| evmcs->guest_es_limit = vmcs12->guest_es_limit; |
| evmcs->guest_cs_limit = vmcs12->guest_cs_limit; |
| evmcs->guest_ss_limit = vmcs12->guest_ss_limit; |
| evmcs->guest_ds_limit = vmcs12->guest_ds_limit; |
| evmcs->guest_fs_limit = vmcs12->guest_fs_limit; |
| evmcs->guest_gs_limit = vmcs12->guest_gs_limit; |
| evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit; |
| evmcs->guest_tr_limit = vmcs12->guest_tr_limit; |
| evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit; |
| evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit; |
| |
| evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes; |
| evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes; |
| evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes; |
| evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes; |
| evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes; |
| evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes; |
| evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes; |
| evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes; |
| |
| evmcs->guest_es_base = vmcs12->guest_es_base; |
| evmcs->guest_cs_base = vmcs12->guest_cs_base; |
| evmcs->guest_ss_base = vmcs12->guest_ss_base; |
| evmcs->guest_ds_base = vmcs12->guest_ds_base; |
| evmcs->guest_fs_base = vmcs12->guest_fs_base; |
| evmcs->guest_gs_base = vmcs12->guest_gs_base; |
| evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base; |
| evmcs->guest_tr_base = vmcs12->guest_tr_base; |
| evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base; |
| evmcs->guest_idtr_base = vmcs12->guest_idtr_base; |
| |
| evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat; |
| evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer; |
| |
| evmcs->guest_pdptr0 = vmcs12->guest_pdptr0; |
| evmcs->guest_pdptr1 = vmcs12->guest_pdptr1; |
| evmcs->guest_pdptr2 = vmcs12->guest_pdptr2; |
| evmcs->guest_pdptr3 = vmcs12->guest_pdptr3; |
| |
| evmcs->guest_pending_dbg_exceptions = |
| vmcs12->guest_pending_dbg_exceptions; |
| evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp; |
| evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip; |
| |
| evmcs->guest_activity_state = vmcs12->guest_activity_state; |
| evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs; |
| |
| evmcs->guest_cr0 = vmcs12->guest_cr0; |
| evmcs->guest_cr3 = vmcs12->guest_cr3; |
| evmcs->guest_cr4 = vmcs12->guest_cr4; |
| evmcs->guest_dr7 = vmcs12->guest_dr7; |
| |
| evmcs->guest_physical_address = vmcs12->guest_physical_address; |
| |
| evmcs->vm_instruction_error = vmcs12->vm_instruction_error; |
| evmcs->vm_exit_reason = vmcs12->vm_exit_reason; |
| evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info; |
| evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code; |
| evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field; |
| evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code; |
| evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len; |
| evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info; |
| |
| evmcs->exit_qualification = vmcs12->exit_qualification; |
| |
| evmcs->guest_linear_address = vmcs12->guest_linear_address; |
| evmcs->guest_rsp = vmcs12->guest_rsp; |
| evmcs->guest_rflags = vmcs12->guest_rflags; |
| |
| evmcs->guest_interruptibility_info = |
| vmcs12->guest_interruptibility_info; |
| evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control; |
| evmcs->vm_entry_controls = vmcs12->vm_entry_controls; |
| evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field; |
| evmcs->vm_entry_exception_error_code = |
| vmcs12->vm_entry_exception_error_code; |
| evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len; |
| |
| evmcs->guest_rip = vmcs12->guest_rip; |
| |
| evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs; |
| |
| return 0; |
| } |
| |
| /* |
| * This is an equivalent of the nested hypervisor executing the vmptrld |
| * instruction. |
| */ |
| static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu, |
| bool from_launch) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct hv_vp_assist_page assist_page; |
| |
| if (likely(!vmx->nested.enlightened_vmcs_enabled)) |
| return 1; |
| |
| if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page))) |
| return 1; |
| |
| if (unlikely(!assist_page.enlighten_vmentry)) |
| return 1; |
| |
| if (unlikely(assist_page.current_nested_vmcs != |
| vmx->nested.hv_evmcs_vmptr)) { |
| |
| if (!vmx->nested.hv_evmcs) |
| vmx->nested.current_vmptr = -1ull; |
| |
| nested_release_evmcs(vcpu); |
| |
| vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page( |
| vcpu, assist_page.current_nested_vmcs); |
| |
| if (unlikely(is_error_page(vmx->nested.hv_evmcs_page))) |
| return 0; |
| |
| vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page); |
| |
| /* |
| * Currently, KVM only supports eVMCS version 1 |
| * (== KVM_EVMCS_VERSION) and thus we expect guest to set this |
| * value to first u32 field of eVMCS which should specify eVMCS |
| * VersionNumber. |
| * |
| * Guest should be aware of supported eVMCS versions by host by |
| * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is |
| * expected to set this CPUID leaf according to the value |
| * returned in vmcs_version from nested_enable_evmcs(). |
| * |
| * However, it turns out that Microsoft Hyper-V fails to comply |
| * to their own invented interface: When Hyper-V use eVMCS, it |
| * just sets first u32 field of eVMCS to revision_id specified |
| * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number |
| * which is one of the supported versions specified in |
| * CPUID.0x4000000A.EAX[0:15]. |
| * |
| * To overcome Hyper-V bug, we accept here either a supported |
| * eVMCS version or VMCS12 revision_id as valid values for first |
| * u32 field of eVMCS. |
| */ |
| if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) && |
| (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) { |
| nested_release_evmcs(vcpu); |
| return 0; |
| } |
| |
| vmx->nested.dirty_vmcs12 = true; |
| /* |
| * As we keep L2 state for one guest only 'hv_clean_fields' mask |
| * can't be used when we switch between them. Reset it here for |
| * simplicity. |
| */ |
| vmx->nested.hv_evmcs->hv_clean_fields &= |
| ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; |
| vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs; |
| |
| /* |
| * Unlike normal vmcs12, enlightened vmcs12 is not fully |
| * reloaded from guest's memory (read only fields, fields not |
| * present in struct hv_enlightened_vmcs, ...). Make sure there |
| * are no leftovers. |
| */ |
| if (from_launch) { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| memset(vmcs12, 0, sizeof(*vmcs12)); |
| vmcs12->hdr.revision_id = VMCS12_REVISION; |
| } |
| |
| } |
| return 1; |
| } |
| |
| void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * hv_evmcs may end up being not mapped after migration (when |
| * L2 was running), map it here to make sure vmcs12 changes are |
| * properly reflected. |
| */ |
| if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) |
| nested_vmx_handle_enlightened_vmptrld(vcpu, false); |
| |
| if (vmx->nested.hv_evmcs) { |
| copy_vmcs12_to_enlightened(vmx); |
| /* All fields are clean */ |
| vmx->nested.hv_evmcs->hv_clean_fields |= |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; |
| } else { |
| copy_vmcs12_to_shadow(vmx); |
| } |
| |
| vmx->nested.need_vmcs12_sync = false; |
| } |
| |
| static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) |
| { |
| struct vcpu_vmx *vmx = |
| container_of(timer, struct vcpu_vmx, nested.preemption_timer); |
| |
| vmx->nested.preemption_timer_expired = true; |
| kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); |
| kvm_vcpu_kick(&vmx->vcpu); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) |
| { |
| u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| /* |
| * A timer value of zero is architecturally guaranteed to cause |
| * a VMExit prior to executing any instructions in the guest. |
| */ |
| if (preemption_timeout == 0) { |
| vmx_preemption_timer_fn(&vmx->nested.preemption_timer); |
| return; |
| } |
| |
| if (vcpu->arch.virtual_tsc_khz == 0) |
| return; |
| |
| preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| preemption_timeout *= 1000000; |
| do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); |
| hrtimer_start(&vmx->nested.preemption_timer, |
| ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); |
| } |
| |
| static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) |
| { |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) |
| return vmcs12->guest_ia32_efer; |
| else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) |
| return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME); |
| else |
| return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME); |
| } |
| |
| static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx) |
| { |
| /* |
| * If vmcs02 hasn't been initialized, set the constant vmcs02 state |
| * according to L0's settings (vmcs12 is irrelevant here). Host |
| * fields that come from L0 and are not constant, e.g. HOST_CR3, |
| * will be set as needed prior to VMLAUNCH/VMRESUME. |
| */ |
| if (vmx->nested.vmcs02_initialized) |
| return; |
| vmx->nested.vmcs02_initialized = true; |
| |
| /* |
| * We don't care what the EPTP value is we just need to guarantee |
| * it's valid so we don't get a false positive when doing early |
| * consistency checks. |
| */ |
| if (enable_ept && nested_early_check) |
| vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0)); |
| |
| /* All VMFUNCs are currently emulated through L0 vmexits. */ |
| if (cpu_has_vmx_vmfunc()) |
| vmcs_write64(VM_FUNCTION_CONTROL, 0); |
| |
| if (cpu_has_vmx_posted_intr()) |
| vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap)); |
| |
| if (enable_pml) |
| vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); |
| |
| /* |
| * Set the MSR load/store lists to match L0's settings. Only the |
| * addresses are constant (for vmcs02), the counts can change based |
| * on L2's behavior, e.g. switching to/from long mode. |
| */ |
| vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); |
| vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); |
| vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); |
| |
| vmx_set_constant_host_state(vmx); |
| } |
| |
| static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx, |
| struct vmcs12 *vmcs12) |
| { |
| prepare_vmcs02_constant_state(vmx); |
| |
| vmcs_write64(VMCS_LINK_POINTER, -1ull); |
| |
| if (enable_vpid) { |
| if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); |
| else |
| vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); |
| } |
| } |
| |
| static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) |
| { |
| u32 exec_control, vmcs12_exec_ctrl; |
| u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12); |
| |
| if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) |
| prepare_vmcs02_early_full(vmx, vmcs12); |
| |
| /* |
| * HOST_RSP is normally set correctly in vmx_vcpu_run() just before |
| * entry, but only if the current (host) sp changed from the value |
| * we wrote last (vmx->host_rsp). This cache is no longer relevant |
| * if we switch vmcs, and rather than hold a separate cache per vmcs, |
| * here we just force the write to happen on entry. host_rsp will |
| * also be written unconditionally by nested_vmx_check_vmentry_hw() |
| * if we are doing early consistency checks via hardware. |
| */ |
| vmx->host_rsp = 0; |
| |
| /* |
| * PIN CONTROLS |
| */ |
| exec_control = vmcs12->pin_based_vm_exec_control; |
| |
| /* Preemption timer setting is computed directly in vmx_vcpu_run. */ |
| exec_control |= vmcs_config.pin_based_exec_ctrl; |
| exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; |
| vmx->loaded_vmcs->hv_timer_armed = false; |
| |
| /* Posted interrupts setting is only taken from vmcs12. */ |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; |
| vmx->nested.pi_pending = false; |
| } else { |
| exec_control &= ~PIN_BASED_POSTED_INTR; |
| } |
| vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); |
| |
| /* |
| * EXEC CONTROLS |
| */ |
| exec_control = vmx_exec_control(vmx); /* L0's desires */ |
| exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; |
| exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; |
| exec_control &= ~CPU_BASED_TPR_SHADOW; |
| exec_control |= vmcs12->cpu_based_vm_exec_control; |
| |
| /* |
| * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if |
| * nested_get_vmcs12_pages can't fix it up, the illegal value |
| * will result in a VM entry failure. |
| */ |
| if (exec_control & CPU_BASED_TPR_SHADOW) { |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull); |
| vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); |
| } else { |
| #ifdef CONFIG_X86_64 |
| exec_control |= CPU_BASED_CR8_LOAD_EXITING | |
| CPU_BASED_CR8_STORE_EXITING; |
| #endif |
| } |
| |
| /* |
| * A vmexit (to either L1 hypervisor or L0 userspace) is always needed |
| * for I/O port accesses. |
| */ |
| exec_control &= ~CPU_BASED_USE_IO_BITMAPS; |
| exec_control |= CPU_BASED_UNCOND_IO_EXITING; |
| vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); |
| |
| /* |
| * SECONDARY EXEC CONTROLS |
| */ |
| if (cpu_has_secondary_exec_ctrls()) { |
| exec_control = vmx->secondary_exec_control; |
| |
| /* Take the following fields only from vmcs12 */ |
| exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | |
| SECONDARY_EXEC_ENABLE_INVPCID | |
| SECONDARY_EXEC_RDTSCP | |
| SECONDARY_EXEC_XSAVES | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_ENABLE_VMFUNC); |
| if (nested_cpu_has(vmcs12, |
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) { |
| vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control & |
| ~SECONDARY_EXEC_ENABLE_PML; |
| exec_control |= vmcs12_exec_ctrl; |
| } |
| |
| /* VMCS shadowing for L2 is emulated for now */ |
| exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; |
| |
| if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) |
| vmcs_write16(GUEST_INTR_STATUS, |
| vmcs12->guest_intr_status); |
| |
| /* |
| * Write an illegal value to APIC_ACCESS_ADDR. Later, |
| * nested_get_vmcs12_pages will either fix it up or |
| * remove the VM execution control. |
| */ |
| if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) |
| vmcs_write64(APIC_ACCESS_ADDR, -1ull); |
| |
| if (exec_control & SECONDARY_EXEC_ENCLS_EXITING) |
| vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); |
| |
| vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); |
| } |
| |
| /* |
| * ENTRY CONTROLS |
| * |
| * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE |
| * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate |
| * on the related bits (if supported by the CPU) in the hope that |
| * we can avoid VMWrites during vmx_set_efer(). |
| */ |
| exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) & |
| ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER; |
| if (cpu_has_load_ia32_efer()) { |
| if (guest_efer & EFER_LMA) |
| exec_control |= VM_ENTRY_IA32E_MODE; |
| if (guest_efer != host_efer) |
| exec_control |= VM_ENTRY_LOAD_IA32_EFER; |
| } |
| vm_entry_controls_init(vmx, exec_control); |
| |
| /* |
| * EXIT CONTROLS |
| * |
| * L2->L1 exit controls are emulated - the hardware exit is to L0 so |
| * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER |
| * bits may be modified by vmx_set_efer() in prepare_vmcs02(). |
| */ |
| exec_control = vmx_vmexit_ctrl(); |
| if (cpu_has_load_ia32_efer() && guest_efer != host_efer) |
| exec_control |= VM_EXIT_LOAD_IA32_EFER; |
| vm_exit_controls_init(vmx, exec_control); |
| |
| /* |
| * Conceptually we want to copy the PML address and index from |
| * vmcs01 here, and then back to vmcs01 on nested vmexit. But, |
| * since we always flush the log on each vmexit and never change |
| * the PML address (once set), this happens to be equivalent to |
| * simply resetting the index in vmcs02. |
| */ |
| if (enable_pml) |
| vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); |
| |
| /* |
| * Interrupt/Exception Fields |
| */ |
| if (vmx->nested.nested_run_pending) { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| vmcs12->vm_entry_intr_info_field); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, |
| vmcs12->vm_entry_exception_error_code); |
| vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, |
| vmcs12->vm_entry_instruction_len); |
| vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, |
| vmcs12->guest_interruptibility_info); |
| vmx->loaded_vmcs->nmi_known_unmasked = |
| !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI); |
| } else { |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); |
| } |
| } |
| |
| static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12) |
| { |
| struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; |
| |
| if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { |
| vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); |
| vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); |
| vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); |
| vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); |
| vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); |
| vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); |
| vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); |
| vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); |
| vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); |
| vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); |
| vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); |
| vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); |
| vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); |
| vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); |
| vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); |
| vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); |
| vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); |
| vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); |
| vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); |
| vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); |
| vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); |
| vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); |
| vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); |
| vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); |
| vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); |
| vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); |
| vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); |
| vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); |
| vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); |
| vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); |
| vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); |
| vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); |
| } |
| |
| if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) { |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); |
| vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, |
| vmcs12->guest_pending_dbg_exceptions); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); |
| |
| /* |
| * L1 may access the L2's PDPTR, so save them to construct |
| * vmcs12 |
| */ |
| if (enable_ept) { |
| vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); |
| vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); |
| vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); |
| vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); |
| } |
| } |
| |
| if (nested_cpu_has_xsaves(vmcs12)) |
| vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); |
| |
| /* |
| * Whether page-faults are trapped is determined by a combination of |
| * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. |
| * If enable_ept, L0 doesn't care about page faults and we should |
| * set all of these to L1's desires. However, if !enable_ept, L0 does |
| * care about (at least some) page faults, and because it is not easy |
| * (if at all possible?) to merge L0 and L1's desires, we simply ask |
| * to exit on each and every L2 page fault. This is done by setting |
| * MASK=MATCH=0 and (see below) EB.PF=1. |
| * Note that below we don't need special code to set EB.PF beyond the |
| * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, |
| * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when |
| * !enable_ept, EB.PF is 1, so the "or" will always be 1. |
| */ |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, |
| enable_ept ? vmcs12->page_fault_error_code_mask : 0); |
| vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, |
| enable_ept ? vmcs12->page_fault_error_code_match : 0); |
| |
| if (cpu_has_vmx_apicv()) { |
| vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); |
| vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); |
| vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); |
| vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); |
| } |
| |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| |
| set_cr4_guest_host_mask(vmx); |
| |
| if (kvm_mpx_supported()) { |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) |
| vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); |
| else |
| vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs); |
| } |
| } |
| |
| /* |
| * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested |
| * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it |
| * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 |
| * guest in a way that will both be appropriate to L1's requests, and our |
| * needs. In addition to modifying the active vmcs (which is vmcs02), this |
| * function also has additional necessary side-effects, like setting various |
| * vcpu->arch fields. |
| * Returns 0 on success, 1 on failure. Invalid state exit qualification code |
| * is assigned to entry_failure_code on failure. |
| */ |
| static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| u32 *entry_failure_code) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs; |
| |
| if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) { |
| prepare_vmcs02_full(vmx, vmcs12); |
| vmx->nested.dirty_vmcs12 = false; |
| } |
| |
| /* |
| * First, the fields that are shadowed. This must be kept in sync |
| * with vmcs_shadow_fields.h. |
| */ |
| if (!hv_evmcs || !(hv_evmcs->hv_clean_fields & |
| HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) { |
| vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); |
| vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); |
| } |
| |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) { |
| kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); |
| } else { |
| kvm_set_dr(vcpu, 7, vcpu->arch.dr7); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); |
| } |
| vmx_set_rflags(vcpu, vmcs12->guest_rflags); |
| |
| vmx->nested.preemption_timer_expired = false; |
| if (nested_cpu_has_preemption_timer(vmcs12)) |
| vmx_start_preemption_timer(vcpu); |
| |
| /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the |
| * bitwise-or of what L1 wants to trap for L2, and what we want to |
| * trap. Note that CR0.TS also needs updating - we do this later. |
| */ |
| update_exception_bitmap(vcpu); |
| vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; |
| vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); |
| |
| if (vmx->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) { |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); |
| vcpu->arch.pat = vmcs12->guest_ia32_pat; |
| } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); |
| } |
| |
| vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| |
| if (kvm_has_tsc_control) |
| decache_tsc_multiplier(vmx); |
| |
| if (enable_vpid) { |
| /* |
| * There is no direct mapping between vpid02 and vpid12, the |
| * vpid02 is per-vCPU for L0 and reused while the value of |
| * vpid12 is changed w/ one invvpid during nested vmentry. |
| * The vpid12 is allocated by L1 for L2, so it will not |
| * influence global bitmap(for vpid01 and vpid02 allocation) |
| * even if spawn a lot of nested vCPUs. |
| */ |
| if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) { |
| if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { |
| vmx->nested.last_vpid = vmcs12->virtual_processor_id; |
| __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false); |
| } |
| } else { |
| /* |
| * If L1 use EPT, then L0 needs to execute INVEPT on |
| * EPTP02 instead of EPTP01. Therefore, delay TLB |
| * flush until vmcs02->eptp is fully updated by |
| * KVM_REQ_LOAD_CR3. Note that this assumes |
| * KVM_REQ_TLB_FLUSH is evaluated after |
| * KVM_REQ_LOAD_CR3 in vcpu_enter_guest(). |
| */ |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| } |
| } |
| |
| if (nested_cpu_has_ept(vmcs12)) |
| nested_ept_init_mmu_context(vcpu); |
| else if (nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) |
| vmx_flush_tlb(vcpu, true); |
| |
| /* |
| * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those |
| * bits which we consider mandatory enabled. |
| * The CR0_READ_SHADOW is what L2 should have expected to read given |
| * the specifications by L1; It's not enough to take |
| * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we |
| * have more bits than L1 expected. |
| */ |
| vmx_set_cr0(vcpu, vmcs12->guest_cr0); |
| vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); |
| |
| vmx_set_cr4(vcpu, vmcs12->guest_cr4); |
| vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); |
| |
| vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12); |
| /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| /* |
| * Guest state is invalid and unrestricted guest is disabled, |
| * which means L1 attempted VMEntry to L2 with invalid state. |
| * Fail the VMEntry. |
| */ |
| if (vmx->emulation_required) { |
| *entry_failure_code = ENTRY_FAIL_DEFAULT; |
| return 1; |
| } |
| |
| /* Shadow page tables on either EPT or shadow page tables. */ |
| if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12), |
| entry_failure_code)) |
| return 1; |
| |
| if (!enable_ept) |
| vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; |
| |
| kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); |
| return 0; |
| } |
| |
| static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12) |
| { |
| if (!nested_cpu_has_nmi_exiting(vmcs12) && |
| nested_cpu_has_virtual_nmis(vmcs12)) |
| return -EINVAL; |
| |
| if (!nested_cpu_has_virtual_nmis(vmcs12) && |
| nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int maxphyaddr = cpuid_maxphyaddr(vcpu); |
| |
| /* Check for memory type validity */ |
| switch (address & VMX_EPTP_MT_MASK) { |
| case VMX_EPTP_MT_UC: |
| if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)) |
| return false; |
| break; |
| case VMX_EPTP_MT_WB: |
| if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)) |
| return false; |
| break; |
| default: |
| return false; |
| } |
| |
| /* only 4 levels page-walk length are valid */ |
| if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4) |
| return false; |
| |
| /* Reserved bits should not be set */ |
| if (address >> maxphyaddr || ((address >> 7) & 0x1f)) |
| return false; |
| |
| /* AD, if set, should be supported */ |
| if (address & VMX_EPTP_AD_ENABLE_BIT) { |
| if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Checks related to VM-Execution Control Fields |
| */ |
| static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control, |
| vmx->nested.msrs.pinbased_ctls_low, |
| vmx->nested.msrs.pinbased_ctls_high) || |
| !vmx_control_verify(vmcs12->cpu_based_vm_exec_control, |
| vmx->nested.msrs.procbased_ctls_low, |
| vmx->nested.msrs.procbased_ctls_high)) |
| return -EINVAL; |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && |
| !vmx_control_verify(vmcs12->secondary_vm_exec_control, |
| vmx->nested.msrs.secondary_ctls_low, |
| vmx->nested.msrs.secondary_ctls_high)) |
| return -EINVAL; |
| |
| if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) || |
| nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) || |
| nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) || |
| nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) || |
| nested_vmx_check_apic_access_controls(vcpu, vmcs12) || |
| nested_vmx_check_apicv_controls(vcpu, vmcs12) || |
| nested_vmx_check_nmi_controls(vmcs12) || |
| nested_vmx_check_pml_controls(vcpu, vmcs12) || |
| nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) || |
| nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) || |
| nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) || |
| (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)) |
| return -EINVAL; |
| |
| if (nested_cpu_has_ept(vmcs12) && |
| !valid_ept_address(vcpu, vmcs12->ept_pointer)) |
| return -EINVAL; |
| |
| if (nested_cpu_has_vmfunc(vmcs12)) { |
| if (vmcs12->vm_function_control & |
| ~vmx->nested.msrs.vmfunc_controls) |
| return -EINVAL; |
| |
| if (nested_cpu_has_eptp_switching(vmcs12)) { |
| if (!nested_cpu_has_ept(vmcs12) || |
| !page_address_valid(vcpu, vmcs12->eptp_list_address)) |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to VM-Exit Control Fields |
| */ |
| static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx_control_verify(vmcs12->vm_exit_controls, |
| vmx->nested.msrs.exit_ctls_low, |
| vmx->nested.msrs.exit_ctls_high) || |
| nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to VM-Entry Control Fields |
| */ |
| static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (!vmx_control_verify(vmcs12->vm_entry_controls, |
| vmx->nested.msrs.entry_ctls_low, |
| vmx->nested.msrs.entry_ctls_high)) |
| return -EINVAL; |
| |
| /* |
| * From the Intel SDM, volume 3: |
| * Fields relevant to VM-entry event injection must be set properly. |
| * These fields are the VM-entry interruption-information field, the |
| * VM-entry exception error code, and the VM-entry instruction length. |
| */ |
| if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) { |
| u32 intr_info = vmcs12->vm_entry_intr_info_field; |
| u8 vector = intr_info & INTR_INFO_VECTOR_MASK; |
| u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK; |
| bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK; |
| bool should_have_error_code; |
| bool urg = nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_UNRESTRICTED_GUEST); |
| bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE; |
| |
| /* VM-entry interruption-info field: interruption type */ |
| if (intr_type == INTR_TYPE_RESERVED || |
| (intr_type == INTR_TYPE_OTHER_EVENT && |
| !nested_cpu_supports_monitor_trap_flag(vcpu))) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: vector */ |
| if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) || |
| (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) || |
| (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0)) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: deliver error code */ |
| should_have_error_code = |
| intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode && |
| x86_exception_has_error_code(vector); |
| if (has_error_code != should_have_error_code) |
| return -EINVAL; |
| |
| /* VM-entry exception error code */ |
| if (has_error_code && |
| vmcs12->vm_entry_exception_error_code & GENMASK(31, 15)) |
| return -EINVAL; |
| |
| /* VM-entry interruption-info field: reserved bits */ |
| if (intr_info & INTR_INFO_RESVD_BITS_MASK) |
| return -EINVAL; |
| |
| /* VM-entry instruction length */ |
| switch (intr_type) { |
| case INTR_TYPE_SOFT_EXCEPTION: |
| case INTR_TYPE_SOFT_INTR: |
| case INTR_TYPE_PRIV_SW_EXCEPTION: |
| if ((vmcs12->vm_entry_instruction_len > 15) || |
| (vmcs12->vm_entry_instruction_len == 0 && |
| !nested_cpu_has_zero_length_injection(vcpu))) |
| return -EINVAL; |
| } |
| } |
| |
| if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to Host Control Registers and MSRs |
| */ |
| static int nested_check_host_control_regs(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| bool ia32e; |
| |
| if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) || |
| !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) || |
| !nested_cr3_valid(vcpu, vmcs12->host_cr3)) |
| return -EINVAL; |
| /* |
| * If the load IA32_EFER VM-exit control is 1, bits reserved in the |
| * IA32_EFER MSR must be 0 in the field for that register. In addition, |
| * the values of the LMA and LME bits in the field must each be that of |
| * the host address-space size VM-exit control. |
| */ |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { |
| ia32e = (vmcs12->vm_exit_controls & |
| VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; |
| if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || |
| ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || |
| ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Checks related to Guest Non-register State |
| */ |
| static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12) |
| { |
| if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && |
| vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| if (nested_check_vm_execution_controls(vcpu, vmcs12) || |
| nested_check_vm_exit_controls(vcpu, vmcs12) || |
| nested_check_vm_entry_controls(vcpu, vmcs12)) |
| return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| |
| if (nested_check_host_control_regs(vcpu, vmcs12)) |
| return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD; |
| |
| if (nested_check_guest_non_reg_state(vmcs12)) |
| return VMXERR_ENTRY_INVALID_CONTROL_FIELD; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| int r; |
| struct page *page; |
| struct vmcs12 *shadow; |
| |
| if (vmcs12->vmcs_link_pointer == -1ull) |
| return 0; |
| |
| if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)) |
| return -EINVAL; |
| |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer); |
| if (is_error_page(page)) |
| return -EINVAL; |
| |
| r = 0; |
| shadow = kmap(page); |
| if (shadow->hdr.revision_id != VMCS12_REVISION || |
| shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)) |
| r = -EINVAL; |
| kunmap(page); |
| kvm_release_page_clean(page); |
| return r; |
| } |
| |
| static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, |
| u32 *exit_qual) |
| { |
| bool ia32e; |
| |
| *exit_qual = ENTRY_FAIL_DEFAULT; |
| |
| if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) || |
| !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)) |
| return 1; |
| |
| if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) { |
| *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR; |
| return 1; |
| } |
| |
| /* |
| * If the load IA32_EFER VM-entry control is 1, the following checks |
| * are performed on the field for the IA32_EFER MSR: |
| * - Bits reserved in the IA32_EFER MSR must be 0. |
| * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of |
| * the IA-32e mode guest VM-exit control. It must also be identical |
| * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to |
| * CR0.PG) is 1. |
| */ |
| if (to_vmx(vcpu)->nested.nested_run_pending && |
| (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) { |
| ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; |
| if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || |
| ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || |
| ((vmcs12->guest_cr0 & X86_CR0_PG) && |
| ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) |
| return 1; |
| } |
| |
| if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) && |
| (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) || |
| (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long cr3, cr4; |
| |
| if (!nested_early_check) |
| return 0; |
| |
| if (vmx->msr_autoload.host.nr) |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); |
| if (vmx->msr_autoload.guest.nr) |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); |
| |
| preempt_disable(); |
| |
| vmx_prepare_switch_to_guest(vcpu); |
| |
| /* |
| * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS, |
| * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to |
| * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e. |
| * there is no need to preserve other bits or save/restore the field. |
| */ |
| vmcs_writel(GUEST_RFLAGS, 0); |
| |
| cr3 = __get_current_cr3_fast(); |
| if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { |
| vmcs_writel(HOST_CR3, cr3); |
| vmx->loaded_vmcs->host_state.cr3 = cr3; |
| } |
| |
| cr4 = cr4_read_shadow(); |
| if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { |
| vmcs_writel(HOST_CR4, cr4); |
| vmx->loaded_vmcs->host_state.cr4 = cr4; |
| } |
| |
| vmx->__launched = vmx->loaded_vmcs->launched; |
| |
| asm( |
| /* Set HOST_RSP */ |
| "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */ |
| __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t" |
| "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t" |
| "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */ |
| |
| /* Check if vmlaunch or vmresume is needed */ |
| "cmpl $0, %c[launched](%% " _ASM_CX")\n\t" |
| |
| "call vmx_vmenter\n\t" |
| |
| /* Set vmx->fail accordingly */ |
| "setbe %c[fail](%% " _ASM_CX")\n\t" |
| : ASM_CALL_CONSTRAINT |
| : "c"(vmx), "d"((unsigned long)HOST_RSP), |
| [launched]"i"(offsetof(struct vcpu_vmx, __launched)), |
| [fail]"i"(offsetof(struct vcpu_vmx, fail)), |
| [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), |
| [wordsize]"i"(sizeof(ulong)) |
| : "rax", "cc", "memory" |
| ); |
| |
| preempt_enable(); |
| |
| if (vmx->msr_autoload.host.nr) |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| if (vmx->msr_autoload.guest.nr) |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| |
| if (vmx->fail) { |
| WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != |
| VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| vmx->fail = 0; |
| return 1; |
| } |
| |
| /* |
| * VMExit clears RFLAGS.IF and DR7, even on a consistency check. |
| */ |
| local_irq_enable(); |
| if (hw_breakpoint_active()) |
| set_debugreg(__this_cpu_read(cpu_dr7), 7); |
| |
| /* |
| * A non-failing VMEntry means we somehow entered guest mode with |
| * an illegal RIP, and that's just the tip of the iceberg. There |
| * is no telling what memory has been modified or what state has |
| * been exposed to unknown code. Hitting this all but guarantees |
| * a (very critical) hardware issue. |
| */ |
| WARN_ON(!(vmcs_read32(VM_EXIT_REASON) & |
| VMX_EXIT_REASONS_FAILED_VMENTRY)); |
| |
| return 0; |
| } |
| STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw); |
| |
| |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12); |
| |
| static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct page *page; |
| u64 hpa; |
| |
| if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| /* |
| * Translate L1 physical address to host physical |
| * address for vmcs02. Keep the page pinned, so this |
| * physical address remains valid. We keep a reference |
| * to it so we can release it later. |
| */ |
| if (vmx->nested.apic_access_page) { /* shouldn't happen */ |
| kvm_release_page_dirty(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = NULL; |
| } |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr); |
| /* |
| * If translation failed, no matter: This feature asks |
| * to exit when accessing the given address, and if it |
| * can never be accessed, this feature won't do |
| * anything anyway. |
| */ |
| if (!is_error_page(page)) { |
| vmx->nested.apic_access_page = page; |
| hpa = page_to_phys(vmx->nested.apic_access_page); |
| vmcs_write64(APIC_ACCESS_ADDR, hpa); |
| } else { |
| vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); |
| } |
| } |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| if (vmx->nested.virtual_apic_page) { /* shouldn't happen */ |
| kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| vmx->nested.virtual_apic_page = NULL; |
| } |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr); |
| |
| /* |
| * If translation failed, VM entry will fail because |
| * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull. |
| * Failing the vm entry is _not_ what the processor |
| * does but it's basically the only possibility we |
| * have. We could still enter the guest if CR8 load |
| * exits are enabled, CR8 store exits are enabled, and |
| * virtualize APIC access is disabled; in this case |
| * the processor would never use the TPR shadow and we |
| * could simply clear the bit from the execution |
| * control. But such a configuration is useless, so |
| * let's keep the code simple. |
| */ |
| if (!is_error_page(page)) { |
| vmx->nested.virtual_apic_page = page; |
| hpa = page_to_phys(vmx->nested.virtual_apic_page); |
| vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa); |
| } |
| } |
| |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| if (vmx->nested.pi_desc_page) { /* shouldn't happen */ |
| kunmap(vmx->nested.pi_desc_page); |
| kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| vmx->nested.pi_desc_page = NULL; |
| vmx->nested.pi_desc = NULL; |
| vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull); |
| } |
| page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr); |
| if (is_error_page(page)) |
| return; |
| vmx->nested.pi_desc_page = page; |
| vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page); |
| vmx->nested.pi_desc = |
| (struct pi_desc *)((void *)vmx->nested.pi_desc + |
| (unsigned long)(vmcs12->posted_intr_desc_addr & |
| (PAGE_SIZE - 1))); |
| vmcs_write64(POSTED_INTR_DESC_ADDR, |
| page_to_phys(vmx->nested.pi_desc_page) + |
| (unsigned long)(vmcs12->posted_intr_desc_addr & |
| (PAGE_SIZE - 1))); |
| } |
| if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12)) |
| vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, |
| CPU_BASED_USE_MSR_BITMAPS); |
| else |
| vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, |
| CPU_BASED_USE_MSR_BITMAPS); |
| } |
| |
| /* |
| * Intel's VMX Instruction Reference specifies a common set of prerequisites |
| * for running VMX instructions (except VMXON, whose prerequisites are |
| * slightly different). It also specifies what exception to inject otherwise. |
| * Note that many of these exceptions have priority over VM exits, so they |
| * don't have to be checked again here. |
| */ |
| static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) |
| { |
| if (!to_vmx(vcpu)->nested.vmxon) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 0; |
| } |
| |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu) |
| { |
| u8 rvi = vmx_get_rvi(); |
| u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI); |
| |
| return ((rvi & 0xf0) > (vppr & 0xf0)); |
| } |
| |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12); |
| |
| /* |
| * If from_vmentry is false, this is being called from state restore (either RSM |
| * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume. |
| + * |
| + * Returns: |
| + * 0 - success, i.e. proceed with actual VMEnter |
| + * 1 - consistency check VMExit |
| + * -1 - consistency check VMFail |
| */ |
| int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| bool evaluate_pending_interrupts; |
| u32 exit_reason = EXIT_REASON_INVALID_STATE; |
| u32 exit_qual; |
| |
| evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & |
| (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING); |
| if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu)) |
| evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu); |
| |
| if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) |
| vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| if (kvm_mpx_supported() && |
| !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)) |
| vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); |
| |
| vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02); |
| |
| prepare_vmcs02_early(vmx, vmcs12); |
| |
| if (from_vmentry) { |
| nested_get_vmcs12_pages(vcpu); |
| |
| if (nested_vmx_check_vmentry_hw(vcpu)) { |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| return -1; |
| } |
| |
| if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) |
| goto vmentry_fail_vmexit; |
| } |
| |
| enter_guest_mode(vcpu); |
| if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) |
| vcpu->arch.tsc_offset += vmcs12->tsc_offset; |
| |
| if (prepare_vmcs02(vcpu, vmcs12, &exit_qual)) |
| goto vmentry_fail_vmexit_guest_mode; |
| |
| if (from_vmentry) { |
| exit_reason = EXIT_REASON_MSR_LOAD_FAIL; |
| exit_qual = nested_vmx_load_msr(vcpu, |
| vmcs12->vm_entry_msr_load_addr, |
| vmcs12->vm_entry_msr_load_count); |
| if (exit_qual) |
| goto vmentry_fail_vmexit_guest_mode; |
| } else { |
| /* |
| * The MMU is not initialized to point at the right entities yet and |
| * "get pages" would need to read data from the guest (i.e. we will |
| * need to perform gpa to hpa translation). Request a call |
| * to nested_get_vmcs12_pages before the next VM-entry. The MSRs |
| * have already been set at vmentry time and should not be reset. |
| */ |
| kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu); |
| } |
| |
| /* |
| * If L1 had a pending IRQ/NMI until it executed |
| * VMLAUNCH/VMRESUME which wasn't delivered because it was |
| * disallowed (e.g. interrupts disabled), L0 needs to |
| * evaluate if this pending event should cause an exit from L2 |
| * to L1 or delivered directly to L2 (e.g. In case L1 don't |
| * intercept EXTERNAL_INTERRUPT). |
| * |
| * Usually this would be handled by the processor noticing an |
| * IRQ/NMI window request, or checking RVI during evaluation of |
| * pending virtual interrupts. However, this setting was done |
| * on VMCS01 and now VMCS02 is active instead. Thus, we force L0 |
| * to perform pending event evaluation by requesting a KVM_REQ_EVENT. |
| */ |
| if (unlikely(evaluate_pending_interrupts)) |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| |
| /* |
| * Note no nested_vmx_succeed or nested_vmx_fail here. At this point |
| * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet |
| * returned as far as L1 is concerned. It will only return (and set |
| * the success flag) when L2 exits (see nested_vmx_vmexit()). |
| */ |
| return 0; |
| |
| /* |
| * A failed consistency check that leads to a VMExit during L1's |
| * VMEnter to L2 is a variation of a normal VMexit, as explained in |
| * 26.7 "VM-entry failures during or after loading guest state". |
| */ |
| vmentry_fail_vmexit_guest_mode: |
| if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) |
| vcpu->arch.tsc_offset -= vmcs12->tsc_offset; |
| leave_guest_mode(vcpu); |
| |
| vmentry_fail_vmexit: |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| |
| if (!from_vmentry) |
| return 1; |
| |
| load_vmcs12_host_state(vcpu, vmcs12); |
| vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY; |
| vmcs12->exit_qualification = exit_qual; |
| if (enable_shadow_vmcs || vmx->nested.hv_evmcs) |
| vmx->nested.need_vmcs12_sync = true; |
| return 1; |
| } |
| |
| /* |
| * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 |
| * for running an L2 nested guest. |
| */ |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) |
| { |
| struct vmcs12 *vmcs12; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu); |
| int ret; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true)) |
| return 1; |
| |
| if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull) |
| return nested_vmx_failInvalid(vcpu); |
| |
| vmcs12 = get_vmcs12(vcpu); |
| |
| /* |
| * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact |
| * that there *is* a valid VMCS pointer, RFLAGS.CF is set |
| * rather than RFLAGS.ZF, and no error number is stored to the |
| * VM-instruction error field. |
| */ |
| if (vmcs12->hdr.shadow_vmcs) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (vmx->nested.hv_evmcs) { |
| copy_enlightened_to_vmcs12(vmx); |
| /* Enlightened VMCS doesn't have launch state */ |
| vmcs12->launch_state = !launch; |
| } else if (enable_shadow_vmcs) { |
| copy_shadow_to_vmcs12(vmx); |
| } |
| |
| /* |
| * The nested entry process starts with enforcing various prerequisites |
| * on vmcs12 as required by the Intel SDM, and act appropriately when |
| * they fail: As the SDM explains, some conditions should cause the |
| * instruction to fail, while others will cause the instruction to seem |
| * to succeed, but return an EXIT_REASON_INVALID_STATE. |
| * To speed up the normal (success) code path, we should avoid checking |
| * for misconfigurations which will anyway be caught by the processor |
| * when using the merged vmcs02. |
| */ |
| if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS); |
| |
| if (vmcs12->launch_state == launch) |
| return nested_vmx_failValid(vcpu, |
| launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS |
| : VMXERR_VMRESUME_NONLAUNCHED_VMCS); |
| |
| ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12); |
| if (ret) |
| return nested_vmx_failValid(vcpu, ret); |
| |
| /* |
| * We're finally done with prerequisite checking, and can start with |
| * the nested entry. |
| */ |
| vmx->nested.nested_run_pending = 1; |
| ret = nested_vmx_enter_non_root_mode(vcpu, true); |
| vmx->nested.nested_run_pending = !ret; |
| if (ret > 0) |
| return 1; |
| else if (ret) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| |
| /* Hide L1D cache contents from the nested guest. */ |
| vmx->vcpu.arch.l1tf_flush_l1d = true; |
| |
| /* |
| * Must happen outside of nested_vmx_enter_non_root_mode() as it will |
| * also be used as part of restoring nVMX state for |
| * snapshot restore (migration). |
| * |
| * In this flow, it is assumed that vmcs12 cache was |
| * trasferred as part of captured nVMX state and should |
| * therefore not be read from guest memory (which may not |
| * exist on destination host yet). |
| */ |
| nested_cache_shadow_vmcs12(vcpu, vmcs12); |
| |
| /* |
| * If we're entering a halted L2 vcpu and the L2 vcpu won't be |
| * awakened by event injection or by an NMI-window VM-exit or |
| * by an interrupt-window VM-exit, halt the vcpu. |
| */ |
| if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) && |
| !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) && |
| !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) && |
| !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) && |
| (vmcs12->guest_rflags & X86_EFLAGS_IF))) { |
| vmx->nested.nested_run_pending = 0; |
| return kvm_vcpu_halt(vcpu); |
| } |
| return 1; |
| } |
| |
| /* |
| * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date |
| * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). |
| * This function returns the new value we should put in vmcs12.guest_cr0. |
| * It's not enough to just return the vmcs02 GUEST_CR0. Rather, |
| * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now |
| * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 |
| * didn't trap the bit, because if L1 did, so would L0). |
| * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have |
| * been modified by L2, and L1 knows it. So just leave the old value of |
| * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 |
| * isn't relevant, because if L0 traps this bit it can set it to anything. |
| * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have |
| * changed these bits, and therefore they need to be updated, but L0 |
| * didn't necessarily allow them to be changed in GUEST_CR0 - and rather |
| * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. |
| */ |
| static inline unsigned long |
| vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | |
| vcpu->arch.cr0_guest_owned_bits)); |
| } |
| |
| static inline unsigned long |
| vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| return |
| /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | |
| /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | |
| /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | |
| vcpu->arch.cr4_guest_owned_bits)); |
| } |
| |
| static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| u32 idt_vectoring; |
| unsigned int nr; |
| |
| if (vcpu->arch.exception.injected) { |
| nr = vcpu->arch.exception.nr; |
| idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| |
| if (kvm_exception_is_soft(nr)) { |
| vmcs12->vm_exit_instruction_len = |
| vcpu->arch.event_exit_inst_len; |
| idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; |
| } else |
| idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; |
| |
| if (vcpu->arch.exception.has_error_code) { |
| idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; |
| vmcs12->idt_vectoring_error_code = |
| vcpu->arch.exception.error_code; |
| } |
| |
| vmcs12->idt_vectoring_info_field = idt_vectoring; |
| } else if (vcpu->arch.nmi_injected) { |
| vmcs12->idt_vectoring_info_field = |
| INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; |
| } else if (vcpu->arch.interrupt.injected) { |
| nr = vcpu->arch.interrupt.nr; |
| idt_vectoring = nr | VECTORING_INFO_VALID_MASK; |
| |
| if (vcpu->arch.interrupt.soft) { |
| idt_vectoring |= INTR_TYPE_SOFT_INTR; |
| vmcs12->vm_entry_instruction_len = |
| vcpu->arch.event_exit_inst_len; |
| } else |
| idt_vectoring |= INTR_TYPE_EXT_INTR; |
| |
| vmcs12->idt_vectoring_info_field = idt_vectoring; |
| } |
| } |
| |
| |
| static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| gfn_t gfn; |
| |
| /* |
| * Don't need to mark the APIC access page dirty; it is never |
| * written to by the CPU during APIC virtualization. |
| */ |
| |
| if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { |
| gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT; |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| } |
| |
| if (nested_cpu_has_posted_intr(vmcs12)) { |
| gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT; |
| kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| } |
| } |
| |
| static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int max_irr; |
| void *vapic_page; |
| u16 status; |
| |
| if (!vmx->nested.pi_desc || !vmx->nested.pi_pending) |
| return; |
| |
| vmx->nested.pi_pending = false; |
| if (!pi_test_and_clear_on(vmx->nested.pi_desc)) |
| return; |
| |
| max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256); |
| if (max_irr != 256) { |
| vapic_page = kmap(vmx->nested.virtual_apic_page); |
| __kvm_apic_update_irr(vmx->nested.pi_desc->pir, |
| vapic_page, &max_irr); |
| kunmap(vmx->nested.virtual_apic_page); |
| |
| status = vmcs_read16(GUEST_INTR_STATUS); |
| if ((u8)max_irr > ((u8)status & 0xff)) { |
| status &= ~0xff; |
| status |= (u8)max_irr; |
| vmcs_write16(GUEST_INTR_STATUS, status); |
| } |
| } |
| |
| nested_mark_vmcs12_pages_dirty(vcpu); |
| } |
| |
| static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu, |
| unsigned long exit_qual) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| unsigned int nr = vcpu->arch.exception.nr; |
| u32 intr_info = nr | INTR_INFO_VALID_MASK; |
| |
| if (vcpu->arch.exception.has_error_code) { |
| vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code; |
| intr_info |= INTR_INFO_DELIVER_CODE_MASK; |
| } |
| |
| if (kvm_exception_is_soft(nr)) |
| intr_info |= INTR_TYPE_SOFT_EXCEPTION; |
| else |
| intr_info |= INTR_TYPE_HARD_EXCEPTION; |
| |
| if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) && |
| vmx_get_nmi_mask(vcpu)) |
| intr_info |= INTR_INFO_UNBLOCK_NMI; |
| |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual); |
| } |
| |
| static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qual; |
| bool block_nested_events = |
| vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu); |
| |
| if (vcpu->arch.exception.pending && |
| nested_vmx_check_exception(vcpu, &exit_qual)) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_inject_exception_vmexit(vcpu, exit_qual); |
| return 0; |
| } |
| |
| if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && |
| vmx->nested.preemption_timer_expired) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); |
| return 0; |
| } |
| |
| if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, |
| NMI_VECTOR | INTR_TYPE_NMI_INTR | |
| INTR_INFO_VALID_MASK, 0); |
| /* |
| * The NMI-triggered VM exit counts as injection: |
| * clear this one and block further NMIs. |
| */ |
| vcpu->arch.nmi_pending = 0; |
| vmx_set_nmi_mask(vcpu, true); |
| return 0; |
| } |
| |
| if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && |
| nested_exit_on_intr(vcpu)) { |
| if (block_nested_events) |
| return -EBUSY; |
| nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); |
| return 0; |
| } |
| |
| vmx_complete_nested_posted_interrupt(vcpu); |
| return 0; |
| } |
| |
| static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) |
| { |
| ktime_t remaining = |
| hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); |
| u64 value; |
| |
| if (ktime_to_ns(remaining) <= 0) |
| return 0; |
| |
| value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; |
| do_div(value, 1000000); |
| return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; |
| } |
| |
| /* |
| * Update the guest state fields of vmcs12 to reflect changes that |
| * occurred while L2 was running. (The "IA-32e mode guest" bit of the |
| * VM-entry controls is also updated, since this is really a guest |
| * state bit.) |
| */ |
| static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) |
| { |
| vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); |
| vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); |
| |
| vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); |
| vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); |
| vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); |
| |
| vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); |
| vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); |
| vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); |
| vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); |
| vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); |
| vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); |
| vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); |
| vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); |
| vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); |
| vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); |
| vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); |
| vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); |
| vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); |
| vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); |
| vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); |
| vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); |
| vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); |
| vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); |
| vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); |
| vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); |
| vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); |
| vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); |
| vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); |
| vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); |
| vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); |
| vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); |
| vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); |
| vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); |
| vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); |
| vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); |
| vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); |
| vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); |
| vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); |
| vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); |
| vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); |
| vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); |
| |
| vmcs12->guest_interruptibility_info = |
| vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); |
| vmcs12->guest_pending_dbg_exceptions = |
| vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); |
| if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) |
| vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; |
| else |
| vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; |
| |
| if (nested_cpu_has_preemption_timer(vmcs12)) { |
| if (vmcs12->vm_exit_controls & |
| VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) |
| vmcs12->vmx_preemption_timer_value = |
| vmx_get_preemption_timer_value(vcpu); |
| hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); |
| } |
| |
| /* |
| * In some cases (usually, nested EPT), L2 is allowed to change its |
| * own CR3 without exiting. If it has changed it, we must keep it. |
| * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined |
| * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. |
| * |
| * Additionally, restore L2's PDPTR to vmcs12. |
| */ |
| if (enable_ept) { |
| vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); |
| vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); |
| vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); |
| vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); |
| vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); |
| } |
| |
| vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS); |
| |
| if (nested_cpu_has_vid(vmcs12)) |
| vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); |
| |
| vmcs12->vm_entry_controls = |
| (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | |
| (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { |
| kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); |
| vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); |
| } |
| |
| /* TODO: These cannot have changed unless we have MSR bitmaps and |
| * the relevant bit asks not to trap the change */ |
| if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) |
| vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); |
| if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) |
| vmcs12->guest_ia32_efer = vcpu->arch.efer; |
| vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); |
| vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); |
| vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); |
| if (kvm_mpx_supported()) |
| vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); |
| } |
| |
| /* |
| * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits |
| * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), |
| * and this function updates it to reflect the changes to the guest state while |
| * L2 was running (and perhaps made some exits which were handled directly by L0 |
| * without going back to L1), and to reflect the exit reason. |
| * Note that we do not have to copy here all VMCS fields, just those that |
| * could have changed by the L2 guest or the exit - i.e., the guest-state and |
| * exit-information fields only. Other fields are modified by L1 with VMWRITE, |
| * which already writes to vmcs12 directly. |
| */ |
| static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, |
| u32 exit_reason, u32 exit_intr_info, |
| unsigned long exit_qualification) |
| { |
| /* update guest state fields: */ |
| sync_vmcs12(vcpu, vmcs12); |
| |
| /* update exit information fields: */ |
| |
| vmcs12->vm_exit_reason = exit_reason; |
| vmcs12->exit_qualification = exit_qualification; |
| vmcs12->vm_exit_intr_info = exit_intr_info; |
| |
| vmcs12->idt_vectoring_info_field = 0; |
| vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); |
| vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| |
| if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { |
| vmcs12->launch_state = 1; |
| |
| /* vm_entry_intr_info_field is cleared on exit. Emulate this |
| * instead of reading the real value. */ |
| vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; |
| |
| /* |
| * Transfer the event that L0 or L1 may wanted to inject into |
| * L2 to IDT_VECTORING_INFO_FIELD. |
| */ |
| vmcs12_save_pending_event(vcpu, vmcs12); |
| |
| /* |
| * According to spec, there's no need to store the guest's |
| * MSRs if the exit is due to a VM-entry failure that occurs |
| * during or after loading the guest state. Since this exit |
| * does not fall in that category, we need to save the MSRs. |
| */ |
| if (nested_vmx_store_msr(vcpu, |
| vmcs12->vm_exit_msr_store_addr, |
| vmcs12->vm_exit_msr_store_count)) |
| nested_vmx_abort(vcpu, |
| VMX_ABORT_SAVE_GUEST_MSR_FAIL); |
| } |
| |
| /* |
| * Drop what we picked up for L2 via vmx_complete_interrupts. It is |
| * preserved above and would only end up incorrectly in L1. |
| */ |
| vcpu->arch.nmi_injected = false; |
| kvm_clear_exception_queue(vcpu); |
| kvm_clear_interrupt_queue(vcpu); |
| } |
| |
| /* |
| * A part of what we need to when the nested L2 guest exits and we want to |
| * run its L1 parent, is to reset L1's guest state to the host state specified |
| * in vmcs12. |
| * This function is to be called not only on normal nested exit, but also on |
| * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry |
| * Failures During or After Loading Guest State"). |
| * This function should be called when the active VMCS is L1's (vmcs01). |
| */ |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| struct kvm_segment seg; |
| u32 entry_failure_code; |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) |
| vcpu->arch.efer = vmcs12->host_ia32_efer; |
| else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| vcpu->arch.efer |= (EFER_LMA | EFER_LME); |
| else |
| vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); |
| vmx_set_efer(vcpu, vcpu->arch.efer); |
| |
| kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); |
| kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); |
| vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); |
| vmx_set_interrupt_shadow(vcpu, 0); |
| |
| /* |
| * Note that calling vmx_set_cr0 is important, even if cr0 hasn't |
| * actually changed, because vmx_set_cr0 refers to efer set above. |
| * |
| * CR0_GUEST_HOST_MASK is already set in the original vmcs01 |
| * (KVM doesn't change it); |
| */ |
| vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; |
| vmx_set_cr0(vcpu, vmcs12->host_cr0); |
| |
| /* Same as above - no reason to call set_cr4_guest_host_mask(). */ |
| vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| vmx_set_cr4(vcpu, vmcs12->host_cr4); |
| |
| nested_ept_uninit_mmu_context(vcpu); |
| |
| /* |
| * Only PDPTE load can fail as the value of cr3 was checked on entry and |
| * couldn't have changed. |
| */ |
| if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code)) |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL); |
| |
| if (!enable_ept) |
| vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; |
| |
| /* |
| * If vmcs01 doesn't use VPID, CPU flushes TLB on every |
| * VMEntry/VMExit. Thus, no need to flush TLB. |
| * |
| * If vmcs12 doesn't use VPID, L1 expects TLB to be |
| * flushed on every VMEntry/VMExit. |
| * |
| * Otherwise, we can preserve TLB entries as long as we are |
| * able to tag L1 TLB entries differently than L2 TLB entries. |
| * |
| * If vmcs12 uses EPT, we need to execute this flush on EPTP01 |
| * and therefore we request the TLB flush to happen only after VMCS EPTP |
| * has been set by KVM_REQ_LOAD_CR3. |
| */ |
| if (enable_vpid && |
| (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) { |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| } |
| |
| vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); |
| vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); |
| vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); |
| vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); |
| vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); |
| vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF); |
| vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF); |
| |
| /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ |
| if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) |
| vmcs_write64(GUEST_BNDCFGS, 0); |
| |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { |
| vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); |
| vcpu->arch.pat = vmcs12->host_ia32_pat; |
| } |
| if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) |
| vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, |
| vmcs12->host_ia32_perf_global_ctrl); |
| |
| /* Set L1 segment info according to Intel SDM |
| 27.5.2 Loading Host Segment and Descriptor-Table Registers */ |
| seg = (struct kvm_segment) { |
| .base = 0, |
| .limit = 0xFFFFFFFF, |
| .selector = vmcs12->host_cs_selector, |
| .type = 11, |
| .present = 1, |
| .s = 1, |
| .g = 1 |
| }; |
| if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) |
| seg.l = 1; |
| else |
| seg.db = 1; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); |
| seg = (struct kvm_segment) { |
| .base = 0, |
| .limit = 0xFFFFFFFF, |
| .type = 3, |
| .present = 1, |
| .s = 1, |
| .db = 1, |
| .g = 1 |
| }; |
| seg.selector = vmcs12->host_ds_selector; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); |
| seg.selector = vmcs12->host_es_selector; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); |
| seg.selector = vmcs12->host_ss_selector; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); |
| seg.selector = vmcs12->host_fs_selector; |
| seg.base = vmcs12->host_fs_base; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); |
| seg.selector = vmcs12->host_gs_selector; |
| seg.base = vmcs12->host_gs_base; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); |
| seg = (struct kvm_segment) { |
| .base = vmcs12->host_tr_base, |
| .limit = 0x67, |
| .selector = vmcs12->host_tr_selector, |
| .type = 11, |
| .present = 1 |
| }; |
| vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); |
| |
| kvm_set_dr(vcpu, 7, 0x400); |
| vmcs_write64(GUEST_IA32_DEBUGCTL, 0); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmx_update_msr_bitmap(vcpu); |
| |
| if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, |
| vmcs12->vm_exit_msr_load_count)) |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| } |
| |
| static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx) |
| { |
| struct shared_msr_entry *efer_msr; |
| unsigned int i; |
| |
| if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER) |
| return vmcs_read64(GUEST_IA32_EFER); |
| |
| if (cpu_has_load_ia32_efer()) |
| return host_efer; |
| |
| for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) { |
| if (vmx->msr_autoload.guest.val[i].index == MSR_EFER) |
| return vmx->msr_autoload.guest.val[i].value; |
| } |
| |
| efer_msr = find_msr_entry(vmx, MSR_EFER); |
| if (efer_msr) |
| return efer_msr->data; |
| |
| return host_efer; |
| } |
| |
| static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu) |
| { |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmx_msr_entry g, h; |
| struct msr_data msr; |
| gpa_t gpa; |
| u32 i, j; |
| |
| vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT); |
| |
| if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { |
| /* |
| * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set |
| * as vmcs01.GUEST_DR7 contains a userspace defined value |
| * and vcpu->arch.dr7 is not squirreled away before the |
| * nested VMENTER (not worth adding a variable in nested_vmx). |
| */ |
| if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) |
| kvm_set_dr(vcpu, 7, DR7_FIXED_1); |
| else |
| WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7))); |
| } |
| |
| /* |
| * Note that calling vmx_set_{efer,cr0,cr4} is important as they |
| * handle a variety of side effects to KVM's software model. |
| */ |
| vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx)); |
| |
| vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; |
| vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW)); |
| |
| vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); |
| vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW)); |
| |
| nested_ept_uninit_mmu_context(vcpu); |
| vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); |
| __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); |
| |
| /* |
| * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs |
| * from vmcs01 (if necessary). The PDPTRs are not loaded on |
| * VMFail, like everything else we just need to ensure our |
| * software model is up-to-date. |
| */ |
| ept_save_pdptrs(vcpu); |
| |
| kvm_mmu_reset_context(vcpu); |
| |
| if (cpu_has_vmx_msr_bitmap()) |
| vmx_update_msr_bitmap(vcpu); |
| |
| /* |
| * This nasty bit of open coding is a compromise between blindly |
| * loading L1's MSRs using the exit load lists (incorrect emulation |
| * of VMFail), leaving the nested VM's MSRs in the software model |
| * (incorrect behavior) and snapshotting the modified MSRs (too |
| * expensive since the lists are unbound by hardware). For each |
| * MSR that was (prematurely) loaded from the nested VMEntry load |
| * list, reload it from the exit load list if it exists and differs |
| * from the guest value. The intent is to stuff host state as |
| * silently as possible, not to fully process the exit load list. |
| */ |
| msr.host_initiated = false; |
| for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) { |
| gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g)); |
| if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) { |
| pr_debug_ratelimited( |
| "%s read MSR index failed (%u, 0x%08llx)\n", |
| __func__, i, gpa); |
| goto vmabort; |
| } |
| |
| for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) { |
| gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h)); |
| if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) { |
| pr_debug_ratelimited( |
| "%s read MSR failed (%u, 0x%08llx)\n", |
| __func__, j, gpa); |
| goto vmabort; |
| } |
| if (h.index != g.index) |
| continue; |
| if (h.value == g.value) |
| break; |
| |
| if (nested_vmx_load_msr_check(vcpu, &h)) { |
| pr_debug_ratelimited( |
| "%s check failed (%u, 0x%x, 0x%x)\n", |
| __func__, j, h.index, h.reserved); |
| goto vmabort; |
| } |
| |
| msr.index = h.index; |
| msr.data = h.value; |
| if (kvm_set_msr(vcpu, &msr)) { |
| pr_debug_ratelimited( |
| "%s WRMSR failed (%u, 0x%x, 0x%llx)\n", |
| __func__, j, h.index, h.value); |
| goto vmabort; |
| } |
| } |
| } |
| |
| return; |
| |
| vmabort: |
| nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); |
| } |
| |
| /* |
| * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 |
| * and modify vmcs12 to make it see what it would expect to see there if |
| * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) |
| */ |
| void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, |
| u32 exit_intr_info, unsigned long exit_qualification) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| /* trying to cancel vmlaunch/vmresume is a bug */ |
| WARN_ON_ONCE(vmx->nested.nested_run_pending); |
| |
| leave_guest_mode(vcpu); |
| |
| if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) |
| vcpu->arch.tsc_offset -= vmcs12->tsc_offset; |
| |
| if (likely(!vmx->fail)) { |
| if (exit_reason == -1) |
| sync_vmcs12(vcpu, vmcs12); |
| else |
| prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, |
| exit_qualification); |
| |
| /* |
| * Must happen outside of sync_vmcs12() as it will |
| * also be used to capture vmcs12 cache as part of |
| * capturing nVMX state for snapshot (migration). |
| * |
| * Otherwise, this flush will dirty guest memory at a |
| * point it is already assumed by user-space to be |
| * immutable. |
| */ |
| nested_flush_cached_shadow_vmcs12(vcpu, vmcs12); |
| } else { |
| /* |
| * The only expected VM-instruction error is "VM entry with |
| * invalid control field(s)." Anything else indicates a |
| * problem with L0. And we should never get here with a |
| * VMFail of any type if early consistency checks are enabled. |
| */ |
| WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) != |
| VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| WARN_ON_ONCE(nested_early_check); |
| } |
| |
| vmx_switch_vmcs(vcpu, &vmx->vmcs01); |
| |
| /* Update any VMCS fields that might have changed while L2 ran */ |
| vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr); |
| vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr); |
| vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); |
| |
| if (kvm_has_tsc_control) |
| decache_tsc_multiplier(vmx); |
| |
| if (vmx->nested.change_vmcs01_virtual_apic_mode) { |
| vmx->nested.change_vmcs01_virtual_apic_mode = false; |
| vmx_set_virtual_apic_mode(vcpu); |
| } else if (!nested_cpu_has_ept(vmcs12) && |
| nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { |
| vmx_flush_tlb(vcpu, true); |
| } |
| |
| /* This is needed for same reason as it was needed in prepare_vmcs02 */ |
| vmx->host_rsp = 0; |
| |
| /* Unpin physical memory we referred to in vmcs02 */ |
| if (vmx->nested.apic_access_page) { |
| kvm_release_page_dirty(vmx->nested.apic_access_page); |
| vmx->nested.apic_access_page = NULL; |
| } |
| if (vmx->nested.virtual_apic_page) { |
| kvm_release_page_dirty(vmx->nested.virtual_apic_page); |
| vmx->nested.virtual_apic_page = NULL; |
| } |
| if (vmx->nested.pi_desc_page) { |
| kunmap(vmx->nested.pi_desc_page); |
| kvm_release_page_dirty(vmx->nested.pi_desc_page); |
| vmx->nested.pi_desc_page = NULL; |
| vmx->nested.pi_desc = NULL; |
| } |
| |
| /* |
| * We are now running in L2, mmu_notifier will force to reload the |
| * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. |
| */ |
| kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); |
| |
| if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs)) |
| vmx->nested.need_vmcs12_sync = true; |
| |
| /* in case we halted in L2 */ |
| vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; |
| |
| if (likely(!vmx->fail)) { |
| /* |
| * TODO: SDM says that with acknowledge interrupt on |
| * exit, bit 31 of the VM-exit interrupt information |
| * (valid interrupt) is always set to 1 on |
| * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't |
| * need kvm_cpu_has_interrupt(). See the commit |
| * message for details. |
| */ |
| if (nested_exit_intr_ack_set(vcpu) && |
| exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT && |
| kvm_cpu_has_interrupt(vcpu)) { |
| int irq = kvm_cpu_get_interrupt(vcpu); |
| WARN_ON(irq < 0); |
| vmcs12->vm_exit_intr_info = irq | |
| INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; |
| } |
| |
| if (exit_reason != -1) |
| trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, |
| vmcs12->exit_qualification, |
| vmcs12->idt_vectoring_info_field, |
| vmcs12->vm_exit_intr_info, |
| vmcs12->vm_exit_intr_error_code, |
| KVM_ISA_VMX); |
| |
| load_vmcs12_host_state(vcpu, vmcs12); |
| |
| return; |
| } |
| |
| /* |
| * After an early L2 VM-entry failure, we're now back |
| * in L1 which thinks it just finished a VMLAUNCH or |
| * VMRESUME instruction, so we need to set the failure |
| * flag and the VM-instruction error field of the VMCS |
| * accordingly, and skip the emulated instruction. |
| */ |
| (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); |
| |
| /* |
| * Restore L1's host state to KVM's software model. We're here |
| * because a consistency check was caught by hardware, which |
| * means some amount of guest state has been propagated to KVM's |
| * model and needs to be unwound to the host's state. |
| */ |
| nested_vmx_restore_host_state(vcpu); |
| |
| vmx->fail = 0; |
| } |
| |
| /* |
| * Decode the memory-address operand of a vmx instruction, as recorded on an |
| * exit caused by such an instruction (run by a guest hypervisor). |
| * On success, returns 0. When the operand is invalid, returns 1 and throws |
| * #UD or #GP. |
| */ |
| int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, |
| u32 vmx_instruction_info, bool wr, gva_t *ret) |
| { |
| gva_t off; |
| bool exn; |
| struct kvm_segment s; |
| |
| /* |
| * According to Vol. 3B, "Information for VM Exits Due to Instruction |
| * Execution", on an exit, vmx_instruction_info holds most of the |
| * addressing components of the operand. Only the displacement part |
| * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). |
| * For how an actual address is calculated from all these components, |
| * refer to Vol. 1, "Operand Addressing". |
| */ |
| int scaling = vmx_instruction_info & 3; |
| int addr_size = (vmx_instruction_info >> 7) & 7; |
| bool is_reg = vmx_instruction_info & (1u << 10); |
| int seg_reg = (vmx_instruction_info >> 15) & 7; |
| int index_reg = (vmx_instruction_info >> 18) & 0xf; |
| bool index_is_valid = !(vmx_instruction_info & (1u << 22)); |
| int base_reg = (vmx_instruction_info >> 23) & 0xf; |
| bool base_is_valid = !(vmx_instruction_info & (1u << 27)); |
| |
| if (is_reg) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* Addr = segment_base + offset */ |
| /* offset = base + [index * scale] + displacement */ |
| off = exit_qualification; /* holds the displacement */ |
| if (base_is_valid) |
| off += kvm_register_read(vcpu, base_reg); |
| if (index_is_valid) |
| off += kvm_register_read(vcpu, index_reg)<<scaling; |
| vmx_get_segment(vcpu, &s, seg_reg); |
| *ret = s.base + off; |
| |
| if (addr_size == 1) /* 32 bit */ |
| *ret &= 0xffffffff; |
| |
| /* Checks for #GP/#SS exceptions. */ |
| exn = false; |
| if (is_long_mode(vcpu)) { |
| /* Long mode: #GP(0)/#SS(0) if the memory address is in a |
| * non-canonical form. This is the only check on the memory |
| * destination for long mode! |
| */ |
| exn = is_noncanonical_address(*ret, vcpu); |
| } else if (is_protmode(vcpu)) { |
| /* Protected mode: apply checks for segment validity in the |
| * following order: |
| * - segment type check (#GP(0) may be thrown) |
| * - usability check (#GP(0)/#SS(0)) |
| * - limit check (#GP(0)/#SS(0)) |
| */ |
| if (wr) |
| /* #GP(0) if the destination operand is located in a |
| * read-only data segment or any code segment. |
| */ |
| exn = ((s.type & 0xa) == 0 || (s.type & 8)); |
| else |
| /* #GP(0) if the source operand is located in an |
| * execute-only code segment |
| */ |
| exn = ((s.type & 0xa) == 8); |
| if (exn) { |
| kvm_queue_exception_e(vcpu, GP_VECTOR, 0); |
| return 1; |
| } |
| /* Protected mode: #GP(0)/#SS(0) if the segment is unusable. |
| */ |
| exn = (s.unusable != 0); |
| /* Protected mode: #GP(0)/#SS(0) if the memory |
| * operand is outside the segment limit. |
| */ |
| exn = exn || (off + sizeof(u64) > s.limit); |
| } |
| if (exn) { |
| kvm_queue_exception_e(vcpu, |
| seg_reg == VCPU_SREG_SS ? |
| SS_VECTOR : GP_VECTOR, |
| 0); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer) |
| { |
| gva_t gva; |
| struct x86_exception e; |
| |
| if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) |
| return 1; |
| |
| if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Allocate a shadow VMCS and associate it with the currently loaded |
| * VMCS, unless such a shadow VMCS already exists. The newly allocated |
| * VMCS is also VMCLEARed, so that it is ready for use. |
| */ |
| static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; |
| |
| /* |
| * We should allocate a shadow vmcs for vmcs01 only when L1 |
| * executes VMXON and free it when L1 executes VMXOFF. |
| * As it is invalid to execute VMXON twice, we shouldn't reach |
| * here when vmcs01 already have an allocated shadow vmcs. |
| */ |
| WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); |
| |
| if (!loaded_vmcs->shadow_vmcs) { |
| loaded_vmcs->shadow_vmcs = alloc_vmcs(true); |
| if (loaded_vmcs->shadow_vmcs) |
| vmcs_clear(loaded_vmcs->shadow_vmcs); |
| } |
| return loaded_vmcs->shadow_vmcs; |
| } |
| |
| static int enter_vmx_operation(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| int r; |
| |
| r = alloc_loaded_vmcs(&vmx->nested.vmcs02); |
| if (r < 0) |
| goto out_vmcs02; |
| |
| vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL); |
| if (!vmx->nested.cached_vmcs12) |
| goto out_cached_vmcs12; |
| |
| vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL); |
| if (!vmx->nested.cached_shadow_vmcs12) |
| goto out_cached_shadow_vmcs12; |
| |
| if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu)) |
| goto out_shadow_vmcs; |
| |
| hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL_PINNED); |
| vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; |
| |
| vmx->nested.vpid02 = allocate_vpid(); |
| |
| vmx->nested.vmcs02_initialized = false; |
| vmx->nested.vmxon = true; |
| |
| if (pt_mode == PT_MODE_HOST_GUEST) { |
| vmx->pt_desc.guest.ctl = 0; |
| pt_update_intercept_for_msr(vmx); |
| } |
| |
| return 0; |
| |
| out_shadow_vmcs: |
| kfree(vmx->nested.cached_shadow_vmcs12); |
| |
| out_cached_shadow_vmcs12: |
| kfree(vmx->nested.cached_vmcs12); |
| |
| out_cached_vmcs12: |
| free_loaded_vmcs(&vmx->nested.vmcs02); |
| |
| out_vmcs02: |
| return -ENOMEM; |
| } |
| |
| /* |
| * Emulate the VMXON instruction. |
| * Currently, we just remember that VMX is active, and do not save or even |
| * inspect the argument to VMXON (the so-called "VMXON pointer") because we |
| * do not currently need to store anything in that guest-allocated memory |
| * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their |
| * argument is different from the VMXON pointer (which the spec says they do). |
| */ |
| static int handle_vmon(struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| gpa_t vmptr; |
| struct page *page; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED |
| | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| |
| /* |
| * The Intel VMX Instruction Reference lists a bunch of bits that are |
| * prerequisite to running VMXON, most notably cr4.VMXE must be set to |
| * 1 (see vmx_set_cr4() for when we allow the guest to set this). |
| * Otherwise, we should fail with #UD. But most faulting conditions |
| * have already been checked by hardware, prior to the VM-exit for |
| * VMXON. We do test guest cr4.VMXE because processor CR4 always has |
| * that bit set to 1 in non-root mode. |
| */ |
| if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| /* CPL=0 must be checked manually. */ |
| if (vmx_get_cpl(vcpu)) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if (vmx->nested.vmxon) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMXON_IN_VMX_ROOT_OPERATION); |
| |
| if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) |
| != VMXON_NEEDED_FEATURES) { |
| kvm_inject_gp(vcpu, 0); |
| return 1; |
| } |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| return 1; |
| |
| /* |
| * SDM 3: 24.11.5 |
| * The first 4 bytes of VMXON region contain the supported |
| * VMCS revision identifier |
| * |
| * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case; |
| * which replaces physical address width with 32 |
| */ |
| if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) |
| return nested_vmx_failInvalid(vcpu); |
| |
| page = kvm_vcpu_gpa_to_page(vcpu, vmptr); |
| if (is_error_page(page)) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (*(u32 *)kmap(page) != VMCS12_REVISION) { |
| kunmap(page); |
| kvm_release_page_clean(page); |
| return nested_vmx_failInvalid(vcpu); |
| } |
| kunmap(page); |
| kvm_release_page_clean(page); |
| |
| vmx->nested.vmxon_ptr = vmptr; |
| ret = enter_vmx_operation(vcpu); |
| if (ret) |
| return ret; |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| |
| if (vmx->nested.current_vmptr == -1ull) |
| return; |
| |
| if (enable_shadow_vmcs) { |
| /* copy to memory all shadowed fields in case |
| they were modified */ |
| copy_shadow_to_vmcs12(vmx); |
| vmx->nested.need_vmcs12_sync = false; |
| vmx_disable_shadow_vmcs(vmx); |
| } |
| vmx->nested.posted_intr_nv = -1; |
| |
| /* Flush VMCS12 to guest memory */ |
| kvm_vcpu_write_guest_page(vcpu, |
| vmx->nested.current_vmptr >> PAGE_SHIFT, |
| vmx->nested.cached_vmcs12, 0, VMCS12_SIZE); |
| |
| kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); |
| |
| vmx->nested.current_vmptr = -1ull; |
| } |
| |
| /* Emulate the VMXOFF instruction */ |
| static int handle_vmoff(struct kvm_vcpu *vcpu) |
| { |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| free_nested(vcpu); |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the VMCLEAR instruction */ |
| static int handle_vmclear(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 zero = 0; |
| gpa_t vmptr; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| return 1; |
| |
| if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMCLEAR_INVALID_ADDRESS); |
| |
| if (vmptr == vmx->nested.vmxon_ptr) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMCLEAR_VMXON_POINTER); |
| |
| if (vmx->nested.hv_evmcs_page) { |
| if (vmptr == vmx->nested.hv_evmcs_vmptr) |
| nested_release_evmcs(vcpu); |
| } else { |
| if (vmptr == vmx->nested.current_vmptr) |
| nested_release_vmcs12(vcpu); |
| |
| kvm_vcpu_write_guest(vcpu, |
| vmptr + offsetof(struct vmcs12, |
| launch_state), |
| &zero, sizeof(zero)); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); |
| |
| /* Emulate the VMLAUNCH instruction */ |
| static int handle_vmlaunch(struct kvm_vcpu *vcpu) |
| { |
| return nested_vmx_run(vcpu, true); |
| } |
| |
| /* Emulate the VMRESUME instruction */ |
| static int handle_vmresume(struct kvm_vcpu *vcpu) |
| { |
| |
| return nested_vmx_run(vcpu, false); |
| } |
| |
| static int handle_vmread(struct kvm_vcpu *vcpu) |
| { |
| unsigned long field; |
| u64 field_value; |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gva_t gva = 0; |
| struct vmcs12 *vmcs12; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (to_vmx(vcpu)->nested.current_vmptr == -1ull) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (!is_guest_mode(vcpu)) |
| vmcs12 = get_vmcs12(vcpu); |
| else { |
| /* |
| * When vmcs->vmcs_link_pointer is -1ull, any VMREAD |
| * to shadowed-field sets the ALU flags for VMfailInvalid. |
| */ |
| if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) |
| return nested_vmx_failInvalid(vcpu); |
| vmcs12 = get_shadow_vmcs12(vcpu); |
| } |
| |
| /* Decode instruction info and find the field to read */ |
| field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| /* Read the field, zero-extended to a u64 field_value */ |
| if (vmcs12_read_any(vmcs12, field, &field_value) < 0) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| |
| /* |
| * Now copy part of this value to register or memory, as requested. |
| * Note that the number of bits actually copied is 32 or 64 depending |
| * on the guest's mode (32 or 64 bit), not on the given field's length. |
| */ |
| if (vmx_instruction_info & (1u << 10)) { |
| kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), |
| field_value); |
| } else { |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| vmx_instruction_info, true, &gva)) |
| return 1; |
| /* _system ok, nested_vmx_check_permission has verified cpl=0 */ |
| kvm_write_guest_virt_system(vcpu, gva, &field_value, |
| (is_long_mode(vcpu) ? 8 : 4), NULL); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| |
| static int handle_vmwrite(struct kvm_vcpu *vcpu) |
| { |
| unsigned long field; |
| gva_t gva; |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| |
| /* The value to write might be 32 or 64 bits, depending on L1's long |
| * mode, and eventually we need to write that into a field of several |
| * possible lengths. The code below first zero-extends the value to 64 |
| * bit (field_value), and then copies only the appropriate number of |
| * bits into the vmcs12 field. |
| */ |
| u64 field_value = 0; |
| struct x86_exception e; |
| struct vmcs12 *vmcs12; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (vmx->nested.current_vmptr == -1ull) |
| return nested_vmx_failInvalid(vcpu); |
| |
| if (vmx_instruction_info & (1u << 10)) |
| field_value = kvm_register_readl(vcpu, |
| (((vmx_instruction_info) >> 3) & 0xf)); |
| else { |
| if (get_vmx_mem_address(vcpu, exit_qualification, |
| vmx_instruction_info, false, &gva)) |
| return 1; |
| if (kvm_read_guest_virt(vcpu, gva, &field_value, |
| (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| } |
| |
| |
| field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| /* |
| * If the vCPU supports "VMWRITE to any supported field in the |
| * VMCS," then the "read-only" fields are actually read/write. |
| */ |
| if (vmcs_field_readonly(field) && |
| !nested_cpu_has_vmwrite_any_field(vcpu)) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); |
| |
| if (!is_guest_mode(vcpu)) |
| vmcs12 = get_vmcs12(vcpu); |
| else { |
| /* |
| * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE |
| * to shadowed-field sets the ALU flags for VMfailInvalid. |
| */ |
| if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull) |
| return nested_vmx_failInvalid(vcpu); |
| vmcs12 = get_shadow_vmcs12(vcpu); |
| } |
| |
| if (vmcs12_write_any(vmcs12, field, field_value) < 0) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_UNSUPPORTED_VMCS_COMPONENT); |
| |
| /* |
| * Do not track vmcs12 dirty-state if in guest-mode |
| * as we actually dirty shadow vmcs12 instead of vmcs12. |
| */ |
| if (!is_guest_mode(vcpu)) { |
| switch (field) { |
| #define SHADOW_FIELD_RW(x) case x: |
| #include "vmcs_shadow_fields.h" |
| /* |
| * The fields that can be updated by L1 without a vmexit are |
| * always updated in the vmcs02, the others go down the slow |
| * path of prepare_vmcs02. |
| */ |
| break; |
| default: |
| vmx->nested.dirty_vmcs12 = true; |
| break; |
| } |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr) |
| { |
| vmx->nested.current_vmptr = vmptr; |
| if (enable_shadow_vmcs) { |
| vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, |
| SECONDARY_EXEC_SHADOW_VMCS); |
| vmcs_write64(VMCS_LINK_POINTER, |
| __pa(vmx->vmcs01.shadow_vmcs)); |
| vmx->nested.need_vmcs12_sync = true; |
| } |
| vmx->nested.dirty_vmcs12 = true; |
| } |
| |
| /* Emulate the VMPTRLD instruction */ |
| static int handle_vmptrld(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| gpa_t vmptr; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (nested_vmx_get_vmptr(vcpu, &vmptr)) |
| return 1; |
| |
| if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMPTRLD_INVALID_ADDRESS); |
| |
| if (vmptr == vmx->nested.vmxon_ptr) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMPTRLD_VMXON_POINTER); |
| |
| /* Forbid normal VMPTRLD if Enlightened version was used */ |
| if (vmx->nested.hv_evmcs) |
| return 1; |
| |
| if (vmx->nested.current_vmptr != vmptr) { |
| struct vmcs12 *new_vmcs12; |
| struct page *page; |
| |
| page = kvm_vcpu_gpa_to_page(vcpu, vmptr); |
| if (is_error_page(page)) { |
| /* |
| * Reads from an unbacked page return all 1s, |
| * which means that the 32 bits located at the |
| * given physical address won't match the required |
| * VMCS12_REVISION identifier. |
| */ |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| new_vmcs12 = kmap(page); |
| if (new_vmcs12->hdr.revision_id != VMCS12_REVISION || |
| (new_vmcs12->hdr.shadow_vmcs && |
| !nested_cpu_has_vmx_shadow_vmcs(vcpu))) { |
| kunmap(page); |
| kvm_release_page_clean(page); |
| return nested_vmx_failValid(vcpu, |
| VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); |
| } |
| |
| nested_release_vmcs12(vcpu); |
| |
| /* |
| * Load VMCS12 from guest memory since it is not already |
| * cached. |
| */ |
| memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE); |
| kunmap(page); |
| kvm_release_page_clean(page); |
| |
| set_current_vmptr(vmx, vmptr); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the VMPTRST instruction */ |
| static int handle_vmptrst(struct kvm_vcpu *vcpu) |
| { |
| unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION); |
| u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr; |
| struct x86_exception e; |
| gva_t gva; |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| if (unlikely(to_vmx(vcpu)->nested.hv_evmcs)) |
| return 1; |
| |
| if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva)) |
| return 1; |
| /* *_system ok, nested_vmx_check_permission has verified cpl=0 */ |
| if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr, |
| sizeof(gpa_t), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| /* Emulate the INVEPT instruction */ |
| static int handle_invept(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 vmx_instruction_info, types; |
| unsigned long type; |
| gva_t gva; |
| struct x86_exception e; |
| struct { |
| u64 eptp, gpa; |
| } operand; |
| |
| if (!(vmx->nested.msrs.secondary_ctls_high & |
| SECONDARY_EXEC_ENABLE_EPT) || |
| !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); |
| |
| types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; |
| |
| if (type >= 32 || !(types & (1 << type))) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| /* According to the Intel VMX instruction reference, the memory |
| * operand is read even if it isn't needed (e.g., for type==global) |
| */ |
| if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| vmx_instruction_info, false, &gva)) |
| return 1; |
| if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| |
| switch (type) { |
| case VMX_EPT_EXTENT_GLOBAL: |
| /* |
| * TODO: track mappings and invalidate |
| * single context requests appropriately |
| */ |
| case VMX_EPT_EXTENT_CONTEXT: |
| kvm_mmu_sync_roots(vcpu); |
| kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| break; |
| default: |
| BUG_ON(1); |
| break; |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static int handle_invvpid(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| u32 vmx_instruction_info; |
| unsigned long type, types; |
| gva_t gva; |
| struct x86_exception e; |
| struct { |
| u64 vpid; |
| u64 gla; |
| } operand; |
| u16 vpid02; |
| |
| if (!(vmx->nested.msrs.secondary_ctls_high & |
| SECONDARY_EXEC_ENABLE_VPID) || |
| !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| if (!nested_vmx_check_permission(vcpu)) |
| return 1; |
| |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); |
| |
| types = (vmx->nested.msrs.vpid_caps & |
| VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8; |
| |
| if (type >= 32 || !(types & (1 << type))) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| /* according to the intel vmx instruction reference, the memory |
| * operand is read even if it isn't needed (e.g., for type==global) |
| */ |
| if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), |
| vmx_instruction_info, false, &gva)) |
| return 1; |
| if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { |
| kvm_inject_page_fault(vcpu, &e); |
| return 1; |
| } |
| if (operand.vpid >> 16) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| |
| vpid02 = nested_get_vpid02(vcpu); |
| switch (type) { |
| case VMX_VPID_EXTENT_INDIVIDUAL_ADDR: |
| if (!operand.vpid || |
| is_noncanonical_address(operand.gla, vcpu)) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| if (cpu_has_vmx_invvpid_individual_addr()) { |
| __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, |
| vpid02, operand.gla); |
| } else |
| __vmx_flush_tlb(vcpu, vpid02, false); |
| break; |
| case VMX_VPID_EXTENT_SINGLE_CONTEXT: |
| case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL: |
| if (!operand.vpid) |
| return nested_vmx_failValid(vcpu, |
| VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); |
| __vmx_flush_tlb(vcpu, vpid02, false); |
| break; |
| case VMX_VPID_EXTENT_ALL_CONTEXT: |
| __vmx_flush_tlb(vcpu, vpid02, false); |
| break; |
| default: |
| WARN_ON_ONCE(1); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| return nested_vmx_succeed(vcpu); |
| } |
| |
| static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| u32 index = vcpu->arch.regs[VCPU_REGS_RCX]; |
| u64 address; |
| bool accessed_dirty; |
| struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
| |
| if (!nested_cpu_has_eptp_switching(vmcs12) || |
| !nested_cpu_has_ept(vmcs12)) |
| return 1; |
| |
| if (index >= VMFUNC_EPTP_ENTRIES) |
| return 1; |
| |
| |
| if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT, |
| &address, index * 8, 8)) |
| return 1; |
| |
| accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT); |
| |
| /* |
| * If the (L2) guest does a vmfunc to the currently |
| * active ept pointer, we don't have to do anything else |
| */ |
| if (vmcs12->ept_pointer != address) { |
| if (!valid_ept_address(vcpu, address)) |
| return 1; |
| |
| kvm_mmu_unload(vcpu); |
| mmu->ept_ad = accessed_dirty; |
| mmu->mmu_role.base.ad_disabled = !accessed_dirty; |
| vmcs12->ept_pointer = address; |
| /* |
| * TODO: Check what's the correct approach in case |
| * mmu reload fails. Currently, we just let the next |
| * reload potentially fail |
| */ |
| kvm_mmu_reload(vcpu); |
| } |
| |
| return 0; |
| } |
| |
| static int handle_vmfunc(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12; |
| u32 function = vcpu->arch.regs[VCPU_REGS_RAX]; |
| |
| /* |
| * VMFUNC is only supported for nested guests, but we always enable the |
| * secondary control for simplicity; for non-nested mode, fake that we |
| * didn't by injecting #UD. |
| */ |
| if (!is_guest_mode(vcpu)) { |
| kvm_queue_exception(vcpu, UD_VECTOR); |
| return 1; |
| } |
| |
| vmcs12 = get_vmcs12(vcpu); |
| if ((vmcs12->vm_function_control & (1 << function)) == 0) |
| goto fail; |
| |
| switch (function) { |
| case 0: |
| if (nested_vmx_eptp_switching(vcpu, vmcs12)) |
| goto fail; |
| break; |
| default: |
| goto fail; |
| } |
| return kvm_skip_emulated_instruction(vcpu); |
| |
| fail: |
| nested_vmx_vmexit(vcpu, vmx->exit_reason, |
| vmcs_read32(VM_EXIT_INTR_INFO), |
| vmcs_readl(EXIT_QUALIFICATION)); |
| return 1; |
| } |
| |
| |
| static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| unsigned long exit_qualification; |
| gpa_t bitmap, last_bitmap; |
| unsigned int port; |
| int size; |
| u8 b; |
| |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) |
| return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); |
| |
| exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| |
| port = exit_qualification >> 16; |
| size = (exit_qualification & 7) + 1; |
| |
| last_bitmap = (gpa_t)-1; |
| b = -1; |
| |
| while (size > 0) { |
| if (port < 0x8000) |
| bitmap = vmcs12->io_bitmap_a; |
| else if (port < 0x10000) |
| bitmap = vmcs12->io_bitmap_b; |
| else |
| return true; |
| bitmap += (port & 0x7fff) / 8; |
| |
| if (last_bitmap != bitmap) |
| if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) |
| return true; |
| if (b & (1 << (port & 7))) |
| return true; |
| |
| port++; |
| size--; |
| last_bitmap = bitmap; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle an MSR access access, |
| * rather than handle it ourselves in L0. I.e., check whether L1 expressed |
| * disinterest in the current event (read or write a specific MSR) by using an |
| * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. |
| */ |
| static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, u32 exit_reason) |
| { |
| u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; |
| gpa_t bitmap; |
| |
| if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) |
| return true; |
| |
| /* |
| * The MSR_BITMAP page is divided into four 1024-byte bitmaps, |
| * for the four combinations of read/write and low/high MSR numbers. |
| * First we need to figure out which of the four to use: |
| */ |
| bitmap = vmcs12->msr_bitmap; |
| if (exit_reason == EXIT_REASON_MSR_WRITE) |
| bitmap += 2048; |
| if (msr_index >= 0xc0000000) { |
| msr_index -= 0xc0000000; |
| bitmap += 1024; |
| } |
| |
| /* Then read the msr_index'th bit from this bitmap: */ |
| if (msr_index < 1024*8) { |
| unsigned char b; |
| if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) |
| return true; |
| return 1 & (b >> (msr_index & 7)); |
| } else |
| return true; /* let L1 handle the wrong parameter */ |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle a CR access exit, |
| * rather than handle it ourselves in L0. I.e., check if L1 wanted to |
| * intercept (via guest_host_mask etc.) the current event. |
| */ |
| static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12) |
| { |
| unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); |
| int cr = exit_qualification & 15; |
| int reg; |
| unsigned long val; |
| |
| switch ((exit_qualification >> 4) & 3) { |
| case 0: /* mov to cr */ |
| reg = (exit_qualification >> 8) & 15; |
| val = kvm_register_readl(vcpu, reg); |
| switch (cr) { |
| case 0: |
| if (vmcs12->cr0_guest_host_mask & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return true; |
| break; |
| case 3: |
| if ((vmcs12->cr3_target_count >= 1 && |
| vmcs12->cr3_target_value0 == val) || |
| (vmcs12->cr3_target_count >= 2 && |
| vmcs12->cr3_target_value1 == val) || |
| (vmcs12->cr3_target_count >= 3 && |
| vmcs12->cr3_target_value2 == val) || |
| (vmcs12->cr3_target_count >= 4 && |
| vmcs12->cr3_target_value3 == val)) |
| return false; |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) |
| return true; |
| break; |
| case 4: |
| if (vmcs12->cr4_guest_host_mask & |
| (vmcs12->cr4_read_shadow ^ val)) |
| return true; |
| break; |
| case 8: |
| if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) |
| return true; |
| break; |
| } |
| break; |
| case 2: /* clts */ |
| if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && |
| (vmcs12->cr0_read_shadow & X86_CR0_TS)) |
| return true; |
| break; |
| case 1: /* mov from cr */ |
| switch (cr) { |
| case 3: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR3_STORE_EXITING) |
| return true; |
| break; |
| case 8: |
| if (vmcs12->cpu_based_vm_exec_control & |
| CPU_BASED_CR8_STORE_EXITING) |
| return true; |
| break; |
| } |
| break; |
| case 3: /* lmsw */ |
| /* |
| * lmsw can change bits 1..3 of cr0, and only set bit 0 of |
| * cr0. Other attempted changes are ignored, with no exit. |
| */ |
| val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; |
| if (vmcs12->cr0_guest_host_mask & 0xe & |
| (val ^ vmcs12->cr0_read_shadow)) |
| return true; |
| if ((vmcs12->cr0_guest_host_mask & 0x1) && |
| !(vmcs12->cr0_read_shadow & 0x1) && |
| (val & 0x1)) |
| return true; |
| break; |
| } |
| return false; |
| } |
| |
| static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu, |
| struct vmcs12 *vmcs12, gpa_t bitmap) |
| { |
| u32 vmx_instruction_info; |
| unsigned long field; |
| u8 b; |
| |
| if (!nested_cpu_has_shadow_vmcs(vmcs12)) |
| return true; |
| |
| /* Decode instruction info and find the field to access */ |
| vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); |
| field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); |
| |
| /* Out-of-range fields always cause a VM exit from L2 to L1 */ |
| if (field >> 15) |
| return true; |
| |
| if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1)) |
| return true; |
| |
| return 1 & (b >> (field & 7)); |
| } |
| |
| /* |
| * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we |
| * should handle it ourselves in L0 (and then continue L2). Only call this |
| * when in is_guest_mode (L2). |
| */ |
| bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason) |
| { |
| u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12 = get_vmcs12(vcpu); |
| |
| if (vmx->nested.nested_run_pending) |
| return false; |
| |
| if (unlikely(vmx->fail)) { |
| pr_info_ratelimited("%s failed vm entry %x\n", __func__, |
| vmcs_read32(VM_INSTRUCTION_ERROR)); |
| return true; |
| } |
| |
| /* |
| * The host physical addresses of some pages of guest memory |
| * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC |
| * Page). The CPU may write to these pages via their host |
| * physical address while L2 is running, bypassing any |
| * address-translation-based dirty tracking (e.g. EPT write |
| * protection). |
| * |
| * Mark them dirty on every exit from L2 to prevent them from |
| * getting out of sync with dirty tracking. |
| */ |
| nested_mark_vmcs12_pages_dirty(vcpu); |
| |
| trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, |
| vmcs_readl(EXIT_QUALIFICATION), |
| vmx->idt_vectoring_info, |
| intr_info, |
| vmcs_read32(VM_EXIT_INTR_ERROR_CODE), |
| KVM_ISA_VMX); |
| |
| switch (exit_reason) { |
| case EXIT_REASON_EXCEPTION_NMI: |
| if (is_nmi(intr_info)) |
| return false; |
| else if (is_page_fault(intr_info)) |
| return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept; |
| else if (is_debug(intr_info) && |
| vcpu->guest_debug & |
| (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) |
| return false; |
| else if (is_breakpoint(intr_info) && |
| vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) |
| return false; |
| return vmcs12->exception_bitmap & |
| (1u << (intr_info & INTR_INFO_VECTOR_MASK)); |
| case EXIT_REASON_EXTERNAL_INTERRUPT: |
| return false; |
| case EXIT_REASON_TRIPLE_FAULT: |
| return true; |
| case EXIT_REASON_PENDING_INTERRUPT: |
| return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); |
| case EXIT_REASON_NMI_WINDOW: |
| return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); |
| case EXIT_REASON_TASK_SWITCH: |
| return true; |
| case EXIT_REASON_CPUID: |
| return true; |
| case EXIT_REASON_HLT: |
| return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); |
| case EXIT_REASON_INVD: |
| return true; |
| case EXIT_REASON_INVLPG: |
| return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| case EXIT_REASON_RDPMC: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); |
| case EXIT_REASON_RDRAND: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING); |
| case EXIT_REASON_RDSEED: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING); |
| case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: |
| return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); |
| case EXIT_REASON_VMREAD: |
| return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, |
| vmcs12->vmread_bitmap); |
| case EXIT_REASON_VMWRITE: |
| return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12, |
| vmcs12->vmwrite_bitmap); |
| case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: |
| case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: |
| case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME: |
| case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: |
| case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: |
| /* |
| * VMX instructions trap unconditionally. This allows L1 to |
| * emulate them for its L2 guest, i.e., allows 3-level nesting! |
| */ |
| return true; |
| case EXIT_REASON_CR_ACCESS: |
| return nested_vmx_exit_handled_cr(vcpu, vmcs12); |
| case EXIT_REASON_DR_ACCESS: |
| return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); |
| case EXIT_REASON_IO_INSTRUCTION: |
| return nested_vmx_exit_handled_io(vcpu, vmcs12); |
| case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC); |
| case EXIT_REASON_MSR_READ: |
| case EXIT_REASON_MSR_WRITE: |
| return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); |
| case EXIT_REASON_INVALID_STATE: |
| return true; |
| case EXIT_REASON_MWAIT_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); |
| case EXIT_REASON_MONITOR_TRAP_FLAG: |
| return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); |
| case EXIT_REASON_MONITOR_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); |
| case EXIT_REASON_PAUSE_INSTRUCTION: |
| return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || |
| nested_cpu_has2(vmcs12, |
| SECONDARY_EXEC_PAUSE_LOOP_EXITING); |
| case EXIT_REASON_MCE_DURING_VMENTRY: |
| return false; |
| case EXIT_REASON_TPR_BELOW_THRESHOLD: |
| return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); |
| case EXIT_REASON_APIC_ACCESS: |
| case EXIT_REASON_APIC_WRITE: |
| case EXIT_REASON_EOI_INDUCED: |
| /* |
| * The controls for "virtualize APIC accesses," "APIC- |
| * register virtualization," and "virtual-interrupt |
| * delivery" only come from vmcs12. |
| */ |
| return true; |
| case EXIT_REASON_EPT_VIOLATION: |
| /* |
| * L0 always deals with the EPT violation. If nested EPT is |
| * used, and the nested mmu code discovers that the address is |
| * missing in the guest EPT table (EPT12), the EPT violation |
| * will be injected with nested_ept_inject_page_fault() |
| */ |
| return false; |
| case EXIT_REASON_EPT_MISCONFIG: |
| /* |
| * L2 never uses directly L1's EPT, but rather L0's own EPT |
| * table (shadow on EPT) or a merged EPT table that L0 built |
| * (EPT on EPT). So any problems with the structure of the |
| * table is L0's fault. |
| */ |
| return false; |
| case EXIT_REASON_INVPCID: |
| return |
| nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) && |
| nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); |
| case EXIT_REASON_WBINVD: |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); |
| case EXIT_REASON_XSETBV: |
| return true; |
| case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: |
| /* |
| * This should never happen, since it is not possible to |
| * set XSS to a non-zero value---neither in L1 nor in L2. |
| * If if it were, XSS would have to be checked against |
| * the XSS exit bitmap in vmcs12. |
| */ |
| return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); |
| case EXIT_REASON_PREEMPTION_TIMER: |
| return false; |
| case EXIT_REASON_PML_FULL: |
| /* We emulate PML support to L1. */ |
| return false; |
| case EXIT_REASON_VMFUNC: |
| /* VM functions are emulated through L2->L0 vmexits. */ |
| return false; |
| case EXIT_REASON_ENCLS: |
| /* SGX is never exposed to L1 */ |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| |
| static int vmx_get_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| u32 user_data_size) |
| { |
| struct vcpu_vmx *vmx; |
| struct vmcs12 *vmcs12; |
| struct kvm_nested_state kvm_state = { |
| .flags = 0, |
| .format = 0, |
| .size = sizeof(kvm_state), |
| .vmx.vmxon_pa = -1ull, |
| .vmx.vmcs_pa = -1ull, |
| }; |
| |
| if (!vcpu) |
| return kvm_state.size + 2 * VMCS12_SIZE; |
| |
| vmx = to_vmx(vcpu); |
| vmcs12 = get_vmcs12(vcpu); |
| |
| if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled) |
| kvm_state.flags |= KVM_STATE_NESTED_EVMCS; |
| |
| if (nested_vmx_allowed(vcpu) && |
| (vmx->nested.vmxon || vmx->nested.smm.vmxon)) { |
| kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr; |
| kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr; |
| |
| if (vmx_has_valid_vmcs12(vcpu)) { |
| kvm_state.size += VMCS12_SIZE; |
| |
| if (is_guest_mode(vcpu) && |
| nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != -1ull) |
| kvm_state.size += VMCS12_SIZE; |
| } |
| |
| if (vmx->nested.smm.vmxon) |
| kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON; |
| |
| if (vmx->nested.smm.guest_mode) |
| kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE; |
| |
| if (is_guest_mode(vcpu)) { |
| kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE; |
| |
| if (vmx->nested.nested_run_pending) |
| kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING; |
| } |
| } |
| |
| if (user_data_size < kvm_state.size) |
| goto out; |
| |
| if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state))) |
| return -EFAULT; |
| |
| if (!vmx_has_valid_vmcs12(vcpu)) |
| goto out; |
| |
| /* |
| * When running L2, the authoritative vmcs12 state is in the |
| * vmcs02. When running L1, the authoritative vmcs12 state is |
| * in the shadow or enlightened vmcs linked to vmcs01, unless |
| * need_vmcs12_sync is set, in which case, the authoritative |
| * vmcs12 state is in the vmcs12 already. |
| */ |
| if (is_guest_mode(vcpu)) { |
| sync_vmcs12(vcpu, vmcs12); |
| } else if (!vmx->nested.need_vmcs12_sync) { |
| if (vmx->nested.hv_evmcs) |
| copy_enlightened_to_vmcs12(vmx); |
| else if (enable_shadow_vmcs) |
| copy_shadow_to_vmcs12(vmx); |
| } |
| |
| /* |
| * Copy over the full allocated size of vmcs12 rather than just the size |
| * of the struct. |
| */ |
| if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE)) |
| return -EFAULT; |
| |
| if (nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != -1ull) { |
| if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE, |
| get_shadow_vmcs12(vcpu), VMCS12_SIZE)) |
| return -EFAULT; |
| } |
| |
| out: |
| return kvm_state.size; |
| } |
| |
| /* |
| * Forcibly leave nested mode in order to be able to reset the VCPU later on. |
| */ |
| void vmx_leave_nested(struct kvm_vcpu *vcpu) |
| { |
| if (is_guest_mode(vcpu)) { |
| to_vmx(vcpu)->nested.nested_run_pending = 0; |
| nested_vmx_vmexit(vcpu, -1, 0, 0); |
| } |
| free_nested(vcpu); |
| } |
| |
| static int vmx_set_nested_state(struct kvm_vcpu *vcpu, |
| struct kvm_nested_state __user *user_kvm_nested_state, |
| struct kvm_nested_state *kvm_state) |
| { |
| struct vcpu_vmx *vmx = to_vmx(vcpu); |
| struct vmcs12 *vmcs12; |
| u32 exit_qual; |
| int ret; |
| |
| if (kvm_state->format != 0) |
| return -EINVAL; |
| |
| if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) |
| nested_enable_evmcs(vcpu, NULL); |
| |
| if (!nested_vmx_allowed(vcpu)) |
| return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL; |
| |
| if (kvm_state->vmx.vmxon_pa == -1ull) { |
| if (kvm_state->vmx.smm.flags) |
| return -EINVAL; |
| |
| if (kvm_state->vmx.vmcs_pa != -1ull) |
| return -EINVAL; |
| |
| vmx_leave_nested(vcpu); |
| return 0; |
| } |
| |
| if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa)) |
| return -EINVAL; |
| |
| if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && |
| (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) |
| return -EINVAL; |
| |
| if (kvm_state->vmx.smm.flags & |
| ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON)) |
| return -EINVAL; |
| |
| /* |
| * SMM temporarily disables VMX, so we cannot be in guest mode, |
| * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags |
| * must be zero. |
| */ |
| if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags) |
| return -EINVAL; |
| |
| if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) && |
| !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON)) |
| return -EINVAL; |
| |
| vmx_leave_nested(vcpu); |
| if (kvm_state->vmx.vmxon_pa == -1ull) |
| return 0; |
| |
| vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa; |
| ret = enter_vmx_operation(vcpu); |
| if (ret) |
| return ret; |
| |
| /* Empty 'VMXON' state is permitted */ |
| if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12)) |
| return 0; |
| |
| if (kvm_state->vmx.vmcs_pa != -1ull) { |
| if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa || |
| !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa)) |
| return -EINVAL; |
| |
| set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa); |
| } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) { |
| /* |
| * Sync eVMCS upon entry as we may not have |
| * HV_X64_MSR_VP_ASSIST_PAGE set up yet. |
| */ |
| vmx->nested.need_vmcs12_sync = true; |
| } else { |
| return -EINVAL; |
| } |
| |
| if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) { |
| vmx->nested.smm.vmxon = true; |
| vmx->nested.vmxon = false; |
| |
| if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) |
| vmx->nested.smm.guest_mode = true; |
| } |
| |
| vmcs12 = get_vmcs12(vcpu); |
| if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12))) |
| return -EFAULT; |
| |
| if (vmcs12->hdr.revision_id != VMCS12_REVISION) |
| return -EINVAL; |
| |
| if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) |
| return 0; |
| |
| vmx->nested.nested_run_pending = |
| !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING); |
| |
| if (nested_cpu_has_shadow_vmcs(vmcs12) && |
| vmcs12->vmcs_link_pointer != -1ull) { |
| struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu); |
| |
| if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12)) |
| return -EINVAL; |
| |
| if (copy_from_user(shadow_vmcs12, |
| user_kvm_nested_state->data + VMCS12_SIZE, |
| sizeof(*vmcs12))) |
| return -EFAULT; |
| |
| if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION || |
| !shadow_vmcs12->hdr.shadow_vmcs) |
| return -EINVAL; |
| } |
| |
| if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) || |
| nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual)) |
| return -EINVAL; |
| |
| vmx->nested.dirty_vmcs12 = true; |
| ret = nested_vmx_enter_non_root_mode(vcpu, false); |
| if (ret) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| void nested_vmx_vcpu_setup(void) |
| { |
| if (enable_shadow_vmcs) { |
| /* |
| * At vCPU creation, "VMWRITE to any supported field |
| * in the VMCS" is supported, so use the more |
| * permissive vmx_vmread_bitmap to specify both read |
| * and write permissions for the shadow VMCS. |
| */ |
| vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); |
| vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap)); |
| } |
| } |
| |
| /* |
| * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be |
| * returned for the various VMX controls MSRs when nested VMX is enabled. |
| * The same values should also be used to verify that vmcs12 control fields are |
| * valid during nested entry from L1 to L2. |
| * Each of these control msrs has a low and high 32-bit half: A low bit is on |
| * if the corresponding bit in the (32-bit) control field *must* be on, and a |
| * bit in the high half is on if the corresponding bit in the control field |
| * may be on. See also vmx_control_verify(). |
| */ |
| void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps, |
| bool apicv) |
| { |
| /* |
| * Note that as a general rule, the high half of the MSRs (bits in |
| * the control fields which may be 1) should be initialized by the |
| * intersection of the underlying hardware's MSR (i.e., features which |
| * can be supported) and the list of features we want to expose - |
| * because they are known to be properly supported in our code. |
| * Also, usually, the low half of the MSRs (bits which must be 1) can |
| * be set to 0, meaning that L1 may turn off any of these bits. The |
| * reason is that if one of these bits is necessary, it will appear |
| * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control |
| * fields of vmcs01 and vmcs02, will turn these bits off - and |
| * nested_vmx_exit_reflected() will not pass related exits to L1. |
| * These rules have exceptions below. |
| */ |
| |
| /* pin-based controls */ |
| rdmsr(MSR_IA32_VMX_PINBASED_CTLS, |
| msrs->pinbased_ctls_low, |
| msrs->pinbased_ctls_high); |
| msrs->pinbased_ctls_low |= |
| PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| msrs->pinbased_ctls_high &= |
| PIN_BASED_EXT_INTR_MASK | |
| PIN_BASED_NMI_EXITING | |
| PIN_BASED_VIRTUAL_NMIS | |
| (apicv ? PIN_BASED_POSTED_INTR : 0); |
| msrs->pinbased_ctls_high |= |
| PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| PIN_BASED_VMX_PREEMPTION_TIMER; |
| |
| /* exit controls */ |
| rdmsr(MSR_IA32_VMX_EXIT_CTLS, |
| msrs->exit_ctls_low, |
| msrs->exit_ctls_high); |
| msrs->exit_ctls_low = |
| VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; |
| |
| msrs->exit_ctls_high &= |
| #ifdef CONFIG_X86_64 |
| VM_EXIT_HOST_ADDR_SPACE_SIZE | |
| #endif |
| VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; |
| msrs->exit_ctls_high |= |
| VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | |
| VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | |
| VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; |
| |
| /* We support free control of debug control saving. */ |
| msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS; |
| |
| /* entry controls */ |
| rdmsr(MSR_IA32_VMX_ENTRY_CTLS, |
| msrs->entry_ctls_low, |
| msrs->entry_ctls_high); |
| msrs->entry_ctls_low = |
| VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; |
| msrs->entry_ctls_high &= |
| #ifdef CONFIG_X86_64 |
| VM_ENTRY_IA32E_MODE | |
| #endif |
| VM_ENTRY_LOAD_IA32_PAT; |
| msrs->entry_ctls_high |= |
| (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); |
| |
| /* We support free control of debug control loading. */ |
| msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS; |
| |
| /* cpu-based controls */ |
| rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, |
| msrs->procbased_ctls_low, |
| msrs->procbased_ctls_high); |
| msrs->procbased_ctls_low = |
| CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; |
| msrs->procbased_ctls_high &= |
| CPU_BASED_VIRTUAL_INTR_PENDING | |
| CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | |
| CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | |
| CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | |
| CPU_BASED_CR3_STORE_EXITING | |
| #ifdef CONFIG_X86_64 |
| CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | |
| #endif |
| CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | |
| CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | |
| CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | |
| CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | |
| CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; |
| /* |
| * We can allow some features even when not supported by the |
| * hardware. For example, L1 can specify an MSR bitmap - and we |
| * can use it to avoid exits to L1 - even when L0 runs L2 |
| * without MSR bitmaps. |
| */ |
| msrs->procbased_ctls_high |= |
| CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | |
| CPU_BASED_USE_MSR_BITMAPS; |
| |
| /* We support free control of CR3 access interception. */ |
| msrs->procbased_ctls_low &= |
| ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); |
| |
| /* |
| * secondary cpu-based controls. Do not include those that |
| * depend on CPUID bits, they are added later by vmx_cpuid_update. |
| */ |
| rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, |
| msrs->secondary_ctls_low, |
| msrs->secondary_ctls_high); |
| msrs->secondary_ctls_low = 0; |
| msrs->secondary_ctls_high &= |
| SECONDARY_EXEC_DESC | |
| SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | |
| SECONDARY_EXEC_APIC_REGISTER_VIRT | |
| SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | |
| SECONDARY_EXEC_WBINVD_EXITING; |
| |
| /* |
| * We can emulate "VMCS shadowing," even if the hardware |
| * doesn't support it. |
| */ |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_SHADOW_VMCS; |
| |
| if (enable_ept) { |
| /* nested EPT: emulate EPT also to L1 */ |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_EPT; |
| msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT | |
| VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT; |
| if (cpu_has_vmx_ept_execute_only()) |
| msrs->ept_caps |= |
| VMX_EPT_EXECUTE_ONLY_BIT; |
| msrs->ept_caps &= ept_caps; |
| msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT | |
| VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT | |
| VMX_EPT_1GB_PAGE_BIT; |
| if (enable_ept_ad_bits) { |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_PML; |
| msrs->ept_caps |= VMX_EPT_AD_BIT; |
| } |
| } |
| |
| if (cpu_has_vmx_vmfunc()) { |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_VMFUNC; |
| /* |
| * Advertise EPTP switching unconditionally |
| * since we emulate it |
| */ |
| if (enable_ept) |
| msrs->vmfunc_controls = |
| VMX_VMFUNC_EPTP_SWITCHING; |
| } |
| |
| /* |
| * Old versions of KVM use the single-context version without |
| * checking for support, so declare that it is supported even |
| * though it is treated as global context. The alternative is |
| * not failing the single-context invvpid, and it is worse. |
| */ |
| if (enable_vpid) { |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_ENABLE_VPID; |
| msrs->vpid_caps = VMX_VPID_INVVPID_BIT | |
| VMX_VPID_EXTENT_SUPPORTED_MASK; |
| } |
| |
| if (enable_unrestricted_guest) |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_UNRESTRICTED_GUEST; |
| |
| if (flexpriority_enabled) |
| msrs->secondary_ctls_high |= |
| SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; |
| |
| /* miscellaneous data */ |
| rdmsr(MSR_IA32_VMX_MISC, |
| msrs->misc_low, |
| msrs->misc_high); |
| msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA; |
| msrs->misc_low |= |
| MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS | |
| VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | |
| VMX_MISC_ACTIVITY_HLT; |
| msrs->misc_high = 0; |
| |
| /* |
| * This MSR reports some information about VMX support. We |
| * should return information about the VMX we emulate for the |
| * guest, and the VMCS structure we give it - not about the |
| * VMX support of the underlying hardware. |
| */ |
| msrs->basic = |
| VMCS12_REVISION | |
| VMX_BASIC_TRUE_CTLS | |
| ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | |
| (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); |
| |
| if (cpu_has_vmx_basic_inout()) |
| msrs->basic |= VMX_BASIC_INOUT; |
| |
| /* |
| * These MSRs specify bits which the guest must keep fixed on |
| * while L1 is in VMXON mode (in L1's root mode, or running an L2). |
| * We picked the standard core2 setting. |
| */ |
| #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) |
| #define VMXON_CR4_ALWAYSON X86_CR4_VMXE |
| msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON; |
| msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON; |
| |
| /* These MSRs specify bits which the guest must keep fixed off. */ |
| rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1); |
| rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1); |
| |
| /* highest index: VMX_PREEMPTION_TIMER_VALUE */ |
| msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1; |
| } |
| |
| void nested_vmx_hardware_unsetup(void) |
| { |
| int i; |
| |
| if (enable_shadow_vmcs) { |
| for (i = 0; i < VMX_BITMAP_NR; i++) |
| free_page((unsigned long)vmx_bitmap[i]); |
| } |
| } |
| |
| __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *)) |
| { |
| int i; |
| |
| if (!cpu_has_vmx_shadow_vmcs()) |
| enable_shadow_vmcs = 0; |
| if (enable_shadow_vmcs) { |
| for (i = 0; i < VMX_BITMAP_NR; i++) { |
| vmx_bitmap[i] = (unsigned long *) |
| __get_free_page(GFP_KERNEL); |
| if (!vmx_bitmap[i]) { |
| nested_vmx_hardware_unsetup(); |
| return -ENOMEM; |
| } |
| } |
| |
| init_vmcs_shadow_fields(); |
| } |
| |
| exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear, |
| exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch, |
| exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld, |
| exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst, |
| exit_handlers[EXIT_REASON_VMREAD] = handle_vmread, |
| exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume, |
| exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite, |
| exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff, |
| exit_handlers[EXIT_REASON_VMON] = handle_vmon, |
| exit_handlers[EXIT_REASON_INVEPT] = handle_invept, |
| exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid, |
| exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc, |
| |
| kvm_x86_ops->check_nested_events = vmx_check_nested_events; |
| kvm_x86_ops->get_nested_state = vmx_get_nested_state; |
| kvm_x86_ops->set_nested_state = vmx_set_nested_state; |
| kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages, |
| kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs; |
| kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version; |
| |
| return 0; |
| } |