blob: 52043a12a2e8e5ae2f0d6d279b2314ba31c98b5b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Linus Walleij <linus.walleij@linaro.org>
* Parts of this file were based on the MCDE driver by Marcus Lorentzon
* (C) ST-Ericsson SA 2013
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-buf.h>
#include <linux/regulator/consumer.h>
#include <linux/media-bus-format.h>
#include <drm/drm_device.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_simple_kms_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_vblank.h>
#include <video/mipi_display.h>
#include "mcde_drm.h"
#include "mcde_display_regs.h"
enum mcde_fifo {
MCDE_FIFO_A,
MCDE_FIFO_B,
/* TODO: implement FIFO C0 and FIFO C1 */
};
enum mcde_channel {
MCDE_CHANNEL_0 = 0,
MCDE_CHANNEL_1,
MCDE_CHANNEL_2,
MCDE_CHANNEL_3,
};
enum mcde_extsrc {
MCDE_EXTSRC_0 = 0,
MCDE_EXTSRC_1,
MCDE_EXTSRC_2,
MCDE_EXTSRC_3,
MCDE_EXTSRC_4,
MCDE_EXTSRC_5,
MCDE_EXTSRC_6,
MCDE_EXTSRC_7,
MCDE_EXTSRC_8,
MCDE_EXTSRC_9,
};
enum mcde_overlay {
MCDE_OVERLAY_0 = 0,
MCDE_OVERLAY_1,
MCDE_OVERLAY_2,
MCDE_OVERLAY_3,
MCDE_OVERLAY_4,
MCDE_OVERLAY_5,
};
enum mcde_formatter {
MCDE_DSI_FORMATTER_0 = 0,
MCDE_DSI_FORMATTER_1,
MCDE_DSI_FORMATTER_2,
MCDE_DSI_FORMATTER_3,
MCDE_DSI_FORMATTER_4,
MCDE_DSI_FORMATTER_5,
MCDE_DPI_FORMATTER_0,
MCDE_DPI_FORMATTER_1,
};
void mcde_display_irq(struct mcde *mcde)
{
u32 mispp, misovl, mischnl;
bool vblank = false;
/* Handle display IRQs */
mispp = readl(mcde->regs + MCDE_MISPP);
misovl = readl(mcde->regs + MCDE_MISOVL);
mischnl = readl(mcde->regs + MCDE_MISCHNL);
/*
* Handle IRQs from the DSI link. All IRQs from the DSI links
* are just latched onto the MCDE IRQ line, so we need to traverse
* any active DSI masters and check if an IRQ is originating from
* them.
*
* TODO: Currently only one DSI link is supported.
*/
if (!mcde->dpi_output && mcde_dsi_irq(mcde->mdsi)) {
u32 val;
/*
* In oneshot mode we do not send continuous updates
* to the display, instead we only push out updates when
* the update function is called, then we disable the
* flow on the channel once we get the TE IRQ.
*/
if (mcde->flow_mode == MCDE_COMMAND_ONESHOT_FLOW) {
spin_lock(&mcde->flow_lock);
if (--mcde->flow_active == 0) {
dev_dbg(mcde->dev, "TE0 IRQ\n");
/* Disable FIFO A flow */
val = readl(mcde->regs + MCDE_CRA0);
val &= ~MCDE_CRX0_FLOEN;
writel(val, mcde->regs + MCDE_CRA0);
}
spin_unlock(&mcde->flow_lock);
}
}
/* Vblank from one of the channels */
if (mispp & MCDE_PP_VCMPA) {
dev_dbg(mcde->dev, "chnl A vblank IRQ\n");
vblank = true;
}
if (mispp & MCDE_PP_VCMPB) {
dev_dbg(mcde->dev, "chnl B vblank IRQ\n");
vblank = true;
}
if (mispp & MCDE_PP_VCMPC0)
dev_dbg(mcde->dev, "chnl C0 vblank IRQ\n");
if (mispp & MCDE_PP_VCMPC1)
dev_dbg(mcde->dev, "chnl C1 vblank IRQ\n");
if (mispp & MCDE_PP_VSCC0)
dev_dbg(mcde->dev, "chnl C0 TE IRQ\n");
if (mispp & MCDE_PP_VSCC1)
dev_dbg(mcde->dev, "chnl C1 TE IRQ\n");
writel(mispp, mcde->regs + MCDE_RISPP);
if (vblank)
drm_crtc_handle_vblank(&mcde->pipe.crtc);
if (misovl)
dev_info(mcde->dev, "some stray overlay IRQ %08x\n", misovl);
writel(misovl, mcde->regs + MCDE_RISOVL);
if (mischnl)
dev_info(mcde->dev, "some stray channel error IRQ %08x\n",
mischnl);
writel(mischnl, mcde->regs + MCDE_RISCHNL);
}
void mcde_display_disable_irqs(struct mcde *mcde)
{
/* Disable all IRQs */
writel(0, mcde->regs + MCDE_IMSCPP);
writel(0, mcde->regs + MCDE_IMSCOVL);
writel(0, mcde->regs + MCDE_IMSCCHNL);
/* Clear any pending IRQs */
writel(0xFFFFFFFF, mcde->regs + MCDE_RISPP);
writel(0xFFFFFFFF, mcde->regs + MCDE_RISOVL);
writel(0xFFFFFFFF, mcde->regs + MCDE_RISCHNL);
}
static int mcde_display_check(struct drm_simple_display_pipe *pipe,
struct drm_plane_state *pstate,
struct drm_crtc_state *cstate)
{
const struct drm_display_mode *mode = &cstate->mode;
struct drm_framebuffer *old_fb = pipe->plane.state->fb;
struct drm_framebuffer *fb = pstate->fb;
if (fb) {
u32 offset = drm_fb_dma_get_gem_addr(fb, pstate, 0);
/* FB base address must be dword aligned. */
if (offset & 3) {
DRM_DEBUG_KMS("FB not 32-bit aligned\n");
return -EINVAL;
}
/*
* There's no pitch register, the mode's hdisplay
* controls this.
*/
if (fb->pitches[0] != mode->hdisplay * fb->format->cpp[0]) {
DRM_DEBUG_KMS("can't handle pitches\n");
return -EINVAL;
}
/*
* We can't change the FB format in a flicker-free
* manner (and only update it during CRTC enable).
*/
if (old_fb && old_fb->format != fb->format)
cstate->mode_changed = true;
}
return 0;
}
static int mcde_configure_extsrc(struct mcde *mcde, enum mcde_extsrc src,
u32 format)
{
u32 val;
u32 conf;
u32 cr;
switch (src) {
case MCDE_EXTSRC_0:
conf = MCDE_EXTSRC0CONF;
cr = MCDE_EXTSRC0CR;
break;
case MCDE_EXTSRC_1:
conf = MCDE_EXTSRC1CONF;
cr = MCDE_EXTSRC1CR;
break;
case MCDE_EXTSRC_2:
conf = MCDE_EXTSRC2CONF;
cr = MCDE_EXTSRC2CR;
break;
case MCDE_EXTSRC_3:
conf = MCDE_EXTSRC3CONF;
cr = MCDE_EXTSRC3CR;
break;
case MCDE_EXTSRC_4:
conf = MCDE_EXTSRC4CONF;
cr = MCDE_EXTSRC4CR;
break;
case MCDE_EXTSRC_5:
conf = MCDE_EXTSRC5CONF;
cr = MCDE_EXTSRC5CR;
break;
case MCDE_EXTSRC_6:
conf = MCDE_EXTSRC6CONF;
cr = MCDE_EXTSRC6CR;
break;
case MCDE_EXTSRC_7:
conf = MCDE_EXTSRC7CONF;
cr = MCDE_EXTSRC7CR;
break;
case MCDE_EXTSRC_8:
conf = MCDE_EXTSRC8CONF;
cr = MCDE_EXTSRC8CR;
break;
case MCDE_EXTSRC_9:
conf = MCDE_EXTSRC9CONF;
cr = MCDE_EXTSRC9CR;
break;
}
/*
* Configure external source 0 one buffer (buffer 0)
* primary overlay ID 0.
* From mcde_hw.c ovly_update_registers() in the vendor tree
*/
val = 0 << MCDE_EXTSRCXCONF_BUF_ID_SHIFT;
val |= 1 << MCDE_EXTSRCXCONF_BUF_NB_SHIFT;
val |= 0 << MCDE_EXTSRCXCONF_PRI_OVLID_SHIFT;
switch (format) {
case DRM_FORMAT_ARGB8888:
val |= MCDE_EXTSRCXCONF_BPP_ARGB8888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_ABGR8888:
val |= MCDE_EXTSRCXCONF_BPP_ARGB8888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_XRGB8888:
val |= MCDE_EXTSRCXCONF_BPP_XRGB8888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_XBGR8888:
val |= MCDE_EXTSRCXCONF_BPP_XRGB8888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_RGB888:
val |= MCDE_EXTSRCXCONF_BPP_RGB888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_BGR888:
val |= MCDE_EXTSRCXCONF_BPP_RGB888 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_ARGB4444:
val |= MCDE_EXTSRCXCONF_BPP_ARGB4444 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_ABGR4444:
val |= MCDE_EXTSRCXCONF_BPP_ARGB4444 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_XRGB4444:
val |= MCDE_EXTSRCXCONF_BPP_RGB444 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_XBGR4444:
val |= MCDE_EXTSRCXCONF_BPP_RGB444 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_XRGB1555:
val |= MCDE_EXTSRCXCONF_BPP_IRGB1555 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_XBGR1555:
val |= MCDE_EXTSRCXCONF_BPP_IRGB1555 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_RGB565:
val |= MCDE_EXTSRCXCONF_BPP_RGB565 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
case DRM_FORMAT_BGR565:
val |= MCDE_EXTSRCXCONF_BPP_RGB565 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
val |= MCDE_EXTSRCXCONF_BGR;
break;
case DRM_FORMAT_YUV422:
val |= MCDE_EXTSRCXCONF_BPP_YCBCR422 <<
MCDE_EXTSRCXCONF_BPP_SHIFT;
break;
default:
dev_err(mcde->dev, "Unknown pixel format 0x%08x\n",
format);
return -EINVAL;
}
writel(val, mcde->regs + conf);
/* Software select, primary */
val = MCDE_EXTSRCXCR_SEL_MOD_SOFTWARE_SEL;
val |= MCDE_EXTSRCXCR_MULTIOVL_CTRL_PRIMARY;
writel(val, mcde->regs + cr);
return 0;
}
static void mcde_configure_overlay(struct mcde *mcde, enum mcde_overlay ovl,
enum mcde_extsrc src,
enum mcde_channel ch,
const struct drm_display_mode *mode,
u32 format, int cpp)
{
u32 val;
u32 conf1;
u32 conf2;
u32 crop;
u32 ljinc;
u32 cr;
u32 comp;
u32 pixel_fetcher_watermark;
switch (ovl) {
case MCDE_OVERLAY_0:
conf1 = MCDE_OVL0CONF;
conf2 = MCDE_OVL0CONF2;
crop = MCDE_OVL0CROP;
ljinc = MCDE_OVL0LJINC;
cr = MCDE_OVL0CR;
comp = MCDE_OVL0COMP;
break;
case MCDE_OVERLAY_1:
conf1 = MCDE_OVL1CONF;
conf2 = MCDE_OVL1CONF2;
crop = MCDE_OVL1CROP;
ljinc = MCDE_OVL1LJINC;
cr = MCDE_OVL1CR;
comp = MCDE_OVL1COMP;
break;
case MCDE_OVERLAY_2:
conf1 = MCDE_OVL2CONF;
conf2 = MCDE_OVL2CONF2;
crop = MCDE_OVL2CROP;
ljinc = MCDE_OVL2LJINC;
cr = MCDE_OVL2CR;
comp = MCDE_OVL2COMP;
break;
case MCDE_OVERLAY_3:
conf1 = MCDE_OVL3CONF;
conf2 = MCDE_OVL3CONF2;
crop = MCDE_OVL3CROP;
ljinc = MCDE_OVL3LJINC;
cr = MCDE_OVL3CR;
comp = MCDE_OVL3COMP;
break;
case MCDE_OVERLAY_4:
conf1 = MCDE_OVL4CONF;
conf2 = MCDE_OVL4CONF2;
crop = MCDE_OVL4CROP;
ljinc = MCDE_OVL4LJINC;
cr = MCDE_OVL4CR;
comp = MCDE_OVL4COMP;
break;
case MCDE_OVERLAY_5:
conf1 = MCDE_OVL5CONF;
conf2 = MCDE_OVL5CONF2;
crop = MCDE_OVL5CROP;
ljinc = MCDE_OVL5LJINC;
cr = MCDE_OVL5CR;
comp = MCDE_OVL5COMP;
break;
}
val = mode->hdisplay << MCDE_OVLXCONF_PPL_SHIFT;
val |= mode->vdisplay << MCDE_OVLXCONF_LPF_SHIFT;
/* Use external source 0 that we just configured */
val |= src << MCDE_OVLXCONF_EXTSRC_ID_SHIFT;
writel(val, mcde->regs + conf1);
val = MCDE_OVLXCONF2_BP_PER_PIXEL_ALPHA;
val |= 0xff << MCDE_OVLXCONF2_ALPHAVALUE_SHIFT;
/* OPQ: overlay is opaque */
switch (format) {
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_ABGR4444:
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_XBGR1555:
/* No OPQ */
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_YUV422:
val |= MCDE_OVLXCONF2_OPQ;
break;
default:
dev_err(mcde->dev, "Unknown pixel format 0x%08x\n",
format);
break;
}
/*
* Pixel fetch watermark level is max 0x1FFF pixels.
* Two basic rules should be followed:
* 1. The value should be at least 256 bits.
* 2. The sum of all active overlays pixelfetch watermark level
* multiplied with bits per pixel, should be lower than the
* size of input_fifo_size in bits.
* 3. The value should be a multiple of a line (256 bits).
*/
switch (cpp) {
case 2:
pixel_fetcher_watermark = 128;
break;
case 3:
pixel_fetcher_watermark = 96;
break;
case 4:
pixel_fetcher_watermark = 48;
break;
default:
pixel_fetcher_watermark = 48;
break;
}
dev_dbg(mcde->dev, "pixel fetcher watermark level %d pixels\n",
pixel_fetcher_watermark);
val |= pixel_fetcher_watermark << MCDE_OVLXCONF2_PIXELFETCHERWATERMARKLEVEL_SHIFT;
writel(val, mcde->regs + conf2);
/* Number of bytes to fetch per line */
writel(mcde->stride, mcde->regs + ljinc);
/* No cropping */
writel(0, mcde->regs + crop);
/* Set up overlay control register */
val = MCDE_OVLXCR_OVLEN;
val |= MCDE_OVLXCR_COLCCTRL_DISABLED;
val |= MCDE_OVLXCR_BURSTSIZE_8W <<
MCDE_OVLXCR_BURSTSIZE_SHIFT;
val |= MCDE_OVLXCR_MAXOUTSTANDING_8_REQ <<
MCDE_OVLXCR_MAXOUTSTANDING_SHIFT;
/* Not using rotation but set it up anyways */
val |= MCDE_OVLXCR_ROTBURSTSIZE_8W <<
MCDE_OVLXCR_ROTBURSTSIZE_SHIFT;
writel(val, mcde->regs + cr);
/*
* Set up the overlay compositor to route the overlay out to
* the desired channel
*/
val = ch << MCDE_OVLXCOMP_CH_ID_SHIFT;
writel(val, mcde->regs + comp);
}
static void mcde_configure_channel(struct mcde *mcde, enum mcde_channel ch,
enum mcde_fifo fifo,
const struct drm_display_mode *mode)
{
u32 val;
u32 conf;
u32 sync;
u32 stat;
u32 bgcol;
u32 mux;
switch (ch) {
case MCDE_CHANNEL_0:
conf = MCDE_CHNL0CONF;
sync = MCDE_CHNL0SYNCHMOD;
stat = MCDE_CHNL0STAT;
bgcol = MCDE_CHNL0BCKGNDCOL;
mux = MCDE_CHNL0MUXING;
break;
case MCDE_CHANNEL_1:
conf = MCDE_CHNL1CONF;
sync = MCDE_CHNL1SYNCHMOD;
stat = MCDE_CHNL1STAT;
bgcol = MCDE_CHNL1BCKGNDCOL;
mux = MCDE_CHNL1MUXING;
break;
case MCDE_CHANNEL_2:
conf = MCDE_CHNL2CONF;
sync = MCDE_CHNL2SYNCHMOD;
stat = MCDE_CHNL2STAT;
bgcol = MCDE_CHNL2BCKGNDCOL;
mux = MCDE_CHNL2MUXING;
break;
case MCDE_CHANNEL_3:
conf = MCDE_CHNL3CONF;
sync = MCDE_CHNL3SYNCHMOD;
stat = MCDE_CHNL3STAT;
bgcol = MCDE_CHNL3BCKGNDCOL;
mux = MCDE_CHNL3MUXING;
return;
}
/* Set up channel 0 sync (based on chnl_update_registers()) */
switch (mcde->flow_mode) {
case MCDE_COMMAND_ONESHOT_FLOW:
/* Oneshot is achieved with software sync */
val = MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SOFTWARE
<< MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SHIFT;
break;
case MCDE_COMMAND_TE_FLOW:
val = MCDE_CHNLXSYNCHMOD_SRC_SYNCH_HARDWARE
<< MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SHIFT;
val |= MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_TE0
<< MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_SHIFT;
break;
case MCDE_COMMAND_BTA_TE_FLOW:
val = MCDE_CHNLXSYNCHMOD_SRC_SYNCH_HARDWARE
<< MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SHIFT;
/*
* TODO:
* The vendor driver uses the formatter as sync source
* for BTA TE mode. Test to use TE if you have a panel
* that uses this mode.
*/
val |= MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_FORMATTER
<< MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_SHIFT;
break;
case MCDE_VIDEO_TE_FLOW:
val = MCDE_CHNLXSYNCHMOD_SRC_SYNCH_HARDWARE
<< MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SHIFT;
val |= MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_TE0
<< MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_SHIFT;
break;
case MCDE_VIDEO_FORMATTER_FLOW:
case MCDE_DPI_FORMATTER_FLOW:
val = MCDE_CHNLXSYNCHMOD_SRC_SYNCH_HARDWARE
<< MCDE_CHNLXSYNCHMOD_SRC_SYNCH_SHIFT;
val |= MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_FORMATTER
<< MCDE_CHNLXSYNCHMOD_OUT_SYNCH_SRC_SHIFT;
break;
default:
dev_err(mcde->dev, "unknown flow mode %d\n",
mcde->flow_mode);
return;
}
writel(val, mcde->regs + sync);
/* Set up pixels per line and lines per frame */
val = (mode->hdisplay - 1) << MCDE_CHNLXCONF_PPL_SHIFT;
val |= (mode->vdisplay - 1) << MCDE_CHNLXCONF_LPF_SHIFT;
writel(val, mcde->regs + conf);
/*
* Normalize color conversion:
* black background, OLED conversion disable on channel
*/
val = MCDE_CHNLXSTAT_CHNLBLBCKGND_EN |
MCDE_CHNLXSTAT_CHNLRD;
writel(val, mcde->regs + stat);
writel(0, mcde->regs + bgcol);
/* Set up muxing: connect the channel to the desired FIFO */
switch (fifo) {
case MCDE_FIFO_A:
writel(MCDE_CHNLXMUXING_FIFO_ID_FIFO_A,
mcde->regs + mux);
break;
case MCDE_FIFO_B:
writel(MCDE_CHNLXMUXING_FIFO_ID_FIFO_B,
mcde->regs + mux);
break;
}
/*
* If using DPI configure the sync event.
* TODO: this is for LCD only, it does not cover TV out.
*/
if (mcde->dpi_output) {
u32 stripwidth;
stripwidth = 0xF000 / (mode->vdisplay * 4);
dev_info(mcde->dev, "stripwidth: %d\n", stripwidth);
val = MCDE_SYNCHCONF_HWREQVEVENT_ACTIVE_VIDEO |
(mode->hdisplay - 1 - stripwidth) << MCDE_SYNCHCONF_HWREQVCNT_SHIFT |
MCDE_SYNCHCONF_SWINTVEVENT_ACTIVE_VIDEO |
(mode->hdisplay - 1 - stripwidth) << MCDE_SYNCHCONF_SWINTVCNT_SHIFT;
switch (fifo) {
case MCDE_FIFO_A:
writel(val, mcde->regs + MCDE_SYNCHCONFA);
break;
case MCDE_FIFO_B:
writel(val, mcde->regs + MCDE_SYNCHCONFB);
break;
}
}
}
static void mcde_configure_fifo(struct mcde *mcde, enum mcde_fifo fifo,
enum mcde_formatter fmt,
int fifo_wtrmrk)
{
u32 val;
u32 ctrl;
u32 cr0, cr1;
switch (fifo) {
case MCDE_FIFO_A:
ctrl = MCDE_CTRLA;
cr0 = MCDE_CRA0;
cr1 = MCDE_CRA1;
break;
case MCDE_FIFO_B:
ctrl = MCDE_CTRLB;
cr0 = MCDE_CRB0;
cr1 = MCDE_CRB1;
break;
}
val = fifo_wtrmrk << MCDE_CTRLX_FIFOWTRMRK_SHIFT;
/*
* Select the formatter to use for this FIFO
*
* The register definitions imply that different IDs should be used
* by the DSI formatters depending on if they are in VID or CMD
* mode, and the manual says they are dedicated but identical.
* The vendor code uses them as it seems fit.
*/
switch (fmt) {
case MCDE_DSI_FORMATTER_0:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI0VID << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DSI_FORMATTER_1:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI0CMD << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DSI_FORMATTER_2:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI1VID << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DSI_FORMATTER_3:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI1CMD << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DSI_FORMATTER_4:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI2VID << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DSI_FORMATTER_5:
val |= MCDE_CTRLX_FORMTYPE_DSI << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DSI2CMD << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DPI_FORMATTER_0:
val |= MCDE_CTRLX_FORMTYPE_DPITV << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DPIA << MCDE_CTRLX_FORMID_SHIFT;
break;
case MCDE_DPI_FORMATTER_1:
val |= MCDE_CTRLX_FORMTYPE_DPITV << MCDE_CTRLX_FORMTYPE_SHIFT;
val |= MCDE_CTRLX_FORMID_DPIB << MCDE_CTRLX_FORMID_SHIFT;
break;
}
writel(val, mcde->regs + ctrl);
/* Blend source with Alpha 0xff on FIFO */
val = MCDE_CRX0_BLENDEN |
0xff << MCDE_CRX0_ALPHABLEND_SHIFT;
writel(val, mcde->regs + cr0);
spin_lock(&mcde->fifo_crx1_lock);
val = readl(mcde->regs + cr1);
/*
* Set-up from mcde_fmtr_dsi.c, fmtr_dsi_enable_video()
* FIXME: a different clock needs to be selected for TV out.
*/
if (mcde->dpi_output) {
struct drm_connector *connector = drm_panel_bridge_connector(mcde->bridge);
u32 bus_format;
/* Assume RGB888 24 bit if we have no further info */
if (!connector->display_info.num_bus_formats) {
dev_info(mcde->dev, "panel does not specify bus format, assume RGB888\n");
bus_format = MEDIA_BUS_FMT_RGB888_1X24;
} else {
bus_format = connector->display_info.bus_formats[0];
}
/*
* Set up the CDWIN and OUTBPP for the LCD
*
* FIXME: fill this in if you know the correspondance between the MIPI
* DPI specification and the media bus formats.
*/
val &= ~MCDE_CRX1_CDWIN_MASK;
val &= ~MCDE_CRX1_OUTBPP_MASK;
switch (bus_format) {
case MEDIA_BUS_FMT_RGB888_1X24:
val |= MCDE_CRX1_CDWIN_24BPP << MCDE_CRX1_CDWIN_SHIFT;
val |= MCDE_CRX1_OUTBPP_24BPP << MCDE_CRX1_OUTBPP_SHIFT;
break;
default:
dev_err(mcde->dev, "unknown bus format, assume RGB888\n");
val |= MCDE_CRX1_CDWIN_24BPP << MCDE_CRX1_CDWIN_SHIFT;
val |= MCDE_CRX1_OUTBPP_24BPP << MCDE_CRX1_OUTBPP_SHIFT;
break;
}
} else {
/* Use the MCDE clock for DSI */
val &= ~MCDE_CRX1_CLKSEL_MASK;
val |= MCDE_CRX1_CLKSEL_MCDECLK << MCDE_CRX1_CLKSEL_SHIFT;
}
writel(val, mcde->regs + cr1);
spin_unlock(&mcde->fifo_crx1_lock);
};
static void mcde_configure_dsi_formatter(struct mcde *mcde,
enum mcde_formatter fmt,
u32 formatter_frame,
int pkt_size)
{
u32 val;
u32 conf0;
u32 frame;
u32 pkt;
u32 sync;
u32 cmdw;
u32 delay0, delay1;
switch (fmt) {
case MCDE_DSI_FORMATTER_0:
conf0 = MCDE_DSIVID0CONF0;
frame = MCDE_DSIVID0FRAME;
pkt = MCDE_DSIVID0PKT;
sync = MCDE_DSIVID0SYNC;
cmdw = MCDE_DSIVID0CMDW;
delay0 = MCDE_DSIVID0DELAY0;
delay1 = MCDE_DSIVID0DELAY1;
break;
case MCDE_DSI_FORMATTER_1:
conf0 = MCDE_DSIVID1CONF0;
frame = MCDE_DSIVID1FRAME;
pkt = MCDE_DSIVID1PKT;
sync = MCDE_DSIVID1SYNC;
cmdw = MCDE_DSIVID1CMDW;
delay0 = MCDE_DSIVID1DELAY0;
delay1 = MCDE_DSIVID1DELAY1;
break;
case MCDE_DSI_FORMATTER_2:
conf0 = MCDE_DSIVID2CONF0;
frame = MCDE_DSIVID2FRAME;
pkt = MCDE_DSIVID2PKT;
sync = MCDE_DSIVID2SYNC;
cmdw = MCDE_DSIVID2CMDW;
delay0 = MCDE_DSIVID2DELAY0;
delay1 = MCDE_DSIVID2DELAY1;
break;
default:
dev_err(mcde->dev, "tried to configure a non-DSI formatter as DSI\n");
return;
}
/*
* Enable formatter
* 8 bit commands and DCS commands (notgen = not generic)
*/
val = MCDE_DSICONF0_CMD8 | MCDE_DSICONF0_DCSVID_NOTGEN;
if (mcde->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO)
val |= MCDE_DSICONF0_VID_MODE_VID;
switch (mcde->mdsi->format) {
case MIPI_DSI_FMT_RGB888:
val |= MCDE_DSICONF0_PACKING_RGB888 <<
MCDE_DSICONF0_PACKING_SHIFT;
break;
case MIPI_DSI_FMT_RGB666:
val |= MCDE_DSICONF0_PACKING_RGB666 <<
MCDE_DSICONF0_PACKING_SHIFT;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
dev_err(mcde->dev,
"we cannot handle the packed RGB666 format\n");
val |= MCDE_DSICONF0_PACKING_RGB666 <<
MCDE_DSICONF0_PACKING_SHIFT;
break;
case MIPI_DSI_FMT_RGB565:
val |= MCDE_DSICONF0_PACKING_RGB565 <<
MCDE_DSICONF0_PACKING_SHIFT;
break;
default:
dev_err(mcde->dev, "unknown DSI format\n");
return;
}
writel(val, mcde->regs + conf0);
writel(formatter_frame, mcde->regs + frame);
writel(pkt_size, mcde->regs + pkt);
writel(0, mcde->regs + sync);
/* Define the MIPI command: we want to write into display memory */
val = MIPI_DCS_WRITE_MEMORY_CONTINUE <<
MCDE_DSIVIDXCMDW_CMDW_CONTINUE_SHIFT;
val |= MIPI_DCS_WRITE_MEMORY_START <<
MCDE_DSIVIDXCMDW_CMDW_START_SHIFT;
writel(val, mcde->regs + cmdw);
/*
* FIXME: the vendor driver has some hack around this value in
* CMD mode with autotrig.
*/
writel(0, mcde->regs + delay0);
writel(0, mcde->regs + delay1);
}
static void mcde_enable_fifo(struct mcde *mcde, enum mcde_fifo fifo)
{
u32 val;
u32 cr;
switch (fifo) {
case MCDE_FIFO_A:
cr = MCDE_CRA0;
break;
case MCDE_FIFO_B:
cr = MCDE_CRB0;
break;
default:
dev_err(mcde->dev, "cannot enable FIFO %c\n",
'A' + fifo);
return;
}
spin_lock(&mcde->flow_lock);
val = readl(mcde->regs + cr);
val |= MCDE_CRX0_FLOEN;
writel(val, mcde->regs + cr);
mcde->flow_active++;
spin_unlock(&mcde->flow_lock);
}
static void mcde_disable_fifo(struct mcde *mcde, enum mcde_fifo fifo,
bool wait_for_drain)
{
int timeout = 100;
u32 val;
u32 cr;
switch (fifo) {
case MCDE_FIFO_A:
cr = MCDE_CRA0;
break;
case MCDE_FIFO_B:
cr = MCDE_CRB0;
break;
default:
dev_err(mcde->dev, "cannot disable FIFO %c\n",
'A' + fifo);
return;
}
spin_lock(&mcde->flow_lock);
val = readl(mcde->regs + cr);
val &= ~MCDE_CRX0_FLOEN;
writel(val, mcde->regs + cr);
mcde->flow_active = 0;
spin_unlock(&mcde->flow_lock);
if (!wait_for_drain)
return;
/* Check that we really drained and stopped the flow */
while (readl(mcde->regs + cr) & MCDE_CRX0_FLOEN) {
usleep_range(1000, 1500);
if (!--timeout) {
dev_err(mcde->dev,
"FIFO timeout while clearing FIFO %c\n",
'A' + fifo);
return;
}
}
}
/*
* This drains a pipe i.e. a FIFO connected to a certain channel
*/
static void mcde_drain_pipe(struct mcde *mcde, enum mcde_fifo fifo,
enum mcde_channel ch)
{
u32 val;
u32 ctrl;
u32 synsw;
switch (fifo) {
case MCDE_FIFO_A:
ctrl = MCDE_CTRLA;
break;
case MCDE_FIFO_B:
ctrl = MCDE_CTRLB;
break;
}
switch (ch) {
case MCDE_CHANNEL_0:
synsw = MCDE_CHNL0SYNCHSW;
break;
case MCDE_CHANNEL_1:
synsw = MCDE_CHNL1SYNCHSW;
break;
case MCDE_CHANNEL_2:
synsw = MCDE_CHNL2SYNCHSW;
break;
case MCDE_CHANNEL_3:
synsw = MCDE_CHNL3SYNCHSW;
return;
}
val = readl(mcde->regs + ctrl);
if (!(val & MCDE_CTRLX_FIFOEMPTY)) {
dev_err(mcde->dev, "Channel A FIFO not empty (handover)\n");
/* Attempt to clear the FIFO */
mcde_enable_fifo(mcde, fifo);
/* Trigger a software sync out on respective channel (0-3) */
writel(MCDE_CHNLXSYNCHSW_SW_TRIG, mcde->regs + synsw);
/* Disable FIFO A flow again */
mcde_disable_fifo(mcde, fifo, true);
}
}
static int mcde_dsi_get_pkt_div(int ppl, int fifo_size)
{
/*
* DSI command mode line packets should be split into an even number of
* packets smaller than or equal to the fifo size.
*/
int div;
const int max_div = DIV_ROUND_UP(MCDE_MAX_WIDTH, fifo_size);
for (div = 1; div < max_div; div++)
if (ppl % div == 0 && ppl / div <= fifo_size)
return div;
return 1;
}
static void mcde_setup_dpi(struct mcde *mcde, const struct drm_display_mode *mode,
int *fifo_wtrmrk_lvl)
{
struct drm_connector *connector = drm_panel_bridge_connector(mcde->bridge);
u32 hsw, hfp, hbp;
u32 vsw, vfp, vbp;
u32 val;
/* FIXME: we only support LCD, implement TV out */
hsw = mode->hsync_end - mode->hsync_start;
hfp = mode->hsync_start - mode->hdisplay;
hbp = mode->htotal - mode->hsync_end;
vsw = mode->vsync_end - mode->vsync_start;
vfp = mode->vsync_start - mode->vdisplay;
vbp = mode->vtotal - mode->vsync_end;
dev_info(mcde->dev, "output on DPI LCD from channel A\n");
/* Display actual values */
dev_info(mcde->dev, "HSW: %d, HFP: %d, HBP: %d, VSW: %d, VFP: %d, VBP: %d\n",
hsw, hfp, hbp, vsw, vfp, vbp);
/*
* The pixel fetcher is 128 64-bit words deep = 1024 bytes.
* One overlay of 32bpp (4 cpp) assumed, fetch 160 pixels.
* 160 * 4 = 640 bytes.
*/
*fifo_wtrmrk_lvl = 640;
/* Set up the main control, watermark level at 7 */
val = 7 << MCDE_CONF0_IFIFOCTRLWTRMRKLVL_SHIFT;
/*
* This sets up the internal silicon muxing of the DPI
* lines. This is how the silicon connects out to the
* external pins, then the pins need to be further
* configured into "alternate functions" using pin control
* to actually get the signals out.
*
* FIXME: this is hardcoded to the only setting found in
* the wild. If we need to use different settings for
* different DPI displays, make this parameterizable from
* the device tree.
*/
/* 24 bits DPI: connect Ch A LSB to D[0:7] */
val |= 0 << MCDE_CONF0_OUTMUX0_SHIFT;
/* 24 bits DPI: connect Ch A MID to D[8:15] */
val |= 1 << MCDE_CONF0_OUTMUX1_SHIFT;
/* Don't care about this muxing */
val |= 0 << MCDE_CONF0_OUTMUX2_SHIFT;
/* Don't care about this muxing */
val |= 0 << MCDE_CONF0_OUTMUX3_SHIFT;
/* 24 bits DPI: connect Ch A MSB to D[32:39] */
val |= 2 << MCDE_CONF0_OUTMUX4_SHIFT;
/* Syncmux bits zero: DPI channel A */
writel(val, mcde->regs + MCDE_CONF0);
/* This hammers us into LCD mode */
writel(0, mcde->regs + MCDE_TVCRA);
/* Front porch and sync width */
val = (vsw << MCDE_TVBL1_BEL1_SHIFT);
val |= (vfp << MCDE_TVBL1_BSL1_SHIFT);
writel(val, mcde->regs + MCDE_TVBL1A);
/* The vendor driver sets the same value into TVBL2A */
writel(val, mcde->regs + MCDE_TVBL2A);
/* Vertical back porch */
val = (vbp << MCDE_TVDVO_DVO1_SHIFT);
/* The vendor drivers sets the same value into TVDVOA */
val |= (vbp << MCDE_TVDVO_DVO2_SHIFT);
writel(val, mcde->regs + MCDE_TVDVOA);
/* Horizontal back porch, as 0 = 1 cycle we need to subtract 1 */
writel((hbp - 1), mcde->regs + MCDE_TVTIM1A);
/* Horizongal sync width and horizonal front porch, 0 = 1 cycle */
val = ((hsw - 1) << MCDE_TVLBALW_LBW_SHIFT);
val |= ((hfp - 1) << MCDE_TVLBALW_ALW_SHIFT);
writel(val, mcde->regs + MCDE_TVLBALWA);
/* Blank some TV registers we don't use */
writel(0, mcde->regs + MCDE_TVISLA);
writel(0, mcde->regs + MCDE_TVBLUA);
/* Set up sync inversion etc */
val = 0;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
val |= MCDE_LCDTIM1B_IHS;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
val |= MCDE_LCDTIM1B_IVS;
if (connector->display_info.bus_flags & DRM_BUS_FLAG_DE_LOW)
val |= MCDE_LCDTIM1B_IOE;
if (connector->display_info.bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE)
val |= MCDE_LCDTIM1B_IPC;
writel(val, mcde->regs + MCDE_LCDTIM1A);
}
static void mcde_setup_dsi(struct mcde *mcde, const struct drm_display_mode *mode,
int cpp, int *fifo_wtrmrk_lvl, int *dsi_formatter_frame,
int *dsi_pkt_size)
{
u32 formatter_ppl = mode->hdisplay; /* pixels per line */
u32 formatter_lpf = mode->vdisplay; /* lines per frame */
int formatter_frame;
int formatter_cpp;
int fifo_wtrmrk;
u32 pkt_div;
int pkt_size;
u32 val;
dev_info(mcde->dev, "output in %s mode, format %dbpp\n",
(mcde->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) ?
"VIDEO" : "CMD",
mipi_dsi_pixel_format_to_bpp(mcde->mdsi->format));
formatter_cpp =
mipi_dsi_pixel_format_to_bpp(mcde->mdsi->format) / 8;
dev_info(mcde->dev, "Overlay CPP: %d bytes, DSI formatter CPP %d bytes\n",
cpp, formatter_cpp);
/* Set up the main control, watermark level at 7 */
val = 7 << MCDE_CONF0_IFIFOCTRLWTRMRKLVL_SHIFT;
/*
* This is the internal silicon muxing of the DPI
* (parallell display) lines. Since we are not using
* this at all (we are using DSI) these are just
* dummy values from the vendor tree.
*/
val |= 3 << MCDE_CONF0_OUTMUX0_SHIFT;
val |= 3 << MCDE_CONF0_OUTMUX1_SHIFT;
val |= 0 << MCDE_CONF0_OUTMUX2_SHIFT;
val |= 4 << MCDE_CONF0_OUTMUX3_SHIFT;
val |= 5 << MCDE_CONF0_OUTMUX4_SHIFT;
writel(val, mcde->regs + MCDE_CONF0);
/* Calculations from mcde_fmtr_dsi.c, fmtr_dsi_enable_video() */
/*
* Set up FIFO A watermark level:
* 128 for LCD 32bpp video mode
* 48 for LCD 32bpp command mode
* 128 for LCD 16bpp video mode
* 64 for LCD 16bpp command mode
* 128 for HDMI 32bpp
* 192 for HDMI 16bpp
*/
fifo_wtrmrk = mode->hdisplay;
if (mcde->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
fifo_wtrmrk = min(fifo_wtrmrk, 128);
pkt_div = 1;
} else {
fifo_wtrmrk = min(fifo_wtrmrk, 48);
/* The FIFO is 640 entries deep on this v3 hardware */
pkt_div = mcde_dsi_get_pkt_div(mode->hdisplay, 640);
}
dev_dbg(mcde->dev, "FIFO watermark after flooring: %d bytes\n",
fifo_wtrmrk);
dev_dbg(mcde->dev, "Packet divisor: %d bytes\n", pkt_div);
/* NOTE: pkt_div is 1 for video mode */
pkt_size = (formatter_ppl * formatter_cpp) / pkt_div;
/* Commands CMD8 need one extra byte */
if (!(mcde->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO))
pkt_size++;
dev_dbg(mcde->dev, "DSI packet size: %d * %d bytes per line\n",
pkt_size, pkt_div);
dev_dbg(mcde->dev, "Overlay frame size: %u bytes\n",
mode->hdisplay * mode->vdisplay * cpp);
/* NOTE: pkt_div is 1 for video mode */
formatter_frame = pkt_size * pkt_div * formatter_lpf;
dev_dbg(mcde->dev, "Formatter frame size: %u bytes\n", formatter_frame);
*fifo_wtrmrk_lvl = fifo_wtrmrk;
*dsi_pkt_size = pkt_size;
*dsi_formatter_frame = formatter_frame;
}
static void mcde_display_enable(struct drm_simple_display_pipe *pipe,
struct drm_crtc_state *cstate,
struct drm_plane_state *plane_state)
{
struct drm_crtc *crtc = &pipe->crtc;
struct drm_plane *plane = &pipe->plane;
struct drm_device *drm = crtc->dev;
struct mcde *mcde = to_mcde(drm);
const struct drm_display_mode *mode = &cstate->mode;
struct drm_framebuffer *fb = plane->state->fb;
u32 format = fb->format->format;
int dsi_pkt_size;
int fifo_wtrmrk;
int cpp = fb->format->cpp[0];
u32 dsi_formatter_frame;
u32 val;
int ret;
/* This powers up the entire MCDE block and the DSI hardware */
ret = regulator_enable(mcde->epod);
if (ret) {
dev_err(drm->dev, "can't re-enable EPOD regulator\n");
return;
}
dev_info(drm->dev, "enable MCDE, %d x %d format %p4cc\n",
mode->hdisplay, mode->vdisplay, &format);
/* Clear any pending interrupts */
mcde_display_disable_irqs(mcde);
writel(0, mcde->regs + MCDE_IMSCERR);
writel(0xFFFFFFFF, mcde->regs + MCDE_RISERR);
if (mcde->dpi_output)
mcde_setup_dpi(mcde, mode, &fifo_wtrmrk);
else
mcde_setup_dsi(mcde, mode, cpp, &fifo_wtrmrk,
&dsi_formatter_frame, &dsi_pkt_size);
mcde->stride = mode->hdisplay * cpp;
dev_dbg(drm->dev, "Overlay line stride: %u bytes\n",
mcde->stride);
/* Drain the FIFO A + channel 0 pipe so we have a clean slate */
mcde_drain_pipe(mcde, MCDE_FIFO_A, MCDE_CHANNEL_0);
/*
* We set up our display pipeline:
* EXTSRC 0 -> OVERLAY 0 -> CHANNEL 0 -> FIFO A -> DSI FORMATTER 0
*
* First configure the external source (memory) on external source 0
* using the desired bitstream/bitmap format
*/
mcde_configure_extsrc(mcde, MCDE_EXTSRC_0, format);
/*
* Configure overlay 0 according to format and mode and take input
* from external source 0 and route the output of this overlay to
* channel 0
*/
mcde_configure_overlay(mcde, MCDE_OVERLAY_0, MCDE_EXTSRC_0,
MCDE_CHANNEL_0, mode, format, cpp);
/*
* Configure pixel-per-line and line-per-frame for channel 0 and then
* route channel 0 to FIFO A
*/
mcde_configure_channel(mcde, MCDE_CHANNEL_0, MCDE_FIFO_A, mode);
if (mcde->dpi_output) {
unsigned long lcd_freq;
/* Configure FIFO A to use DPI formatter 0 */
mcde_configure_fifo(mcde, MCDE_FIFO_A, MCDE_DPI_FORMATTER_0,
fifo_wtrmrk);
/* Set up and enable the LCD clock */
lcd_freq = clk_round_rate(mcde->fifoa_clk, mode->clock * 1000);
ret = clk_set_rate(mcde->fifoa_clk, lcd_freq);
if (ret)
dev_err(mcde->dev, "failed to set LCD clock rate %lu Hz\n",
lcd_freq);
ret = clk_prepare_enable(mcde->fifoa_clk);
if (ret) {
dev_err(mcde->dev, "failed to enable FIFO A DPI clock\n");
return;
}
dev_info(mcde->dev, "LCD FIFO A clk rate %lu Hz\n",
clk_get_rate(mcde->fifoa_clk));
} else {
/* Configure FIFO A to use DSI formatter 0 */
mcde_configure_fifo(mcde, MCDE_FIFO_A, MCDE_DSI_FORMATTER_0,
fifo_wtrmrk);
/*
* This brings up the DSI bridge which is tightly connected
* to the MCDE DSI formatter.
*/
mcde_dsi_enable(mcde->bridge);
/* Configure the DSI formatter 0 for the DSI panel output */
mcde_configure_dsi_formatter(mcde, MCDE_DSI_FORMATTER_0,
dsi_formatter_frame, dsi_pkt_size);
}
switch (mcde->flow_mode) {
case MCDE_COMMAND_TE_FLOW:
case MCDE_COMMAND_BTA_TE_FLOW:
case MCDE_VIDEO_TE_FLOW:
/* We are using TE in some combination */
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
val = MCDE_VSCRC_VSPOL;
else
val = 0;
writel(val, mcde->regs + MCDE_VSCRC0);
/* Enable VSYNC capture on TE0 */
val = readl(mcde->regs + MCDE_CRC);
val |= MCDE_CRC_SYCEN0;
writel(val, mcde->regs + MCDE_CRC);
break;
default:
/* No TE capture */
break;
}
drm_crtc_vblank_on(crtc);
/*
* If we're using oneshot mode we don't start the flow
* until each time the display is given an update, and
* then we disable it immediately after. For all other
* modes (command or video) we start the FIFO flow
* right here. This is necessary for the hardware to
* behave right.
*/
if (mcde->flow_mode != MCDE_COMMAND_ONESHOT_FLOW) {
mcde_enable_fifo(mcde, MCDE_FIFO_A);
dev_dbg(mcde->dev, "started MCDE video FIFO flow\n");
}
/* Enable MCDE with automatic clock gating */
val = readl(mcde->regs + MCDE_CR);
val |= MCDE_CR_MCDEEN | MCDE_CR_AUTOCLKG_EN;
writel(val, mcde->regs + MCDE_CR);
dev_info(drm->dev, "MCDE display is enabled\n");
}
static void mcde_display_disable(struct drm_simple_display_pipe *pipe)
{
struct drm_crtc *crtc = &pipe->crtc;
struct drm_device *drm = crtc->dev;
struct mcde *mcde = to_mcde(drm);
struct drm_pending_vblank_event *event;
int ret;
drm_crtc_vblank_off(crtc);
/* Disable FIFO A flow */
mcde_disable_fifo(mcde, MCDE_FIFO_A, true);
if (mcde->dpi_output) {
clk_disable_unprepare(mcde->fifoa_clk);
} else {
/* This disables the DSI bridge */
mcde_dsi_disable(mcde->bridge);
}
event = crtc->state->event;
if (event) {
crtc->state->event = NULL;
spin_lock_irq(&crtc->dev->event_lock);
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irq(&crtc->dev->event_lock);
}
ret = regulator_disable(mcde->epod);
if (ret)
dev_err(drm->dev, "can't disable EPOD regulator\n");
/* Make sure we are powered down (before we may power up again) */
usleep_range(50000, 70000);
dev_info(drm->dev, "MCDE display is disabled\n");
}
static void mcde_start_flow(struct mcde *mcde)
{
/* Request a TE ACK only in TE+BTA mode */
if (mcde->flow_mode == MCDE_COMMAND_BTA_TE_FLOW)
mcde_dsi_te_request(mcde->mdsi);
/* Enable FIFO A flow */
mcde_enable_fifo(mcde, MCDE_FIFO_A);
/*
* If oneshot mode is enabled, the flow will be disabled
* when the TE0 IRQ arrives in the interrupt handler. Otherwise
* updates are continuously streamed to the display after this
* point.
*/
if (mcde->flow_mode == MCDE_COMMAND_ONESHOT_FLOW) {
/* Trigger a software sync out on channel 0 */
writel(MCDE_CHNLXSYNCHSW_SW_TRIG,
mcde->regs + MCDE_CHNL0SYNCHSW);
/*
* Disable FIFO A flow again: since we are using TE sync we
* need to wait for the FIFO to drain before we continue
* so repeated calls to this function will not cause a mess
* in the hardware by pushing updates will updates are going
* on already.
*/
mcde_disable_fifo(mcde, MCDE_FIFO_A, true);
}
dev_dbg(mcde->dev, "started MCDE FIFO flow\n");
}
static void mcde_set_extsrc(struct mcde *mcde, u32 buffer_address)
{
/* Write bitmap base address to register */
writel(buffer_address, mcde->regs + MCDE_EXTSRCXA0);
/*
* Base address for next line this is probably only used
* in interlace modes.
*/
writel(buffer_address + mcde->stride, mcde->regs + MCDE_EXTSRCXA1);
}
static void mcde_display_update(struct drm_simple_display_pipe *pipe,
struct drm_plane_state *old_pstate)
{
struct drm_crtc *crtc = &pipe->crtc;
struct drm_device *drm = crtc->dev;
struct mcde *mcde = to_mcde(drm);
struct drm_pending_vblank_event *event = crtc->state->event;
struct drm_plane *plane = &pipe->plane;
struct drm_plane_state *pstate = plane->state;
struct drm_framebuffer *fb = pstate->fb;
/*
* Handle any pending event first, we need to arm the vblank
* interrupt before sending any update to the display so we don't
* miss the interrupt.
*/
if (event) {
crtc->state->event = NULL;
spin_lock_irq(&crtc->dev->event_lock);
/*
* Hardware must be on before we can arm any vblank event,
* this is not a scanout controller where there is always
* some periodic update going on, it is completely frozen
* until we get an update. If MCDE output isn't yet enabled,
* we just send a vblank dummy event back.
*/
if (crtc->state->active && drm_crtc_vblank_get(crtc) == 0) {
dev_dbg(mcde->dev, "arm vblank event\n");
drm_crtc_arm_vblank_event(crtc, event);
} else {
dev_dbg(mcde->dev, "insert fake vblank event\n");
drm_crtc_send_vblank_event(crtc, event);
}
spin_unlock_irq(&crtc->dev->event_lock);
}
/*
* We do not start sending framebuffer updates before the
* display is enabled. Update events will however be dispatched
* from the DRM core before the display is enabled.
*/
if (fb) {
mcde_set_extsrc(mcde, drm_fb_dma_get_gem_addr(fb, pstate, 0));
dev_info_once(mcde->dev, "first update of display contents\n");
/*
* Usually the flow is already active, unless we are in
* oneshot mode, then we need to kick the flow right here.
*/
if (mcde->flow_active == 0)
mcde_start_flow(mcde);
} else {
/*
* If an update is receieved before the MCDE is enabled
* (before mcde_display_enable() is called) we can't really
* do much with that buffer.
*/
dev_info(mcde->dev, "ignored a display update\n");
}
}
static int mcde_display_enable_vblank(struct drm_simple_display_pipe *pipe)
{
struct drm_crtc *crtc = &pipe->crtc;
struct drm_device *drm = crtc->dev;
struct mcde *mcde = to_mcde(drm);
u32 val;
/* Enable all VBLANK IRQs */
val = MCDE_PP_VCMPA |
MCDE_PP_VCMPB |
MCDE_PP_VSCC0 |
MCDE_PP_VSCC1 |
MCDE_PP_VCMPC0 |
MCDE_PP_VCMPC1;
writel(val, mcde->regs + MCDE_IMSCPP);
return 0;
}
static void mcde_display_disable_vblank(struct drm_simple_display_pipe *pipe)
{
struct drm_crtc *crtc = &pipe->crtc;
struct drm_device *drm = crtc->dev;
struct mcde *mcde = to_mcde(drm);
/* Disable all VBLANK IRQs */
writel(0, mcde->regs + MCDE_IMSCPP);
/* Clear any pending IRQs */
writel(0xFFFFFFFF, mcde->regs + MCDE_RISPP);
}
static struct drm_simple_display_pipe_funcs mcde_display_funcs = {
.check = mcde_display_check,
.enable = mcde_display_enable,
.disable = mcde_display_disable,
.update = mcde_display_update,
.enable_vblank = mcde_display_enable_vblank,
.disable_vblank = mcde_display_disable_vblank,
};
int mcde_display_init(struct drm_device *drm)
{
struct mcde *mcde = to_mcde(drm);
int ret;
static const u32 formats[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_RGB888,
DRM_FORMAT_BGR888,
DRM_FORMAT_ARGB4444,
DRM_FORMAT_ABGR4444,
DRM_FORMAT_XRGB4444,
DRM_FORMAT_XBGR4444,
/* These are actually IRGB1555 so intensity bit is lost */
DRM_FORMAT_XRGB1555,
DRM_FORMAT_XBGR1555,
DRM_FORMAT_RGB565,
DRM_FORMAT_BGR565,
DRM_FORMAT_YUV422,
};
ret = mcde_init_clock_divider(mcde);
if (ret)
return ret;
ret = drm_simple_display_pipe_init(drm, &mcde->pipe,
&mcde_display_funcs,
formats, ARRAY_SIZE(formats),
NULL,
mcde->connector);
if (ret)
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(mcde_display_init);