|  | /* | 
|  | * linux/net/sunrpc/sched.c | 
|  | * | 
|  | * Scheduling for synchronous and asynchronous RPC requests. | 
|  | * | 
|  | * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> | 
|  | * | 
|  | * TCP NFS related read + write fixes | 
|  | * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/freezer.h> | 
|  |  | 
|  | #include <linux/sunrpc/clnt.h> | 
|  |  | 
|  | #include "sunrpc.h" | 
|  |  | 
|  | #ifdef RPC_DEBUG | 
|  | #define RPCDBG_FACILITY		RPCDBG_SCHED | 
|  | #endif | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/sunrpc.h> | 
|  |  | 
|  | /* | 
|  | * RPC slabs and memory pools | 
|  | */ | 
|  | #define RPC_BUFFER_MAXSIZE	(2048) | 
|  | #define RPC_BUFFER_POOLSIZE	(8) | 
|  | #define RPC_TASK_POOLSIZE	(8) | 
|  | static struct kmem_cache	*rpc_task_slabp __read_mostly; | 
|  | static struct kmem_cache	*rpc_buffer_slabp __read_mostly; | 
|  | static mempool_t	*rpc_task_mempool __read_mostly; | 
|  | static mempool_t	*rpc_buffer_mempool __read_mostly; | 
|  |  | 
|  | static void			rpc_async_schedule(struct work_struct *); | 
|  | static void			 rpc_release_task(struct rpc_task *task); | 
|  | static void __rpc_queue_timer_fn(unsigned long ptr); | 
|  |  | 
|  | /* | 
|  | * RPC tasks sit here while waiting for conditions to improve. | 
|  | */ | 
|  | static struct rpc_wait_queue delay_queue; | 
|  |  | 
|  | /* | 
|  | * rpciod-related stuff | 
|  | */ | 
|  | struct workqueue_struct *rpciod_workqueue; | 
|  |  | 
|  | /* | 
|  | * Disable the timer for a given RPC task. Should be called with | 
|  | * queue->lock and bh_disabled in order to avoid races within | 
|  | * rpc_run_timer(). | 
|  | */ | 
|  | static void | 
|  | __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | if (task->tk_timeout == 0) | 
|  | return; | 
|  | dprintk("RPC: %5u disabling timer\n", task->tk_pid); | 
|  | task->tk_timeout = 0; | 
|  | list_del(&task->u.tk_wait.timer_list); | 
|  | if (list_empty(&queue->timer_list.list)) | 
|  | del_timer(&queue->timer_list.timer); | 
|  | } | 
|  |  | 
|  | static void | 
|  | rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) | 
|  | { | 
|  | queue->timer_list.expires = expires; | 
|  | mod_timer(&queue->timer_list.timer, expires); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up a timer for the current task. | 
|  | */ | 
|  | static void | 
|  | __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | if (!task->tk_timeout) | 
|  | return; | 
|  |  | 
|  | dprintk("RPC: %5u setting alarm for %lu ms\n", | 
|  | task->tk_pid, task->tk_timeout * 1000 / HZ); | 
|  |  | 
|  | task->u.tk_wait.expires = jiffies + task->tk_timeout; | 
|  | if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) | 
|  | rpc_set_queue_timer(queue, task->u.tk_wait.expires); | 
|  | list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); | 
|  | } | 
|  |  | 
|  | static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) | 
|  | { | 
|  | struct list_head *q = &queue->tasks[queue->priority]; | 
|  | struct rpc_task *task; | 
|  |  | 
|  | if (!list_empty(q)) { | 
|  | task = list_first_entry(q, struct rpc_task, u.tk_wait.list); | 
|  | if (task->tk_owner == queue->owner) | 
|  | list_move_tail(&task->u.tk_wait.list, q); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) | 
|  | { | 
|  | if (queue->priority != priority) { | 
|  | /* Fairness: rotate the list when changing priority */ | 
|  | rpc_rotate_queue_owner(queue); | 
|  | queue->priority = priority; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) | 
|  | { | 
|  | queue->owner = pid; | 
|  | queue->nr = RPC_BATCH_COUNT; | 
|  | } | 
|  |  | 
|  | static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) | 
|  | { | 
|  | rpc_set_waitqueue_priority(queue, queue->maxpriority); | 
|  | rpc_set_waitqueue_owner(queue, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add new request to a priority queue. | 
|  | */ | 
|  | static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, | 
|  | struct rpc_task *task, | 
|  | unsigned char queue_priority) | 
|  | { | 
|  | struct list_head *q; | 
|  | struct rpc_task *t; | 
|  |  | 
|  | INIT_LIST_HEAD(&task->u.tk_wait.links); | 
|  | if (unlikely(queue_priority > queue->maxpriority)) | 
|  | queue_priority = queue->maxpriority; | 
|  | if (queue_priority > queue->priority) | 
|  | rpc_set_waitqueue_priority(queue, queue_priority); | 
|  | q = &queue->tasks[queue_priority]; | 
|  | list_for_each_entry(t, q, u.tk_wait.list) { | 
|  | if (t->tk_owner == task->tk_owner) { | 
|  | list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); | 
|  | return; | 
|  | } | 
|  | } | 
|  | list_add_tail(&task->u.tk_wait.list, q); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add new request to wait queue. | 
|  | * | 
|  | * Swapper tasks always get inserted at the head of the queue. | 
|  | * This should avoid many nasty memory deadlocks and hopefully | 
|  | * improve overall performance. | 
|  | * Everyone else gets appended to the queue to ensure proper FIFO behavior. | 
|  | */ | 
|  | static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, | 
|  | struct rpc_task *task, | 
|  | unsigned char queue_priority) | 
|  | { | 
|  | WARN_ON_ONCE(RPC_IS_QUEUED(task)); | 
|  | if (RPC_IS_QUEUED(task)) | 
|  | return; | 
|  |  | 
|  | if (RPC_IS_PRIORITY(queue)) | 
|  | __rpc_add_wait_queue_priority(queue, task, queue_priority); | 
|  | else if (RPC_IS_SWAPPER(task)) | 
|  | list_add(&task->u.tk_wait.list, &queue->tasks[0]); | 
|  | else | 
|  | list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); | 
|  | task->tk_waitqueue = queue; | 
|  | queue->qlen++; | 
|  | /* barrier matches the read in rpc_wake_up_task_queue_locked() */ | 
|  | smp_wmb(); | 
|  | rpc_set_queued(task); | 
|  |  | 
|  | dprintk("RPC: %5u added to queue %p \"%s\"\n", | 
|  | task->tk_pid, queue, rpc_qname(queue)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove request from a priority queue. | 
|  | */ | 
|  | static void __rpc_remove_wait_queue_priority(struct rpc_task *task) | 
|  | { | 
|  | struct rpc_task *t; | 
|  |  | 
|  | if (!list_empty(&task->u.tk_wait.links)) { | 
|  | t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); | 
|  | list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); | 
|  | list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove request from queue. | 
|  | * Note: must be called with spin lock held. | 
|  | */ | 
|  | static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | __rpc_disable_timer(queue, task); | 
|  | if (RPC_IS_PRIORITY(queue)) | 
|  | __rpc_remove_wait_queue_priority(task); | 
|  | list_del(&task->u.tk_wait.list); | 
|  | queue->qlen--; | 
|  | dprintk("RPC: %5u removed from queue %p \"%s\"\n", | 
|  | task->tk_pid, queue, rpc_qname(queue)); | 
|  | } | 
|  |  | 
|  | static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | spin_lock_init(&queue->lock); | 
|  | for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) | 
|  | INIT_LIST_HEAD(&queue->tasks[i]); | 
|  | queue->maxpriority = nr_queues - 1; | 
|  | rpc_reset_waitqueue_priority(queue); | 
|  | queue->qlen = 0; | 
|  | setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); | 
|  | INIT_LIST_HEAD(&queue->timer_list.list); | 
|  | rpc_assign_waitqueue_name(queue, qname); | 
|  | } | 
|  |  | 
|  | void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) | 
|  | { | 
|  | __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); | 
|  |  | 
|  | void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) | 
|  | { | 
|  | __rpc_init_priority_wait_queue(queue, qname, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_init_wait_queue); | 
|  |  | 
|  | void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) | 
|  | { | 
|  | del_timer_sync(&queue->timer_list.timer); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); | 
|  |  | 
|  | static int rpc_wait_bit_killable(struct wait_bit_key *key) | 
|  | { | 
|  | if (fatal_signal_pending(current)) | 
|  | return -ERESTARTSYS; | 
|  | freezable_schedule_unsafe(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(RPC_DEBUG) || defined(RPC_TRACEPOINTS) | 
|  | static void rpc_task_set_debuginfo(struct rpc_task *task) | 
|  | { | 
|  | static atomic_t rpc_pid; | 
|  |  | 
|  | task->tk_pid = atomic_inc_return(&rpc_pid); | 
|  | } | 
|  | #else | 
|  | static inline void rpc_task_set_debuginfo(struct rpc_task *task) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void rpc_set_active(struct rpc_task *task) | 
|  | { | 
|  | trace_rpc_task_begin(task->tk_client, task, NULL); | 
|  |  | 
|  | rpc_task_set_debuginfo(task); | 
|  | set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark an RPC call as having completed by clearing the 'active' bit | 
|  | * and then waking up all tasks that were sleeping. | 
|  | */ | 
|  | static int rpc_complete_task(struct rpc_task *task) | 
|  | { | 
|  | void *m = &task->tk_runstate; | 
|  | wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); | 
|  | struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | trace_rpc_task_complete(task->tk_client, task, NULL); | 
|  |  | 
|  | spin_lock_irqsave(&wq->lock, flags); | 
|  | clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); | 
|  | ret = atomic_dec_and_test(&task->tk_count); | 
|  | if (waitqueue_active(wq)) | 
|  | __wake_up_locked_key(wq, TASK_NORMAL, &k); | 
|  | spin_unlock_irqrestore(&wq->lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow callers to wait for completion of an RPC call | 
|  | * | 
|  | * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() | 
|  | * to enforce taking of the wq->lock and hence avoid races with | 
|  | * rpc_complete_task(). | 
|  | */ | 
|  | int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) | 
|  | { | 
|  | if (action == NULL) | 
|  | action = rpc_wait_bit_killable; | 
|  | return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, | 
|  | action, TASK_KILLABLE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); | 
|  |  | 
|  | /* | 
|  | * Make an RPC task runnable. | 
|  | * | 
|  | * Note: If the task is ASYNC, and is being made runnable after sitting on an | 
|  | * rpc_wait_queue, this must be called with the queue spinlock held to protect | 
|  | * the wait queue operation. | 
|  | * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), | 
|  | * which is needed to ensure that __rpc_execute() doesn't loop (due to the | 
|  | * lockless RPC_IS_QUEUED() test) before we've had a chance to test | 
|  | * the RPC_TASK_RUNNING flag. | 
|  | */ | 
|  | static void rpc_make_runnable(struct rpc_task *task) | 
|  | { | 
|  | bool need_wakeup = !rpc_test_and_set_running(task); | 
|  |  | 
|  | rpc_clear_queued(task); | 
|  | if (!need_wakeup) | 
|  | return; | 
|  | if (RPC_IS_ASYNC(task)) { | 
|  | INIT_WORK(&task->u.tk_work, rpc_async_schedule); | 
|  | queue_work(rpciod_workqueue, &task->u.tk_work); | 
|  | } else | 
|  | wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for sleeping on a wait queue. | 
|  | * By always appending tasks to the list we ensure FIFO behavior. | 
|  | * NB: An RPC task will only receive interrupt-driven events as long | 
|  | * as it's on a wait queue. | 
|  | */ | 
|  | static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, | 
|  | struct rpc_task *task, | 
|  | rpc_action action, | 
|  | unsigned char queue_priority) | 
|  | { | 
|  | dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", | 
|  | task->tk_pid, rpc_qname(q), jiffies); | 
|  |  | 
|  | trace_rpc_task_sleep(task->tk_client, task, q); | 
|  |  | 
|  | __rpc_add_wait_queue(q, task, queue_priority); | 
|  |  | 
|  | WARN_ON_ONCE(task->tk_callback != NULL); | 
|  | task->tk_callback = action; | 
|  | __rpc_add_timer(q, task); | 
|  | } | 
|  |  | 
|  | void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, | 
|  | rpc_action action) | 
|  | { | 
|  | /* We shouldn't ever put an inactive task to sleep */ | 
|  | WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); | 
|  | if (!RPC_IS_ACTIVATED(task)) { | 
|  | task->tk_status = -EIO; | 
|  | rpc_put_task_async(task); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Protect the queue operations. | 
|  | */ | 
|  | spin_lock_bh(&q->lock); | 
|  | __rpc_sleep_on_priority(q, task, action, task->tk_priority); | 
|  | spin_unlock_bh(&q->lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_sleep_on); | 
|  |  | 
|  | void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, | 
|  | rpc_action action, int priority) | 
|  | { | 
|  | /* We shouldn't ever put an inactive task to sleep */ | 
|  | WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); | 
|  | if (!RPC_IS_ACTIVATED(task)) { | 
|  | task->tk_status = -EIO; | 
|  | rpc_put_task_async(task); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Protect the queue operations. | 
|  | */ | 
|  | spin_lock_bh(&q->lock); | 
|  | __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); | 
|  | spin_unlock_bh(&q->lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); | 
|  |  | 
|  | /** | 
|  | * __rpc_do_wake_up_task - wake up a single rpc_task | 
|  | * @queue: wait queue | 
|  | * @task: task to be woken up | 
|  | * | 
|  | * Caller must hold queue->lock, and have cleared the task queued flag. | 
|  | */ | 
|  | static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", | 
|  | task->tk_pid, jiffies); | 
|  |  | 
|  | /* Has the task been executed yet? If not, we cannot wake it up! */ | 
|  | if (!RPC_IS_ACTIVATED(task)) { | 
|  | printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_rpc_task_wakeup(task->tk_client, task, queue); | 
|  |  | 
|  | __rpc_remove_wait_queue(queue, task); | 
|  |  | 
|  | rpc_make_runnable(task); | 
|  |  | 
|  | dprintk("RPC:       __rpc_wake_up_task done\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up a queued task while the queue lock is being held | 
|  | */ | 
|  | static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | if (RPC_IS_QUEUED(task)) { | 
|  | smp_rmb(); | 
|  | if (task->tk_waitqueue == queue) | 
|  | __rpc_do_wake_up_task(queue, task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up a task on a specific queue | 
|  | */ | 
|  | void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) | 
|  | { | 
|  | spin_lock_bh(&queue->lock); | 
|  | rpc_wake_up_task_queue_locked(queue, task); | 
|  | spin_unlock_bh(&queue->lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); | 
|  |  | 
|  | /* | 
|  | * Wake up the next task on a priority queue. | 
|  | */ | 
|  | static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) | 
|  | { | 
|  | struct list_head *q; | 
|  | struct rpc_task *task; | 
|  |  | 
|  | /* | 
|  | * Service a batch of tasks from a single owner. | 
|  | */ | 
|  | q = &queue->tasks[queue->priority]; | 
|  | if (!list_empty(q)) { | 
|  | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); | 
|  | if (queue->owner == task->tk_owner) { | 
|  | if (--queue->nr) | 
|  | goto out; | 
|  | list_move_tail(&task->u.tk_wait.list, q); | 
|  | } | 
|  | /* | 
|  | * Check if we need to switch queues. | 
|  | */ | 
|  | goto new_owner; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Service the next queue. | 
|  | */ | 
|  | do { | 
|  | if (q == &queue->tasks[0]) | 
|  | q = &queue->tasks[queue->maxpriority]; | 
|  | else | 
|  | q = q - 1; | 
|  | if (!list_empty(q)) { | 
|  | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); | 
|  | goto new_queue; | 
|  | } | 
|  | } while (q != &queue->tasks[queue->priority]); | 
|  |  | 
|  | rpc_reset_waitqueue_priority(queue); | 
|  | return NULL; | 
|  |  | 
|  | new_queue: | 
|  | rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); | 
|  | new_owner: | 
|  | rpc_set_waitqueue_owner(queue, task->tk_owner); | 
|  | out: | 
|  | return task; | 
|  | } | 
|  |  | 
|  | static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) | 
|  | { | 
|  | if (RPC_IS_PRIORITY(queue)) | 
|  | return __rpc_find_next_queued_priority(queue); | 
|  | if (!list_empty(&queue->tasks[0])) | 
|  | return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up the first task on the wait queue. | 
|  | */ | 
|  | struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, | 
|  | bool (*func)(struct rpc_task *, void *), void *data) | 
|  | { | 
|  | struct rpc_task	*task = NULL; | 
|  |  | 
|  | dprintk("RPC:       wake_up_first(%p \"%s\")\n", | 
|  | queue, rpc_qname(queue)); | 
|  | spin_lock_bh(&queue->lock); | 
|  | task = __rpc_find_next_queued(queue); | 
|  | if (task != NULL) { | 
|  | if (func(task, data)) | 
|  | rpc_wake_up_task_queue_locked(queue, task); | 
|  | else | 
|  | task = NULL; | 
|  | } | 
|  | spin_unlock_bh(&queue->lock); | 
|  |  | 
|  | return task; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_wake_up_first); | 
|  |  | 
|  | static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wake up the next task on the wait queue. | 
|  | */ | 
|  | struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) | 
|  | { | 
|  | return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_wake_up_next); | 
|  |  | 
|  | /** | 
|  | * rpc_wake_up - wake up all rpc_tasks | 
|  | * @queue: rpc_wait_queue on which the tasks are sleeping | 
|  | * | 
|  | * Grabs queue->lock | 
|  | */ | 
|  | void rpc_wake_up(struct rpc_wait_queue *queue) | 
|  | { | 
|  | struct list_head *head; | 
|  |  | 
|  | spin_lock_bh(&queue->lock); | 
|  | head = &queue->tasks[queue->maxpriority]; | 
|  | for (;;) { | 
|  | while (!list_empty(head)) { | 
|  | struct rpc_task *task; | 
|  | task = list_first_entry(head, | 
|  | struct rpc_task, | 
|  | u.tk_wait.list); | 
|  | rpc_wake_up_task_queue_locked(queue, task); | 
|  | } | 
|  | if (head == &queue->tasks[0]) | 
|  | break; | 
|  | head--; | 
|  | } | 
|  | spin_unlock_bh(&queue->lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_wake_up); | 
|  |  | 
|  | /** | 
|  | * rpc_wake_up_status - wake up all rpc_tasks and set their status value. | 
|  | * @queue: rpc_wait_queue on which the tasks are sleeping | 
|  | * @status: status value to set | 
|  | * | 
|  | * Grabs queue->lock | 
|  | */ | 
|  | void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) | 
|  | { | 
|  | struct list_head *head; | 
|  |  | 
|  | spin_lock_bh(&queue->lock); | 
|  | head = &queue->tasks[queue->maxpriority]; | 
|  | for (;;) { | 
|  | while (!list_empty(head)) { | 
|  | struct rpc_task *task; | 
|  | task = list_first_entry(head, | 
|  | struct rpc_task, | 
|  | u.tk_wait.list); | 
|  | task->tk_status = status; | 
|  | rpc_wake_up_task_queue_locked(queue, task); | 
|  | } | 
|  | if (head == &queue->tasks[0]) | 
|  | break; | 
|  | head--; | 
|  | } | 
|  | spin_unlock_bh(&queue->lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_wake_up_status); | 
|  |  | 
|  | static void __rpc_queue_timer_fn(unsigned long ptr) | 
|  | { | 
|  | struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; | 
|  | struct rpc_task *task, *n; | 
|  | unsigned long expires, now, timeo; | 
|  |  | 
|  | spin_lock(&queue->lock); | 
|  | expires = now = jiffies; | 
|  | list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { | 
|  | timeo = task->u.tk_wait.expires; | 
|  | if (time_after_eq(now, timeo)) { | 
|  | dprintk("RPC: %5u timeout\n", task->tk_pid); | 
|  | task->tk_status = -ETIMEDOUT; | 
|  | rpc_wake_up_task_queue_locked(queue, task); | 
|  | continue; | 
|  | } | 
|  | if (expires == now || time_after(expires, timeo)) | 
|  | expires = timeo; | 
|  | } | 
|  | if (!list_empty(&queue->timer_list.list)) | 
|  | rpc_set_queue_timer(queue, expires); | 
|  | spin_unlock(&queue->lock); | 
|  | } | 
|  |  | 
|  | static void __rpc_atrun(struct rpc_task *task) | 
|  | { | 
|  | if (task->tk_status == -ETIMEDOUT) | 
|  | task->tk_status = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run a task at a later time | 
|  | */ | 
|  | void rpc_delay(struct rpc_task *task, unsigned long delay) | 
|  | { | 
|  | task->tk_timeout = delay; | 
|  | rpc_sleep_on(&delay_queue, task, __rpc_atrun); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_delay); | 
|  |  | 
|  | /* | 
|  | * Helper to call task->tk_ops->rpc_call_prepare | 
|  | */ | 
|  | void rpc_prepare_task(struct rpc_task *task) | 
|  | { | 
|  | task->tk_ops->rpc_call_prepare(task, task->tk_calldata); | 
|  | } | 
|  |  | 
|  | static void | 
|  | rpc_init_task_statistics(struct rpc_task *task) | 
|  | { | 
|  | /* Initialize retry counters */ | 
|  | task->tk_garb_retry = 2; | 
|  | task->tk_cred_retry = 2; | 
|  | task->tk_rebind_retry = 2; | 
|  |  | 
|  | /* starting timestamp */ | 
|  | task->tk_start = ktime_get(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | rpc_reset_task_statistics(struct rpc_task *task) | 
|  | { | 
|  | task->tk_timeouts = 0; | 
|  | task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); | 
|  |  | 
|  | rpc_init_task_statistics(task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper that calls task->tk_ops->rpc_call_done if it exists | 
|  | */ | 
|  | void rpc_exit_task(struct rpc_task *task) | 
|  | { | 
|  | task->tk_action = NULL; | 
|  | if (task->tk_ops->rpc_call_done != NULL) { | 
|  | task->tk_ops->rpc_call_done(task, task->tk_calldata); | 
|  | if (task->tk_action != NULL) { | 
|  | WARN_ON(RPC_ASSASSINATED(task)); | 
|  | /* Always release the RPC slot and buffer memory */ | 
|  | xprt_release(task); | 
|  | rpc_reset_task_statistics(task); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void rpc_exit(struct rpc_task *task, int status) | 
|  | { | 
|  | task->tk_status = status; | 
|  | task->tk_action = rpc_exit_task; | 
|  | if (RPC_IS_QUEUED(task)) | 
|  | rpc_wake_up_queued_task(task->tk_waitqueue, task); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_exit); | 
|  |  | 
|  | void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) | 
|  | { | 
|  | if (ops->rpc_release != NULL) | 
|  | ops->rpc_release(calldata); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the RPC `scheduler' (or rather, the finite state machine). | 
|  | */ | 
|  | static void __rpc_execute(struct rpc_task *task) | 
|  | { | 
|  | struct rpc_wait_queue *queue; | 
|  | int task_is_async = RPC_IS_ASYNC(task); | 
|  | int status = 0; | 
|  |  | 
|  | dprintk("RPC: %5u __rpc_execute flags=0x%x\n", | 
|  | task->tk_pid, task->tk_flags); | 
|  |  | 
|  | WARN_ON_ONCE(RPC_IS_QUEUED(task)); | 
|  | if (RPC_IS_QUEUED(task)) | 
|  | return; | 
|  |  | 
|  | for (;;) { | 
|  | void (*do_action)(struct rpc_task *); | 
|  |  | 
|  | /* | 
|  | * Execute any pending callback first. | 
|  | */ | 
|  | do_action = task->tk_callback; | 
|  | task->tk_callback = NULL; | 
|  | if (do_action == NULL) { | 
|  | /* | 
|  | * Perform the next FSM step. | 
|  | * tk_action may be NULL if the task has been killed. | 
|  | * In particular, note that rpc_killall_tasks may | 
|  | * do this at any time, so beware when dereferencing. | 
|  | */ | 
|  | do_action = task->tk_action; | 
|  | if (do_action == NULL) | 
|  | break; | 
|  | } | 
|  | trace_rpc_task_run_action(task->tk_client, task, task->tk_action); | 
|  | do_action(task); | 
|  |  | 
|  | /* | 
|  | * Lockless check for whether task is sleeping or not. | 
|  | */ | 
|  | if (!RPC_IS_QUEUED(task)) | 
|  | continue; | 
|  | /* | 
|  | * The queue->lock protects against races with | 
|  | * rpc_make_runnable(). | 
|  | * | 
|  | * Note that once we clear RPC_TASK_RUNNING on an asynchronous | 
|  | * rpc_task, rpc_make_runnable() can assign it to a | 
|  | * different workqueue. We therefore cannot assume that the | 
|  | * rpc_task pointer may still be dereferenced. | 
|  | */ | 
|  | queue = task->tk_waitqueue; | 
|  | spin_lock_bh(&queue->lock); | 
|  | if (!RPC_IS_QUEUED(task)) { | 
|  | spin_unlock_bh(&queue->lock); | 
|  | continue; | 
|  | } | 
|  | rpc_clear_running(task); | 
|  | spin_unlock_bh(&queue->lock); | 
|  | if (task_is_async) | 
|  | return; | 
|  |  | 
|  | /* sync task: sleep here */ | 
|  | dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); | 
|  | status = out_of_line_wait_on_bit(&task->tk_runstate, | 
|  | RPC_TASK_QUEUED, rpc_wait_bit_killable, | 
|  | TASK_KILLABLE); | 
|  | if (status == -ERESTARTSYS) { | 
|  | /* | 
|  | * When a sync task receives a signal, it exits with | 
|  | * -ERESTARTSYS. In order to catch any callbacks that | 
|  | * clean up after sleeping on some queue, we don't | 
|  | * break the loop here, but go around once more. | 
|  | */ | 
|  | dprintk("RPC: %5u got signal\n", task->tk_pid); | 
|  | task->tk_flags |= RPC_TASK_KILLED; | 
|  | rpc_exit(task, -ERESTARTSYS); | 
|  | } | 
|  | dprintk("RPC: %5u sync task resuming\n", task->tk_pid); | 
|  | } | 
|  |  | 
|  | dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, | 
|  | task->tk_status); | 
|  | /* Release all resources associated with the task */ | 
|  | rpc_release_task(task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * User-visible entry point to the scheduler. | 
|  | * | 
|  | * This may be called recursively if e.g. an async NFS task updates | 
|  | * the attributes and finds that dirty pages must be flushed. | 
|  | * NOTE: Upon exit of this function the task is guaranteed to be | 
|  | *	 released. In particular note that tk_release() will have | 
|  | *	 been called, so your task memory may have been freed. | 
|  | */ | 
|  | void rpc_execute(struct rpc_task *task) | 
|  | { | 
|  | bool is_async = RPC_IS_ASYNC(task); | 
|  |  | 
|  | rpc_set_active(task); | 
|  | rpc_make_runnable(task); | 
|  | if (!is_async) | 
|  | __rpc_execute(task); | 
|  | } | 
|  |  | 
|  | static void rpc_async_schedule(struct work_struct *work) | 
|  | { | 
|  | current->flags |= PF_FSTRANS; | 
|  | __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); | 
|  | current->flags &= ~PF_FSTRANS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * rpc_malloc - allocate an RPC buffer | 
|  | * @task: RPC task that will use this buffer | 
|  | * @size: requested byte size | 
|  | * | 
|  | * To prevent rpciod from hanging, this allocator never sleeps, | 
|  | * returning NULL and suppressing warning if the request cannot be serviced | 
|  | * immediately. | 
|  | * The caller can arrange to sleep in a way that is safe for rpciod. | 
|  | * | 
|  | * Most requests are 'small' (under 2KiB) and can be serviced from a | 
|  | * mempool, ensuring that NFS reads and writes can always proceed, | 
|  | * and that there is good locality of reference for these buffers. | 
|  | * | 
|  | * In order to avoid memory starvation triggering more writebacks of | 
|  | * NFS requests, we avoid using GFP_KERNEL. | 
|  | */ | 
|  | void *rpc_malloc(struct rpc_task *task, size_t size) | 
|  | { | 
|  | struct rpc_buffer *buf; | 
|  | gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; | 
|  |  | 
|  | if (RPC_IS_SWAPPER(task)) | 
|  | gfp |= __GFP_MEMALLOC; | 
|  |  | 
|  | size += sizeof(struct rpc_buffer); | 
|  | if (size <= RPC_BUFFER_MAXSIZE) | 
|  | buf = mempool_alloc(rpc_buffer_mempool, gfp); | 
|  | else | 
|  | buf = kmalloc(size, gfp); | 
|  |  | 
|  | if (!buf) | 
|  | return NULL; | 
|  |  | 
|  | buf->len = size; | 
|  | dprintk("RPC: %5u allocated buffer of size %zu at %p\n", | 
|  | task->tk_pid, size, buf); | 
|  | return &buf->data; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_malloc); | 
|  |  | 
|  | /** | 
|  | * rpc_free - free buffer allocated via rpc_malloc | 
|  | * @buffer: buffer to free | 
|  | * | 
|  | */ | 
|  | void rpc_free(void *buffer) | 
|  | { | 
|  | size_t size; | 
|  | struct rpc_buffer *buf; | 
|  |  | 
|  | if (!buffer) | 
|  | return; | 
|  |  | 
|  | buf = container_of(buffer, struct rpc_buffer, data); | 
|  | size = buf->len; | 
|  |  | 
|  | dprintk("RPC:       freeing buffer of size %zu at %p\n", | 
|  | size, buf); | 
|  |  | 
|  | if (size <= RPC_BUFFER_MAXSIZE) | 
|  | mempool_free(buf, rpc_buffer_mempool); | 
|  | else | 
|  | kfree(buf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_free); | 
|  |  | 
|  | /* | 
|  | * Creation and deletion of RPC task structures | 
|  | */ | 
|  | static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) | 
|  | { | 
|  | memset(task, 0, sizeof(*task)); | 
|  | atomic_set(&task->tk_count, 1); | 
|  | task->tk_flags  = task_setup_data->flags; | 
|  | task->tk_ops = task_setup_data->callback_ops; | 
|  | task->tk_calldata = task_setup_data->callback_data; | 
|  | INIT_LIST_HEAD(&task->tk_task); | 
|  |  | 
|  | task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; | 
|  | task->tk_owner = current->tgid; | 
|  |  | 
|  | /* Initialize workqueue for async tasks */ | 
|  | task->tk_workqueue = task_setup_data->workqueue; | 
|  |  | 
|  | if (task->tk_ops->rpc_call_prepare != NULL) | 
|  | task->tk_action = rpc_prepare_task; | 
|  |  | 
|  | rpc_init_task_statistics(task); | 
|  |  | 
|  | dprintk("RPC:       new task initialized, procpid %u\n", | 
|  | task_pid_nr(current)); | 
|  | } | 
|  |  | 
|  | static struct rpc_task * | 
|  | rpc_alloc_task(void) | 
|  | { | 
|  | return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a new task for the specified client. | 
|  | */ | 
|  | struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) | 
|  | { | 
|  | struct rpc_task	*task = setup_data->task; | 
|  | unsigned short flags = 0; | 
|  |  | 
|  | if (task == NULL) { | 
|  | task = rpc_alloc_task(); | 
|  | if (task == NULL) { | 
|  | rpc_release_calldata(setup_data->callback_ops, | 
|  | setup_data->callback_data); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | flags = RPC_TASK_DYNAMIC; | 
|  | } | 
|  |  | 
|  | rpc_init_task(task, setup_data); | 
|  | task->tk_flags |= flags; | 
|  | dprintk("RPC:       allocated task %p\n", task); | 
|  | return task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rpc_free_task - release rpc task and perform cleanups | 
|  | * | 
|  | * Note that we free up the rpc_task _after_ rpc_release_calldata() | 
|  | * in order to work around a workqueue dependency issue. | 
|  | * | 
|  | * Tejun Heo states: | 
|  | * "Workqueue currently considers two work items to be the same if they're | 
|  | * on the same address and won't execute them concurrently - ie. it | 
|  | * makes a work item which is queued again while being executed wait | 
|  | * for the previous execution to complete. | 
|  | * | 
|  | * If a work function frees the work item, and then waits for an event | 
|  | * which should be performed by another work item and *that* work item | 
|  | * recycles the freed work item, it can create a false dependency loop. | 
|  | * There really is no reliable way to detect this short of verifying | 
|  | * every memory free." | 
|  | * | 
|  | */ | 
|  | static void rpc_free_task(struct rpc_task *task) | 
|  | { | 
|  | unsigned short tk_flags = task->tk_flags; | 
|  |  | 
|  | rpc_release_calldata(task->tk_ops, task->tk_calldata); | 
|  |  | 
|  | if (tk_flags & RPC_TASK_DYNAMIC) { | 
|  | dprintk("RPC: %5u freeing task\n", task->tk_pid); | 
|  | mempool_free(task, rpc_task_mempool); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rpc_async_release(struct work_struct *work) | 
|  | { | 
|  | rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); | 
|  | } | 
|  |  | 
|  | static void rpc_release_resources_task(struct rpc_task *task) | 
|  | { | 
|  | xprt_release(task); | 
|  | if (task->tk_msg.rpc_cred) { | 
|  | put_rpccred(task->tk_msg.rpc_cred); | 
|  | task->tk_msg.rpc_cred = NULL; | 
|  | } | 
|  | rpc_task_release_client(task); | 
|  | } | 
|  |  | 
|  | static void rpc_final_put_task(struct rpc_task *task, | 
|  | struct workqueue_struct *q) | 
|  | { | 
|  | if (q != NULL) { | 
|  | INIT_WORK(&task->u.tk_work, rpc_async_release); | 
|  | queue_work(q, &task->u.tk_work); | 
|  | } else | 
|  | rpc_free_task(task); | 
|  | } | 
|  |  | 
|  | static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) | 
|  | { | 
|  | if (atomic_dec_and_test(&task->tk_count)) { | 
|  | rpc_release_resources_task(task); | 
|  | rpc_final_put_task(task, q); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rpc_put_task(struct rpc_task *task) | 
|  | { | 
|  | rpc_do_put_task(task, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_put_task); | 
|  |  | 
|  | void rpc_put_task_async(struct rpc_task *task) | 
|  | { | 
|  | rpc_do_put_task(task, task->tk_workqueue); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rpc_put_task_async); | 
|  |  | 
|  | static void rpc_release_task(struct rpc_task *task) | 
|  | { | 
|  | dprintk("RPC: %5u release task\n", task->tk_pid); | 
|  |  | 
|  | WARN_ON_ONCE(RPC_IS_QUEUED(task)); | 
|  |  | 
|  | rpc_release_resources_task(task); | 
|  |  | 
|  | /* | 
|  | * Note: at this point we have been removed from rpc_clnt->cl_tasks, | 
|  | * so it should be safe to use task->tk_count as a test for whether | 
|  | * or not any other processes still hold references to our rpc_task. | 
|  | */ | 
|  | if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { | 
|  | /* Wake up anyone who may be waiting for task completion */ | 
|  | if (!rpc_complete_task(task)) | 
|  | return; | 
|  | } else { | 
|  | if (!atomic_dec_and_test(&task->tk_count)) | 
|  | return; | 
|  | } | 
|  | rpc_final_put_task(task, task->tk_workqueue); | 
|  | } | 
|  |  | 
|  | int rpciod_up(void) | 
|  | { | 
|  | return try_module_get(THIS_MODULE) ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | void rpciod_down(void) | 
|  | { | 
|  | module_put(THIS_MODULE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start up the rpciod workqueue. | 
|  | */ | 
|  | static int rpciod_start(void) | 
|  | { | 
|  | struct workqueue_struct *wq; | 
|  |  | 
|  | /* | 
|  | * Create the rpciod thread and wait for it to start. | 
|  | */ | 
|  | dprintk("RPC:       creating workqueue rpciod\n"); | 
|  | wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1); | 
|  | rpciod_workqueue = wq; | 
|  | return rpciod_workqueue != NULL; | 
|  | } | 
|  |  | 
|  | static void rpciod_stop(void) | 
|  | { | 
|  | struct workqueue_struct *wq = NULL; | 
|  |  | 
|  | if (rpciod_workqueue == NULL) | 
|  | return; | 
|  | dprintk("RPC:       destroying workqueue rpciod\n"); | 
|  |  | 
|  | wq = rpciod_workqueue; | 
|  | rpciod_workqueue = NULL; | 
|  | destroy_workqueue(wq); | 
|  | } | 
|  |  | 
|  | void | 
|  | rpc_destroy_mempool(void) | 
|  | { | 
|  | rpciod_stop(); | 
|  | if (rpc_buffer_mempool) | 
|  | mempool_destroy(rpc_buffer_mempool); | 
|  | if (rpc_task_mempool) | 
|  | mempool_destroy(rpc_task_mempool); | 
|  | if (rpc_task_slabp) | 
|  | kmem_cache_destroy(rpc_task_slabp); | 
|  | if (rpc_buffer_slabp) | 
|  | kmem_cache_destroy(rpc_buffer_slabp); | 
|  | rpc_destroy_wait_queue(&delay_queue); | 
|  | } | 
|  |  | 
|  | int | 
|  | rpc_init_mempool(void) | 
|  | { | 
|  | /* | 
|  | * The following is not strictly a mempool initialisation, | 
|  | * but there is no harm in doing it here | 
|  | */ | 
|  | rpc_init_wait_queue(&delay_queue, "delayq"); | 
|  | if (!rpciod_start()) | 
|  | goto err_nomem; | 
|  |  | 
|  | rpc_task_slabp = kmem_cache_create("rpc_tasks", | 
|  | sizeof(struct rpc_task), | 
|  | 0, SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (!rpc_task_slabp) | 
|  | goto err_nomem; | 
|  | rpc_buffer_slabp = kmem_cache_create("rpc_buffers", | 
|  | RPC_BUFFER_MAXSIZE, | 
|  | 0, SLAB_HWCACHE_ALIGN, | 
|  | NULL); | 
|  | if (!rpc_buffer_slabp) | 
|  | goto err_nomem; | 
|  | rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, | 
|  | rpc_task_slabp); | 
|  | if (!rpc_task_mempool) | 
|  | goto err_nomem; | 
|  | rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, | 
|  | rpc_buffer_slabp); | 
|  | if (!rpc_buffer_mempool) | 
|  | goto err_nomem; | 
|  | return 0; | 
|  | err_nomem: | 
|  | rpc_destroy_mempool(); | 
|  | return -ENOMEM; | 
|  | } |