| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) |
| * |
| * Copyright (C) 2008 Atmel Corporation |
| * |
| * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. |
| * The only Atmel DMA Controller that is not covered by this driver is the one |
| * found on AT91SAM9263. |
| */ |
| |
| #include <dt-bindings/dma/at91.h> |
| #include <linux/clk.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| |
| #include "at_hdmac_regs.h" |
| #include "dmaengine.h" |
| |
| /* |
| * Glossary |
| * -------- |
| * |
| * at_hdmac : Name of the ATmel AHB DMA Controller |
| * at_dma_ / atdma : ATmel DMA controller entity related |
| * atc_ / atchan : ATmel DMA Channel entity related |
| */ |
| |
| #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) |
| #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ |
| |ATC_DIF(AT_DMA_MEM_IF)) |
| #define ATC_DMA_BUSWIDTHS\ |
| (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ |
| BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| |
| #define ATC_MAX_DSCR_TRIALS 10 |
| |
| /* |
| * Initial number of descriptors to allocate for each channel. This could |
| * be increased during dma usage. |
| */ |
| static unsigned int init_nr_desc_per_channel = 64; |
| module_param(init_nr_desc_per_channel, uint, 0644); |
| MODULE_PARM_DESC(init_nr_desc_per_channel, |
| "initial descriptors per channel (default: 64)"); |
| |
| |
| /* prototypes */ |
| static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); |
| static void atc_issue_pending(struct dma_chan *chan); |
| |
| |
| /*----------------------------------------------------------------------*/ |
| |
| static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, |
| size_t len) |
| { |
| unsigned int width; |
| |
| if (!((src | dst | len) & 3)) |
| width = 2; |
| else if (!((src | dst | len) & 1)) |
| width = 1; |
| else |
| width = 0; |
| |
| return width; |
| } |
| |
| static struct at_desc *atc_first_active(struct at_dma_chan *atchan) |
| { |
| return list_first_entry(&atchan->active_list, |
| struct at_desc, desc_node); |
| } |
| |
| static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) |
| { |
| return list_first_entry(&atchan->queue, |
| struct at_desc, desc_node); |
| } |
| |
| /** |
| * atc_alloc_descriptor - allocate and return an initialized descriptor |
| * @chan: the channel to allocate descriptors for |
| * @gfp_flags: GFP allocation flags |
| * |
| * Note: The ack-bit is positioned in the descriptor flag at creation time |
| * to make initial allocation more convenient. This bit will be cleared |
| * and control will be given to client at usage time (during |
| * preparation functions). |
| */ |
| static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, |
| gfp_t gfp_flags) |
| { |
| struct at_desc *desc = NULL; |
| struct at_dma *atdma = to_at_dma(chan->device); |
| dma_addr_t phys; |
| |
| desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys); |
| if (desc) { |
| INIT_LIST_HEAD(&desc->tx_list); |
| dma_async_tx_descriptor_init(&desc->txd, chan); |
| /* txd.flags will be overwritten in prep functions */ |
| desc->txd.flags = DMA_CTRL_ACK; |
| desc->txd.tx_submit = atc_tx_submit; |
| desc->txd.phys = phys; |
| } |
| |
| return desc; |
| } |
| |
| /** |
| * atc_desc_get - get an unused descriptor from free_list |
| * @atchan: channel we want a new descriptor for |
| */ |
| static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) |
| { |
| struct at_desc *desc, *_desc; |
| struct at_desc *ret = NULL; |
| unsigned long flags; |
| unsigned int i = 0; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { |
| i++; |
| if (async_tx_test_ack(&desc->txd)) { |
| list_del(&desc->desc_node); |
| ret = desc; |
| break; |
| } |
| dev_dbg(chan2dev(&atchan->chan_common), |
| "desc %p not ACKed\n", desc); |
| } |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| dev_vdbg(chan2dev(&atchan->chan_common), |
| "scanned %u descriptors on freelist\n", i); |
| |
| /* no more descriptor available in initial pool: create one more */ |
| if (!ret) |
| ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT); |
| |
| return ret; |
| } |
| |
| /** |
| * atc_desc_put - move a descriptor, including any children, to the free list |
| * @atchan: channel we work on |
| * @desc: descriptor, at the head of a chain, to move to free list |
| */ |
| static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) |
| { |
| if (desc) { |
| struct at_desc *child; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| list_for_each_entry(child, &desc->tx_list, desc_node) |
| dev_vdbg(chan2dev(&atchan->chan_common), |
| "moving child desc %p to freelist\n", |
| child); |
| list_splice_init(&desc->tx_list, &atchan->free_list); |
| dev_vdbg(chan2dev(&atchan->chan_common), |
| "moving desc %p to freelist\n", desc); |
| list_add(&desc->desc_node, &atchan->free_list); |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| } |
| } |
| |
| /** |
| * atc_desc_chain - build chain adding a descriptor |
| * @first: address of first descriptor of the chain |
| * @prev: address of previous descriptor of the chain |
| * @desc: descriptor to queue |
| * |
| * Called from prep_* functions |
| */ |
| static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, |
| struct at_desc *desc) |
| { |
| if (!(*first)) { |
| *first = desc; |
| } else { |
| /* inform the HW lli about chaining */ |
| (*prev)->lli.dscr = desc->txd.phys; |
| /* insert the link descriptor to the LD ring */ |
| list_add_tail(&desc->desc_node, |
| &(*first)->tx_list); |
| } |
| *prev = desc; |
| } |
| |
| /** |
| * atc_dostart - starts the DMA engine for real |
| * @atchan: the channel we want to start |
| * @first: first descriptor in the list we want to begin with |
| * |
| * Called with atchan->lock held and bh disabled |
| */ |
| static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) |
| { |
| struct at_dma *atdma = to_at_dma(atchan->chan_common.device); |
| |
| /* ASSERT: channel is idle */ |
| if (atc_chan_is_enabled(atchan)) { |
| dev_err(chan2dev(&atchan->chan_common), |
| "BUG: Attempted to start non-idle channel\n"); |
| dev_err(chan2dev(&atchan->chan_common), |
| " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", |
| channel_readl(atchan, SADDR), |
| channel_readl(atchan, DADDR), |
| channel_readl(atchan, CTRLA), |
| channel_readl(atchan, CTRLB), |
| channel_readl(atchan, DSCR)); |
| |
| /* The tasklet will hopefully advance the queue... */ |
| return; |
| } |
| |
| vdbg_dump_regs(atchan); |
| |
| channel_writel(atchan, SADDR, 0); |
| channel_writel(atchan, DADDR, 0); |
| channel_writel(atchan, CTRLA, 0); |
| channel_writel(atchan, CTRLB, 0); |
| channel_writel(atchan, DSCR, first->txd.phys); |
| channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | |
| ATC_SPIP_BOUNDARY(first->boundary)); |
| channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | |
| ATC_DPIP_BOUNDARY(first->boundary)); |
| dma_writel(atdma, CHER, atchan->mask); |
| |
| vdbg_dump_regs(atchan); |
| } |
| |
| /* |
| * atc_get_desc_by_cookie - get the descriptor of a cookie |
| * @atchan: the DMA channel |
| * @cookie: the cookie to get the descriptor for |
| */ |
| static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, |
| dma_cookie_t cookie) |
| { |
| struct at_desc *desc, *_desc; |
| |
| list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { |
| if (desc->txd.cookie == cookie) |
| return desc; |
| } |
| |
| list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { |
| if (desc->txd.cookie == cookie) |
| return desc; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * atc_calc_bytes_left - calculates the number of bytes left according to the |
| * value read from CTRLA. |
| * |
| * @current_len: the number of bytes left before reading CTRLA |
| * @ctrla: the value of CTRLA |
| */ |
| static inline int atc_calc_bytes_left(int current_len, u32 ctrla) |
| { |
| u32 btsize = (ctrla & ATC_BTSIZE_MAX); |
| u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla); |
| |
| /* |
| * According to the datasheet, when reading the Control A Register |
| * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the |
| * number of transfers completed on the Source Interface. |
| * So btsize is always a number of source width transfers. |
| */ |
| return current_len - (btsize << src_width); |
| } |
| |
| /** |
| * atc_get_bytes_left - get the number of bytes residue for a cookie |
| * @chan: DMA channel |
| * @cookie: transaction identifier to check status of |
| */ |
| static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_desc *desc_first = atc_first_active(atchan); |
| struct at_desc *desc; |
| int ret; |
| u32 ctrla, dscr, trials; |
| |
| /* |
| * If the cookie doesn't match to the currently running transfer then |
| * we can return the total length of the associated DMA transfer, |
| * because it is still queued. |
| */ |
| desc = atc_get_desc_by_cookie(atchan, cookie); |
| if (desc == NULL) |
| return -EINVAL; |
| else if (desc != desc_first) |
| return desc->total_len; |
| |
| /* cookie matches to the currently running transfer */ |
| ret = desc_first->total_len; |
| |
| if (desc_first->lli.dscr) { |
| /* hardware linked list transfer */ |
| |
| /* |
| * Calculate the residue by removing the length of the child |
| * descriptors already transferred from the total length. |
| * To get the current child descriptor we can use the value of |
| * the channel's DSCR register and compare it against the value |
| * of the hardware linked list structure of each child |
| * descriptor. |
| * |
| * The CTRLA register provides us with the amount of data |
| * already read from the source for the current child |
| * descriptor. So we can compute a more accurate residue by also |
| * removing the number of bytes corresponding to this amount of |
| * data. |
| * |
| * However, the DSCR and CTRLA registers cannot be read both |
| * atomically. Hence a race condition may occur: the first read |
| * register may refer to one child descriptor whereas the second |
| * read may refer to a later child descriptor in the list |
| * because of the DMA transfer progression inbetween the two |
| * reads. |
| * |
| * One solution could have been to pause the DMA transfer, read |
| * the DSCR and CTRLA then resume the DMA transfer. Nonetheless, |
| * this approach presents some drawbacks: |
| * - If the DMA transfer is paused, RX overruns or TX underruns |
| * are more likey to occur depending on the system latency. |
| * Taking the USART driver as an example, it uses a cyclic DMA |
| * transfer to read data from the Receive Holding Register |
| * (RHR) to avoid RX overruns since the RHR is not protected |
| * by any FIFO on most Atmel SoCs. So pausing the DMA transfer |
| * to compute the residue would break the USART driver design. |
| * - The atc_pause() function masks interrupts but we'd rather |
| * avoid to do so for system latency purpose. |
| * |
| * Then we'd rather use another solution: the DSCR is read a |
| * first time, the CTRLA is read in turn, next the DSCR is read |
| * a second time. If the two consecutive read values of the DSCR |
| * are the same then we assume both refers to the very same |
| * child descriptor as well as the CTRLA value read inbetween |
| * does. For cyclic tranfers, the assumption is that a full loop |
| * is "not so fast". |
| * If the two DSCR values are different, we read again the CTRLA |
| * then the DSCR till two consecutive read values from DSCR are |
| * equal or till the maxium trials is reach. |
| * This algorithm is very unlikely not to find a stable value for |
| * DSCR. |
| */ |
| |
| dscr = channel_readl(atchan, DSCR); |
| rmb(); /* ensure DSCR is read before CTRLA */ |
| ctrla = channel_readl(atchan, CTRLA); |
| for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) { |
| u32 new_dscr; |
| |
| rmb(); /* ensure DSCR is read after CTRLA */ |
| new_dscr = channel_readl(atchan, DSCR); |
| |
| /* |
| * If the DSCR register value has not changed inside the |
| * DMA controller since the previous read, we assume |
| * that both the dscr and ctrla values refers to the |
| * very same descriptor. |
| */ |
| if (likely(new_dscr == dscr)) |
| break; |
| |
| /* |
| * DSCR has changed inside the DMA controller, so the |
| * previouly read value of CTRLA may refer to an already |
| * processed descriptor hence could be outdated. |
| * We need to update ctrla to match the current |
| * descriptor. |
| */ |
| dscr = new_dscr; |
| rmb(); /* ensure DSCR is read before CTRLA */ |
| ctrla = channel_readl(atchan, CTRLA); |
| } |
| if (unlikely(trials >= ATC_MAX_DSCR_TRIALS)) |
| return -ETIMEDOUT; |
| |
| /* for the first descriptor we can be more accurate */ |
| if (desc_first->lli.dscr == dscr) |
| return atc_calc_bytes_left(ret, ctrla); |
| |
| ret -= desc_first->len; |
| list_for_each_entry(desc, &desc_first->tx_list, desc_node) { |
| if (desc->lli.dscr == dscr) |
| break; |
| |
| ret -= desc->len; |
| } |
| |
| /* |
| * For the current descriptor in the chain we can calculate |
| * the remaining bytes using the channel's register. |
| */ |
| ret = atc_calc_bytes_left(ret, ctrla); |
| } else { |
| /* single transfer */ |
| ctrla = channel_readl(atchan, CTRLA); |
| ret = atc_calc_bytes_left(ret, ctrla); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * atc_chain_complete - finish work for one transaction chain |
| * @atchan: channel we work on |
| * @desc: descriptor at the head of the chain we want do complete |
| */ |
| static void |
| atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) |
| { |
| struct dma_async_tx_descriptor *txd = &desc->txd; |
| struct at_dma *atdma = to_at_dma(atchan->chan_common.device); |
| unsigned long flags; |
| |
| dev_vdbg(chan2dev(&atchan->chan_common), |
| "descriptor %u complete\n", txd->cookie); |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| /* mark the descriptor as complete for non cyclic cases only */ |
| if (!atc_chan_is_cyclic(atchan)) |
| dma_cookie_complete(txd); |
| |
| /* If the transfer was a memset, free our temporary buffer */ |
| if (desc->memset_buffer) { |
| dma_pool_free(atdma->memset_pool, desc->memset_vaddr, |
| desc->memset_paddr); |
| desc->memset_buffer = false; |
| } |
| |
| /* move children to free_list */ |
| list_splice_init(&desc->tx_list, &atchan->free_list); |
| /* move myself to free_list */ |
| list_move(&desc->desc_node, &atchan->free_list); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| dma_descriptor_unmap(txd); |
| /* for cyclic transfers, |
| * no need to replay callback function while stopping */ |
| if (!atc_chan_is_cyclic(atchan)) |
| dmaengine_desc_get_callback_invoke(txd, NULL); |
| |
| dma_run_dependencies(txd); |
| } |
| |
| /** |
| * atc_complete_all - finish work for all transactions |
| * @atchan: channel to complete transactions for |
| * |
| * Eventually submit queued descriptors if any |
| * |
| * Assume channel is idle while calling this function |
| * Called with atchan->lock held and bh disabled |
| */ |
| static void atc_complete_all(struct at_dma_chan *atchan) |
| { |
| struct at_desc *desc, *_desc; |
| LIST_HEAD(list); |
| unsigned long flags; |
| |
| dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| /* |
| * Submit queued descriptors ASAP, i.e. before we go through |
| * the completed ones. |
| */ |
| if (!list_empty(&atchan->queue)) |
| atc_dostart(atchan, atc_first_queued(atchan)); |
| /* empty active_list now it is completed */ |
| list_splice_init(&atchan->active_list, &list); |
| /* empty queue list by moving descriptors (if any) to active_list */ |
| list_splice_init(&atchan->queue, &atchan->active_list); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| list_for_each_entry_safe(desc, _desc, &list, desc_node) |
| atc_chain_complete(atchan, desc); |
| } |
| |
| /** |
| * atc_advance_work - at the end of a transaction, move forward |
| * @atchan: channel where the transaction ended |
| */ |
| static void atc_advance_work(struct at_dma_chan *atchan) |
| { |
| unsigned long flags; |
| int ret; |
| |
| dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| ret = atc_chan_is_enabled(atchan); |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| if (ret) |
| return; |
| |
| if (list_empty(&atchan->active_list) || |
| list_is_singular(&atchan->active_list)) |
| return atc_complete_all(atchan); |
| |
| atc_chain_complete(atchan, atc_first_active(atchan)); |
| |
| /* advance work */ |
| spin_lock_irqsave(&atchan->lock, flags); |
| atc_dostart(atchan, atc_first_active(atchan)); |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| } |
| |
| |
| /** |
| * atc_handle_error - handle errors reported by DMA controller |
| * @atchan: channel where error occurs |
| */ |
| static void atc_handle_error(struct at_dma_chan *atchan) |
| { |
| struct at_desc *bad_desc; |
| struct at_desc *child; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| /* |
| * The descriptor currently at the head of the active list is |
| * broked. Since we don't have any way to report errors, we'll |
| * just have to scream loudly and try to carry on. |
| */ |
| bad_desc = atc_first_active(atchan); |
| list_del_init(&bad_desc->desc_node); |
| |
| /* As we are stopped, take advantage to push queued descriptors |
| * in active_list */ |
| list_splice_init(&atchan->queue, atchan->active_list.prev); |
| |
| /* Try to restart the controller */ |
| if (!list_empty(&atchan->active_list)) |
| atc_dostart(atchan, atc_first_active(atchan)); |
| |
| /* |
| * KERN_CRITICAL may seem harsh, but since this only happens |
| * when someone submits a bad physical address in a |
| * descriptor, we should consider ourselves lucky that the |
| * controller flagged an error instead of scribbling over |
| * random memory locations. |
| */ |
| dev_crit(chan2dev(&atchan->chan_common), |
| "Bad descriptor submitted for DMA!\n"); |
| dev_crit(chan2dev(&atchan->chan_common), |
| " cookie: %d\n", bad_desc->txd.cookie); |
| atc_dump_lli(atchan, &bad_desc->lli); |
| list_for_each_entry(child, &bad_desc->tx_list, desc_node) |
| atc_dump_lli(atchan, &child->lli); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| /* Pretend the descriptor completed successfully */ |
| atc_chain_complete(atchan, bad_desc); |
| } |
| |
| /** |
| * atc_handle_cyclic - at the end of a period, run callback function |
| * @atchan: channel used for cyclic operations |
| */ |
| static void atc_handle_cyclic(struct at_dma_chan *atchan) |
| { |
| struct at_desc *first = atc_first_active(atchan); |
| struct dma_async_tx_descriptor *txd = &first->txd; |
| |
| dev_vdbg(chan2dev(&atchan->chan_common), |
| "new cyclic period llp 0x%08x\n", |
| channel_readl(atchan, DSCR)); |
| |
| dmaengine_desc_get_callback_invoke(txd, NULL); |
| } |
| |
| /*-- IRQ & Tasklet ---------------------------------------------------*/ |
| |
| static void atc_tasklet(unsigned long data) |
| { |
| struct at_dma_chan *atchan = (struct at_dma_chan *)data; |
| |
| if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) |
| return atc_handle_error(atchan); |
| |
| if (atc_chan_is_cyclic(atchan)) |
| return atc_handle_cyclic(atchan); |
| |
| atc_advance_work(atchan); |
| } |
| |
| static irqreturn_t at_dma_interrupt(int irq, void *dev_id) |
| { |
| struct at_dma *atdma = (struct at_dma *)dev_id; |
| struct at_dma_chan *atchan; |
| int i; |
| u32 status, pending, imr; |
| int ret = IRQ_NONE; |
| |
| do { |
| imr = dma_readl(atdma, EBCIMR); |
| status = dma_readl(atdma, EBCISR); |
| pending = status & imr; |
| |
| if (!pending) |
| break; |
| |
| dev_vdbg(atdma->dma_common.dev, |
| "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", |
| status, imr, pending); |
| |
| for (i = 0; i < atdma->dma_common.chancnt; i++) { |
| atchan = &atdma->chan[i]; |
| if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { |
| if (pending & AT_DMA_ERR(i)) { |
| /* Disable channel on AHB error */ |
| dma_writel(atdma, CHDR, |
| AT_DMA_RES(i) | atchan->mask); |
| /* Give information to tasklet */ |
| set_bit(ATC_IS_ERROR, &atchan->status); |
| } |
| tasklet_schedule(&atchan->tasklet); |
| ret = IRQ_HANDLED; |
| } |
| } |
| |
| } while (pending); |
| |
| return ret; |
| } |
| |
| |
| /*-- DMA Engine API --------------------------------------------------*/ |
| |
| /** |
| * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine |
| * @tx: descriptor at the head of the transaction chain |
| * |
| * Queue chain if DMA engine is working already |
| * |
| * Cookie increment and adding to active_list or queue must be atomic |
| */ |
| static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) |
| { |
| struct at_desc *desc = txd_to_at_desc(tx); |
| struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); |
| dma_cookie_t cookie; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| cookie = dma_cookie_assign(tx); |
| |
| if (list_empty(&atchan->active_list)) { |
| dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", |
| desc->txd.cookie); |
| atc_dostart(atchan, desc); |
| list_add_tail(&desc->desc_node, &atchan->active_list); |
| } else { |
| dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", |
| desc->txd.cookie); |
| list_add_tail(&desc->desc_node, &atchan->queue); |
| } |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| return cookie; |
| } |
| |
| /** |
| * atc_prep_dma_interleaved - prepare memory to memory interleaved operation |
| * @chan: the channel to prepare operation on |
| * @xt: Interleaved transfer template |
| * @flags: tx descriptor status flags |
| */ |
| static struct dma_async_tx_descriptor * |
| atc_prep_dma_interleaved(struct dma_chan *chan, |
| struct dma_interleaved_template *xt, |
| unsigned long flags) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct data_chunk *first; |
| struct at_desc *desc = NULL; |
| size_t xfer_count; |
| unsigned int dwidth; |
| u32 ctrla; |
| u32 ctrlb; |
| size_t len = 0; |
| int i; |
| |
| if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) |
| return NULL; |
| |
| first = xt->sgl; |
| |
| dev_info(chan2dev(chan), |
| "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n", |
| __func__, &xt->src_start, &xt->dst_start, xt->numf, |
| xt->frame_size, flags); |
| |
| /* |
| * The controller can only "skip" X bytes every Y bytes, so we |
| * need to make sure we are given a template that fit that |
| * description, ie a template with chunks that always have the |
| * same size, with the same ICGs. |
| */ |
| for (i = 0; i < xt->frame_size; i++) { |
| struct data_chunk *chunk = xt->sgl + i; |
| |
| if ((chunk->size != xt->sgl->size) || |
| (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || |
| (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { |
| dev_err(chan2dev(chan), |
| "%s: the controller can transfer only identical chunks\n", |
| __func__); |
| return NULL; |
| } |
| |
| len += chunk->size; |
| } |
| |
| dwidth = atc_get_xfer_width(xt->src_start, |
| xt->dst_start, len); |
| |
| xfer_count = len >> dwidth; |
| if (xfer_count > ATC_BTSIZE_MAX) { |
| dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); |
| return NULL; |
| } |
| |
| ctrla = ATC_SRC_WIDTH(dwidth) | |
| ATC_DST_WIDTH(dwidth); |
| |
| ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
| | ATC_SRC_ADDR_MODE_INCR |
| | ATC_DST_ADDR_MODE_INCR |
| | ATC_SRC_PIP |
| | ATC_DST_PIP |
| | ATC_FC_MEM2MEM; |
| |
| /* create the transfer */ |
| desc = atc_desc_get(atchan); |
| if (!desc) { |
| dev_err(chan2dev(chan), |
| "%s: couldn't allocate our descriptor\n", __func__); |
| return NULL; |
| } |
| |
| desc->lli.saddr = xt->src_start; |
| desc->lli.daddr = xt->dst_start; |
| desc->lli.ctrla = ctrla | xfer_count; |
| desc->lli.ctrlb = ctrlb; |
| |
| desc->boundary = first->size >> dwidth; |
| desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; |
| desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; |
| |
| desc->txd.cookie = -EBUSY; |
| desc->total_len = desc->len = len; |
| |
| /* set end-of-link to the last link descriptor of list*/ |
| set_desc_eol(desc); |
| |
| desc->txd.flags = flags; /* client is in control of this ack */ |
| |
| return &desc->txd; |
| } |
| |
| /** |
| * atc_prep_dma_memcpy - prepare a memcpy operation |
| * @chan: the channel to prepare operation on |
| * @dest: operation virtual destination address |
| * @src: operation virtual source address |
| * @len: operation length |
| * @flags: tx descriptor status flags |
| */ |
| static struct dma_async_tx_descriptor * |
| atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_desc *desc = NULL; |
| struct at_desc *first = NULL; |
| struct at_desc *prev = NULL; |
| size_t xfer_count; |
| size_t offset; |
| unsigned int src_width; |
| unsigned int dst_width; |
| u32 ctrla; |
| u32 ctrlb; |
| |
| dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n", |
| &dest, &src, len, flags); |
| |
| if (unlikely(!len)) { |
| dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); |
| return NULL; |
| } |
| |
| ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
| | ATC_SRC_ADDR_MODE_INCR |
| | ATC_DST_ADDR_MODE_INCR |
| | ATC_FC_MEM2MEM; |
| |
| /* |
| * We can be a lot more clever here, but this should take care |
| * of the most common optimization. |
| */ |
| src_width = dst_width = atc_get_xfer_width(src, dest, len); |
| |
| ctrla = ATC_SRC_WIDTH(src_width) | |
| ATC_DST_WIDTH(dst_width); |
| |
| for (offset = 0; offset < len; offset += xfer_count << src_width) { |
| xfer_count = min_t(size_t, (len - offset) >> src_width, |
| ATC_BTSIZE_MAX); |
| |
| desc = atc_desc_get(atchan); |
| if (!desc) |
| goto err_desc_get; |
| |
| desc->lli.saddr = src + offset; |
| desc->lli.daddr = dest + offset; |
| desc->lli.ctrla = ctrla | xfer_count; |
| desc->lli.ctrlb = ctrlb; |
| |
| desc->txd.cookie = 0; |
| desc->len = xfer_count << src_width; |
| |
| atc_desc_chain(&first, &prev, desc); |
| } |
| |
| /* First descriptor of the chain embedds additional information */ |
| first->txd.cookie = -EBUSY; |
| first->total_len = len; |
| |
| /* set end-of-link to the last link descriptor of list*/ |
| set_desc_eol(desc); |
| |
| first->txd.flags = flags; /* client is in control of this ack */ |
| |
| return &first->txd; |
| |
| err_desc_get: |
| atc_desc_put(atchan, first); |
| return NULL; |
| } |
| |
| static struct at_desc *atc_create_memset_desc(struct dma_chan *chan, |
| dma_addr_t psrc, |
| dma_addr_t pdst, |
| size_t len) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_desc *desc; |
| size_t xfer_count; |
| |
| u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2); |
| u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN | |
| ATC_SRC_ADDR_MODE_FIXED | |
| ATC_DST_ADDR_MODE_INCR | |
| ATC_FC_MEM2MEM; |
| |
| xfer_count = len >> 2; |
| if (xfer_count > ATC_BTSIZE_MAX) { |
| dev_err(chan2dev(chan), "%s: buffer is too big\n", |
| __func__); |
| return NULL; |
| } |
| |
| desc = atc_desc_get(atchan); |
| if (!desc) { |
| dev_err(chan2dev(chan), "%s: can't get a descriptor\n", |
| __func__); |
| return NULL; |
| } |
| |
| desc->lli.saddr = psrc; |
| desc->lli.daddr = pdst; |
| desc->lli.ctrla = ctrla | xfer_count; |
| desc->lli.ctrlb = ctrlb; |
| |
| desc->txd.cookie = 0; |
| desc->len = len; |
| |
| return desc; |
| } |
| |
| /** |
| * atc_prep_dma_memset - prepare a memcpy operation |
| * @chan: the channel to prepare operation on |
| * @dest: operation virtual destination address |
| * @value: value to set memory buffer to |
| * @len: operation length |
| * @flags: tx descriptor status flags |
| */ |
| static struct dma_async_tx_descriptor * |
| atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value, |
| size_t len, unsigned long flags) |
| { |
| struct at_dma *atdma = to_at_dma(chan->device); |
| struct at_desc *desc; |
| void __iomem *vaddr; |
| dma_addr_t paddr; |
| |
| dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__, |
| &dest, value, len, flags); |
| |
| if (unlikely(!len)) { |
| dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__); |
| return NULL; |
| } |
| |
| if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { |
| dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n", |
| __func__); |
| return NULL; |
| } |
| |
| vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); |
| if (!vaddr) { |
| dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", |
| __func__); |
| return NULL; |
| } |
| *(u32*)vaddr = value; |
| |
| desc = atc_create_memset_desc(chan, paddr, dest, len); |
| if (!desc) { |
| dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n", |
| __func__); |
| goto err_free_buffer; |
| } |
| |
| desc->memset_paddr = paddr; |
| desc->memset_vaddr = vaddr; |
| desc->memset_buffer = true; |
| |
| desc->txd.cookie = -EBUSY; |
| desc->total_len = len; |
| |
| /* set end-of-link on the descriptor */ |
| set_desc_eol(desc); |
| |
| desc->txd.flags = flags; |
| |
| return &desc->txd; |
| |
| err_free_buffer: |
| dma_pool_free(atdma->memset_pool, vaddr, paddr); |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| atc_prep_dma_memset_sg(struct dma_chan *chan, |
| struct scatterlist *sgl, |
| unsigned int sg_len, int value, |
| unsigned long flags) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| struct at_desc *desc = NULL, *first = NULL, *prev = NULL; |
| struct scatterlist *sg; |
| void __iomem *vaddr; |
| dma_addr_t paddr; |
| size_t total_len = 0; |
| int i; |
| |
| dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__, |
| value, sg_len, flags); |
| |
| if (unlikely(!sgl || !sg_len)) { |
| dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n", |
| __func__); |
| return NULL; |
| } |
| |
| vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr); |
| if (!vaddr) { |
| dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n", |
| __func__); |
| return NULL; |
| } |
| *(u32*)vaddr = value; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| dma_addr_t dest = sg_dma_address(sg); |
| size_t len = sg_dma_len(sg); |
| |
| dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n", |
| __func__, &dest, len); |
| |
| if (!is_dma_fill_aligned(chan->device, dest, 0, len)) { |
| dev_err(chan2dev(chan), "%s: buffer is not aligned\n", |
| __func__); |
| goto err_put_desc; |
| } |
| |
| desc = atc_create_memset_desc(chan, paddr, dest, len); |
| if (!desc) |
| goto err_put_desc; |
| |
| atc_desc_chain(&first, &prev, desc); |
| |
| total_len += len; |
| } |
| |
| /* |
| * Only set the buffer pointers on the last descriptor to |
| * avoid free'ing while we have our transfer still going |
| */ |
| desc->memset_paddr = paddr; |
| desc->memset_vaddr = vaddr; |
| desc->memset_buffer = true; |
| |
| first->txd.cookie = -EBUSY; |
| first->total_len = total_len; |
| |
| /* set end-of-link on the descriptor */ |
| set_desc_eol(desc); |
| |
| first->txd.flags = flags; |
| |
| return &first->txd; |
| |
| err_put_desc: |
| atc_desc_put(atchan, first); |
| return NULL; |
| } |
| |
| /** |
| * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction |
| * @chan: DMA channel |
| * @sgl: scatterlist to transfer to/from |
| * @sg_len: number of entries in @scatterlist |
| * @direction: DMA direction |
| * @flags: tx descriptor status flags |
| * @context: transaction context (ignored) |
| */ |
| static struct dma_async_tx_descriptor * |
| atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma_slave *atslave = chan->private; |
| struct dma_slave_config *sconfig = &atchan->dma_sconfig; |
| struct at_desc *first = NULL; |
| struct at_desc *prev = NULL; |
| u32 ctrla; |
| u32 ctrlb; |
| dma_addr_t reg; |
| unsigned int reg_width; |
| unsigned int mem_width; |
| unsigned int i; |
| struct scatterlist *sg; |
| size_t total_len = 0; |
| |
| dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", |
| sg_len, |
| direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", |
| flags); |
| |
| if (unlikely(!atslave || !sg_len)) { |
| dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); |
| return NULL; |
| } |
| |
| ctrla = ATC_SCSIZE(sconfig->src_maxburst) |
| | ATC_DCSIZE(sconfig->dst_maxburst); |
| ctrlb = ATC_IEN; |
| |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| reg_width = convert_buswidth(sconfig->dst_addr_width); |
| ctrla |= ATC_DST_WIDTH(reg_width); |
| ctrlb |= ATC_DST_ADDR_MODE_FIXED |
| | ATC_SRC_ADDR_MODE_INCR |
| | ATC_FC_MEM2PER |
| | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); |
| reg = sconfig->dst_addr; |
| for_each_sg(sgl, sg, sg_len, i) { |
| struct at_desc *desc; |
| u32 len; |
| u32 mem; |
| |
| desc = atc_desc_get(atchan); |
| if (!desc) |
| goto err_desc_get; |
| |
| mem = sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| if (unlikely(!len)) { |
| dev_dbg(chan2dev(chan), |
| "prep_slave_sg: sg(%d) data length is zero\n", i); |
| goto err; |
| } |
| mem_width = 2; |
| if (unlikely(mem & 3 || len & 3)) |
| mem_width = 0; |
| |
| desc->lli.saddr = mem; |
| desc->lli.daddr = reg; |
| desc->lli.ctrla = ctrla |
| | ATC_SRC_WIDTH(mem_width) |
| | len >> mem_width; |
| desc->lli.ctrlb = ctrlb; |
| desc->len = len; |
| |
| atc_desc_chain(&first, &prev, desc); |
| total_len += len; |
| } |
| break; |
| case DMA_DEV_TO_MEM: |
| reg_width = convert_buswidth(sconfig->src_addr_width); |
| ctrla |= ATC_SRC_WIDTH(reg_width); |
| ctrlb |= ATC_DST_ADDR_MODE_INCR |
| | ATC_SRC_ADDR_MODE_FIXED |
| | ATC_FC_PER2MEM |
| | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); |
| |
| reg = sconfig->src_addr; |
| for_each_sg(sgl, sg, sg_len, i) { |
| struct at_desc *desc; |
| u32 len; |
| u32 mem; |
| |
| desc = atc_desc_get(atchan); |
| if (!desc) |
| goto err_desc_get; |
| |
| mem = sg_dma_address(sg); |
| len = sg_dma_len(sg); |
| if (unlikely(!len)) { |
| dev_dbg(chan2dev(chan), |
| "prep_slave_sg: sg(%d) data length is zero\n", i); |
| goto err; |
| } |
| mem_width = 2; |
| if (unlikely(mem & 3 || len & 3)) |
| mem_width = 0; |
| |
| desc->lli.saddr = reg; |
| desc->lli.daddr = mem; |
| desc->lli.ctrla = ctrla |
| | ATC_DST_WIDTH(mem_width) |
| | len >> reg_width; |
| desc->lli.ctrlb = ctrlb; |
| desc->len = len; |
| |
| atc_desc_chain(&first, &prev, desc); |
| total_len += len; |
| } |
| break; |
| default: |
| return NULL; |
| } |
| |
| /* set end-of-link to the last link descriptor of list*/ |
| set_desc_eol(prev); |
| |
| /* First descriptor of the chain embedds additional information */ |
| first->txd.cookie = -EBUSY; |
| first->total_len = total_len; |
| |
| /* first link descriptor of list is responsible of flags */ |
| first->txd.flags = flags; /* client is in control of this ack */ |
| |
| return &first->txd; |
| |
| err_desc_get: |
| dev_err(chan2dev(chan), "not enough descriptors available\n"); |
| err: |
| atc_desc_put(atchan, first); |
| return NULL; |
| } |
| |
| /* |
| * atc_dma_cyclic_check_values |
| * Check for too big/unaligned periods and unaligned DMA buffer |
| */ |
| static int |
| atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, |
| size_t period_len) |
| { |
| if (period_len > (ATC_BTSIZE_MAX << reg_width)) |
| goto err_out; |
| if (unlikely(period_len & ((1 << reg_width) - 1))) |
| goto err_out; |
| if (unlikely(buf_addr & ((1 << reg_width) - 1))) |
| goto err_out; |
| |
| return 0; |
| |
| err_out: |
| return -EINVAL; |
| } |
| |
| /* |
| * atc_dma_cyclic_fill_desc - Fill one period descriptor |
| */ |
| static int |
| atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, |
| unsigned int period_index, dma_addr_t buf_addr, |
| unsigned int reg_width, size_t period_len, |
| enum dma_transfer_direction direction) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct dma_slave_config *sconfig = &atchan->dma_sconfig; |
| u32 ctrla; |
| |
| /* prepare common CRTLA value */ |
| ctrla = ATC_SCSIZE(sconfig->src_maxburst) |
| | ATC_DCSIZE(sconfig->dst_maxburst) |
| | ATC_DST_WIDTH(reg_width) |
| | ATC_SRC_WIDTH(reg_width) |
| | period_len >> reg_width; |
| |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| desc->lli.saddr = buf_addr + (period_len * period_index); |
| desc->lli.daddr = sconfig->dst_addr; |
| desc->lli.ctrla = ctrla; |
| desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED |
| | ATC_SRC_ADDR_MODE_INCR |
| | ATC_FC_MEM2PER |
| | ATC_SIF(atchan->mem_if) |
| | ATC_DIF(atchan->per_if); |
| desc->len = period_len; |
| break; |
| |
| case DMA_DEV_TO_MEM: |
| desc->lli.saddr = sconfig->src_addr; |
| desc->lli.daddr = buf_addr + (period_len * period_index); |
| desc->lli.ctrla = ctrla; |
| desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR |
| | ATC_SRC_ADDR_MODE_FIXED |
| | ATC_FC_PER2MEM |
| | ATC_SIF(atchan->per_if) |
| | ATC_DIF(atchan->mem_if); |
| desc->len = period_len; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * atc_prep_dma_cyclic - prepare the cyclic DMA transfer |
| * @chan: the DMA channel to prepare |
| * @buf_addr: physical DMA address where the buffer starts |
| * @buf_len: total number of bytes for the entire buffer |
| * @period_len: number of bytes for each period |
| * @direction: transfer direction, to or from device |
| * @flags: tx descriptor status flags |
| */ |
| static struct dma_async_tx_descriptor * |
| atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma_slave *atslave = chan->private; |
| struct dma_slave_config *sconfig = &atchan->dma_sconfig; |
| struct at_desc *first = NULL; |
| struct at_desc *prev = NULL; |
| unsigned long was_cyclic; |
| unsigned int reg_width; |
| unsigned int periods = buf_len / period_len; |
| unsigned int i; |
| |
| dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n", |
| direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", |
| &buf_addr, |
| periods, buf_len, period_len); |
| |
| if (unlikely(!atslave || !buf_len || !period_len)) { |
| dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); |
| return NULL; |
| } |
| |
| was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); |
| if (was_cyclic) { |
| dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); |
| return NULL; |
| } |
| |
| if (unlikely(!is_slave_direction(direction))) |
| goto err_out; |
| |
| if (direction == DMA_MEM_TO_DEV) |
| reg_width = convert_buswidth(sconfig->dst_addr_width); |
| else |
| reg_width = convert_buswidth(sconfig->src_addr_width); |
| |
| /* Check for too big/unaligned periods and unaligned DMA buffer */ |
| if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) |
| goto err_out; |
| |
| /* build cyclic linked list */ |
| for (i = 0; i < periods; i++) { |
| struct at_desc *desc; |
| |
| desc = atc_desc_get(atchan); |
| if (!desc) |
| goto err_desc_get; |
| |
| if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, |
| reg_width, period_len, direction)) |
| goto err_desc_get; |
| |
| atc_desc_chain(&first, &prev, desc); |
| } |
| |
| /* lets make a cyclic list */ |
| prev->lli.dscr = first->txd.phys; |
| |
| /* First descriptor of the chain embedds additional information */ |
| first->txd.cookie = -EBUSY; |
| first->total_len = buf_len; |
| |
| return &first->txd; |
| |
| err_desc_get: |
| dev_err(chan2dev(chan), "not enough descriptors available\n"); |
| atc_desc_put(atchan, first); |
| err_out: |
| clear_bit(ATC_IS_CYCLIC, &atchan->status); |
| return NULL; |
| } |
| |
| static int atc_config(struct dma_chan *chan, |
| struct dma_slave_config *sconfig) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| |
| dev_vdbg(chan2dev(chan), "%s\n", __func__); |
| |
| /* Check if it is chan is configured for slave transfers */ |
| if (!chan->private) |
| return -EINVAL; |
| |
| memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); |
| |
| convert_burst(&atchan->dma_sconfig.src_maxburst); |
| convert_burst(&atchan->dma_sconfig.dst_maxburst); |
| |
| return 0; |
| } |
| |
| static int atc_pause(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| int chan_id = atchan->chan_common.chan_id; |
| unsigned long flags; |
| |
| dev_vdbg(chan2dev(chan), "%s\n", __func__); |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); |
| set_bit(ATC_IS_PAUSED, &atchan->status); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| return 0; |
| } |
| |
| static int atc_resume(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| int chan_id = atchan->chan_common.chan_id; |
| unsigned long flags; |
| |
| dev_vdbg(chan2dev(chan), "%s\n", __func__); |
| |
| if (!atc_chan_is_paused(atchan)) |
| return 0; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); |
| clear_bit(ATC_IS_PAUSED, &atchan->status); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| return 0; |
| } |
| |
| static int atc_terminate_all(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| int chan_id = atchan->chan_common.chan_id; |
| struct at_desc *desc, *_desc; |
| unsigned long flags; |
| |
| LIST_HEAD(list); |
| |
| dev_vdbg(chan2dev(chan), "%s\n", __func__); |
| |
| /* |
| * This is only called when something went wrong elsewhere, so |
| * we don't really care about the data. Just disable the |
| * channel. We still have to poll the channel enable bit due |
| * to AHB/HSB limitations. |
| */ |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| /* disabling channel: must also remove suspend state */ |
| dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); |
| |
| /* confirm that this channel is disabled */ |
| while (dma_readl(atdma, CHSR) & atchan->mask) |
| cpu_relax(); |
| |
| /* active_list entries will end up before queued entries */ |
| list_splice_init(&atchan->queue, &list); |
| list_splice_init(&atchan->active_list, &list); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| /* Flush all pending and queued descriptors */ |
| list_for_each_entry_safe(desc, _desc, &list, desc_node) |
| atc_chain_complete(atchan, desc); |
| |
| clear_bit(ATC_IS_PAUSED, &atchan->status); |
| /* if channel dedicated to cyclic operations, free it */ |
| clear_bit(ATC_IS_CYCLIC, &atchan->status); |
| |
| return 0; |
| } |
| |
| /** |
| * atc_tx_status - poll for transaction completion |
| * @chan: DMA channel |
| * @cookie: transaction identifier to check status of |
| * @txstate: if not %NULL updated with transaction state |
| * |
| * If @txstate is passed in, upon return it reflect the driver |
| * internal state and can be used with dma_async_is_complete() to check |
| * the status of multiple cookies without re-checking hardware state. |
| */ |
| static enum dma_status |
| atc_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, |
| struct dma_tx_state *txstate) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| unsigned long flags; |
| enum dma_status ret; |
| int bytes = 0; |
| |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret == DMA_COMPLETE) |
| return ret; |
| /* |
| * There's no point calculating the residue if there's |
| * no txstate to store the value. |
| */ |
| if (!txstate) |
| return DMA_ERROR; |
| |
| spin_lock_irqsave(&atchan->lock, flags); |
| |
| /* Get number of bytes left in the active transactions */ |
| bytes = atc_get_bytes_left(chan, cookie); |
| |
| spin_unlock_irqrestore(&atchan->lock, flags); |
| |
| if (unlikely(bytes < 0)) { |
| dev_vdbg(chan2dev(chan), "get residual bytes error\n"); |
| return DMA_ERROR; |
| } else { |
| dma_set_residue(txstate, bytes); |
| } |
| |
| dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", |
| ret, cookie, bytes); |
| |
| return ret; |
| } |
| |
| /** |
| * atc_issue_pending - try to finish work |
| * @chan: target DMA channel |
| */ |
| static void atc_issue_pending(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| |
| dev_vdbg(chan2dev(chan), "issue_pending\n"); |
| |
| /* Not needed for cyclic transfers */ |
| if (atc_chan_is_cyclic(atchan)) |
| return; |
| |
| atc_advance_work(atchan); |
| } |
| |
| /** |
| * atc_alloc_chan_resources - allocate resources for DMA channel |
| * @chan: allocate descriptor resources for this channel |
| * |
| * return - the number of allocated descriptors |
| */ |
| static int atc_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| struct at_desc *desc; |
| struct at_dma_slave *atslave; |
| int i; |
| u32 cfg; |
| |
| dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); |
| |
| /* ASSERT: channel is idle */ |
| if (atc_chan_is_enabled(atchan)) { |
| dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); |
| return -EIO; |
| } |
| |
| if (!list_empty(&atchan->free_list)) { |
| dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n"); |
| return -EIO; |
| } |
| |
| cfg = ATC_DEFAULT_CFG; |
| |
| atslave = chan->private; |
| if (atslave) { |
| /* |
| * We need controller-specific data to set up slave |
| * transfers. |
| */ |
| BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); |
| |
| /* if cfg configuration specified take it instead of default */ |
| if (atslave->cfg) |
| cfg = atslave->cfg; |
| } |
| |
| /* Allocate initial pool of descriptors */ |
| for (i = 0; i < init_nr_desc_per_channel; i++) { |
| desc = atc_alloc_descriptor(chan, GFP_KERNEL); |
| if (!desc) { |
| dev_err(atdma->dma_common.dev, |
| "Only %d initial descriptors\n", i); |
| break; |
| } |
| list_add_tail(&desc->desc_node, &atchan->free_list); |
| } |
| |
| dma_cookie_init(chan); |
| |
| /* channel parameters */ |
| channel_writel(atchan, CFG, cfg); |
| |
| dev_dbg(chan2dev(chan), |
| "alloc_chan_resources: allocated %d descriptors\n", i); |
| |
| return i; |
| } |
| |
| /** |
| * atc_free_chan_resources - free all channel resources |
| * @chan: DMA channel |
| */ |
| static void atc_free_chan_resources(struct dma_chan *chan) |
| { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| struct at_dma *atdma = to_at_dma(chan->device); |
| struct at_desc *desc, *_desc; |
| LIST_HEAD(list); |
| |
| /* ASSERT: channel is idle */ |
| BUG_ON(!list_empty(&atchan->active_list)); |
| BUG_ON(!list_empty(&atchan->queue)); |
| BUG_ON(atc_chan_is_enabled(atchan)); |
| |
| list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { |
| dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); |
| list_del(&desc->desc_node); |
| /* free link descriptor */ |
| dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); |
| } |
| list_splice_init(&atchan->free_list, &list); |
| atchan->status = 0; |
| |
| /* |
| * Free atslave allocated in at_dma_xlate() |
| */ |
| kfree(chan->private); |
| chan->private = NULL; |
| |
| dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); |
| } |
| |
| #ifdef CONFIG_OF |
| static bool at_dma_filter(struct dma_chan *chan, void *slave) |
| { |
| struct at_dma_slave *atslave = slave; |
| |
| if (atslave->dma_dev == chan->device->dev) { |
| chan->private = atslave; |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *of_dma) |
| { |
| struct dma_chan *chan; |
| struct at_dma_chan *atchan; |
| struct at_dma_slave *atslave; |
| dma_cap_mask_t mask; |
| unsigned int per_id; |
| struct platform_device *dmac_pdev; |
| |
| if (dma_spec->args_count != 2) |
| return NULL; |
| |
| dmac_pdev = of_find_device_by_node(dma_spec->np); |
| |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_SLAVE, mask); |
| |
| atslave = kmalloc(sizeof(*atslave), GFP_KERNEL); |
| if (!atslave) |
| return NULL; |
| |
| atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; |
| /* |
| * We can fill both SRC_PER and DST_PER, one of these fields will be |
| * ignored depending on DMA transfer direction. |
| */ |
| per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; |
| atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) |
| | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); |
| /* |
| * We have to translate the value we get from the device tree since |
| * the half FIFO configuration value had to be 0 to keep backward |
| * compatibility. |
| */ |
| switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { |
| case AT91_DMA_CFG_FIFOCFG_ALAP: |
| atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; |
| break; |
| case AT91_DMA_CFG_FIFOCFG_ASAP: |
| atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; |
| break; |
| case AT91_DMA_CFG_FIFOCFG_HALF: |
| default: |
| atslave->cfg |= ATC_FIFOCFG_HALFFIFO; |
| } |
| atslave->dma_dev = &dmac_pdev->dev; |
| |
| chan = dma_request_channel(mask, at_dma_filter, atslave); |
| if (!chan) |
| return NULL; |
| |
| atchan = to_at_dma_chan(chan); |
| atchan->per_if = dma_spec->args[0] & 0xff; |
| atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; |
| |
| return chan; |
| } |
| #else |
| static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *of_dma) |
| { |
| return NULL; |
| } |
| #endif |
| |
| /*-- Module Management -----------------------------------------------*/ |
| |
| /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ |
| static struct at_dma_platform_data at91sam9rl_config = { |
| .nr_channels = 2, |
| }; |
| static struct at_dma_platform_data at91sam9g45_config = { |
| .nr_channels = 8, |
| }; |
| |
| #if defined(CONFIG_OF) |
| static const struct of_device_id atmel_dma_dt_ids[] = { |
| { |
| .compatible = "atmel,at91sam9rl-dma", |
| .data = &at91sam9rl_config, |
| }, { |
| .compatible = "atmel,at91sam9g45-dma", |
| .data = &at91sam9g45_config, |
| }, { |
| /* sentinel */ |
| } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); |
| #endif |
| |
| static const struct platform_device_id atdma_devtypes[] = { |
| { |
| .name = "at91sam9rl_dma", |
| .driver_data = (unsigned long) &at91sam9rl_config, |
| }, { |
| .name = "at91sam9g45_dma", |
| .driver_data = (unsigned long) &at91sam9g45_config, |
| }, { |
| /* sentinel */ |
| } |
| }; |
| |
| static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( |
| struct platform_device *pdev) |
| { |
| if (pdev->dev.of_node) { |
| const struct of_device_id *match; |
| match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); |
| if (match == NULL) |
| return NULL; |
| return match->data; |
| } |
| return (struct at_dma_platform_data *) |
| platform_get_device_id(pdev)->driver_data; |
| } |
| |
| /** |
| * at_dma_off - disable DMA controller |
| * @atdma: the Atmel HDAMC device |
| */ |
| static void at_dma_off(struct at_dma *atdma) |
| { |
| dma_writel(atdma, EN, 0); |
| |
| /* disable all interrupts */ |
| dma_writel(atdma, EBCIDR, -1L); |
| |
| /* confirm that all channels are disabled */ |
| while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) |
| cpu_relax(); |
| } |
| |
| static int __init at_dma_probe(struct platform_device *pdev) |
| { |
| struct resource *io; |
| struct at_dma *atdma; |
| size_t size; |
| int irq; |
| int err; |
| int i; |
| const struct at_dma_platform_data *plat_dat; |
| |
| /* setup platform data for each SoC */ |
| dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); |
| dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); |
| dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); |
| dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask); |
| dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask); |
| dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask); |
| dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); |
| |
| /* get DMA parameters from controller type */ |
| plat_dat = at_dma_get_driver_data(pdev); |
| if (!plat_dat) |
| return -ENODEV; |
| |
| io = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!io) |
| return -EINVAL; |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| size = sizeof(struct at_dma); |
| size += plat_dat->nr_channels * sizeof(struct at_dma_chan); |
| atdma = kzalloc(size, GFP_KERNEL); |
| if (!atdma) |
| return -ENOMEM; |
| |
| /* discover transaction capabilities */ |
| atdma->dma_common.cap_mask = plat_dat->cap_mask; |
| atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; |
| |
| size = resource_size(io); |
| if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { |
| err = -EBUSY; |
| goto err_kfree; |
| } |
| |
| atdma->regs = ioremap(io->start, size); |
| if (!atdma->regs) { |
| err = -ENOMEM; |
| goto err_release_r; |
| } |
| |
| atdma->clk = clk_get(&pdev->dev, "dma_clk"); |
| if (IS_ERR(atdma->clk)) { |
| err = PTR_ERR(atdma->clk); |
| goto err_clk; |
| } |
| err = clk_prepare_enable(atdma->clk); |
| if (err) |
| goto err_clk_prepare; |
| |
| /* force dma off, just in case */ |
| at_dma_off(atdma); |
| |
| err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); |
| if (err) |
| goto err_irq; |
| |
| platform_set_drvdata(pdev, atdma); |
| |
| /* create a pool of consistent memory blocks for hardware descriptors */ |
| atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", |
| &pdev->dev, sizeof(struct at_desc), |
| 4 /* word alignment */, 0); |
| if (!atdma->dma_desc_pool) { |
| dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); |
| err = -ENOMEM; |
| goto err_desc_pool_create; |
| } |
| |
| /* create a pool of consistent memory blocks for memset blocks */ |
| atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool", |
| &pdev->dev, sizeof(int), 4, 0); |
| if (!atdma->memset_pool) { |
| dev_err(&pdev->dev, "No memory for memset dma pool\n"); |
| err = -ENOMEM; |
| goto err_memset_pool_create; |
| } |
| |
| /* clear any pending interrupt */ |
| while (dma_readl(atdma, EBCISR)) |
| cpu_relax(); |
| |
| /* initialize channels related values */ |
| INIT_LIST_HEAD(&atdma->dma_common.channels); |
| for (i = 0; i < plat_dat->nr_channels; i++) { |
| struct at_dma_chan *atchan = &atdma->chan[i]; |
| |
| atchan->mem_if = AT_DMA_MEM_IF; |
| atchan->per_if = AT_DMA_PER_IF; |
| atchan->chan_common.device = &atdma->dma_common; |
| dma_cookie_init(&atchan->chan_common); |
| list_add_tail(&atchan->chan_common.device_node, |
| &atdma->dma_common.channels); |
| |
| atchan->ch_regs = atdma->regs + ch_regs(i); |
| spin_lock_init(&atchan->lock); |
| atchan->mask = 1 << i; |
| |
| INIT_LIST_HEAD(&atchan->active_list); |
| INIT_LIST_HEAD(&atchan->queue); |
| INIT_LIST_HEAD(&atchan->free_list); |
| |
| tasklet_init(&atchan->tasklet, atc_tasklet, |
| (unsigned long)atchan); |
| atc_enable_chan_irq(atdma, i); |
| } |
| |
| /* set base routines */ |
| atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; |
| atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; |
| atdma->dma_common.device_tx_status = atc_tx_status; |
| atdma->dma_common.device_issue_pending = atc_issue_pending; |
| atdma->dma_common.dev = &pdev->dev; |
| |
| /* set prep routines based on capability */ |
| if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) |
| atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; |
| |
| if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) |
| atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; |
| |
| if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) { |
| atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset; |
| atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg; |
| atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES; |
| } |
| |
| if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { |
| atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; |
| /* controller can do slave DMA: can trigger cyclic transfers */ |
| dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); |
| atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; |
| atdma->dma_common.device_config = atc_config; |
| atdma->dma_common.device_pause = atc_pause; |
| atdma->dma_common.device_resume = atc_resume; |
| atdma->dma_common.device_terminate_all = atc_terminate_all; |
| atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; |
| atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; |
| atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| } |
| |
| dma_writel(atdma, EN, AT_DMA_ENABLE); |
| |
| dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", |
| dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", |
| dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "", |
| dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", |
| plat_dat->nr_channels); |
| |
| dma_async_device_register(&atdma->dma_common); |
| |
| /* |
| * Do not return an error if the dmac node is not present in order to |
| * not break the existing way of requesting channel with |
| * dma_request_channel(). |
| */ |
| if (pdev->dev.of_node) { |
| err = of_dma_controller_register(pdev->dev.of_node, |
| at_dma_xlate, atdma); |
| if (err) { |
| dev_err(&pdev->dev, "could not register of_dma_controller\n"); |
| goto err_of_dma_controller_register; |
| } |
| } |
| |
| return 0; |
| |
| err_of_dma_controller_register: |
| dma_async_device_unregister(&atdma->dma_common); |
| dma_pool_destroy(atdma->memset_pool); |
| err_memset_pool_create: |
| dma_pool_destroy(atdma->dma_desc_pool); |
| err_desc_pool_create: |
| free_irq(platform_get_irq(pdev, 0), atdma); |
| err_irq: |
| clk_disable_unprepare(atdma->clk); |
| err_clk_prepare: |
| clk_put(atdma->clk); |
| err_clk: |
| iounmap(atdma->regs); |
| atdma->regs = NULL; |
| err_release_r: |
| release_mem_region(io->start, size); |
| err_kfree: |
| kfree(atdma); |
| return err; |
| } |
| |
| static int at_dma_remove(struct platform_device *pdev) |
| { |
| struct at_dma *atdma = platform_get_drvdata(pdev); |
| struct dma_chan *chan, *_chan; |
| struct resource *io; |
| |
| at_dma_off(atdma); |
| if (pdev->dev.of_node) |
| of_dma_controller_free(pdev->dev.of_node); |
| dma_async_device_unregister(&atdma->dma_common); |
| |
| dma_pool_destroy(atdma->memset_pool); |
| dma_pool_destroy(atdma->dma_desc_pool); |
| free_irq(platform_get_irq(pdev, 0), atdma); |
| |
| list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, |
| device_node) { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| |
| /* Disable interrupts */ |
| atc_disable_chan_irq(atdma, chan->chan_id); |
| |
| tasklet_kill(&atchan->tasklet); |
| list_del(&chan->device_node); |
| } |
| |
| clk_disable_unprepare(atdma->clk); |
| clk_put(atdma->clk); |
| |
| iounmap(atdma->regs); |
| atdma->regs = NULL; |
| |
| io = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| release_mem_region(io->start, resource_size(io)); |
| |
| kfree(atdma); |
| |
| return 0; |
| } |
| |
| static void at_dma_shutdown(struct platform_device *pdev) |
| { |
| struct at_dma *atdma = platform_get_drvdata(pdev); |
| |
| at_dma_off(platform_get_drvdata(pdev)); |
| clk_disable_unprepare(atdma->clk); |
| } |
| |
| static int at_dma_prepare(struct device *dev) |
| { |
| struct at_dma *atdma = dev_get_drvdata(dev); |
| struct dma_chan *chan, *_chan; |
| |
| list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, |
| device_node) { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| /* wait for transaction completion (except in cyclic case) */ |
| if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) |
| return -EAGAIN; |
| } |
| return 0; |
| } |
| |
| static void atc_suspend_cyclic(struct at_dma_chan *atchan) |
| { |
| struct dma_chan *chan = &atchan->chan_common; |
| |
| /* Channel should be paused by user |
| * do it anyway even if it is not done already */ |
| if (!atc_chan_is_paused(atchan)) { |
| dev_warn(chan2dev(chan), |
| "cyclic channel not paused, should be done by channel user\n"); |
| atc_pause(chan); |
| } |
| |
| /* now preserve additional data for cyclic operations */ |
| /* next descriptor address in the cyclic list */ |
| atchan->save_dscr = channel_readl(atchan, DSCR); |
| |
| vdbg_dump_regs(atchan); |
| } |
| |
| static int at_dma_suspend_noirq(struct device *dev) |
| { |
| struct at_dma *atdma = dev_get_drvdata(dev); |
| struct dma_chan *chan, *_chan; |
| |
| /* preserve data */ |
| list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, |
| device_node) { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| |
| if (atc_chan_is_cyclic(atchan)) |
| atc_suspend_cyclic(atchan); |
| atchan->save_cfg = channel_readl(atchan, CFG); |
| } |
| atdma->save_imr = dma_readl(atdma, EBCIMR); |
| |
| /* disable DMA controller */ |
| at_dma_off(atdma); |
| clk_disable_unprepare(atdma->clk); |
| return 0; |
| } |
| |
| static void atc_resume_cyclic(struct at_dma_chan *atchan) |
| { |
| struct at_dma *atdma = to_at_dma(atchan->chan_common.device); |
| |
| /* restore channel status for cyclic descriptors list: |
| * next descriptor in the cyclic list at the time of suspend */ |
| channel_writel(atchan, SADDR, 0); |
| channel_writel(atchan, DADDR, 0); |
| channel_writel(atchan, CTRLA, 0); |
| channel_writel(atchan, CTRLB, 0); |
| channel_writel(atchan, DSCR, atchan->save_dscr); |
| dma_writel(atdma, CHER, atchan->mask); |
| |
| /* channel pause status should be removed by channel user |
| * We cannot take the initiative to do it here */ |
| |
| vdbg_dump_regs(atchan); |
| } |
| |
| static int at_dma_resume_noirq(struct device *dev) |
| { |
| struct at_dma *atdma = dev_get_drvdata(dev); |
| struct dma_chan *chan, *_chan; |
| |
| /* bring back DMA controller */ |
| clk_prepare_enable(atdma->clk); |
| dma_writel(atdma, EN, AT_DMA_ENABLE); |
| |
| /* clear any pending interrupt */ |
| while (dma_readl(atdma, EBCISR)) |
| cpu_relax(); |
| |
| /* restore saved data */ |
| dma_writel(atdma, EBCIER, atdma->save_imr); |
| list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, |
| device_node) { |
| struct at_dma_chan *atchan = to_at_dma_chan(chan); |
| |
| channel_writel(atchan, CFG, atchan->save_cfg); |
| if (atc_chan_is_cyclic(atchan)) |
| atc_resume_cyclic(atchan); |
| } |
| return 0; |
| } |
| |
| static const struct dev_pm_ops at_dma_dev_pm_ops = { |
| .prepare = at_dma_prepare, |
| .suspend_noirq = at_dma_suspend_noirq, |
| .resume_noirq = at_dma_resume_noirq, |
| }; |
| |
| static struct platform_driver at_dma_driver = { |
| .remove = at_dma_remove, |
| .shutdown = at_dma_shutdown, |
| .id_table = atdma_devtypes, |
| .driver = { |
| .name = "at_hdmac", |
| .pm = &at_dma_dev_pm_ops, |
| .of_match_table = of_match_ptr(atmel_dma_dt_ids), |
| }, |
| }; |
| |
| static int __init at_dma_init(void) |
| { |
| return platform_driver_probe(&at_dma_driver, at_dma_probe); |
| } |
| subsys_initcall(at_dma_init); |
| |
| static void __exit at_dma_exit(void) |
| { |
| platform_driver_unregister(&at_dma_driver); |
| } |
| module_exit(at_dma_exit); |
| |
| MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); |
| MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:at_hdmac"); |