| /* |
| * Copyright © 2015-2016 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Robert Bragg <robert@sixbynine.org> |
| */ |
| |
| |
| /** |
| * DOC: i915 Perf Overview |
| * |
| * Gen graphics supports a large number of performance counters that can help |
| * driver and application developers understand and optimize their use of the |
| * GPU. |
| * |
| * This i915 perf interface enables userspace to configure and open a file |
| * descriptor representing a stream of GPU metrics which can then be read() as |
| * a stream of sample records. |
| * |
| * The interface is particularly suited to exposing buffered metrics that are |
| * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU. |
| * |
| * Streams representing a single context are accessible to applications with a |
| * corresponding drm file descriptor, such that OpenGL can use the interface |
| * without special privileges. Access to system-wide metrics requires root |
| * privileges by default, unless changed via the dev.i915.perf_event_paranoid |
| * sysctl option. |
| * |
| */ |
| |
| /** |
| * DOC: i915 Perf History and Comparison with Core Perf |
| * |
| * The interface was initially inspired by the core Perf infrastructure but |
| * some notable differences are: |
| * |
| * i915 perf file descriptors represent a "stream" instead of an "event"; where |
| * a perf event primarily corresponds to a single 64bit value, while a stream |
| * might sample sets of tightly-coupled counters, depending on the |
| * configuration. For example the Gen OA unit isn't designed to support |
| * orthogonal configurations of individual counters; it's configured for a set |
| * of related counters. Samples for an i915 perf stream capturing OA metrics |
| * will include a set of counter values packed in a compact HW specific format. |
| * The OA unit supports a number of different packing formats which can be |
| * selected by the user opening the stream. Perf has support for grouping |
| * events, but each event in the group is configured, validated and |
| * authenticated individually with separate system calls. |
| * |
| * i915 perf stream configurations are provided as an array of u64 (key,value) |
| * pairs, instead of a fixed struct with multiple miscellaneous config members, |
| * interleaved with event-type specific members. |
| * |
| * i915 perf doesn't support exposing metrics via an mmap'd circular buffer. |
| * The supported metrics are being written to memory by the GPU unsynchronized |
| * with the CPU, using HW specific packing formats for counter sets. Sometimes |
| * the constraints on HW configuration require reports to be filtered before it |
| * would be acceptable to expose them to unprivileged applications - to hide |
| * the metrics of other processes/contexts. For these use cases a read() based |
| * interface is a good fit, and provides an opportunity to filter data as it |
| * gets copied from the GPU mapped buffers to userspace buffers. |
| * |
| * |
| * Issues hit with first prototype based on Core Perf |
| * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| * |
| * The first prototype of this driver was based on the core perf |
| * infrastructure, and while we did make that mostly work, with some changes to |
| * perf, we found we were breaking or working around too many assumptions baked |
| * into perf's currently cpu centric design. |
| * |
| * In the end we didn't see a clear benefit to making perf's implementation and |
| * interface more complex by changing design assumptions while we knew we still |
| * wouldn't be able to use any existing perf based userspace tools. |
| * |
| * Also considering the Gen specific nature of the Observability hardware and |
| * how userspace will sometimes need to combine i915 perf OA metrics with |
| * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're |
| * expecting the interface to be used by a platform specific userspace such as |
| * OpenGL or tools. This is to say; we aren't inherently missing out on having |
| * a standard vendor/architecture agnostic interface by not using perf. |
| * |
| * |
| * For posterity, in case we might re-visit trying to adapt core perf to be |
| * better suited to exposing i915 metrics these were the main pain points we |
| * hit: |
| * |
| * - The perf based OA PMU driver broke some significant design assumptions: |
| * |
| * Existing perf pmus are used for profiling work on a cpu and we were |
| * introducing the idea of _IS_DEVICE pmus with different security |
| * implications, the need to fake cpu-related data (such as user/kernel |
| * registers) to fit with perf's current design, and adding _DEVICE records |
| * as a way to forward device-specific status records. |
| * |
| * The OA unit writes reports of counters into a circular buffer, without |
| * involvement from the CPU, making our PMU driver the first of a kind. |
| * |
| * Given the way we were periodically forward data from the GPU-mapped, OA |
| * buffer to perf's buffer, those bursts of sample writes looked to perf like |
| * we were sampling too fast and so we had to subvert its throttling checks. |
| * |
| * Perf supports groups of counters and allows those to be read via |
| * transactions internally but transactions currently seem designed to be |
| * explicitly initiated from the cpu (say in response to a userspace read()) |
| * and while we could pull a report out of the OA buffer we can't |
| * trigger a report from the cpu on demand. |
| * |
| * Related to being report based; the OA counters are configured in HW as a |
| * set while perf generally expects counter configurations to be orthogonal. |
| * Although counters can be associated with a group leader as they are |
| * opened, there's no clear precedent for being able to provide group-wide |
| * configuration attributes (for example we want to let userspace choose the |
| * OA unit report format used to capture all counters in a set, or specify a |
| * GPU context to filter metrics on). We avoided using perf's grouping |
| * feature and forwarded OA reports to userspace via perf's 'raw' sample |
| * field. This suited our userspace well considering how coupled the counters |
| * are when dealing with normalizing. It would be inconvenient to split |
| * counters up into separate events, only to require userspace to recombine |
| * them. For Mesa it's also convenient to be forwarded raw, periodic reports |
| * for combining with the side-band raw reports it captures using |
| * MI_REPORT_PERF_COUNT commands. |
| * |
| * - As a side note on perf's grouping feature; there was also some concern |
| * that using PERF_FORMAT_GROUP as a way to pack together counter values |
| * would quite drastically inflate our sample sizes, which would likely |
| * lower the effective sampling resolutions we could use when the available |
| * memory bandwidth is limited. |
| * |
| * With the OA unit's report formats, counters are packed together as 32 |
| * or 40bit values, with the largest report size being 256 bytes. |
| * |
| * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a |
| * documented ordering to the values, implying PERF_FORMAT_ID must also be |
| * used to add a 64bit ID before each value; giving 16 bytes per counter. |
| * |
| * Related to counter orthogonality; we can't time share the OA unit, while |
| * event scheduling is a central design idea within perf for allowing |
| * userspace to open + enable more events than can be configured in HW at any |
| * one time. The OA unit is not designed to allow re-configuration while in |
| * use. We can't reconfigure the OA unit without losing internal OA unit |
| * state which we can't access explicitly to save and restore. Reconfiguring |
| * the OA unit is also relatively slow, involving ~100 register writes. From |
| * userspace Mesa also depends on a stable OA configuration when emitting |
| * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be |
| * disabled while there are outstanding MI_RPC commands lest we hang the |
| * command streamer. |
| * |
| * The contents of sample records aren't extensible by device drivers (i.e. |
| * the sample_type bits). As an example; Sourab Gupta had been looking to |
| * attach GPU timestamps to our OA samples. We were shoehorning OA reports |
| * into sample records by using the 'raw' field, but it's tricky to pack more |
| * than one thing into this field because events/core.c currently only lets a |
| * pmu give a single raw data pointer plus len which will be copied into the |
| * ring buffer. To include more than the OA report we'd have to copy the |
| * report into an intermediate larger buffer. I'd been considering allowing a |
| * vector of data+len values to be specified for copying the raw data, but |
| * it felt like a kludge to being using the raw field for this purpose. |
| * |
| * - It felt like our perf based PMU was making some technical compromises |
| * just for the sake of using perf: |
| * |
| * perf_event_open() requires events to either relate to a pid or a specific |
| * cpu core, while our device pmu related to neither. Events opened with a |
| * pid will be automatically enabled/disabled according to the scheduling of |
| * that process - so not appropriate for us. When an event is related to a |
| * cpu id, perf ensures pmu methods will be invoked via an inter process |
| * interrupt on that core. To avoid invasive changes our userspace opened OA |
| * perf events for a specific cpu. This was workable but it meant the |
| * majority of the OA driver ran in atomic context, including all OA report |
| * forwarding, which wasn't really necessary in our case and seems to make |
| * our locking requirements somewhat complex as we handled the interaction |
| * with the rest of the i915 driver. |
| */ |
| |
| #include <linux/anon_inodes.h> |
| #include <linux/sizes.h> |
| #include <linux/uuid.h> |
| |
| #include "gem/i915_gem_context.h" |
| #include "gt/intel_engine_pm.h" |
| #include "gt/intel_engine_user.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_lrc_reg.h" |
| #include "gt/intel_ring.h" |
| |
| #include "i915_drv.h" |
| #include "i915_perf.h" |
| |
| /* HW requires this to be a power of two, between 128k and 16M, though driver |
| * is currently generally designed assuming the largest 16M size is used such |
| * that the overflow cases are unlikely in normal operation. |
| */ |
| #define OA_BUFFER_SIZE SZ_16M |
| |
| #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1)) |
| |
| /** |
| * DOC: OA Tail Pointer Race |
| * |
| * There's a HW race condition between OA unit tail pointer register updates and |
| * writes to memory whereby the tail pointer can sometimes get ahead of what's |
| * been written out to the OA buffer so far (in terms of what's visible to the |
| * CPU). |
| * |
| * Although this can be observed explicitly while copying reports to userspace |
| * by checking for a zeroed report-id field in tail reports, we want to account |
| * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of |
| * redundant read() attempts. |
| * |
| * We workaround this issue in oa_buffer_check_unlocked() by reading the reports |
| * in the OA buffer, starting from the tail reported by the HW until we find a |
| * report with its first 2 dwords not 0 meaning its previous report is |
| * completely in memory and ready to be read. Those dwords are also set to 0 |
| * once read and the whole buffer is cleared upon OA buffer initialization. The |
| * first dword is the reason for this report while the second is the timestamp, |
| * making the chances of having those 2 fields at 0 fairly unlikely. A more |
| * detailed explanation is available in oa_buffer_check_unlocked(). |
| * |
| * Most of the implementation details for this workaround are in |
| * oa_buffer_check_unlocked() and _append_oa_reports() |
| * |
| * Note for posterity: previously the driver used to define an effective tail |
| * pointer that lagged the real pointer by a 'tail margin' measured in bytes |
| * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency. |
| * This was flawed considering that the OA unit may also automatically generate |
| * non-periodic reports (such as on context switch) or the OA unit may be |
| * enabled without any periodic sampling. |
| */ |
| #define OA_TAIL_MARGIN_NSEC 100000ULL |
| #define INVALID_TAIL_PTR 0xffffffff |
| |
| /* The default frequency for checking whether the OA unit has written new |
| * reports to the circular OA buffer... |
| */ |
| #define DEFAULT_POLL_FREQUENCY_HZ 200 |
| #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ) |
| |
| /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */ |
| static u32 i915_perf_stream_paranoid = true; |
| |
| /* The maximum exponent the hardware accepts is 63 (essentially it selects one |
| * of the 64bit timestamp bits to trigger reports from) but there's currently |
| * no known use case for sampling as infrequently as once per 47 thousand years. |
| * |
| * Since the timestamps included in OA reports are only 32bits it seems |
| * reasonable to limit the OA exponent where it's still possible to account for |
| * overflow in OA report timestamps. |
| */ |
| #define OA_EXPONENT_MAX 31 |
| |
| #define INVALID_CTX_ID 0xffffffff |
| |
| /* On Gen8+ automatically triggered OA reports include a 'reason' field... */ |
| #define OAREPORT_REASON_MASK 0x3f |
| #define OAREPORT_REASON_MASK_EXTENDED 0x7f |
| #define OAREPORT_REASON_SHIFT 19 |
| #define OAREPORT_REASON_TIMER (1<<0) |
| #define OAREPORT_REASON_CTX_SWITCH (1<<3) |
| #define OAREPORT_REASON_CLK_RATIO (1<<5) |
| |
| |
| /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate |
| * |
| * The highest sampling frequency we can theoretically program the OA unit |
| * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell. |
| * |
| * Initialized just before we register the sysctl parameter. |
| */ |
| static int oa_sample_rate_hard_limit; |
| |
| /* Theoretically we can program the OA unit to sample every 160ns but don't |
| * allow that by default unless root... |
| * |
| * The default threshold of 100000Hz is based on perf's similar |
| * kernel.perf_event_max_sample_rate sysctl parameter. |
| */ |
| static u32 i915_oa_max_sample_rate = 100000; |
| |
| /* XXX: beware if future OA HW adds new report formats that the current |
| * code assumes all reports have a power-of-two size and ~(size - 1) can |
| * be used as a mask to align the OA tail pointer. |
| */ |
| static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = { |
| [I915_OA_FORMAT_A13] = { 0, 64 }, |
| [I915_OA_FORMAT_A29] = { 1, 128 }, |
| [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 }, |
| /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */ |
| [I915_OA_FORMAT_B4_C8] = { 4, 64 }, |
| [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 }, |
| [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 }, |
| [I915_OA_FORMAT_C4_B8] = { 7, 64 }, |
| }; |
| |
| static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = { |
| [I915_OA_FORMAT_A12] = { 0, 64 }, |
| [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 }, |
| [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, |
| [I915_OA_FORMAT_C4_B8] = { 7, 64 }, |
| }; |
| |
| static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = { |
| [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 }, |
| }; |
| |
| #define SAMPLE_OA_REPORT (1<<0) |
| |
| /** |
| * struct perf_open_properties - for validated properties given to open a stream |
| * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags |
| * @single_context: Whether a single or all gpu contexts should be monitored |
| * @hold_preemption: Whether the preemption is disabled for the filtered |
| * context |
| * @ctx_handle: A gem ctx handle for use with @single_context |
| * @metrics_set: An ID for an OA unit metric set advertised via sysfs |
| * @oa_format: An OA unit HW report format |
| * @oa_periodic: Whether to enable periodic OA unit sampling |
| * @oa_period_exponent: The OA unit sampling period is derived from this |
| * @engine: The engine (typically rcs0) being monitored by the OA unit |
| * @has_sseu: Whether @sseu was specified by userspace |
| * @sseu: internal SSEU configuration computed either from the userspace |
| * specified configuration in the opening parameters or a default value |
| * (see get_default_sseu_config()) |
| * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA |
| * data availability |
| * |
| * As read_properties_unlocked() enumerates and validates the properties given |
| * to open a stream of metrics the configuration is built up in the structure |
| * which starts out zero initialized. |
| */ |
| struct perf_open_properties { |
| u32 sample_flags; |
| |
| u64 single_context:1; |
| u64 hold_preemption:1; |
| u64 ctx_handle; |
| |
| /* OA sampling state */ |
| int metrics_set; |
| int oa_format; |
| bool oa_periodic; |
| int oa_period_exponent; |
| |
| struct intel_engine_cs *engine; |
| |
| bool has_sseu; |
| struct intel_sseu sseu; |
| |
| u64 poll_oa_period; |
| }; |
| |
| struct i915_oa_config_bo { |
| struct llist_node node; |
| |
| struct i915_oa_config *oa_config; |
| struct i915_vma *vma; |
| }; |
| |
| static struct ctl_table_header *sysctl_header; |
| |
| static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer); |
| |
| void i915_oa_config_release(struct kref *ref) |
| { |
| struct i915_oa_config *oa_config = |
| container_of(ref, typeof(*oa_config), ref); |
| |
| kfree(oa_config->flex_regs); |
| kfree(oa_config->b_counter_regs); |
| kfree(oa_config->mux_regs); |
| |
| kfree_rcu(oa_config, rcu); |
| } |
| |
| struct i915_oa_config * |
| i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set) |
| { |
| struct i915_oa_config *oa_config; |
| |
| rcu_read_lock(); |
| oa_config = idr_find(&perf->metrics_idr, metrics_set); |
| if (oa_config) |
| oa_config = i915_oa_config_get(oa_config); |
| rcu_read_unlock(); |
| |
| return oa_config; |
| } |
| |
| static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo) |
| { |
| i915_oa_config_put(oa_bo->oa_config); |
| i915_vma_put(oa_bo->vma); |
| kfree(oa_bo); |
| } |
| |
| static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) & |
| GEN12_OAG_OATAILPTR_MASK; |
| } |
| |
| static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK; |
| } |
| |
| static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); |
| |
| return oastatus1 & GEN7_OASTATUS1_TAIL_MASK; |
| } |
| |
| /** |
| * oa_buffer_check_unlocked - check for data and update tail ptr state |
| * @stream: i915 stream instance |
| * |
| * This is either called via fops (for blocking reads in user ctx) or the poll |
| * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check |
| * if there is data available for userspace to read. |
| * |
| * This function is central to providing a workaround for the OA unit tail |
| * pointer having a race with respect to what data is visible to the CPU. |
| * It is responsible for reading tail pointers from the hardware and giving |
| * the pointers time to 'age' before they are made available for reading. |
| * (See description of OA_TAIL_MARGIN_NSEC above for further details.) |
| * |
| * Besides returning true when there is data available to read() this function |
| * also updates the tail, aging_tail and aging_timestamp in the oa_buffer |
| * object. |
| * |
| * Note: It's safe to read OA config state here unlocked, assuming that this is |
| * only called while the stream is enabled, while the global OA configuration |
| * can't be modified. |
| * |
| * Returns: %true if the OA buffer contains data, else %false |
| */ |
| static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream) |
| { |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| int report_size = stream->oa_buffer.format_size; |
| unsigned long flags; |
| bool pollin; |
| u32 hw_tail; |
| u64 now; |
| |
| /* We have to consider the (unlikely) possibility that read() errors |
| * could result in an OA buffer reset which might reset the head and |
| * tail state. |
| */ |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| hw_tail = stream->perf->ops.oa_hw_tail_read(stream); |
| |
| /* The tail pointer increases in 64 byte increments, |
| * not in report_size steps... |
| */ |
| hw_tail &= ~(report_size - 1); |
| |
| now = ktime_get_mono_fast_ns(); |
| |
| if (hw_tail == stream->oa_buffer.aging_tail && |
| (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) { |
| /* If the HW tail hasn't move since the last check and the HW |
| * tail has been aging for long enough, declare it the new |
| * tail. |
| */ |
| stream->oa_buffer.tail = stream->oa_buffer.aging_tail; |
| } else { |
| u32 head, tail, aged_tail; |
| |
| /* NB: The head we observe here might effectively be a little |
| * out of date. If a read() is in progress, the head could be |
| * anywhere between this head and stream->oa_buffer.tail. |
| */ |
| head = stream->oa_buffer.head - gtt_offset; |
| aged_tail = stream->oa_buffer.tail - gtt_offset; |
| |
| hw_tail -= gtt_offset; |
| tail = hw_tail; |
| |
| /* Walk the stream backward until we find a report with dword 0 |
| * & 1 not at 0. Since the circular buffer pointers progress by |
| * increments of 64 bytes and that reports can be up to 256 |
| * bytes long, we can't tell whether a report has fully landed |
| * in memory before the first 2 dwords of the following report |
| * have effectively landed. |
| * |
| * This is assuming that the writes of the OA unit land in |
| * memory in the order they were written to. |
| * If not : (╯°□°)╯︵ ┻━┻ |
| */ |
| while (OA_TAKEN(tail, aged_tail) >= report_size) { |
| u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail); |
| |
| if (report32[0] != 0 || report32[1] != 0) |
| break; |
| |
| tail = (tail - report_size) & (OA_BUFFER_SIZE - 1); |
| } |
| |
| if (OA_TAKEN(hw_tail, tail) > report_size && |
| __ratelimit(&stream->perf->tail_pointer_race)) |
| DRM_NOTE("unlanded report(s) head=0x%x " |
| "tail=0x%x hw_tail=0x%x\n", |
| head, tail, hw_tail); |
| |
| stream->oa_buffer.tail = gtt_offset + tail; |
| stream->oa_buffer.aging_tail = gtt_offset + hw_tail; |
| stream->oa_buffer.aging_timestamp = now; |
| } |
| |
| pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset, |
| stream->oa_buffer.head - gtt_offset) >= report_size; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| return pollin; |
| } |
| |
| /** |
| * append_oa_status - Appends a status record to a userspace read() buffer. |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * @type: The kind of status to report to userspace |
| * |
| * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`) |
| * into the userspace read() buffer. |
| * |
| * The @buf @offset will only be updated on success. |
| * |
| * Returns: 0 on success, negative error code on failure. |
| */ |
| static int append_oa_status(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset, |
| enum drm_i915_perf_record_type type) |
| { |
| struct drm_i915_perf_record_header header = { type, 0, sizeof(header) }; |
| |
| if ((count - *offset) < header.size) |
| return -ENOSPC; |
| |
| if (copy_to_user(buf + *offset, &header, sizeof(header))) |
| return -EFAULT; |
| |
| (*offset) += header.size; |
| |
| return 0; |
| } |
| |
| /** |
| * append_oa_sample - Copies single OA report into userspace read() buffer. |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * @report: A single OA report to (optionally) include as part of the sample |
| * |
| * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*` |
| * properties when opening a stream, tracked as `stream->sample_flags`. This |
| * function copies the requested components of a single sample to the given |
| * read() @buf. |
| * |
| * The @buf @offset will only be updated on success. |
| * |
| * Returns: 0 on success, negative error code on failure. |
| */ |
| static int append_oa_sample(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset, |
| const u8 *report) |
| { |
| int report_size = stream->oa_buffer.format_size; |
| struct drm_i915_perf_record_header header; |
| u32 sample_flags = stream->sample_flags; |
| |
| header.type = DRM_I915_PERF_RECORD_SAMPLE; |
| header.pad = 0; |
| header.size = stream->sample_size; |
| |
| if ((count - *offset) < header.size) |
| return -ENOSPC; |
| |
| buf += *offset; |
| if (copy_to_user(buf, &header, sizeof(header))) |
| return -EFAULT; |
| buf += sizeof(header); |
| |
| if (sample_flags & SAMPLE_OA_REPORT) { |
| if (copy_to_user(buf, report, report_size)) |
| return -EFAULT; |
| } |
| |
| (*offset) += header.size; |
| |
| return 0; |
| } |
| |
| /** |
| * Copies all buffered OA reports into userspace read() buffer. |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * |
| * Notably any error condition resulting in a short read (-%ENOSPC or |
| * -%EFAULT) will be returned even though one or more records may |
| * have been successfully copied. In this case it's up to the caller |
| * to decide if the error should be squashed before returning to |
| * userspace. |
| * |
| * Note: reports are consumed from the head, and appended to the |
| * tail, so the tail chases the head?... If you think that's mad |
| * and back-to-front you're not alone, but this follows the |
| * Gen PRM naming convention. |
| * |
| * Returns: 0 on success, negative error code on failure. |
| */ |
| static int gen8_append_oa_reports(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| int report_size = stream->oa_buffer.format_size; |
| u8 *oa_buf_base = stream->oa_buffer.vaddr; |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| u32 mask = (OA_BUFFER_SIZE - 1); |
| size_t start_offset = *offset; |
| unsigned long flags; |
| u32 head, tail; |
| u32 taken; |
| int ret = 0; |
| |
| if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) |
| return -EIO; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| head = stream->oa_buffer.head; |
| tail = stream->oa_buffer.tail; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* |
| * NB: oa_buffer.head/tail include the gtt_offset which we don't want |
| * while indexing relative to oa_buf_base. |
| */ |
| head -= gtt_offset; |
| tail -= gtt_offset; |
| |
| /* |
| * An out of bounds or misaligned head or tail pointer implies a driver |
| * bug since we validate + align the tail pointers we read from the |
| * hardware and we are in full control of the head pointer which should |
| * only be incremented by multiples of the report size (notably also |
| * all a power of two). |
| */ |
| if (drm_WARN_ONCE(&uncore->i915->drm, |
| head > OA_BUFFER_SIZE || head % report_size || |
| tail > OA_BUFFER_SIZE || tail % report_size, |
| "Inconsistent OA buffer pointers: head = %u, tail = %u\n", |
| head, tail)) |
| return -EIO; |
| |
| |
| for (/* none */; |
| (taken = OA_TAKEN(tail, head)); |
| head = (head + report_size) & mask) { |
| u8 *report = oa_buf_base + head; |
| u32 *report32 = (void *)report; |
| u32 ctx_id; |
| u32 reason; |
| |
| /* |
| * All the report sizes factor neatly into the buffer |
| * size so we never expect to see a report split |
| * between the beginning and end of the buffer. |
| * |
| * Given the initial alignment check a misalignment |
| * here would imply a driver bug that would result |
| * in an overrun. |
| */ |
| if (drm_WARN_ON(&uncore->i915->drm, |
| (OA_BUFFER_SIZE - head) < report_size)) { |
| drm_err(&uncore->i915->drm, |
| "Spurious OA head ptr: non-integral report offset\n"); |
| break; |
| } |
| |
| /* |
| * The reason field includes flags identifying what |
| * triggered this specific report (mostly timer |
| * triggered or e.g. due to a context switch). |
| * |
| * This field is never expected to be zero so we can |
| * check that the report isn't invalid before copying |
| * it to userspace... |
| */ |
| reason = ((report32[0] >> OAREPORT_REASON_SHIFT) & |
| (IS_GEN(stream->perf->i915, 12) ? |
| OAREPORT_REASON_MASK_EXTENDED : |
| OAREPORT_REASON_MASK)); |
| if (reason == 0) { |
| if (__ratelimit(&stream->perf->spurious_report_rs)) |
| DRM_NOTE("Skipping spurious, invalid OA report\n"); |
| continue; |
| } |
| |
| ctx_id = report32[2] & stream->specific_ctx_id_mask; |
| |
| /* |
| * Squash whatever is in the CTX_ID field if it's marked as |
| * invalid to be sure we avoid false-positive, single-context |
| * filtering below... |
| * |
| * Note: that we don't clear the valid_ctx_bit so userspace can |
| * understand that the ID has been squashed by the kernel. |
| */ |
| if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) && |
| INTEL_GEN(stream->perf->i915) <= 11) |
| ctx_id = report32[2] = INVALID_CTX_ID; |
| |
| /* |
| * NB: For Gen 8 the OA unit no longer supports clock gating |
| * off for a specific context and the kernel can't securely |
| * stop the counters from updating as system-wide / global |
| * values. |
| * |
| * Automatic reports now include a context ID so reports can be |
| * filtered on the cpu but it's not worth trying to |
| * automatically subtract/hide counter progress for other |
| * contexts while filtering since we can't stop userspace |
| * issuing MI_REPORT_PERF_COUNT commands which would still |
| * provide a side-band view of the real values. |
| * |
| * To allow userspace (such as Mesa/GL_INTEL_performance_query) |
| * to normalize counters for a single filtered context then it |
| * needs be forwarded bookend context-switch reports so that it |
| * can track switches in between MI_REPORT_PERF_COUNT commands |
| * and can itself subtract/ignore the progress of counters |
| * associated with other contexts. Note that the hardware |
| * automatically triggers reports when switching to a new |
| * context which are tagged with the ID of the newly active |
| * context. To avoid the complexity (and likely fragility) of |
| * reading ahead while parsing reports to try and minimize |
| * forwarding redundant context switch reports (i.e. between |
| * other, unrelated contexts) we simply elect to forward them |
| * all. |
| * |
| * We don't rely solely on the reason field to identify context |
| * switches since it's not-uncommon for periodic samples to |
| * identify a switch before any 'context switch' report. |
| */ |
| if (!stream->perf->exclusive_stream->ctx || |
| stream->specific_ctx_id == ctx_id || |
| stream->oa_buffer.last_ctx_id == stream->specific_ctx_id || |
| reason & OAREPORT_REASON_CTX_SWITCH) { |
| |
| /* |
| * While filtering for a single context we avoid |
| * leaking the IDs of other contexts. |
| */ |
| if (stream->perf->exclusive_stream->ctx && |
| stream->specific_ctx_id != ctx_id) { |
| report32[2] = INVALID_CTX_ID; |
| } |
| |
| ret = append_oa_sample(stream, buf, count, offset, |
| report); |
| if (ret) |
| break; |
| |
| stream->oa_buffer.last_ctx_id = ctx_id; |
| } |
| |
| /* |
| * Clear out the first 2 dword as a mean to detect unlanded |
| * reports. |
| */ |
| report32[0] = 0; |
| report32[1] = 0; |
| } |
| |
| if (start_offset != *offset) { |
| i915_reg_t oaheadptr; |
| |
| oaheadptr = IS_GEN(stream->perf->i915, 12) ? |
| GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* |
| * We removed the gtt_offset for the copy loop above, indexing |
| * relative to oa_buf_base so put back here... |
| */ |
| head += gtt_offset; |
| intel_uncore_write(uncore, oaheadptr, |
| head & GEN12_OAG_OAHEADPTR_MASK); |
| stream->oa_buffer.head = head; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * gen8_oa_read - copy status records then buffered OA reports |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * |
| * Checks OA unit status registers and if necessary appends corresponding |
| * status records for userspace (such as for a buffer full condition) and then |
| * initiate appending any buffered OA reports. |
| * |
| * Updates @offset according to the number of bytes successfully copied into |
| * the userspace buffer. |
| * |
| * NB: some data may be successfully copied to the userspace buffer |
| * even if an error is returned, and this is reflected in the |
| * updated @offset. |
| * |
| * Returns: zero on success or a negative error code |
| */ |
| static int gen8_oa_read(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 oastatus; |
| i915_reg_t oastatus_reg; |
| int ret; |
| |
| if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) |
| return -EIO; |
| |
| oastatus_reg = IS_GEN(stream->perf->i915, 12) ? |
| GEN12_OAG_OASTATUS : GEN8_OASTATUS; |
| |
| oastatus = intel_uncore_read(uncore, oastatus_reg); |
| |
| /* |
| * We treat OABUFFER_OVERFLOW as a significant error: |
| * |
| * Although theoretically we could handle this more gracefully |
| * sometimes, some Gens don't correctly suppress certain |
| * automatically triggered reports in this condition and so we |
| * have to assume that old reports are now being trampled |
| * over. |
| * |
| * Considering how we don't currently give userspace control |
| * over the OA buffer size and always configure a large 16MB |
| * buffer, then a buffer overflow does anyway likely indicate |
| * that something has gone quite badly wrong. |
| */ |
| if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) { |
| ret = append_oa_status(stream, buf, count, offset, |
| DRM_I915_PERF_RECORD_OA_BUFFER_LOST); |
| if (ret) |
| return ret; |
| |
| DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", |
| stream->period_exponent); |
| |
| stream->perf->ops.oa_disable(stream); |
| stream->perf->ops.oa_enable(stream); |
| |
| /* |
| * Note: .oa_enable() is expected to re-init the oabuffer and |
| * reset GEN8_OASTATUS for us |
| */ |
| oastatus = intel_uncore_read(uncore, oastatus_reg); |
| } |
| |
| if (oastatus & GEN8_OASTATUS_REPORT_LOST) { |
| ret = append_oa_status(stream, buf, count, offset, |
| DRM_I915_PERF_RECORD_OA_REPORT_LOST); |
| if (ret) |
| return ret; |
| intel_uncore_write(uncore, oastatus_reg, |
| oastatus & ~GEN8_OASTATUS_REPORT_LOST); |
| } |
| |
| return gen8_append_oa_reports(stream, buf, count, offset); |
| } |
| |
| /** |
| * Copies all buffered OA reports into userspace read() buffer. |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * |
| * Notably any error condition resulting in a short read (-%ENOSPC or |
| * -%EFAULT) will be returned even though one or more records may |
| * have been successfully copied. In this case it's up to the caller |
| * to decide if the error should be squashed before returning to |
| * userspace. |
| * |
| * Note: reports are consumed from the head, and appended to the |
| * tail, so the tail chases the head?... If you think that's mad |
| * and back-to-front you're not alone, but this follows the |
| * Gen PRM naming convention. |
| * |
| * Returns: 0 on success, negative error code on failure. |
| */ |
| static int gen7_append_oa_reports(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| int report_size = stream->oa_buffer.format_size; |
| u8 *oa_buf_base = stream->oa_buffer.vaddr; |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| u32 mask = (OA_BUFFER_SIZE - 1); |
| size_t start_offset = *offset; |
| unsigned long flags; |
| u32 head, tail; |
| u32 taken; |
| int ret = 0; |
| |
| if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled)) |
| return -EIO; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| head = stream->oa_buffer.head; |
| tail = stream->oa_buffer.tail; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* NB: oa_buffer.head/tail include the gtt_offset which we don't want |
| * while indexing relative to oa_buf_base. |
| */ |
| head -= gtt_offset; |
| tail -= gtt_offset; |
| |
| /* An out of bounds or misaligned head or tail pointer implies a driver |
| * bug since we validate + align the tail pointers we read from the |
| * hardware and we are in full control of the head pointer which should |
| * only be incremented by multiples of the report size (notably also |
| * all a power of two). |
| */ |
| if (drm_WARN_ONCE(&uncore->i915->drm, |
| head > OA_BUFFER_SIZE || head % report_size || |
| tail > OA_BUFFER_SIZE || tail % report_size, |
| "Inconsistent OA buffer pointers: head = %u, tail = %u\n", |
| head, tail)) |
| return -EIO; |
| |
| |
| for (/* none */; |
| (taken = OA_TAKEN(tail, head)); |
| head = (head + report_size) & mask) { |
| u8 *report = oa_buf_base + head; |
| u32 *report32 = (void *)report; |
| |
| /* All the report sizes factor neatly into the buffer |
| * size so we never expect to see a report split |
| * between the beginning and end of the buffer. |
| * |
| * Given the initial alignment check a misalignment |
| * here would imply a driver bug that would result |
| * in an overrun. |
| */ |
| if (drm_WARN_ON(&uncore->i915->drm, |
| (OA_BUFFER_SIZE - head) < report_size)) { |
| drm_err(&uncore->i915->drm, |
| "Spurious OA head ptr: non-integral report offset\n"); |
| break; |
| } |
| |
| /* The report-ID field for periodic samples includes |
| * some undocumented flags related to what triggered |
| * the report and is never expected to be zero so we |
| * can check that the report isn't invalid before |
| * copying it to userspace... |
| */ |
| if (report32[0] == 0) { |
| if (__ratelimit(&stream->perf->spurious_report_rs)) |
| DRM_NOTE("Skipping spurious, invalid OA report\n"); |
| continue; |
| } |
| |
| ret = append_oa_sample(stream, buf, count, offset, report); |
| if (ret) |
| break; |
| |
| /* Clear out the first 2 dwords as a mean to detect unlanded |
| * reports. |
| */ |
| report32[0] = 0; |
| report32[1] = 0; |
| } |
| |
| if (start_offset != *offset) { |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* We removed the gtt_offset for the copy loop above, indexing |
| * relative to oa_buf_base so put back here... |
| */ |
| head += gtt_offset; |
| |
| intel_uncore_write(uncore, GEN7_OASTATUS2, |
| (head & GEN7_OASTATUS2_HEAD_MASK) | |
| GEN7_OASTATUS2_MEM_SELECT_GGTT); |
| stream->oa_buffer.head = head; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * gen7_oa_read - copy status records then buffered OA reports |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * |
| * Checks Gen 7 specific OA unit status registers and if necessary appends |
| * corresponding status records for userspace (such as for a buffer full |
| * condition) and then initiate appending any buffered OA reports. |
| * |
| * Updates @offset according to the number of bytes successfully copied into |
| * the userspace buffer. |
| * |
| * Returns: zero on success or a negative error code |
| */ |
| static int gen7_oa_read(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 oastatus1; |
| int ret; |
| |
| if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr)) |
| return -EIO; |
| |
| oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); |
| |
| /* XXX: On Haswell we don't have a safe way to clear oastatus1 |
| * bits while the OA unit is enabled (while the tail pointer |
| * may be updated asynchronously) so we ignore status bits |
| * that have already been reported to userspace. |
| */ |
| oastatus1 &= ~stream->perf->gen7_latched_oastatus1; |
| |
| /* We treat OABUFFER_OVERFLOW as a significant error: |
| * |
| * - The status can be interpreted to mean that the buffer is |
| * currently full (with a higher precedence than OA_TAKEN() |
| * which will start to report a near-empty buffer after an |
| * overflow) but it's awkward that we can't clear the status |
| * on Haswell, so without a reset we won't be able to catch |
| * the state again. |
| * |
| * - Since it also implies the HW has started overwriting old |
| * reports it may also affect our sanity checks for invalid |
| * reports when copying to userspace that assume new reports |
| * are being written to cleared memory. |
| * |
| * - In the future we may want to introduce a flight recorder |
| * mode where the driver will automatically maintain a safe |
| * guard band between head/tail, avoiding this overflow |
| * condition, but we avoid the added driver complexity for |
| * now. |
| */ |
| if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) { |
| ret = append_oa_status(stream, buf, count, offset, |
| DRM_I915_PERF_RECORD_OA_BUFFER_LOST); |
| if (ret) |
| return ret; |
| |
| DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n", |
| stream->period_exponent); |
| |
| stream->perf->ops.oa_disable(stream); |
| stream->perf->ops.oa_enable(stream); |
| |
| oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1); |
| } |
| |
| if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) { |
| ret = append_oa_status(stream, buf, count, offset, |
| DRM_I915_PERF_RECORD_OA_REPORT_LOST); |
| if (ret) |
| return ret; |
| stream->perf->gen7_latched_oastatus1 |= |
| GEN7_OASTATUS1_REPORT_LOST; |
| } |
| |
| return gen7_append_oa_reports(stream, buf, count, offset); |
| } |
| |
| /** |
| * i915_oa_wait_unlocked - handles blocking IO until OA data available |
| * @stream: An i915-perf stream opened for OA metrics |
| * |
| * Called when userspace tries to read() from a blocking stream FD opened |
| * for OA metrics. It waits until the hrtimer callback finds a non-empty |
| * OA buffer and wakes us. |
| * |
| * Note: it's acceptable to have this return with some false positives |
| * since any subsequent read handling will return -EAGAIN if there isn't |
| * really data ready for userspace yet. |
| * |
| * Returns: zero on success or a negative error code |
| */ |
| static int i915_oa_wait_unlocked(struct i915_perf_stream *stream) |
| { |
| /* We would wait indefinitely if periodic sampling is not enabled */ |
| if (!stream->periodic) |
| return -EIO; |
| |
| return wait_event_interruptible(stream->poll_wq, |
| oa_buffer_check_unlocked(stream)); |
| } |
| |
| /** |
| * i915_oa_poll_wait - call poll_wait() for an OA stream poll() |
| * @stream: An i915-perf stream opened for OA metrics |
| * @file: An i915 perf stream file |
| * @wait: poll() state table |
| * |
| * For handling userspace polling on an i915 perf stream opened for OA metrics, |
| * this starts a poll_wait with the wait queue that our hrtimer callback wakes |
| * when it sees data ready to read in the circular OA buffer. |
| */ |
| static void i915_oa_poll_wait(struct i915_perf_stream *stream, |
| struct file *file, |
| poll_table *wait) |
| { |
| poll_wait(file, &stream->poll_wq, wait); |
| } |
| |
| /** |
| * i915_oa_read - just calls through to &i915_oa_ops->read |
| * @stream: An i915-perf stream opened for OA metrics |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @offset: (inout): the current position for writing into @buf |
| * |
| * Updates @offset according to the number of bytes successfully copied into |
| * the userspace buffer. |
| * |
| * Returns: zero on success or a negative error code |
| */ |
| static int i915_oa_read(struct i915_perf_stream *stream, |
| char __user *buf, |
| size_t count, |
| size_t *offset) |
| { |
| return stream->perf->ops.read(stream, buf, count, offset); |
| } |
| |
| static struct intel_context *oa_pin_context(struct i915_perf_stream *stream) |
| { |
| struct i915_gem_engines_iter it; |
| struct i915_gem_context *ctx = stream->ctx; |
| struct intel_context *ce; |
| int err; |
| |
| for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { |
| if (ce->engine != stream->engine) /* first match! */ |
| continue; |
| |
| /* |
| * As the ID is the gtt offset of the context's vma we |
| * pin the vma to ensure the ID remains fixed. |
| */ |
| err = intel_context_pin(ce); |
| if (err == 0) { |
| stream->pinned_ctx = ce; |
| break; |
| } |
| } |
| i915_gem_context_unlock_engines(ctx); |
| |
| return stream->pinned_ctx; |
| } |
| |
| /** |
| * oa_get_render_ctx_id - determine and hold ctx hw id |
| * @stream: An i915-perf stream opened for OA metrics |
| * |
| * Determine the render context hw id, and ensure it remains fixed for the |
| * lifetime of the stream. This ensures that we don't have to worry about |
| * updating the context ID in OACONTROL on the fly. |
| * |
| * Returns: zero on success or a negative error code |
| */ |
| static int oa_get_render_ctx_id(struct i915_perf_stream *stream) |
| { |
| struct intel_context *ce; |
| |
| ce = oa_pin_context(stream); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| |
| switch (INTEL_GEN(ce->engine->i915)) { |
| case 7: { |
| /* |
| * On Haswell we don't do any post processing of the reports |
| * and don't need to use the mask. |
| */ |
| stream->specific_ctx_id = i915_ggtt_offset(ce->state); |
| stream->specific_ctx_id_mask = 0; |
| break; |
| } |
| |
| case 8: |
| case 9: |
| case 10: |
| if (intel_engine_in_execlists_submission_mode(ce->engine)) { |
| stream->specific_ctx_id_mask = |
| (1U << GEN8_CTX_ID_WIDTH) - 1; |
| stream->specific_ctx_id = stream->specific_ctx_id_mask; |
| } else { |
| /* |
| * When using GuC, the context descriptor we write in |
| * i915 is read by GuC and rewritten before it's |
| * actually written into the hardware. The LRCA is |
| * what is put into the context id field of the |
| * context descriptor by GuC. Because it's aligned to |
| * a page, the lower 12bits are always at 0 and |
| * dropped by GuC. They won't be part of the context |
| * ID in the OA reports, so squash those lower bits. |
| */ |
| stream->specific_ctx_id = ce->lrc.lrca >> 12; |
| |
| /* |
| * GuC uses the top bit to signal proxy submission, so |
| * ignore that bit. |
| */ |
| stream->specific_ctx_id_mask = |
| (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1; |
| } |
| break; |
| |
| case 11: |
| case 12: { |
| stream->specific_ctx_id_mask = |
| ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); |
| /* |
| * Pick an unused context id |
| * 0 - BITS_PER_LONG are used by other contexts |
| * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context |
| */ |
| stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32); |
| break; |
| } |
| |
| default: |
| MISSING_CASE(INTEL_GEN(ce->engine->i915)); |
| } |
| |
| ce->tag = stream->specific_ctx_id; |
| |
| drm_dbg(&stream->perf->i915->drm, |
| "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n", |
| stream->specific_ctx_id, |
| stream->specific_ctx_id_mask); |
| |
| return 0; |
| } |
| |
| /** |
| * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold |
| * @stream: An i915-perf stream opened for OA metrics |
| * |
| * In case anything needed doing to ensure the context HW ID would remain valid |
| * for the lifetime of the stream, then that can be undone here. |
| */ |
| static void oa_put_render_ctx_id(struct i915_perf_stream *stream) |
| { |
| struct intel_context *ce; |
| |
| ce = fetch_and_zero(&stream->pinned_ctx); |
| if (ce) { |
| ce->tag = 0; /* recomputed on next submission after parking */ |
| intel_context_unpin(ce); |
| } |
| |
| stream->specific_ctx_id = INVALID_CTX_ID; |
| stream->specific_ctx_id_mask = 0; |
| } |
| |
| static void |
| free_oa_buffer(struct i915_perf_stream *stream) |
| { |
| i915_vma_unpin_and_release(&stream->oa_buffer.vma, |
| I915_VMA_RELEASE_MAP); |
| |
| stream->oa_buffer.vaddr = NULL; |
| } |
| |
| static void |
| free_oa_configs(struct i915_perf_stream *stream) |
| { |
| struct i915_oa_config_bo *oa_bo, *tmp; |
| |
| i915_oa_config_put(stream->oa_config); |
| llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node) |
| free_oa_config_bo(oa_bo); |
| } |
| |
| static void |
| free_noa_wait(struct i915_perf_stream *stream) |
| { |
| i915_vma_unpin_and_release(&stream->noa_wait, 0); |
| } |
| |
| static void i915_oa_stream_destroy(struct i915_perf_stream *stream) |
| { |
| struct i915_perf *perf = stream->perf; |
| |
| BUG_ON(stream != perf->exclusive_stream); |
| |
| /* |
| * Unset exclusive_stream first, it will be checked while disabling |
| * the metric set on gen8+. |
| * |
| * See i915_oa_init_reg_state() and lrc_configure_all_contexts() |
| */ |
| WRITE_ONCE(perf->exclusive_stream, NULL); |
| perf->ops.disable_metric_set(stream); |
| |
| free_oa_buffer(stream); |
| |
| intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); |
| intel_engine_pm_put(stream->engine); |
| |
| if (stream->ctx) |
| oa_put_render_ctx_id(stream); |
| |
| free_oa_configs(stream); |
| free_noa_wait(stream); |
| |
| if (perf->spurious_report_rs.missed) { |
| DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n", |
| perf->spurious_report_rs.missed); |
| } |
| } |
| |
| static void gen7_init_oa_buffer(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* Pre-DevBDW: OABUFFER must be set with counters off, |
| * before OASTATUS1, but after OASTATUS2 |
| */ |
| intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */ |
| gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); |
| stream->oa_buffer.head = gtt_offset; |
| |
| intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset); |
| |
| intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */ |
| gtt_offset | OABUFFER_SIZE_16M); |
| |
| /* Mark that we need updated tail pointers to read from... */ |
| stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; |
| stream->oa_buffer.tail = gtt_offset; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* On Haswell we have to track which OASTATUS1 flags we've |
| * already seen since they can't be cleared while periodic |
| * sampling is enabled. |
| */ |
| stream->perf->gen7_latched_oastatus1 = 0; |
| |
| /* NB: although the OA buffer will initially be allocated |
| * zeroed via shmfs (and so this memset is redundant when |
| * first allocating), we may re-init the OA buffer, either |
| * when re-enabling a stream or in error/reset paths. |
| * |
| * The reason we clear the buffer for each re-init is for the |
| * sanity check in gen7_append_oa_reports() that looks at the |
| * report-id field to make sure it's non-zero which relies on |
| * the assumption that new reports are being written to zeroed |
| * memory... |
| */ |
| memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); |
| } |
| |
| static void gen8_init_oa_buffer(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| intel_uncore_write(uncore, GEN8_OASTATUS, 0); |
| intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset); |
| stream->oa_buffer.head = gtt_offset; |
| |
| intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0); |
| |
| /* |
| * PRM says: |
| * |
| * "This MMIO must be set before the OATAILPTR |
| * register and after the OAHEADPTR register. This is |
| * to enable proper functionality of the overflow |
| * bit." |
| */ |
| intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset | |
| OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); |
| intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK); |
| |
| /* Mark that we need updated tail pointers to read from... */ |
| stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; |
| stream->oa_buffer.tail = gtt_offset; |
| |
| /* |
| * Reset state used to recognise context switches, affecting which |
| * reports we will forward to userspace while filtering for a single |
| * context. |
| */ |
| stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* |
| * NB: although the OA buffer will initially be allocated |
| * zeroed via shmfs (and so this memset is redundant when |
| * first allocating), we may re-init the OA buffer, either |
| * when re-enabling a stream or in error/reset paths. |
| * |
| * The reason we clear the buffer for each re-init is for the |
| * sanity check in gen8_append_oa_reports() that looks at the |
| * reason field to make sure it's non-zero which relies on |
| * the assumption that new reports are being written to zeroed |
| * memory... |
| */ |
| memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE); |
| } |
| |
| static void gen12_init_oa_buffer(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags); |
| |
| intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0); |
| intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR, |
| gtt_offset & GEN12_OAG_OAHEADPTR_MASK); |
| stream->oa_buffer.head = gtt_offset; |
| |
| /* |
| * PRM says: |
| * |
| * "This MMIO must be set before the OATAILPTR |
| * register and after the OAHEADPTR register. This is |
| * to enable proper functionality of the overflow |
| * bit." |
| */ |
| intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset | |
| OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT); |
| intel_uncore_write(uncore, GEN12_OAG_OATAILPTR, |
| gtt_offset & GEN12_OAG_OATAILPTR_MASK); |
| |
| /* Mark that we need updated tail pointers to read from... */ |
| stream->oa_buffer.aging_tail = INVALID_TAIL_PTR; |
| stream->oa_buffer.tail = gtt_offset; |
| |
| /* |
| * Reset state used to recognise context switches, affecting which |
| * reports we will forward to userspace while filtering for a single |
| * context. |
| */ |
| stream->oa_buffer.last_ctx_id = INVALID_CTX_ID; |
| |
| spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags); |
| |
| /* |
| * NB: although the OA buffer will initially be allocated |
| * zeroed via shmfs (and so this memset is redundant when |
| * first allocating), we may re-init the OA buffer, either |
| * when re-enabling a stream or in error/reset paths. |
| * |
| * The reason we clear the buffer for each re-init is for the |
| * sanity check in gen8_append_oa_reports() that looks at the |
| * reason field to make sure it's non-zero which relies on |
| * the assumption that new reports are being written to zeroed |
| * memory... |
| */ |
| memset(stream->oa_buffer.vaddr, 0, |
| stream->oa_buffer.vma->size); |
| } |
| |
| static int alloc_oa_buffer(struct i915_perf_stream *stream) |
| { |
| struct drm_i915_private *i915 = stream->perf->i915; |
| struct drm_i915_gem_object *bo; |
| struct i915_vma *vma; |
| int ret; |
| |
| if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma)) |
| return -ENODEV; |
| |
| BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE); |
| BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M); |
| |
| bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE); |
| if (IS_ERR(bo)) { |
| drm_err(&i915->drm, "Failed to allocate OA buffer\n"); |
| return PTR_ERR(bo); |
| } |
| |
| i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC); |
| |
| /* PreHSW required 512K alignment, HSW requires 16M */ |
| vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unref; |
| } |
| stream->oa_buffer.vma = vma; |
| |
| stream->oa_buffer.vaddr = |
| i915_gem_object_pin_map(bo, I915_MAP_WB); |
| if (IS_ERR(stream->oa_buffer.vaddr)) { |
| ret = PTR_ERR(stream->oa_buffer.vaddr); |
| goto err_unpin; |
| } |
| |
| return 0; |
| |
| err_unpin: |
| __i915_vma_unpin(vma); |
| |
| err_unref: |
| i915_gem_object_put(bo); |
| |
| stream->oa_buffer.vaddr = NULL; |
| stream->oa_buffer.vma = NULL; |
| |
| return ret; |
| } |
| |
| static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs, |
| bool save, i915_reg_t reg, u32 offset, |
| u32 dword_count) |
| { |
| u32 cmd; |
| u32 d; |
| |
| cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM; |
| cmd |= MI_SRM_LRM_GLOBAL_GTT; |
| if (INTEL_GEN(stream->perf->i915) >= 8) |
| cmd++; |
| |
| for (d = 0; d < dword_count; d++) { |
| *cs++ = cmd; |
| *cs++ = i915_mmio_reg_offset(reg) + 4 * d; |
| *cs++ = intel_gt_scratch_offset(stream->engine->gt, |
| offset) + 4 * d; |
| *cs++ = 0; |
| } |
| |
| return cs; |
| } |
| |
| static int alloc_noa_wait(struct i915_perf_stream *stream) |
| { |
| struct drm_i915_private *i915 = stream->perf->i915; |
| struct drm_i915_gem_object *bo; |
| struct i915_vma *vma; |
| const u64 delay_ticks = 0xffffffffffffffff - |
| i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay)); |
| const u32 base = stream->engine->mmio_base; |
| #define CS_GPR(x) GEN8_RING_CS_GPR(base, x) |
| u32 *batch, *ts0, *cs, *jump; |
| int ret, i; |
| enum { |
| START_TS, |
| NOW_TS, |
| DELTA_TS, |
| JUMP_PREDICATE, |
| DELTA_TARGET, |
| N_CS_GPR |
| }; |
| |
| bo = i915_gem_object_create_internal(i915, 4096); |
| if (IS_ERR(bo)) { |
| drm_err(&i915->drm, |
| "Failed to allocate NOA wait batchbuffer\n"); |
| return PTR_ERR(bo); |
| } |
| |
| /* |
| * We pin in GGTT because we jump into this buffer now because |
| * multiple OA config BOs will have a jump to this address and it |
| * needs to be fixed during the lifetime of the i915/perf stream. |
| */ |
| vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH); |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unref; |
| } |
| |
| batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB); |
| if (IS_ERR(batch)) { |
| ret = PTR_ERR(batch); |
| goto err_unpin; |
| } |
| |
| /* Save registers. */ |
| for (i = 0; i < N_CS_GPR; i++) |
| cs = save_restore_register( |
| stream, cs, true /* save */, CS_GPR(i), |
| INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); |
| cs = save_restore_register( |
| stream, cs, true /* save */, MI_PREDICATE_RESULT_1, |
| INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); |
| |
| /* First timestamp snapshot location. */ |
| ts0 = cs; |
| |
| /* |
| * Initial snapshot of the timestamp register to implement the wait. |
| * We work with 32b values, so clear out the top 32b bits of the |
| * register because the ALU works 64bits. |
| */ |
| *cs++ = MI_LOAD_REGISTER_IMM(1); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4; |
| *cs++ = 0; |
| *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); |
| *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)); |
| |
| /* |
| * This is the location we're going to jump back into until the |
| * required amount of time has passed. |
| */ |
| jump = cs; |
| |
| /* |
| * Take another snapshot of the timestamp register. Take care to clear |
| * up the top 32bits of CS_GPR(1) as we're using it for other |
| * operations below. |
| */ |
| *cs++ = MI_LOAD_REGISTER_IMM(1); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4; |
| *cs++ = 0; |
| *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); |
| *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base)); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)); |
| |
| /* |
| * Do a diff between the 2 timestamps and store the result back into |
| * CS_GPR(1). |
| */ |
| *cs++ = MI_MATH(5); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS)); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS)); |
| *cs++ = MI_MATH_SUB; |
| *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU); |
| *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); |
| |
| /* |
| * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the |
| * timestamp have rolled over the 32bits) into the predicate register |
| * to be used for the predicated jump. |
| */ |
| *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); |
| *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); |
| |
| /* Restart from the beginning if we had timestamps roll over. */ |
| *cs++ = (INTEL_GEN(i915) < 8 ? |
| MI_BATCH_BUFFER_START : |
| MI_BATCH_BUFFER_START_GEN8) | |
| MI_BATCH_PREDICATE; |
| *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4; |
| *cs++ = 0; |
| |
| /* |
| * Now add the diff between to previous timestamps and add it to : |
| * (((1 * << 64) - 1) - delay_ns) |
| * |
| * When the Carry Flag contains 1 this means the elapsed time is |
| * longer than the expected delay, and we can exit the wait loop. |
| */ |
| *cs++ = MI_LOAD_REGISTER_IMM(2); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)); |
| *cs++ = lower_32_bits(delay_ticks); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4; |
| *cs++ = upper_32_bits(delay_ticks); |
| |
| *cs++ = MI_MATH(4); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS)); |
| *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET)); |
| *cs++ = MI_MATH_ADD; |
| *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF); |
| |
| *cs++ = MI_ARB_CHECK; |
| |
| /* |
| * Transfer the result into the predicate register to be used for the |
| * predicated jump. |
| */ |
| *cs++ = MI_LOAD_REGISTER_REG | (3 - 2); |
| *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE)); |
| *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1); |
| |
| /* Predicate the jump. */ |
| *cs++ = (INTEL_GEN(i915) < 8 ? |
| MI_BATCH_BUFFER_START : |
| MI_BATCH_BUFFER_START_GEN8) | |
| MI_BATCH_PREDICATE; |
| *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4; |
| *cs++ = 0; |
| |
| /* Restore registers. */ |
| for (i = 0; i < N_CS_GPR; i++) |
| cs = save_restore_register( |
| stream, cs, false /* restore */, CS_GPR(i), |
| INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2); |
| cs = save_restore_register( |
| stream, cs, false /* restore */, MI_PREDICATE_RESULT_1, |
| INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1); |
| |
| /* And return to the ring. */ |
| *cs++ = MI_BATCH_BUFFER_END; |
| |
| GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch)); |
| |
| i915_gem_object_flush_map(bo); |
| __i915_gem_object_release_map(bo); |
| |
| stream->noa_wait = vma; |
| return 0; |
| |
| err_unpin: |
| i915_vma_unpin_and_release(&vma, 0); |
| err_unref: |
| i915_gem_object_put(bo); |
| return ret; |
| } |
| |
| static u32 *write_cs_mi_lri(u32 *cs, |
| const struct i915_oa_reg *reg_data, |
| u32 n_regs) |
| { |
| u32 i; |
| |
| for (i = 0; i < n_regs; i++) { |
| if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) { |
| u32 n_lri = min_t(u32, |
| n_regs - i, |
| MI_LOAD_REGISTER_IMM_MAX_REGS); |
| |
| *cs++ = MI_LOAD_REGISTER_IMM(n_lri); |
| } |
| *cs++ = i915_mmio_reg_offset(reg_data[i].addr); |
| *cs++ = reg_data[i].value; |
| } |
| |
| return cs; |
| } |
| |
| static int num_lri_dwords(int num_regs) |
| { |
| int count = 0; |
| |
| if (num_regs > 0) { |
| count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS); |
| count += num_regs * 2; |
| } |
| |
| return count; |
| } |
| |
| static struct i915_oa_config_bo * |
| alloc_oa_config_buffer(struct i915_perf_stream *stream, |
| struct i915_oa_config *oa_config) |
| { |
| struct drm_i915_gem_object *obj; |
| struct i915_oa_config_bo *oa_bo; |
| size_t config_length = 0; |
| u32 *cs; |
| int err; |
| |
| oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL); |
| if (!oa_bo) |
| return ERR_PTR(-ENOMEM); |
| |
| config_length += num_lri_dwords(oa_config->mux_regs_len); |
| config_length += num_lri_dwords(oa_config->b_counter_regs_len); |
| config_length += num_lri_dwords(oa_config->flex_regs_len); |
| config_length += 3; /* MI_BATCH_BUFFER_START */ |
| config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE); |
| |
| obj = i915_gem_object_create_shmem(stream->perf->i915, config_length); |
| if (IS_ERR(obj)) { |
| err = PTR_ERR(obj); |
| goto err_free; |
| } |
| |
| cs = i915_gem_object_pin_map(obj, I915_MAP_WB); |
| if (IS_ERR(cs)) { |
| err = PTR_ERR(cs); |
| goto err_oa_bo; |
| } |
| |
| cs = write_cs_mi_lri(cs, |
| oa_config->mux_regs, |
| oa_config->mux_regs_len); |
| cs = write_cs_mi_lri(cs, |
| oa_config->b_counter_regs, |
| oa_config->b_counter_regs_len); |
| cs = write_cs_mi_lri(cs, |
| oa_config->flex_regs, |
| oa_config->flex_regs_len); |
| |
| /* Jump into the active wait. */ |
| *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ? |
| MI_BATCH_BUFFER_START : |
| MI_BATCH_BUFFER_START_GEN8); |
| *cs++ = i915_ggtt_offset(stream->noa_wait); |
| *cs++ = 0; |
| |
| i915_gem_object_flush_map(obj); |
| __i915_gem_object_release_map(obj); |
| |
| oa_bo->vma = i915_vma_instance(obj, |
| &stream->engine->gt->ggtt->vm, |
| NULL); |
| if (IS_ERR(oa_bo->vma)) { |
| err = PTR_ERR(oa_bo->vma); |
| goto err_oa_bo; |
| } |
| |
| oa_bo->oa_config = i915_oa_config_get(oa_config); |
| llist_add(&oa_bo->node, &stream->oa_config_bos); |
| |
| return oa_bo; |
| |
| err_oa_bo: |
| i915_gem_object_put(obj); |
| err_free: |
| kfree(oa_bo); |
| return ERR_PTR(err); |
| } |
| |
| static struct i915_vma * |
| get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config) |
| { |
| struct i915_oa_config_bo *oa_bo; |
| |
| /* |
| * Look for the buffer in the already allocated BOs attached |
| * to the stream. |
| */ |
| llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) { |
| if (oa_bo->oa_config == oa_config && |
| memcmp(oa_bo->oa_config->uuid, |
| oa_config->uuid, |
| sizeof(oa_config->uuid)) == 0) |
| goto out; |
| } |
| |
| oa_bo = alloc_oa_config_buffer(stream, oa_config); |
| if (IS_ERR(oa_bo)) |
| return ERR_CAST(oa_bo); |
| |
| out: |
| return i915_vma_get(oa_bo->vma); |
| } |
| |
| static int |
| emit_oa_config(struct i915_perf_stream *stream, |
| struct i915_oa_config *oa_config, |
| struct intel_context *ce, |
| struct i915_active *active) |
| { |
| struct i915_request *rq; |
| struct i915_vma *vma; |
| int err; |
| |
| vma = get_oa_vma(stream, oa_config); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH); |
| if (err) |
| goto err_vma_put; |
| |
| intel_engine_pm_get(ce->engine); |
| rq = i915_request_create(ce); |
| intel_engine_pm_put(ce->engine); |
| if (IS_ERR(rq)) { |
| err = PTR_ERR(rq); |
| goto err_vma_unpin; |
| } |
| |
| if (!IS_ERR_OR_NULL(active)) { |
| /* After all individual context modifications */ |
| err = i915_request_await_active(rq, active, |
| I915_ACTIVE_AWAIT_ACTIVE); |
| if (err) |
| goto err_add_request; |
| |
| err = i915_active_add_request(active, rq); |
| if (err) |
| goto err_add_request; |
| } |
| |
| i915_vma_lock(vma); |
| err = i915_request_await_object(rq, vma->obj, 0); |
| if (!err) |
| err = i915_vma_move_to_active(vma, rq, 0); |
| i915_vma_unlock(vma); |
| if (err) |
| goto err_add_request; |
| |
| err = rq->engine->emit_bb_start(rq, |
| vma->node.start, 0, |
| I915_DISPATCH_SECURE); |
| if (err) |
| goto err_add_request; |
| |
| err_add_request: |
| i915_request_add(rq); |
| err_vma_unpin: |
| i915_vma_unpin(vma); |
| err_vma_put: |
| i915_vma_put(vma); |
| return err; |
| } |
| |
| static struct intel_context *oa_context(struct i915_perf_stream *stream) |
| { |
| return stream->pinned_ctx ?: stream->engine->kernel_context; |
| } |
| |
| static int |
| hsw_enable_metric_set(struct i915_perf_stream *stream, |
| struct i915_active *active) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| /* |
| * PRM: |
| * |
| * OA unit is using “crclk” for its functionality. When trunk |
| * level clock gating takes place, OA clock would be gated, |
| * unable to count the events from non-render clock domain. |
| * Render clock gating must be disabled when OA is enabled to |
| * count the events from non-render domain. Unit level clock |
| * gating for RCS should also be disabled. |
| */ |
| intel_uncore_rmw(uncore, GEN7_MISCCPCTL, |
| GEN7_DOP_CLOCK_GATE_ENABLE, 0); |
| intel_uncore_rmw(uncore, GEN6_UCGCTL1, |
| 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE); |
| |
| return emit_oa_config(stream, |
| stream->oa_config, oa_context(stream), |
| active); |
| } |
| |
| static void hsw_disable_metric_set(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| intel_uncore_rmw(uncore, GEN6_UCGCTL1, |
| GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0); |
| intel_uncore_rmw(uncore, GEN7_MISCCPCTL, |
| 0, GEN7_DOP_CLOCK_GATE_ENABLE); |
| |
| intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); |
| } |
| |
| static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config, |
| i915_reg_t reg) |
| { |
| u32 mmio = i915_mmio_reg_offset(reg); |
| int i; |
| |
| /* |
| * This arbitrary default will select the 'EU FPU0 Pipeline |
| * Active' event. In the future it's anticipated that there |
| * will be an explicit 'No Event' we can select, but not yet... |
| */ |
| if (!oa_config) |
| return 0; |
| |
| for (i = 0; i < oa_config->flex_regs_len; i++) { |
| if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio) |
| return oa_config->flex_regs[i].value; |
| } |
| |
| return 0; |
| } |
| /* |
| * NB: It must always remain pointer safe to run this even if the OA unit |
| * has been disabled. |
| * |
| * It's fine to put out-of-date values into these per-context registers |
| * in the case that the OA unit has been disabled. |
| */ |
| static void |
| gen8_update_reg_state_unlocked(const struct intel_context *ce, |
| const struct i915_perf_stream *stream) |
| { |
| u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset; |
| u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; |
| /* The MMIO offsets for Flex EU registers aren't contiguous */ |
| i915_reg_t flex_regs[] = { |
| EU_PERF_CNTL0, |
| EU_PERF_CNTL1, |
| EU_PERF_CNTL2, |
| EU_PERF_CNTL3, |
| EU_PERF_CNTL4, |
| EU_PERF_CNTL5, |
| EU_PERF_CNTL6, |
| }; |
| u32 *reg_state = ce->lrc_reg_state; |
| int i; |
| |
| reg_state[ctx_oactxctrl + 1] = |
| (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | |
| (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | |
| GEN8_OA_COUNTER_RESUME; |
| |
| for (i = 0; i < ARRAY_SIZE(flex_regs); i++) |
| reg_state[ctx_flexeu0 + i * 2 + 1] = |
| oa_config_flex_reg(stream->oa_config, flex_regs[i]); |
| } |
| |
| struct flex { |
| i915_reg_t reg; |
| u32 offset; |
| u32 value; |
| }; |
| |
| static int |
| gen8_store_flex(struct i915_request *rq, |
| struct intel_context *ce, |
| const struct flex *flex, unsigned int count) |
| { |
| u32 offset; |
| u32 *cs; |
| |
| cs = intel_ring_begin(rq, 4 * count); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET; |
| do { |
| *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; |
| *cs++ = offset + flex->offset * sizeof(u32); |
| *cs++ = 0; |
| *cs++ = flex->value; |
| } while (flex++, --count); |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int |
| gen8_load_flex(struct i915_request *rq, |
| struct intel_context *ce, |
| const struct flex *flex, unsigned int count) |
| { |
| u32 *cs; |
| |
| GEM_BUG_ON(!count || count > 63); |
| |
| cs = intel_ring_begin(rq, 2 * count + 2); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| *cs++ = MI_LOAD_REGISTER_IMM(count); |
| do { |
| *cs++ = i915_mmio_reg_offset(flex->reg); |
| *cs++ = flex->value; |
| } while (flex++, --count); |
| *cs++ = MI_NOOP; |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int gen8_modify_context(struct intel_context *ce, |
| const struct flex *flex, unsigned int count) |
| { |
| struct i915_request *rq; |
| int err; |
| |
| rq = intel_engine_create_kernel_request(ce->engine); |
| if (IS_ERR(rq)) |
| return PTR_ERR(rq); |
| |
| /* Serialise with the remote context */ |
| err = intel_context_prepare_remote_request(ce, rq); |
| if (err == 0) |
| err = gen8_store_flex(rq, ce, flex, count); |
| |
| i915_request_add(rq); |
| return err; |
| } |
| |
| static int |
| gen8_modify_self(struct intel_context *ce, |
| const struct flex *flex, unsigned int count, |
| struct i915_active *active) |
| { |
| struct i915_request *rq; |
| int err; |
| |
| intel_engine_pm_get(ce->engine); |
| rq = i915_request_create(ce); |
| intel_engine_pm_put(ce->engine); |
| if (IS_ERR(rq)) |
| return PTR_ERR(rq); |
| |
| if (!IS_ERR_OR_NULL(active)) { |
| err = i915_active_add_request(active, rq); |
| if (err) |
| goto err_add_request; |
| } |
| |
| err = gen8_load_flex(rq, ce, flex, count); |
| if (err) |
| goto err_add_request; |
| |
| err_add_request: |
| i915_request_add(rq); |
| return err; |
| } |
| |
| static int gen8_configure_context(struct i915_gem_context *ctx, |
| struct flex *flex, unsigned int count) |
| { |
| struct i915_gem_engines_iter it; |
| struct intel_context *ce; |
| int err = 0; |
| |
| for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { |
| GEM_BUG_ON(ce == ce->engine->kernel_context); |
| |
| if (ce->engine->class != RENDER_CLASS) |
| continue; |
| |
| /* Otherwise OA settings will be set upon first use */ |
| if (!intel_context_pin_if_active(ce)) |
| continue; |
| |
| flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu); |
| err = gen8_modify_context(ce, flex, count); |
| |
| intel_context_unpin(ce); |
| if (err) |
| break; |
| } |
| i915_gem_context_unlock_engines(ctx); |
| |
| return err; |
| } |
| |
| static int gen12_configure_oar_context(struct i915_perf_stream *stream, |
| struct i915_active *active) |
| { |
| int err; |
| struct intel_context *ce = stream->pinned_ctx; |
| u32 format = stream->oa_buffer.format; |
| struct flex regs_context[] = { |
| { |
| GEN8_OACTXCONTROL, |
| stream->perf->ctx_oactxctrl_offset + 1, |
| active ? GEN8_OA_COUNTER_RESUME : 0, |
| }, |
| }; |
| /* Offsets in regs_lri are not used since this configuration is only |
| * applied using LRI. Initialize the correct offsets for posterity. |
| */ |
| #define GEN12_OAR_OACONTROL_OFFSET 0x5B0 |
| struct flex regs_lri[] = { |
| { |
| GEN12_OAR_OACONTROL, |
| GEN12_OAR_OACONTROL_OFFSET + 1, |
| (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) | |
| (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0) |
| }, |
| { |
| RING_CONTEXT_CONTROL(ce->engine->mmio_base), |
| CTX_CONTEXT_CONTROL, |
| _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE, |
| active ? |
| GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE : |
| 0) |
| }, |
| }; |
| |
| /* Modify the context image of pinned context with regs_context*/ |
| err = intel_context_lock_pinned(ce); |
| if (err) |
| return err; |
| |
| err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context)); |
| intel_context_unlock_pinned(ce); |
| if (err) |
| return err; |
| |
| /* Apply regs_lri using LRI with pinned context */ |
| return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active); |
| } |
| |
| /* |
| * Manages updating the per-context aspects of the OA stream |
| * configuration across all contexts. |
| * |
| * The awkward consideration here is that OACTXCONTROL controls the |
| * exponent for periodic sampling which is primarily used for system |
| * wide profiling where we'd like a consistent sampling period even in |
| * the face of context switches. |
| * |
| * Our approach of updating the register state context (as opposed to |
| * say using a workaround batch buffer) ensures that the hardware |
| * won't automatically reload an out-of-date timer exponent even |
| * transiently before a WA BB could be parsed. |
| * |
| * This function needs to: |
| * - Ensure the currently running context's per-context OA state is |
| * updated |
| * - Ensure that all existing contexts will have the correct per-context |
| * OA state if they are scheduled for use. |
| * - Ensure any new contexts will be initialized with the correct |
| * per-context OA state. |
| * |
| * Note: it's only the RCS/Render context that has any OA state. |
| * Note: the first flex register passed must always be R_PWR_CLK_STATE |
| */ |
| static int |
| oa_configure_all_contexts(struct i915_perf_stream *stream, |
| struct flex *regs, |
| size_t num_regs, |
| struct i915_active *active) |
| { |
| struct drm_i915_private *i915 = stream->perf->i915; |
| struct intel_engine_cs *engine; |
| struct i915_gem_context *ctx, *cn; |
| int err; |
| |
| lockdep_assert_held(&stream->perf->lock); |
| |
| /* |
| * The OA register config is setup through the context image. This image |
| * might be written to by the GPU on context switch (in particular on |
| * lite-restore). This means we can't safely update a context's image, |
| * if this context is scheduled/submitted to run on the GPU. |
| * |
| * We could emit the OA register config through the batch buffer but |
| * this might leave small interval of time where the OA unit is |
| * configured at an invalid sampling period. |
| * |
| * Note that since we emit all requests from a single ring, there |
| * is still an implicit global barrier here that may cause a high |
| * priority context to wait for an otherwise independent low priority |
| * context. Contexts idle at the time of reconfiguration are not |
| * trapped behind the barrier. |
| */ |
| spin_lock(&i915->gem.contexts.lock); |
| list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { |
| if (!kref_get_unless_zero(&ctx->ref)) |
| continue; |
| |
| spin_unlock(&i915->gem.contexts.lock); |
| |
| err = gen8_configure_context(ctx, regs, num_regs); |
| if (err) { |
| i915_gem_context_put(ctx); |
| return err; |
| } |
| |
| spin_lock(&i915->gem.contexts.lock); |
| list_safe_reset_next(ctx, cn, link); |
| i915_gem_context_put(ctx); |
| } |
| spin_unlock(&i915->gem.contexts.lock); |
| |
| /* |
| * After updating all other contexts, we need to modify ourselves. |
| * If we don't modify the kernel_context, we do not get events while |
| * idle. |
| */ |
| for_each_uabi_engine(engine, i915) { |
| struct intel_context *ce = engine->kernel_context; |
| |
| if (engine->class != RENDER_CLASS) |
| continue; |
| |
| regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu); |
| |
| err = gen8_modify_self(ce, regs, num_regs, active); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| gen12_configure_all_contexts(struct i915_perf_stream *stream, |
| const struct i915_oa_config *oa_config, |
| struct i915_active *active) |
| { |
| struct flex regs[] = { |
| { |
| GEN8_R_PWR_CLK_STATE, |
| CTX_R_PWR_CLK_STATE, |
| }, |
| }; |
| |
| return oa_configure_all_contexts(stream, |
| regs, ARRAY_SIZE(regs), |
| active); |
| } |
| |
| static int |
| lrc_configure_all_contexts(struct i915_perf_stream *stream, |
| const struct i915_oa_config *oa_config, |
| struct i915_active *active) |
| { |
| /* The MMIO offsets for Flex EU registers aren't contiguous */ |
| const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset; |
| #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1) |
| struct flex regs[] = { |
| { |
| GEN8_R_PWR_CLK_STATE, |
| CTX_R_PWR_CLK_STATE, |
| }, |
| { |
| GEN8_OACTXCONTROL, |
| stream->perf->ctx_oactxctrl_offset + 1, |
| }, |
| { EU_PERF_CNTL0, ctx_flexeuN(0) }, |
| { EU_PERF_CNTL1, ctx_flexeuN(1) }, |
| { EU_PERF_CNTL2, ctx_flexeuN(2) }, |
| { EU_PERF_CNTL3, ctx_flexeuN(3) }, |
| { EU_PERF_CNTL4, ctx_flexeuN(4) }, |
| { EU_PERF_CNTL5, ctx_flexeuN(5) }, |
| { EU_PERF_CNTL6, ctx_flexeuN(6) }, |
| }; |
| #undef ctx_flexeuN |
| int i; |
| |
| regs[1].value = |
| (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) | |
| (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) | |
| GEN8_OA_COUNTER_RESUME; |
| |
| for (i = 2; i < ARRAY_SIZE(regs); i++) |
| regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg); |
| |
| return oa_configure_all_contexts(stream, |
| regs, ARRAY_SIZE(regs), |
| active); |
| } |
| |
| static int |
| gen8_enable_metric_set(struct i915_perf_stream *stream, |
| struct i915_active *active) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| struct i915_oa_config *oa_config = stream->oa_config; |
| int ret; |
| |
| /* |
| * We disable slice/unslice clock ratio change reports on SKL since |
| * they are too noisy. The HW generates a lot of redundant reports |
| * where the ratio hasn't really changed causing a lot of redundant |
| * work to processes and increasing the chances we'll hit buffer |
| * overruns. |
| * |
| * Although we don't currently use the 'disable overrun' OABUFFER |
| * feature it's worth noting that clock ratio reports have to be |
| * disabled before considering to use that feature since the HW doesn't |
| * correctly block these reports. |
| * |
| * Currently none of the high-level metrics we have depend on knowing |
| * this ratio to normalize. |
| * |
| * Note: This register is not power context saved and restored, but |
| * that's OK considering that we disable RC6 while the OA unit is |
| * enabled. |
| * |
| * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to |
| * be read back from automatically triggered reports, as part of the |
| * RPT_ID field. |
| */ |
| if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) { |
| intel_uncore_write(uncore, GEN8_OA_DEBUG, |
| _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | |
| GEN9_OA_DEBUG_INCLUDE_CLK_RATIO)); |
| } |
| |
| /* |
| * Update all contexts prior writing the mux configurations as we need |
| * to make sure all slices/subslices are ON before writing to NOA |
| * registers. |
| */ |
| ret = lrc_configure_all_contexts(stream, oa_config, active); |
| if (ret) |
| return ret; |
| |
| return emit_oa_config(stream, |
| stream->oa_config, oa_context(stream), |
| active); |
| } |
| |
| static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream) |
| { |
| return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS, |
| (stream->sample_flags & SAMPLE_OA_REPORT) ? |
| 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS); |
| } |
| |
| static int |
| gen12_enable_metric_set(struct i915_perf_stream *stream, |
| struct i915_active *active) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| struct i915_oa_config *oa_config = stream->oa_config; |
| bool periodic = stream->periodic; |
| u32 period_exponent = stream->period_exponent; |
| int ret; |
| |
| intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG, |
| /* Disable clk ratio reports, like previous Gens. */ |
| _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS | |
| GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) | |
| /* |
| * If the user didn't require OA reports, instruct |
| * the hardware not to emit ctx switch reports. |
| */ |
| oag_report_ctx_switches(stream)); |
| |
| intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ? |
| (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME | |
| GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE | |
| (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT)) |
| : 0); |
| |
| /* |
| * Update all contexts prior writing the mux configurations as we need |
| * to make sure all slices/subslices are ON before writing to NOA |
| * registers. |
| */ |
| ret = gen12_configure_all_contexts(stream, oa_config, active); |
| if (ret) |
| return ret; |
| |
| /* |
| * For Gen12, performance counters are context |
| * saved/restored. Only enable it for the context that |
| * requested this. |
| */ |
| if (stream->ctx) { |
| ret = gen12_configure_oar_context(stream, active); |
| if (ret) |
| return ret; |
| } |
| |
| return emit_oa_config(stream, |
| stream->oa_config, oa_context(stream), |
| active); |
| } |
| |
| static void gen8_disable_metric_set(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| /* Reset all contexts' slices/subslices configurations. */ |
| lrc_configure_all_contexts(stream, NULL, NULL); |
| |
| intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0); |
| } |
| |
| static void gen10_disable_metric_set(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| /* Reset all contexts' slices/subslices configurations. */ |
| lrc_configure_all_contexts(stream, NULL, NULL); |
| |
| /* Make sure we disable noa to save power. */ |
| intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); |
| } |
| |
| static void gen12_disable_metric_set(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| /* Reset all contexts' slices/subslices configurations. */ |
| gen12_configure_all_contexts(stream, NULL, NULL); |
| |
| /* disable the context save/restore or OAR counters */ |
| if (stream->ctx) |
| gen12_configure_oar_context(stream, NULL); |
| |
| /* Make sure we disable noa to save power. */ |
| intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0); |
| } |
| |
| static void gen7_oa_enable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| struct i915_gem_context *ctx = stream->ctx; |
| u32 ctx_id = stream->specific_ctx_id; |
| bool periodic = stream->periodic; |
| u32 period_exponent = stream->period_exponent; |
| u32 report_format = stream->oa_buffer.format; |
| |
| /* |
| * Reset buf pointers so we don't forward reports from before now. |
| * |
| * Think carefully if considering trying to avoid this, since it |
| * also ensures status flags and the buffer itself are cleared |
| * in error paths, and we have checks for invalid reports based |
| * on the assumption that certain fields are written to zeroed |
| * memory which this helps maintains. |
| */ |
| gen7_init_oa_buffer(stream); |
| |
| intel_uncore_write(uncore, GEN7_OACONTROL, |
| (ctx_id & GEN7_OACONTROL_CTX_MASK) | |
| (period_exponent << |
| GEN7_OACONTROL_TIMER_PERIOD_SHIFT) | |
| (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) | |
| (report_format << GEN7_OACONTROL_FORMAT_SHIFT) | |
| (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) | |
| GEN7_OACONTROL_ENABLE); |
| } |
| |
| static void gen8_oa_enable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 report_format = stream->oa_buffer.format; |
| |
| /* |
| * Reset buf pointers so we don't forward reports from before now. |
| * |
| * Think carefully if considering trying to avoid this, since it |
| * also ensures status flags and the buffer itself are cleared |
| * in error paths, and we have checks for invalid reports based |
| * on the assumption that certain fields are written to zeroed |
| * memory which this helps maintains. |
| */ |
| gen8_init_oa_buffer(stream); |
| |
| /* |
| * Note: we don't rely on the hardware to perform single context |
| * filtering and instead filter on the cpu based on the context-id |
| * field of reports |
| */ |
| intel_uncore_write(uncore, GEN8_OACONTROL, |
| (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) | |
| GEN8_OA_COUNTER_ENABLE); |
| } |
| |
| static void gen12_oa_enable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| u32 report_format = stream->oa_buffer.format; |
| |
| /* |
| * If we don't want OA reports from the OA buffer, then we don't even |
| * need to program the OAG unit. |
| */ |
| if (!(stream->sample_flags & SAMPLE_OA_REPORT)) |
| return; |
| |
| gen12_init_oa_buffer(stream); |
| |
| intel_uncore_write(uncore, GEN12_OAG_OACONTROL, |
| (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) | |
| GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE); |
| } |
| |
| /** |
| * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream |
| * @stream: An i915 perf stream opened for OA metrics |
| * |
| * [Re]enables hardware periodic sampling according to the period configured |
| * when opening the stream. This also starts a hrtimer that will periodically |
| * check for data in the circular OA buffer for notifying userspace (e.g. |
| * during a read() or poll()). |
| */ |
| static void i915_oa_stream_enable(struct i915_perf_stream *stream) |
| { |
| stream->pollin = false; |
| |
| stream->perf->ops.oa_enable(stream); |
| |
| if (stream->periodic) |
| hrtimer_start(&stream->poll_check_timer, |
| ns_to_ktime(stream->poll_oa_period), |
| HRTIMER_MODE_REL_PINNED); |
| } |
| |
| static void gen7_oa_disable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| intel_uncore_write(uncore, GEN7_OACONTROL, 0); |
| if (intel_wait_for_register(uncore, |
| GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0, |
| 50)) |
| drm_err(&stream->perf->i915->drm, |
| "wait for OA to be disabled timed out\n"); |
| } |
| |
| static void gen8_oa_disable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| intel_uncore_write(uncore, GEN8_OACONTROL, 0); |
| if (intel_wait_for_register(uncore, |
| GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0, |
| 50)) |
| drm_err(&stream->perf->i915->drm, |
| "wait for OA to be disabled timed out\n"); |
| } |
| |
| static void gen12_oa_disable(struct i915_perf_stream *stream) |
| { |
| struct intel_uncore *uncore = stream->uncore; |
| |
| intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0); |
| if (intel_wait_for_register(uncore, |
| GEN12_OAG_OACONTROL, |
| GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0, |
| 50)) |
| drm_err(&stream->perf->i915->drm, |
| "wait for OA to be disabled timed out\n"); |
| |
| intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1); |
| if (intel_wait_for_register(uncore, |
| GEN12_OA_TLB_INV_CR, |
| 1, 0, |
| 50)) |
| drm_err(&stream->perf->i915->drm, |
| "wait for OA tlb invalidate timed out\n"); |
| } |
| |
| /** |
| * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream |
| * @stream: An i915 perf stream opened for OA metrics |
| * |
| * Stops the OA unit from periodically writing counter reports into the |
| * circular OA buffer. This also stops the hrtimer that periodically checks for |
| * data in the circular OA buffer, for notifying userspace. |
| */ |
| static void i915_oa_stream_disable(struct i915_perf_stream *stream) |
| { |
| stream->perf->ops.oa_disable(stream); |
| |
| if (stream->periodic) |
| hrtimer_cancel(&stream->poll_check_timer); |
| } |
| |
| static const struct i915_perf_stream_ops i915_oa_stream_ops = { |
| .destroy = i915_oa_stream_destroy, |
| .enable = i915_oa_stream_enable, |
| .disable = i915_oa_stream_disable, |
| .wait_unlocked = i915_oa_wait_unlocked, |
| .poll_wait = i915_oa_poll_wait, |
| .read = i915_oa_read, |
| }; |
| |
| static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream) |
| { |
| struct i915_active *active; |
| int err; |
| |
| active = i915_active_create(); |
| if (!active) |
| return -ENOMEM; |
| |
| err = stream->perf->ops.enable_metric_set(stream, active); |
| if (err == 0) |
| __i915_active_wait(active, TASK_UNINTERRUPTIBLE); |
| |
| i915_active_put(active); |
| return err; |
| } |
| |
| static void |
| get_default_sseu_config(struct intel_sseu *out_sseu, |
| struct intel_engine_cs *engine) |
| { |
| const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu; |
| |
| *out_sseu = intel_sseu_from_device_info(devinfo_sseu); |
| |
| if (IS_GEN(engine->i915, 11)) { |
| /* |
| * We only need subslice count so it doesn't matter which ones |
| * we select - just turn off low bits in the amount of half of |
| * all available subslices per slice. |
| */ |
| out_sseu->subslice_mask = |
| ~(~0 << (hweight8(out_sseu->subslice_mask) / 2)); |
| out_sseu->slice_mask = 0x1; |
| } |
| } |
| |
| static int |
| get_sseu_config(struct intel_sseu *out_sseu, |
| struct intel_engine_cs *engine, |
| const struct drm_i915_gem_context_param_sseu *drm_sseu) |
| { |
| if (drm_sseu->engine.engine_class != engine->uabi_class || |
| drm_sseu->engine.engine_instance != engine->uabi_instance) |
| return -EINVAL; |
| |
| return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu); |
| } |
| |
| /** |
| * i915_oa_stream_init - validate combined props for OA stream and init |
| * @stream: An i915 perf stream |
| * @param: The open parameters passed to `DRM_I915_PERF_OPEN` |
| * @props: The property state that configures stream (individually validated) |
| * |
| * While read_properties_unlocked() validates properties in isolation it |
| * doesn't ensure that the combination necessarily makes sense. |
| * |
| * At this point it has been determined that userspace wants a stream of |
| * OA metrics, but still we need to further validate the combined |
| * properties are OK. |
| * |
| * If the configuration makes sense then we can allocate memory for |
| * a circular OA buffer and apply the requested metric set configuration. |
| * |
| * Returns: zero on success or a negative error code. |
| */ |
| static int i915_oa_stream_init(struct i915_perf_stream *stream, |
| struct drm_i915_perf_open_param *param, |
| struct perf_open_properties *props) |
| { |
| struct drm_i915_private *i915 = stream->perf->i915; |
| struct i915_perf *perf = stream->perf; |
| int format_size; |
| int ret; |
| |
| if (!props->engine) { |
| DRM_DEBUG("OA engine not specified\n"); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the sysfs metrics/ directory wasn't registered for some |
| * reason then don't let userspace try their luck with config |
| * IDs |
| */ |
| if (!perf->metrics_kobj) { |
| DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); |
| return -EINVAL; |
| } |
| |
| if (!(props->sample_flags & SAMPLE_OA_REPORT) && |
| (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) { |
| DRM_DEBUG("Only OA report sampling supported\n"); |
| return -EINVAL; |
| } |
| |
| if (!perf->ops.enable_metric_set) { |
| DRM_DEBUG("OA unit not supported\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * To avoid the complexity of having to accurately filter |
| * counter reports and marshal to the appropriate client |
| * we currently only allow exclusive access |
| */ |
| if (perf->exclusive_stream) { |
| DRM_DEBUG("OA unit already in use\n"); |
| return -EBUSY; |
| } |
| |
| if (!props->oa_format) { |
| DRM_DEBUG("OA report format not specified\n"); |
| return -EINVAL; |
| } |
| |
| stream->engine = props->engine; |
| stream->uncore = stream->engine->gt->uncore; |
| |
| stream->sample_size = sizeof(struct drm_i915_perf_record_header); |
| |
| format_size = perf->oa_formats[props->oa_format].size; |
| |
| stream->sample_flags = props->sample_flags; |
| stream->sample_size += format_size; |
| |
| stream->oa_buffer.format_size = format_size; |
| if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0)) |
| return -EINVAL; |
| |
| stream->hold_preemption = props->hold_preemption; |
| |
| stream->oa_buffer.format = |
| perf->oa_formats[props->oa_format].format; |
| |
| stream->periodic = props->oa_periodic; |
| if (stream->periodic) |
| stream->period_exponent = props->oa_period_exponent; |
| |
| if (stream->ctx) { |
| ret = oa_get_render_ctx_id(stream); |
| if (ret) { |
| DRM_DEBUG("Invalid context id to filter with\n"); |
| return ret; |
| } |
| } |
| |
| ret = alloc_noa_wait(stream); |
| if (ret) { |
| DRM_DEBUG("Unable to allocate NOA wait batch buffer\n"); |
| goto err_noa_wait_alloc; |
| } |
| |
| stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set); |
| if (!stream->oa_config) { |
| DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set); |
| ret = -EINVAL; |
| goto err_config; |
| } |
| |
| /* PRM - observability performance counters: |
| * |
| * OACONTROL, performance counter enable, note: |
| * |
| * "When this bit is set, in order to have coherent counts, |
| * RC6 power state and trunk clock gating must be disabled. |
| * This can be achieved by programming MMIO registers as |
| * 0xA094=0 and 0xA090[31]=1" |
| * |
| * In our case we are expecting that taking pm + FORCEWAKE |
| * references will effectively disable RC6. |
| */ |
| intel_engine_pm_get(stream->engine); |
| intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL); |
| |
| ret = alloc_oa_buffer(stream); |
| if (ret) |
| goto err_oa_buf_alloc; |
| |
| stream->ops = &i915_oa_stream_ops; |
| |
| perf->sseu = props->sseu; |
| WRITE_ONCE(perf->exclusive_stream, stream); |
| |
| ret = i915_perf_stream_enable_sync(stream); |
| if (ret) { |
| DRM_DEBUG("Unable to enable metric set\n"); |
| goto err_enable; |
| } |
| |
| DRM_DEBUG("opening stream oa config uuid=%s\n", |
| stream->oa_config->uuid); |
| |
| hrtimer_init(&stream->poll_check_timer, |
| CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| stream->poll_check_timer.function = oa_poll_check_timer_cb; |
| init_waitqueue_head(&stream->poll_wq); |
| spin_lock_init(&stream->oa_buffer.ptr_lock); |
| |
| return 0; |
| |
| err_enable: |
| WRITE_ONCE(perf->exclusive_stream, NULL); |
| perf->ops.disable_metric_set(stream); |
| |
| free_oa_buffer(stream); |
| |
| err_oa_buf_alloc: |
| free_oa_configs(stream); |
| |
| intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL); |
| intel_engine_pm_put(stream->engine); |
| |
| err_config: |
| free_noa_wait(stream); |
| |
| err_noa_wait_alloc: |
| if (stream->ctx) |
| oa_put_render_ctx_id(stream); |
| |
| return ret; |
| } |
| |
| void i915_oa_init_reg_state(const struct intel_context *ce, |
| const struct intel_engine_cs *engine) |
| { |
| struct i915_perf_stream *stream; |
| |
| if (engine->class != RENDER_CLASS) |
| return; |
| |
| /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */ |
| stream = READ_ONCE(engine->i915->perf.exclusive_stream); |
| if (stream && INTEL_GEN(stream->perf->i915) < 12) |
| gen8_update_reg_state_unlocked(ce, stream); |
| } |
| |
| /** |
| * i915_perf_read - handles read() FOP for i915 perf stream FDs |
| * @file: An i915 perf stream file |
| * @buf: destination buffer given by userspace |
| * @count: the number of bytes userspace wants to read |
| * @ppos: (inout) file seek position (unused) |
| * |
| * The entry point for handling a read() on a stream file descriptor from |
| * userspace. Most of the work is left to the i915_perf_read_locked() and |
| * &i915_perf_stream_ops->read but to save having stream implementations (of |
| * which we might have multiple later) we handle blocking read here. |
| * |
| * We can also consistently treat trying to read from a disabled stream |
| * as an IO error so implementations can assume the stream is enabled |
| * while reading. |
| * |
| * Returns: The number of bytes copied or a negative error code on failure. |
| */ |
| static ssize_t i915_perf_read(struct file *file, |
| char __user *buf, |
| size_t count, |
| loff_t *ppos) |
| { |
| struct i915_perf_stream *stream = file->private_data; |
| struct i915_perf *perf = stream->perf; |
| size_t offset = 0; |
| int ret; |
| |
| /* To ensure it's handled consistently we simply treat all reads of a |
| * disabled stream as an error. In particular it might otherwise lead |
| * to a deadlock for blocking file descriptors... |
| */ |
| if (!stream->enabled) |
| return -EIO; |
| |
| if (!(file->f_flags & O_NONBLOCK)) { |
| /* There's the small chance of false positives from |
| * stream->ops->wait_unlocked. |
| * |
| * E.g. with single context filtering since we only wait until |
| * oabuffer has >= 1 report we don't immediately know whether |
| * any reports really belong to the current context |
| */ |
| do { |
| ret = stream->ops->wait_unlocked(stream); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&perf->lock); |
| ret = stream->ops->read(stream, buf, count, &offset); |
| mutex_unlock(&perf->lock); |
| } while (!offset && !ret); |
| } else { |
| mutex_lock(&perf->lock); |
| ret = stream->ops->read(stream, buf, count, &offset); |
| mutex_unlock(&perf->lock); |
| } |
| |
| /* We allow the poll checking to sometimes report false positive EPOLLIN |
| * events where we might actually report EAGAIN on read() if there's |
| * not really any data available. In this situation though we don't |
| * want to enter a busy loop between poll() reporting a EPOLLIN event |
| * and read() returning -EAGAIN. Clearing the oa.pollin state here |
| * effectively ensures we back off until the next hrtimer callback |
| * before reporting another EPOLLIN event. |
| * The exception to this is if ops->read() returned -ENOSPC which means |
| * that more OA data is available than could fit in the user provided |
| * buffer. In this case we want the next poll() call to not block. |
| */ |
| if (ret != -ENOSPC) |
| stream->pollin = false; |
| |
| /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */ |
| return offset ?: (ret ?: -EAGAIN); |
| } |
| |
| static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer) |
| { |
| struct i915_perf_stream *stream = |
| container_of(hrtimer, typeof(*stream), poll_check_timer); |
| |
| if (oa_buffer_check_unlocked(stream)) { |
| stream->pollin = true; |
| wake_up(&stream->poll_wq); |
| } |
| |
| hrtimer_forward_now(hrtimer, |
| ns_to_ktime(stream->poll_oa_period)); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| /** |
| * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream |
| * @stream: An i915 perf stream |
| * @file: An i915 perf stream file |
| * @wait: poll() state table |
| * |
| * For handling userspace polling on an i915 perf stream, this calls through to |
| * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that |
| * will be woken for new stream data. |
| * |
| * Note: The &perf->lock mutex has been taken to serialize |
| * with any non-file-operation driver hooks. |
| * |
| * Returns: any poll events that are ready without sleeping |
| */ |
| static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream, |
| struct file *file, |
| poll_table *wait) |
| { |
| __poll_t events = 0; |
| |
| stream->ops->poll_wait(stream, file, wait); |
| |
| /* Note: we don't explicitly check whether there's something to read |
| * here since this path may be very hot depending on what else |
| * userspace is polling, or on the timeout in use. We rely solely on |
| * the hrtimer/oa_poll_check_timer_cb to notify us when there are |
| * samples to read. |
| */ |
| if (stream->pollin) |
| events |= EPOLLIN; |
| |
| return events; |
| } |
| |
| /** |
| * i915_perf_poll - call poll_wait() with a suitable wait queue for stream |
| * @file: An i915 perf stream file |
| * @wait: poll() state table |
| * |
| * For handling userspace polling on an i915 perf stream, this ensures |
| * poll_wait() gets called with a wait queue that will be woken for new stream |
| * data. |
| * |
| * Note: Implementation deferred to i915_perf_poll_locked() |
| * |
| * Returns: any poll events that are ready without sleeping |
| */ |
| static __poll_t i915_perf_poll(struct file *file, poll_table *wait) |
| { |
| struct i915_perf_stream *stream = file->private_data; |
| struct i915_perf *perf = stream->perf; |
| __poll_t ret; |
| |
| mutex_lock(&perf->lock); |
| ret = i915_perf_poll_locked(stream, file, wait); |
| mutex_unlock(&perf->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl |
| * @stream: A disabled i915 perf stream |
| * |
| * [Re]enables the associated capture of data for this stream. |
| * |
| * If a stream was previously enabled then there's currently no intention |
| * to provide userspace any guarantee about the preservation of previously |
| * buffered data. |
| */ |
| static void i915_perf_enable_locked(struct i915_perf_stream *stream) |
| { |
| if (stream->enabled) |
| return; |
| |
| /* Allow stream->ops->enable() to refer to this */ |
| stream->enabled = true; |
| |
| if (stream->ops->enable) |
| stream->ops->enable(stream); |
| |
| if (stream->hold_preemption) |
| intel_context_set_nopreempt(stream->pinned_ctx); |
| } |
| |
| /** |
| * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl |
| * @stream: An enabled i915 perf stream |
| * |
| * Disables the associated capture of data for this stream. |
| * |
| * The intention is that disabling an re-enabling a stream will ideally be |
| * cheaper than destroying and re-opening a stream with the same configuration, |
| * though there are no formal guarantees about what state or buffered data |
| * must be retained between disabling and re-enabling a stream. |
| * |
| * Note: while a stream is disabled it's considered an error for userspace |
| * to attempt to read from the stream (-EIO). |
| */ |
| static void i915_perf_disable_locked(struct i915_perf_stream *stream) |
| { |
| if (!stream->enabled) |
| return; |
| |
| /* Allow stream->ops->disable() to refer to this */ |
| stream->enabled = false; |
| |
| if (stream->hold_preemption) |
| intel_context_clear_nopreempt(stream->pinned_ctx); |
| |
| if (stream->ops->disable) |
| stream->ops->disable(stream); |
| } |
| |
| static long i915_perf_config_locked(struct i915_perf_stream *stream, |
| unsigned long metrics_set) |
| { |
| struct i915_oa_config *config; |
| long ret = stream->oa_config->id; |
| |
| config = i915_perf_get_oa_config(stream->perf, metrics_set); |
| if (!config) |
| return -EINVAL; |
| |
| if (config != stream->oa_config) { |
| int err; |
| |
| /* |
| * If OA is bound to a specific context, emit the |
| * reconfiguration inline from that context. The update |
| * will then be ordered with respect to submission on that |
| * context. |
| * |
| * When set globally, we use a low priority kernel context, |
| * so it will effectively take effect when idle. |
| */ |
| err = emit_oa_config(stream, config, oa_context(stream), NULL); |
| if (!err) |
| config = xchg(&stream->oa_config, config); |
| else |
| ret = err; |
| } |
| |
| i915_oa_config_put(config); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs |
| * @stream: An i915 perf stream |
| * @cmd: the ioctl request |
| * @arg: the ioctl data |
| * |
| * Note: The &perf->lock mutex has been taken to serialize |
| * with any non-file-operation driver hooks. |
| * |
| * Returns: zero on success or a negative error code. Returns -EINVAL for |
| * an unknown ioctl request. |
| */ |
| static long i915_perf_ioctl_locked(struct i915_perf_stream *stream, |
| unsigned int cmd, |
| unsigned long arg) |
| { |
| switch (cmd) { |
| case I915_PERF_IOCTL_ENABLE: |
| i915_perf_enable_locked(stream); |
| return 0; |
| case I915_PERF_IOCTL_DISABLE: |
| i915_perf_disable_locked(stream); |
| return 0; |
| case I915_PERF_IOCTL_CONFIG: |
| return i915_perf_config_locked(stream, arg); |
| } |
| |
| return -EINVAL; |
| } |
| |
| /** |
| * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs |
| * @file: An i915 perf stream file |
| * @cmd: the ioctl request |
| * @arg: the ioctl data |
| * |
| * Implementation deferred to i915_perf_ioctl_locked(). |
| * |
| * Returns: zero on success or a negative error code. Returns -EINVAL for |
| * an unknown ioctl request. |
| */ |
| static long i915_perf_ioctl(struct file *file, |
| unsigned int cmd, |
| unsigned long arg) |
| { |
| struct i915_perf_stream *stream = file->private_data; |
| struct i915_perf *perf = stream->perf; |
| long ret; |
| |
| mutex_lock(&perf->lock); |
| ret = i915_perf_ioctl_locked(stream, cmd, arg); |
| mutex_unlock(&perf->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_perf_destroy_locked - destroy an i915 perf stream |
| * @stream: An i915 perf stream |
| * |
| * Frees all resources associated with the given i915 perf @stream, disabling |
| * any associated data capture in the process. |
| * |
| * Note: The &perf->lock mutex has been taken to serialize |
| * with any non-file-operation driver hooks. |
| */ |
| static void i915_perf_destroy_locked(struct i915_perf_stream *stream) |
| { |
| if (stream->enabled) |
| i915_perf_disable_locked(stream); |
| |
| if (stream->ops->destroy) |
| stream->ops->destroy(stream); |
| |
| if (stream->ctx) |
| i915_gem_context_put(stream->ctx); |
| |
| kfree(stream); |
| } |
| |
| /** |
| * i915_perf_release - handles userspace close() of a stream file |
| * @inode: anonymous inode associated with file |
| * @file: An i915 perf stream file |
| * |
| * Cleans up any resources associated with an open i915 perf stream file. |
| * |
| * NB: close() can't really fail from the userspace point of view. |
| * |
| * Returns: zero on success or a negative error code. |
| */ |
| static int i915_perf_release(struct inode *inode, struct file *file) |
| { |
| struct i915_perf_stream *stream = file->private_data; |
| struct i915_perf *perf = stream->perf; |
| |
| mutex_lock(&perf->lock); |
| i915_perf_destroy_locked(stream); |
| mutex_unlock(&perf->lock); |
| |
| /* Release the reference the perf stream kept on the driver. */ |
| drm_dev_put(&perf->i915->drm); |
| |
| return 0; |
| } |
| |
| |
| static const struct file_operations fops = { |
| .owner = THIS_MODULE, |
| .llseek = no_llseek, |
| .release = i915_perf_release, |
| .poll = i915_perf_poll, |
| .read = i915_perf_read, |
| .unlocked_ioctl = i915_perf_ioctl, |
| /* Our ioctl have no arguments, so it's safe to use the same function |
| * to handle 32bits compatibility. |
| */ |
| .compat_ioctl = i915_perf_ioctl, |
| }; |
| |
| |
| /** |
| * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD |
| * @perf: i915 perf instance |
| * @param: The open parameters passed to 'DRM_I915_PERF_OPEN` |
| * @props: individually validated u64 property value pairs |
| * @file: drm file |
| * |
| * See i915_perf_ioctl_open() for interface details. |
| * |
| * Implements further stream config validation and stream initialization on |
| * behalf of i915_perf_open_ioctl() with the &perf->lock mutex |
| * taken to serialize with any non-file-operation driver hooks. |
| * |
| * Note: at this point the @props have only been validated in isolation and |
| * it's still necessary to validate that the combination of properties makes |
| * sense. |
| * |
| * In the case where userspace is interested in OA unit metrics then further |
| * config validation and stream initialization details will be handled by |
| * i915_oa_stream_init(). The code here should only validate config state that |
| * will be relevant to all stream types / backends. |
| * |
| * Returns: zero on success or a negative error code. |
| */ |
| static int |
| i915_perf_open_ioctl_locked(struct i915_perf *perf, |
| struct drm_i915_perf_open_param *param, |
| struct perf_open_properties *props, |
| struct drm_file *file) |
| { |
| struct i915_gem_context *specific_ctx = NULL; |
| struct i915_perf_stream *stream = NULL; |
| unsigned long f_flags = 0; |
| bool privileged_op = true; |
| int stream_fd; |
| int ret; |
| |
| if (props->single_context) { |
| u32 ctx_handle = props->ctx_handle; |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle); |
| if (!specific_ctx) { |
| DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n", |
| ctx_handle); |
| ret = -ENOENT; |
| goto err; |
| } |
| } |
| |
| /* |
| * On Haswell the OA unit supports clock gating off for a specific |
| * context and in this mode there's no visibility of metrics for the |
| * rest of the system, which we consider acceptable for a |
| * non-privileged client. |
| * |
| * For Gen8->11 the OA unit no longer supports clock gating off for a |
| * specific context and the kernel can't securely stop the counters |
| * from updating as system-wide / global values. Even though we can |
| * filter reports based on the included context ID we can't block |
| * clients from seeing the raw / global counter values via |
| * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to |
| * enable the OA unit by default. |
| * |
| * For Gen12+ we gain a new OAR unit that only monitors the RCS on a |
| * per context basis. So we can relax requirements there if the user |
| * doesn't request global stream access (i.e. query based sampling |
| * using MI_RECORD_PERF_COUNT. |
| */ |
| if (IS_HASWELL(perf->i915) && specific_ctx) |
| privileged_op = false; |
| else if (IS_GEN(perf->i915, 12) && specific_ctx && |
| (props->sample_flags & SAMPLE_OA_REPORT) == 0) |
| privileged_op = false; |
| |
| if (props->hold_preemption) { |
| if (!props->single_context) { |
| DRM_DEBUG("preemption disable with no context\n"); |
| ret = -EINVAL; |
| goto err; |
| } |
| privileged_op = true; |
| } |
| |
| /* |
| * Asking for SSEU configuration is a priviliged operation. |
| */ |
| if (props->has_sseu) |
| privileged_op = true; |
| else |
| get_default_sseu_config(&props->sseu, props->engine); |
| |
| /* Similar to perf's kernel.perf_paranoid_cpu sysctl option |
| * we check a dev.i915.perf_stream_paranoid sysctl option |
| * to determine if it's ok to access system wide OA counters |
| * without CAP_PERFMON or CAP_SYS_ADMIN privileges. |
| */ |
| if (privileged_op && |
| i915_perf_stream_paranoid && !perfmon_capable()) { |
| DRM_DEBUG("Insufficient privileges to open i915 perf stream\n"); |
| ret = -EACCES; |
| goto err_ctx; |
| } |
| |
| stream = kzalloc(sizeof(*stream), GFP_KERNEL); |
| if (!stream) { |
| ret = -ENOMEM; |
| goto err_ctx; |
| } |
| |
| stream->perf = perf; |
| stream->ctx = specific_ctx; |
| stream->poll_oa_period = props->poll_oa_period; |
| |
| ret = i915_oa_stream_init(stream, param, props); |
| if (ret) |
| goto err_alloc; |
| |
| /* we avoid simply assigning stream->sample_flags = props->sample_flags |
| * to have _stream_init check the combination of sample flags more |
| * thoroughly, but still this is the expected result at this point. |
| */ |
| if (WARN_ON(stream->sample_flags != props->sample_flags)) { |
| ret = -ENODEV; |
| goto err_flags; |
| } |
| |
| if (param->flags & I915_PERF_FLAG_FD_CLOEXEC) |
| f_flags |= O_CLOEXEC; |
| if (param->flags & I915_PERF_FLAG_FD_NONBLOCK) |
| f_flags |= O_NONBLOCK; |
| |
| stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags); |
| if (stream_fd < 0) { |
| ret = stream_fd; |
| goto err_flags; |
| } |
| |
| if (!(param->flags & I915_PERF_FLAG_DISABLED)) |
| i915_perf_enable_locked(stream); |
| |
| /* Take a reference on the driver that will be kept with stream_fd |
| * until its release. |
| */ |
| drm_dev_get(&perf->i915->drm); |
| |
| return stream_fd; |
| |
| err_flags: |
| if (stream->ops->destroy) |
| stream->ops->destroy(stream); |
| err_alloc: |
| kfree(stream); |
| err_ctx: |
| if (specific_ctx) |
| i915_gem_context_put(specific_ctx); |
| err: |
| return ret; |
| } |
| |
| static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent) |
| { |
| return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent); |
| } |
| |
| /** |
| * read_properties_unlocked - validate + copy userspace stream open properties |
| * @perf: i915 perf instance |
| * @uprops: The array of u64 key value pairs given by userspace |
| * @n_props: The number of key value pairs expected in @uprops |
| * @props: The stream configuration built up while validating properties |
| * |
| * Note this function only validates properties in isolation it doesn't |
| * validate that the combination of properties makes sense or that all |
| * properties necessary for a particular kind of stream have been set. |
| * |
| * Note that there currently aren't any ordering requirements for properties so |
| * we shouldn't validate or assume anything about ordering here. This doesn't |
| * rule out defining new properties with ordering requirements in the future. |
| */ |
| static int read_properties_unlocked(struct i915_perf *perf, |
| u64 __user *uprops, |
| u32 n_props, |
| struct perf_open_properties *props) |
| { |
| u64 __user *uprop = uprops; |
| u32 i; |
| int ret; |
| |
| memset(props, 0, sizeof(struct perf_open_properties)); |
| props->poll_oa_period = DEFAULT_POLL_PERIOD_NS; |
| |
| if (!n_props) { |
| DRM_DEBUG("No i915 perf properties given\n"); |
| return -EINVAL; |
| } |
| |
| /* At the moment we only support using i915-perf on the RCS. */ |
| props->engine = intel_engine_lookup_user(perf->i915, |
| I915_ENGINE_CLASS_RENDER, |
| 0); |
| if (!props->engine) { |
| DRM_DEBUG("No RENDER-capable engines\n"); |
| return -EINVAL; |
| } |
| |
| /* Considering that ID = 0 is reserved and assuming that we don't |
| * (currently) expect any configurations to ever specify duplicate |
| * values for a particular property ID then the last _PROP_MAX value is |
| * one greater than the maximum number of properties we expect to get |
| * from userspace. |
| */ |
| if (n_props >= DRM_I915_PERF_PROP_MAX) { |
| DRM_DEBUG("More i915 perf properties specified than exist\n"); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < n_props; i++) { |
| u64 oa_period, oa_freq_hz; |
| u64 id, value; |
| |
| ret = get_user(id, uprop); |
| if (ret) |
| return ret; |
| |
| ret = get_user(value, uprop + 1); |
| if (ret) |
| return ret; |
| |
| if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) { |
| DRM_DEBUG("Unknown i915 perf property ID\n"); |
| return -EINVAL; |
| } |
| |
| switch ((enum drm_i915_perf_property_id)id) { |
| case DRM_I915_PERF_PROP_CTX_HANDLE: |
| props->single_context = 1; |
| props->ctx_handle = value; |
| break; |
| case DRM_I915_PERF_PROP_SAMPLE_OA: |
| if (value) |
| props->sample_flags |= SAMPLE_OA_REPORT; |
| break; |
| case DRM_I915_PERF_PROP_OA_METRICS_SET: |
| if (value == 0) { |
| DRM_DEBUG("Unknown OA metric set ID\n"); |
| return -EINVAL; |
| } |
| props->metrics_set = value; |
| break; |
| case DRM_I915_PERF_PROP_OA_FORMAT: |
| if (value == 0 || value >= I915_OA_FORMAT_MAX) { |
| DRM_DEBUG("Out-of-range OA report format %llu\n", |
| value); |
| return -EINVAL; |
| } |
| if (!perf->oa_formats[value].size) { |
| DRM_DEBUG("Unsupported OA report format %llu\n", |
| value); |
| return -EINVAL; |
| } |
| props->oa_format = value; |
| break; |
| case DRM_I915_PERF_PROP_OA_EXPONENT: |
| if (value > OA_EXPONENT_MAX) { |
| DRM_DEBUG("OA timer exponent too high (> %u)\n", |
| OA_EXPONENT_MAX); |
| return -EINVAL; |
| } |
| |
| /* Theoretically we can program the OA unit to sample |
| * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns |
| * for BXT. We don't allow such high sampling |
| * frequencies by default unless root. |
| */ |
| |
| BUILD_BUG_ON(sizeof(oa_period) != 8); |
| oa_period = oa_exponent_to_ns(perf, value); |
| |
| /* This check is primarily to ensure that oa_period <= |
| * UINT32_MAX (before passing to do_div which only |
| * accepts a u32 denominator), but we can also skip |
| * checking anything < 1Hz which implicitly can't be |
| * limited via an integer oa_max_sample_rate. |
| */ |
| if (oa_period <= NSEC_PER_SEC) { |
| u64 tmp = NSEC_PER_SEC; |
| do_div(tmp, oa_period); |
| oa_freq_hz = tmp; |
| } else |
| oa_freq_hz = 0; |
| |
| if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) { |
| DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n", |
| i915_oa_max_sample_rate); |
| return -EACCES; |
| } |
| |
| props->oa_periodic = true; |
| props->oa_period_exponent = value; |
| break; |
| case DRM_I915_PERF_PROP_HOLD_PREEMPTION: |
| props->hold_preemption = !!value; |
| break; |
| case DRM_I915_PERF_PROP_GLOBAL_SSEU: { |
| struct drm_i915_gem_context_param_sseu user_sseu; |
| |
| if (copy_from_user(&user_sseu, |
| u64_to_user_ptr(value), |
| sizeof(user_sseu))) { |
| DRM_DEBUG("Unable to copy global sseu parameter\n"); |
| return -EFAULT; |
| } |
| |
| ret = get_sseu_config(&props->sseu, props->engine, &user_sseu); |
| if (ret) { |
| DRM_DEBUG("Invalid SSEU configuration\n"); |
| return ret; |
| } |
| props->has_sseu = true; |
| break; |
| } |
| case DRM_I915_PERF_PROP_POLL_OA_PERIOD: |
| if (value < 100000 /* 100us */) { |
| DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n", |
| value); |
| return -EINVAL; |
| } |
| props->poll_oa_period = value; |
| break; |
| case DRM_I915_PERF_PROP_MAX: |
| MISSING_CASE(id); |
| return -EINVAL; |
| } |
| |
| uprop += 2; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD |
| * @dev: drm device |
| * @data: ioctl data copied from userspace (unvalidated) |
| * @file: drm file |
| * |
| * Validates the stream open parameters given by userspace including flags |
| * and an array of u64 key, value pair properties. |
| * |
| * Very little is assumed up front about the nature of the stream being |
| * opened (for instance we don't assume it's for periodic OA unit metrics). An |
| * i915-perf stream is expected to be a suitable interface for other forms of |
| * buffered data written by the GPU besides periodic OA metrics. |
| * |
| * Note we copy the properties from userspace outside of the i915 perf |
| * mutex to avoid an awkward lockdep with mmap_lock. |
| * |
| * Most of the implementation details are handled by |
| * i915_perf_open_ioctl_locked() after taking the &perf->lock |
| * mutex for serializing with any non-file-operation driver hooks. |
| * |
| * Return: A newly opened i915 Perf stream file descriptor or negative |
| * error code on failure. |
| */ |
| int i915_perf_open_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct i915_perf *perf = &to_i915(dev)->perf; |
| struct drm_i915_perf_open_param *param = data; |
| struct perf_open_properties props; |
| u32 known_open_flags; |
| int ret; |
| |
| if (!perf->i915) { |
| DRM_DEBUG("i915 perf interface not available for this system\n"); |
| return -ENOTSUPP; |
| } |
| |
| known_open_flags = I915_PERF_FLAG_FD_CLOEXEC | |
| I915_PERF_FLAG_FD_NONBLOCK | |
| I915_PERF_FLAG_DISABLED; |
| if (param->flags & ~known_open_flags) { |
| DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n"); |
| return -EINVAL; |
| } |
| |
| ret = read_properties_unlocked(perf, |
| u64_to_user_ptr(param->properties_ptr), |
| param->num_properties, |
| &props); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&perf->lock); |
| ret = i915_perf_open_ioctl_locked(perf, param, &props, file); |
| mutex_unlock(&perf->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_perf_register - exposes i915-perf to userspace |
| * @i915: i915 device instance |
| * |
| * In particular OA metric sets are advertised under a sysfs metrics/ |
| * directory allowing userspace to enumerate valid IDs that can be |
| * used to open an i915-perf stream. |
| */ |
| void i915_perf_register(struct drm_i915_private *i915) |
| { |
| struct i915_perf *perf = &i915->perf; |
| |
| if (!perf->i915) |
| return; |
| |
| /* To be sure we're synchronized with an attempted |
| * i915_perf_open_ioctl(); considering that we register after |
| * being exposed to userspace. |
| */ |
| mutex_lock(&perf->lock); |
| |
| perf->metrics_kobj = |
| kobject_create_and_add("metrics", |
| &i915->drm.primary->kdev->kobj); |
| |
| mutex_unlock(&perf->lock); |
| } |
| |
| /** |
| * i915_perf_unregister - hide i915-perf from userspace |
| * @i915: i915 device instance |
| * |
| * i915-perf state cleanup is split up into an 'unregister' and |
| * 'deinit' phase where the interface is first hidden from |
| * userspace by i915_perf_unregister() before cleaning up |
| * remaining state in i915_perf_fini(). |
| */ |
| void i915_perf_unregister(struct drm_i915_private *i915) |
| { |
| struct i915_perf *perf = &i915->perf; |
| |
| if (!perf->metrics_kobj) |
| return; |
| |
| kobject_put(perf->metrics_kobj); |
| perf->metrics_kobj = NULL; |
| } |
| |
| static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr) |
| { |
| static const i915_reg_t flex_eu_regs[] = { |
| EU_PERF_CNTL0, |
| EU_PERF_CNTL1, |
| EU_PERF_CNTL2, |
| EU_PERF_CNTL3, |
| EU_PERF_CNTL4, |
| EU_PERF_CNTL5, |
| EU_PERF_CNTL6, |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) { |
| if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr) |
| return true; |
| } |
| return false; |
| } |
| |
| #define ADDR_IN_RANGE(addr, start, end) \ |
| ((addr) >= (start) && \ |
| (addr) <= (end)) |
| |
| #define REG_IN_RANGE(addr, start, end) \ |
| ((addr) >= i915_mmio_reg_offset(start) && \ |
| (addr) <= i915_mmio_reg_offset(end)) |
| |
| #define REG_EQUAL(addr, mmio) \ |
| ((addr) == i915_mmio_reg_offset(mmio)) |
| |
| static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) |
| { |
| return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) || |
| REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) || |
| REG_IN_RANGE(addr, OACEC0_0, OACEC7_1); |
| } |
| |
| static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) || |
| REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) || |
| REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) || |
| REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI); |
| } |
| |
| static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return gen7_is_valid_mux_addr(perf, addr) || |
| REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || |
| REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8)); |
| } |
| |
| static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return gen8_is_valid_mux_addr(perf, addr) || |
| REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || |
| REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI); |
| } |
| |
| static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return gen7_is_valid_mux_addr(perf, addr) || |
| ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) || |
| REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) || |
| REG_EQUAL(addr, HSW_MBVID2_MISR0); |
| } |
| |
| static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return gen7_is_valid_mux_addr(perf, addr) || |
| ADDR_IN_RANGE(addr, 0x182300, 0x1823A4); |
| } |
| |
| static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr) |
| { |
| return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) || |
| REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) || |
| REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) || |
| REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) || |
| REG_EQUAL(addr, GEN12_OAA_DBG_REG) || |
| REG_EQUAL(addr, GEN12_OAG_OA_PESS) || |
| REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF); |
| } |
| |
| static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr) |
| { |
| return REG_EQUAL(addr, NOA_WRITE) || |
| REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) || |
| REG_EQUAL(addr, GDT_CHICKEN_BITS) || |
| REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) || |
| REG_EQUAL(addr, RPM_CONFIG0) || |
| REG_EQUAL(addr, RPM_CONFIG1) || |
| REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8)); |
| } |
| |
| static u32 mask_reg_value(u32 reg, u32 val) |
| { |
| /* HALF_SLICE_CHICKEN2 is programmed with a the |
| * WaDisableSTUnitPowerOptimization workaround. Make sure the value |
| * programmed by userspace doesn't change this. |
| */ |
| if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2)) |
| val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE); |
| |
| /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function |
| * indicated by its name and a bunch of selection fields used by OA |
| * configs. |
| */ |
| if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT)) |
| val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE); |
| |
| return val; |
| } |
| |
| static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf, |
| bool (*is_valid)(struct i915_perf *perf, u32 addr), |
| u32 __user *regs, |
| u32 n_regs) |
| { |
| struct i915_oa_reg *oa_regs; |
| int err; |
| u32 i; |
| |
| if (!n_regs) |
| return NULL; |
| |
| /* No is_valid function means we're not allowing any register to be programmed. */ |
| GEM_BUG_ON(!is_valid); |
| if (!is_valid) |
| return ERR_PTR(-EINVAL); |
| |
| oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL); |
| if (!oa_regs) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < n_regs; i++) { |
| u32 addr, value; |
| |
| err = get_user(addr, regs); |
| if (err) |
| goto addr_err; |
| |
| if (!is_valid(perf, addr)) { |
| DRM_DEBUG("Invalid oa_reg address: %X\n", addr); |
| err = -EINVAL; |
| goto addr_err; |
| } |
| |
| err = get_user(value, regs + 1); |
| if (err) |
| goto addr_err; |
| |
| oa_regs[i].addr = _MMIO(addr); |
| oa_regs[i].value = mask_reg_value(addr, value); |
| |
| regs += 2; |
| } |
| |
| return oa_regs; |
| |
| addr_err: |
| kfree(oa_regs); |
| return ERR_PTR(err); |
| } |
| |
| static ssize_t show_dynamic_id(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct i915_oa_config *oa_config = |
| container_of(attr, typeof(*oa_config), sysfs_metric_id); |
| |
| return sprintf(buf, "%d\n", oa_config->id); |
| } |
| |
| static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf, |
| struct i915_oa_config *oa_config) |
| { |
| sysfs_attr_init(&oa_config->sysfs_metric_id.attr); |
| oa_config->sysfs_metric_id.attr.name = "id"; |
| oa_config->sysfs_metric_id.attr.mode = S_IRUGO; |
| oa_config->sysfs_metric_id.show = show_dynamic_id; |
| oa_config->sysfs_metric_id.store = NULL; |
| |
| oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr; |
| oa_config->attrs[1] = NULL; |
| |
| oa_config->sysfs_metric.name = oa_config->uuid; |
| oa_config->sysfs_metric.attrs = oa_config->attrs; |
| |
| return sysfs_create_group(perf->metrics_kobj, |
| &oa_config->sysfs_metric); |
| } |
| |
| /** |
| * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config |
| * @dev: drm device |
| * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from |
| * userspace (unvalidated) |
| * @file: drm file |
| * |
| * Validates the submitted OA register to be saved into a new OA config that |
| * can then be used for programming the OA unit and its NOA network. |
| * |
| * Returns: A new allocated config number to be used with the perf open ioctl |
| * or a negative error code on failure. |
| */ |
| int i915_perf_add_config_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct i915_perf *perf = &to_i915(dev)->perf; |
| struct drm_i915_perf_oa_config *args = data; |
| struct i915_oa_config *oa_config, *tmp; |
| struct i915_oa_reg *regs; |
| int err, id; |
| |
| if (!perf->i915) { |
| DRM_DEBUG("i915 perf interface not available for this system\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (!perf->metrics_kobj) { |
| DRM_DEBUG("OA metrics weren't advertised via sysfs\n"); |
| return -EINVAL; |
| } |
| |
| if (i915_perf_stream_paranoid && !perfmon_capable()) { |
| DRM_DEBUG("Insufficient privileges to add i915 OA config\n"); |
| return -EACCES; |
| } |
| |
| if ((!args->mux_regs_ptr || !args->n_mux_regs) && |
| (!args->boolean_regs_ptr || !args->n_boolean_regs) && |
| (!args->flex_regs_ptr || !args->n_flex_regs)) { |
| DRM_DEBUG("No OA registers given\n"); |
| return -EINVAL; |
| } |
| |
| oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL); |
| if (!oa_config) { |
| DRM_DEBUG("Failed to allocate memory for the OA config\n"); |
| return -ENOMEM; |
| } |
| |
| oa_config->perf = perf; |
| kref_init(&oa_config->ref); |
| |
| if (!uuid_is_valid(args->uuid)) { |
| DRM_DEBUG("Invalid uuid format for OA config\n"); |
| err = -EINVAL; |
| goto reg_err; |
| } |
| |
| /* Last character in oa_config->uuid will be 0 because oa_config is |
| * kzalloc. |
| */ |
| memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid)); |
| |
| oa_config->mux_regs_len = args->n_mux_regs; |
| regs = alloc_oa_regs(perf, |
| perf->ops.is_valid_mux_reg, |
| u64_to_user_ptr(args->mux_regs_ptr), |
| args->n_mux_regs); |
| |
| if (IS_ERR(regs)) { |
| DRM_DEBUG("Failed to create OA config for mux_regs\n"); |
| err = PTR_ERR(regs); |
| goto reg_err; |
| } |
| oa_config->mux_regs = regs; |
| |
| oa_config->b_counter_regs_len = args->n_boolean_regs; |
| regs = alloc_oa_regs(perf, |
| perf->ops.is_valid_b_counter_reg, |
| u64_to_user_ptr(args->boolean_regs_ptr), |
| args->n_boolean_regs); |
| |
| if (IS_ERR(regs)) { |
| DRM_DEBUG("Failed to create OA config for b_counter_regs\n"); |
| err = PTR_ERR(regs); |
| goto reg_err; |
| } |
| oa_config->b_counter_regs = regs; |
| |
| if (INTEL_GEN(perf->i915) < 8) { |
| if (args->n_flex_regs != 0) { |
| err = -EINVAL; |
| goto reg_err; |
| } |
| } else { |
| oa_config->flex_regs_len = args->n_flex_regs; |
| regs = alloc_oa_regs(perf, |
| perf->ops.is_valid_flex_reg, |
| u64_to_user_ptr(args->flex_regs_ptr), |
| args->n_flex_regs); |
| |
| if (IS_ERR(regs)) { |
| DRM_DEBUG("Failed to create OA config for flex_regs\n"); |
| err = PTR_ERR(regs); |
| goto reg_err; |
| } |
| oa_config->flex_regs = regs; |
| } |
| |
| err = mutex_lock_interruptible(&perf->metrics_lock); |
| if (err) |
| goto reg_err; |
| |
| /* We shouldn't have too many configs, so this iteration shouldn't be |
| * too costly. |
| */ |
| idr_for_each_entry(&perf->metrics_idr, tmp, id) { |
| if (!strcmp(tmp->uuid, oa_config->uuid)) { |
| DRM_DEBUG("OA config already exists with this uuid\n"); |
| err = -EADDRINUSE; |
| goto sysfs_err; |
| } |
| } |
| |
| err = create_dynamic_oa_sysfs_entry(perf, oa_config); |
| if (err) { |
| DRM_DEBUG("Failed to create sysfs entry for OA config\n"); |
| goto sysfs_err; |
| } |
| |
| /* Config id 0 is invalid, id 1 for kernel stored test config. */ |
| oa_config->id = idr_alloc(&perf->metrics_idr, |
| oa_config, 2, |
| 0, GFP_KERNEL); |
| if (oa_config->id < 0) { |
| DRM_DEBUG("Failed to create sysfs entry for OA config\n"); |
| err = oa_config->id; |
| goto sysfs_err; |
| } |
| |
| mutex_unlock(&perf->metrics_lock); |
| |
| DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id); |
| |
| return oa_config->id; |
| |
| sysfs_err: |
| mutex_unlock(&perf->metrics_lock); |
| reg_err: |
| i915_oa_config_put(oa_config); |
| DRM_DEBUG("Failed to add new OA config\n"); |
| return err; |
| } |
| |
| /** |
| * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config |
| * @dev: drm device |
| * @data: ioctl data (pointer to u64 integer) copied from userspace |
| * @file: drm file |
| * |
| * Configs can be removed while being used, the will stop appearing in sysfs |
| * and their content will be freed when the stream using the config is closed. |
| * |
| * Returns: 0 on success or a negative error code on failure. |
| */ |
| int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct i915_perf *perf = &to_i915(dev)->perf; |
| u64 *arg = data; |
| struct i915_oa_config *oa_config; |
| int ret; |
| |
| if (!perf->i915) { |
| DRM_DEBUG("i915 perf interface not available for this system\n"); |
| return -ENOTSUPP; |
| } |
| |
| if (i915_perf_stream_paranoid && !perfmon_capable()) { |
| DRM_DEBUG("Insufficient privileges to remove i915 OA config\n"); |
| return -EACCES; |
| } |
| |
| ret = mutex_lock_interruptible(&perf->metrics_lock); |
| if (ret) |
| return ret; |
| |
| oa_config = idr_find(&perf->metrics_idr, *arg); |
| if (!oa_config) { |
| DRM_DEBUG("Failed to remove unknown OA config\n"); |
| ret = -ENOENT; |
| goto err_unlock; |
| } |
| |
| GEM_BUG_ON(*arg != oa_config->id); |
| |
| sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric); |
| |
| idr_remove(&perf->metrics_idr, *arg); |
| |
| mutex_unlock(&perf->metrics_lock); |
| |
| DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id); |
| |
| i915_oa_config_put(oa_config); |
| |
| return 0; |
| |
| err_unlock: |
| mutex_unlock(&perf->metrics_lock); |
| return ret; |
| } |
| |
| static struct ctl_table oa_table[] = { |
| { |
| .procname = "perf_stream_paranoid", |
| .data = &i915_perf_stream_paranoid, |
| .maxlen = sizeof(i915_perf_stream_paranoid), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = SYSCTL_ONE, |
| }, |
| { |
| .procname = "oa_max_sample_rate", |
| .data = &i915_oa_max_sample_rate, |
| .maxlen = sizeof(i915_oa_max_sample_rate), |
| .mode = 0644, |
| .proc_handler = proc_dointvec_minmax, |
| .extra1 = SYSCTL_ZERO, |
| .extra2 = &oa_sample_rate_hard_limit, |
| }, |
| {} |
| }; |
| |
| static struct ctl_table i915_root[] = { |
| { |
| .procname = "i915", |
| .maxlen = 0, |
| .mode = 0555, |
| .child = oa_table, |
| }, |
| {} |
| }; |
| |
| static struct ctl_table dev_root[] = { |
| { |
| .procname = "dev", |
| .maxlen = 0, |
| .mode = 0555, |
| .child = i915_root, |
| }, |
| {} |
| }; |
| |
| /** |
| * i915_perf_init - initialize i915-perf state on module bind |
| * @i915: i915 device instance |
| * |
| * Initializes i915-perf state without exposing anything to userspace. |
| * |
| * Note: i915-perf initialization is split into an 'init' and 'register' |
| * phase with the i915_perf_register() exposing state to userspace. |
| */ |
| void i915_perf_init(struct drm_i915_private *i915) |
| { |
| struct i915_perf *perf = &i915->perf; |
| |
| /* XXX const struct i915_perf_ops! */ |
| |
| if (IS_HASWELL(i915)) { |
| perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr; |
| perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr; |
| perf->ops.is_valid_flex_reg = NULL; |
| perf->ops.enable_metric_set = hsw_enable_metric_set; |
| perf->ops.disable_metric_set = hsw_disable_metric_set; |
| perf->ops.oa_enable = gen7_oa_enable; |
| perf->ops.oa_disable = gen7_oa_disable; |
| perf->ops.read = gen7_oa_read; |
| perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read; |
| |
| perf->oa_formats = hsw_oa_formats; |
| } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) { |
| /* Note: that although we could theoretically also support the |
| * legacy ringbuffer mode on BDW (and earlier iterations of |
| * this driver, before upstreaming did this) it didn't seem |
| * worth the complexity to maintain now that BDW+ enable |
| * execlist mode by default. |
| */ |
| perf->ops.read = gen8_oa_read; |
| |
| if (IS_GEN_RANGE(i915, 8, 9)) { |
| perf->oa_formats = gen8_plus_oa_formats; |
| |
| perf->ops.is_valid_b_counter_reg = |
| gen7_is_valid_b_counter_addr; |
| perf->ops.is_valid_mux_reg = |
| gen8_is_valid_mux_addr; |
| perf->ops.is_valid_flex_reg = |
| gen8_is_valid_flex_addr; |
| |
| if (IS_CHERRYVIEW(i915)) { |
| perf->ops.is_valid_mux_reg = |
| chv_is_valid_mux_addr; |
| } |
| |
| perf->ops.oa_enable = gen8_oa_enable; |
| perf->ops.oa_disable = gen8_oa_disable; |
| perf->ops.enable_metric_set = gen8_enable_metric_set; |
| perf->ops.disable_metric_set = gen8_disable_metric_set; |
| perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; |
| |
| if (IS_GEN(i915, 8)) { |
| perf->ctx_oactxctrl_offset = 0x120; |
| perf->ctx_flexeu0_offset = 0x2ce; |
| |
| perf->gen8_valid_ctx_bit = BIT(25); |
| } else { |
| perf->ctx_oactxctrl_offset = 0x128; |
| perf->ctx_flexeu0_offset = 0x3de; |
| |
| perf->gen8_valid_ctx_bit = BIT(16); |
| } |
| } else if (IS_GEN_RANGE(i915, 10, 11)) { |
| perf->oa_formats = gen8_plus_oa_formats; |
| |
| perf->ops.is_valid_b_counter_reg = |
| gen7_is_valid_b_counter_addr; |
| perf->ops.is_valid_mux_reg = |
| gen10_is_valid_mux_addr; |
| perf->ops.is_valid_flex_reg = |
| gen8_is_valid_flex_addr; |
| |
| perf->ops.oa_enable = gen8_oa_enable; |
| perf->ops.oa_disable = gen8_oa_disable; |
| perf->ops.enable_metric_set = gen8_enable_metric_set; |
| perf->ops.disable_metric_set = gen10_disable_metric_set; |
| perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read; |
| |
| if (IS_GEN(i915, 10)) { |
| perf->ctx_oactxctrl_offset = 0x128; |
| perf->ctx_flexeu0_offset = 0x3de; |
| } else { |
| perf->ctx_oactxctrl_offset = 0x124; |
| perf->ctx_flexeu0_offset = 0x78e; |
| } |
| perf->gen8_valid_ctx_bit = BIT(16); |
| } else if (IS_GEN(i915, 12)) { |
| perf->oa_formats = gen12_oa_formats; |
| |
| perf->ops.is_valid_b_counter_reg = |
| gen12_is_valid_b_counter_addr; |
| perf->ops.is_valid_mux_reg = |
| gen12_is_valid_mux_addr; |
| perf->ops.is_valid_flex_reg = |
| gen8_is_valid_flex_addr; |
| |
| perf->ops.oa_enable = gen12_oa_enable; |
| perf->ops.oa_disable = gen12_oa_disable; |
| perf->ops.enable_metric_set = gen12_enable_metric_set; |
| perf->ops.disable_metric_set = gen12_disable_metric_set; |
| perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read; |
| |
| perf->ctx_flexeu0_offset = 0; |
| perf->ctx_oactxctrl_offset = 0x144; |
| } |
| } |
| |
| if (perf->ops.enable_metric_set) { |
| mutex_init(&perf->lock); |
| |
| oa_sample_rate_hard_limit = |
| RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2; |
| |
| mutex_init(&perf->metrics_lock); |
| idr_init(&perf->metrics_idr); |
| |
| /* We set up some ratelimit state to potentially throttle any |
| * _NOTES about spurious, invalid OA reports which we don't |
| * forward to userspace. |
| * |
| * We print a _NOTE about any throttling when closing the |
| * stream instead of waiting until driver _fini which no one |
| * would ever see. |
| * |
| * Using the same limiting factors as printk_ratelimit() |
| */ |
| ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10); |
| /* Since we use a DRM_NOTE for spurious reports it would be |
| * inconsistent to let __ratelimit() automatically print a |
| * warning for throttling. |
| */ |
| ratelimit_set_flags(&perf->spurious_report_rs, |
| RATELIMIT_MSG_ON_RELEASE); |
| |
| ratelimit_state_init(&perf->tail_pointer_race, |
| 5 * HZ, 10); |
| ratelimit_set_flags(&perf->tail_pointer_race, |
| RATELIMIT_MSG_ON_RELEASE); |
| |
| atomic64_set(&perf->noa_programming_delay, |
| 500 * 1000 /* 500us */); |
| |
| perf->i915 = i915; |
| } |
| } |
| |
| static int destroy_config(int id, void *p, void *data) |
| { |
| i915_oa_config_put(p); |
| return 0; |
| } |
| |
| void i915_perf_sysctl_register(void) |
| { |
| sysctl_header = register_sysctl_table(dev_root); |
| } |
| |
| void i915_perf_sysctl_unregister(void) |
| { |
| unregister_sysctl_table(sysctl_header); |
| } |
| |
| /** |
| * i915_perf_fini - Counter part to i915_perf_init() |
| * @i915: i915 device instance |
| */ |
| void i915_perf_fini(struct drm_i915_private *i915) |
| { |
| struct i915_perf *perf = &i915->perf; |
| |
| if (!perf->i915) |
| return; |
| |
| idr_for_each(&perf->metrics_idr, destroy_config, perf); |
| idr_destroy(&perf->metrics_idr); |
| |
| memset(&perf->ops, 0, sizeof(perf->ops)); |
| perf->i915 = NULL; |
| } |
| |
| /** |
| * i915_perf_ioctl_version - Version of the i915-perf subsystem |
| * |
| * This version number is used by userspace to detect available features. |
| */ |
| int i915_perf_ioctl_version(void) |
| { |
| /* |
| * 1: Initial version |
| * I915_PERF_IOCTL_ENABLE |
| * I915_PERF_IOCTL_DISABLE |
| * |
| * 2: Added runtime modification of OA config. |
| * I915_PERF_IOCTL_CONFIG |
| * |
| * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold |
| * preemption on a particular context so that performance data is |
| * accessible from a delta of MI_RPC reports without looking at the |
| * OA buffer. |
| * |
| * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can |
| * be run for the duration of the performance recording based on |
| * their SSEU configuration. |
| * |
| * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the |
| * interval for the hrtimer used to check for OA data. |
| */ |
| return 5; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftests/i915_perf.c" |
| #endif |