| // SPDX-License-Identifier: GPL-2.0 |
| // rc-main.c - Remote Controller core module |
| // |
| // Copyright (C) 2009-2010 by Mauro Carvalho Chehab |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <media/rc-core.h> |
| #include <linux/bsearch.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/input.h> |
| #include <linux/leds.h> |
| #include <linux/slab.h> |
| #include <linux/idr.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include "rc-core-priv.h" |
| |
| /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ |
| #define IR_TAB_MIN_SIZE 256 |
| #define IR_TAB_MAX_SIZE 8192 |
| |
| static const struct { |
| const char *name; |
| unsigned int repeat_period; |
| unsigned int scancode_bits; |
| } protocols[] = { |
| [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 }, |
| [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 }, |
| [RC_PROTO_RC5] = { .name = "rc-5", |
| .scancode_bits = 0x1f7f, .repeat_period = 114 }, |
| [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", |
| .scancode_bits = 0x1f7f3f, .repeat_period = 114 }, |
| [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", |
| .scancode_bits = 0x2fff, .repeat_period = 114 }, |
| [RC_PROTO_JVC] = { .name = "jvc", |
| .scancode_bits = 0xffff, .repeat_period = 125 }, |
| [RC_PROTO_SONY12] = { .name = "sony-12", |
| .scancode_bits = 0x1f007f, .repeat_period = 100 }, |
| [RC_PROTO_SONY15] = { .name = "sony-15", |
| .scancode_bits = 0xff007f, .repeat_period = 100 }, |
| [RC_PROTO_SONY20] = { .name = "sony-20", |
| .scancode_bits = 0x1fff7f, .repeat_period = 100 }, |
| [RC_PROTO_NEC] = { .name = "nec", |
| .scancode_bits = 0xffff, .repeat_period = 110 }, |
| [RC_PROTO_NECX] = { .name = "nec-x", |
| .scancode_bits = 0xffffff, .repeat_period = 110 }, |
| [RC_PROTO_NEC32] = { .name = "nec-32", |
| .scancode_bits = 0xffffffff, .repeat_period = 110 }, |
| [RC_PROTO_SANYO] = { .name = "sanyo", |
| .scancode_bits = 0x1fffff, .repeat_period = 125 }, |
| [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", |
| .scancode_bits = 0xffffff, .repeat_period = 100 }, |
| [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", |
| .scancode_bits = 0x1fffff, .repeat_period = 100 }, |
| [RC_PROTO_RC6_0] = { .name = "rc-6-0", |
| .scancode_bits = 0xffff, .repeat_period = 114 }, |
| [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", |
| .scancode_bits = 0xfffff, .repeat_period = 114 }, |
| [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", |
| .scancode_bits = 0xffffff, .repeat_period = 114 }, |
| [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", |
| .scancode_bits = 0xffffffff, .repeat_period = 114 }, |
| [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", |
| .scancode_bits = 0xffff7fff, .repeat_period = 114 }, |
| [RC_PROTO_SHARP] = { .name = "sharp", |
| .scancode_bits = 0x1fff, .repeat_period = 125 }, |
| [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 }, |
| [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 }, |
| [RC_PROTO_IMON] = { .name = "imon", |
| .scancode_bits = 0x7fffffff, .repeat_period = 114 }, |
| [RC_PROTO_RCMM12] = { .name = "rc-mm-12", |
| .scancode_bits = 0x00000fff, .repeat_period = 114 }, |
| [RC_PROTO_RCMM24] = { .name = "rc-mm-24", |
| .scancode_bits = 0x00ffffff, .repeat_period = 114 }, |
| [RC_PROTO_RCMM32] = { .name = "rc-mm-32", |
| .scancode_bits = 0xffffffff, .repeat_period = 114 }, |
| [RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 }, |
| }; |
| |
| /* Used to keep track of known keymaps */ |
| static LIST_HEAD(rc_map_list); |
| static DEFINE_SPINLOCK(rc_map_lock); |
| static struct led_trigger *led_feedback; |
| |
| /* Used to keep track of rc devices */ |
| static DEFINE_IDA(rc_ida); |
| |
| static struct rc_map_list *seek_rc_map(const char *name) |
| { |
| struct rc_map_list *map = NULL; |
| |
| spin_lock(&rc_map_lock); |
| list_for_each_entry(map, &rc_map_list, list) { |
| if (!strcmp(name, map->map.name)) { |
| spin_unlock(&rc_map_lock); |
| return map; |
| } |
| } |
| spin_unlock(&rc_map_lock); |
| |
| return NULL; |
| } |
| |
| struct rc_map *rc_map_get(const char *name) |
| { |
| |
| struct rc_map_list *map; |
| |
| map = seek_rc_map(name); |
| #ifdef CONFIG_MODULES |
| if (!map) { |
| int rc = request_module("%s", name); |
| if (rc < 0) { |
| pr_err("Couldn't load IR keymap %s\n", name); |
| return NULL; |
| } |
| msleep(20); /* Give some time for IR to register */ |
| |
| map = seek_rc_map(name); |
| } |
| #endif |
| if (!map) { |
| pr_err("IR keymap %s not found\n", name); |
| return NULL; |
| } |
| |
| printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); |
| |
| return &map->map; |
| } |
| EXPORT_SYMBOL_GPL(rc_map_get); |
| |
| int rc_map_register(struct rc_map_list *map) |
| { |
| spin_lock(&rc_map_lock); |
| list_add_tail(&map->list, &rc_map_list); |
| spin_unlock(&rc_map_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rc_map_register); |
| |
| void rc_map_unregister(struct rc_map_list *map) |
| { |
| spin_lock(&rc_map_lock); |
| list_del(&map->list); |
| spin_unlock(&rc_map_lock); |
| } |
| EXPORT_SYMBOL_GPL(rc_map_unregister); |
| |
| |
| static struct rc_map_table empty[] = { |
| { 0x2a, KEY_COFFEE }, |
| }; |
| |
| static struct rc_map_list empty_map = { |
| .map = { |
| .scan = empty, |
| .size = ARRAY_SIZE(empty), |
| .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ |
| .name = RC_MAP_EMPTY, |
| } |
| }; |
| |
| /** |
| * scancode_to_u64() - converts scancode in &struct input_keymap_entry |
| * @ke: keymap entry containing scancode to be converted. |
| * @scancode: pointer to the location where converted scancode should |
| * be stored. |
| * |
| * This function is a version of input_scancode_to_scalar specialized for |
| * rc-core. |
| */ |
| static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode) |
| { |
| switch (ke->len) { |
| case 1: |
| *scancode = *((u8 *)ke->scancode); |
| break; |
| |
| case 2: |
| *scancode = *((u16 *)ke->scancode); |
| break; |
| |
| case 4: |
| *scancode = *((u32 *)ke->scancode); |
| break; |
| |
| case 8: |
| *scancode = *((u64 *)ke->scancode); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ir_create_table() - initializes a scancode table |
| * @dev: the rc_dev device |
| * @rc_map: the rc_map to initialize |
| * @name: name to assign to the table |
| * @rc_proto: ir type to assign to the new table |
| * @size: initial size of the table |
| * |
| * This routine will initialize the rc_map and will allocate |
| * memory to hold at least the specified number of elements. |
| * |
| * return: zero on success or a negative error code |
| */ |
| static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map, |
| const char *name, u64 rc_proto, size_t size) |
| { |
| rc_map->name = kstrdup(name, GFP_KERNEL); |
| if (!rc_map->name) |
| return -ENOMEM; |
| rc_map->rc_proto = rc_proto; |
| rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); |
| rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); |
| rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); |
| if (!rc_map->scan) { |
| kfree(rc_map->name); |
| rc_map->name = NULL; |
| return -ENOMEM; |
| } |
| |
| dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n", |
| rc_map->size, rc_map->alloc); |
| return 0; |
| } |
| |
| /** |
| * ir_free_table() - frees memory allocated by a scancode table |
| * @rc_map: the table whose mappings need to be freed |
| * |
| * This routine will free memory alloctaed for key mappings used by given |
| * scancode table. |
| */ |
| static void ir_free_table(struct rc_map *rc_map) |
| { |
| rc_map->size = 0; |
| kfree(rc_map->name); |
| rc_map->name = NULL; |
| kfree(rc_map->scan); |
| rc_map->scan = NULL; |
| } |
| |
| /** |
| * ir_resize_table() - resizes a scancode table if necessary |
| * @dev: the rc_dev device |
| * @rc_map: the rc_map to resize |
| * @gfp_flags: gfp flags to use when allocating memory |
| * |
| * This routine will shrink the rc_map if it has lots of |
| * unused entries and grow it if it is full. |
| * |
| * return: zero on success or a negative error code |
| */ |
| static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map, |
| gfp_t gfp_flags) |
| { |
| unsigned int oldalloc = rc_map->alloc; |
| unsigned int newalloc = oldalloc; |
| struct rc_map_table *oldscan = rc_map->scan; |
| struct rc_map_table *newscan; |
| |
| if (rc_map->size == rc_map->len) { |
| /* All entries in use -> grow keytable */ |
| if (rc_map->alloc >= IR_TAB_MAX_SIZE) |
| return -ENOMEM; |
| |
| newalloc *= 2; |
| dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc); |
| } |
| |
| if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { |
| /* Less than 1/3 of entries in use -> shrink keytable */ |
| newalloc /= 2; |
| dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc); |
| } |
| |
| if (newalloc == oldalloc) |
| return 0; |
| |
| newscan = kmalloc(newalloc, gfp_flags); |
| if (!newscan) |
| return -ENOMEM; |
| |
| memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); |
| rc_map->scan = newscan; |
| rc_map->alloc = newalloc; |
| rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); |
| kfree(oldscan); |
| return 0; |
| } |
| |
| /** |
| * ir_update_mapping() - set a keycode in the scancode->keycode table |
| * @dev: the struct rc_dev device descriptor |
| * @rc_map: scancode table to be adjusted |
| * @index: index of the mapping that needs to be updated |
| * @new_keycode: the desired keycode |
| * |
| * This routine is used to update scancode->keycode mapping at given |
| * position. |
| * |
| * return: previous keycode assigned to the mapping |
| * |
| */ |
| static unsigned int ir_update_mapping(struct rc_dev *dev, |
| struct rc_map *rc_map, |
| unsigned int index, |
| unsigned int new_keycode) |
| { |
| int old_keycode = rc_map->scan[index].keycode; |
| int i; |
| |
| /* Did the user wish to remove the mapping? */ |
| if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { |
| dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n", |
| index, rc_map->scan[index].scancode); |
| rc_map->len--; |
| memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], |
| (rc_map->len - index) * sizeof(struct rc_map_table)); |
| } else { |
| dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n", |
| index, |
| old_keycode == KEY_RESERVED ? "New" : "Replacing", |
| rc_map->scan[index].scancode, new_keycode); |
| rc_map->scan[index].keycode = new_keycode; |
| __set_bit(new_keycode, dev->input_dev->keybit); |
| } |
| |
| if (old_keycode != KEY_RESERVED) { |
| /* A previous mapping was updated... */ |
| __clear_bit(old_keycode, dev->input_dev->keybit); |
| /* ... but another scancode might use the same keycode */ |
| for (i = 0; i < rc_map->len; i++) { |
| if (rc_map->scan[i].keycode == old_keycode) { |
| __set_bit(old_keycode, dev->input_dev->keybit); |
| break; |
| } |
| } |
| |
| /* Possibly shrink the keytable, failure is not a problem */ |
| ir_resize_table(dev, rc_map, GFP_ATOMIC); |
| } |
| |
| return old_keycode; |
| } |
| |
| /** |
| * ir_establish_scancode() - set a keycode in the scancode->keycode table |
| * @dev: the struct rc_dev device descriptor |
| * @rc_map: scancode table to be searched |
| * @scancode: the desired scancode |
| * @resize: controls whether we allowed to resize the table to |
| * accommodate not yet present scancodes |
| * |
| * This routine is used to locate given scancode in rc_map. |
| * If scancode is not yet present the routine will allocate a new slot |
| * for it. |
| * |
| * return: index of the mapping containing scancode in question |
| * or -1U in case of failure. |
| */ |
| static unsigned int ir_establish_scancode(struct rc_dev *dev, |
| struct rc_map *rc_map, |
| u64 scancode, bool resize) |
| { |
| unsigned int i; |
| |
| /* |
| * Unfortunately, some hardware-based IR decoders don't provide |
| * all bits for the complete IR code. In general, they provide only |
| * the command part of the IR code. Yet, as it is possible to replace |
| * the provided IR with another one, it is needed to allow loading |
| * IR tables from other remotes. So, we support specifying a mask to |
| * indicate the valid bits of the scancodes. |
| */ |
| if (dev->scancode_mask) |
| scancode &= dev->scancode_mask; |
| |
| /* First check if we already have a mapping for this ir command */ |
| for (i = 0; i < rc_map->len; i++) { |
| if (rc_map->scan[i].scancode == scancode) |
| return i; |
| |
| /* Keytable is sorted from lowest to highest scancode */ |
| if (rc_map->scan[i].scancode >= scancode) |
| break; |
| } |
| |
| /* No previous mapping found, we might need to grow the table */ |
| if (rc_map->size == rc_map->len) { |
| if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC)) |
| return -1U; |
| } |
| |
| /* i is the proper index to insert our new keycode */ |
| if (i < rc_map->len) |
| memmove(&rc_map->scan[i + 1], &rc_map->scan[i], |
| (rc_map->len - i) * sizeof(struct rc_map_table)); |
| rc_map->scan[i].scancode = scancode; |
| rc_map->scan[i].keycode = KEY_RESERVED; |
| rc_map->len++; |
| |
| return i; |
| } |
| |
| /** |
| * ir_setkeycode() - set a keycode in the scancode->keycode table |
| * @idev: the struct input_dev device descriptor |
| * @ke: Input keymap entry |
| * @old_keycode: result |
| * |
| * This routine is used to handle evdev EVIOCSKEY ioctl. |
| * |
| * return: -EINVAL if the keycode could not be inserted, otherwise zero. |
| */ |
| static int ir_setkeycode(struct input_dev *idev, |
| const struct input_keymap_entry *ke, |
| unsigned int *old_keycode) |
| { |
| struct rc_dev *rdev = input_get_drvdata(idev); |
| struct rc_map *rc_map = &rdev->rc_map; |
| unsigned int index; |
| u64 scancode; |
| int retval = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rc_map->lock, flags); |
| |
| if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| index = ke->index; |
| if (index >= rc_map->len) { |
| retval = -EINVAL; |
| goto out; |
| } |
| } else { |
| retval = scancode_to_u64(ke, &scancode); |
| if (retval) |
| goto out; |
| |
| index = ir_establish_scancode(rdev, rc_map, scancode, true); |
| if (index >= rc_map->len) { |
| retval = -ENOMEM; |
| goto out; |
| } |
| } |
| |
| *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); |
| |
| out: |
| spin_unlock_irqrestore(&rc_map->lock, flags); |
| return retval; |
| } |
| |
| /** |
| * ir_setkeytable() - sets several entries in the scancode->keycode table |
| * @dev: the struct rc_dev device descriptor |
| * @from: the struct rc_map to copy entries from |
| * |
| * This routine is used to handle table initialization. |
| * |
| * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. |
| */ |
| static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from) |
| { |
| struct rc_map *rc_map = &dev->rc_map; |
| unsigned int i, index; |
| int rc; |
| |
| rc = ir_create_table(dev, rc_map, from->name, from->rc_proto, |
| from->size); |
| if (rc) |
| return rc; |
| |
| for (i = 0; i < from->size; i++) { |
| index = ir_establish_scancode(dev, rc_map, |
| from->scan[i].scancode, false); |
| if (index >= rc_map->len) { |
| rc = -ENOMEM; |
| break; |
| } |
| |
| ir_update_mapping(dev, rc_map, index, |
| from->scan[i].keycode); |
| } |
| |
| if (rc) |
| ir_free_table(rc_map); |
| |
| return rc; |
| } |
| |
| static int rc_map_cmp(const void *key, const void *elt) |
| { |
| const u64 *scancode = key; |
| const struct rc_map_table *e = elt; |
| |
| if (*scancode < e->scancode) |
| return -1; |
| else if (*scancode > e->scancode) |
| return 1; |
| return 0; |
| } |
| |
| /** |
| * ir_lookup_by_scancode() - locate mapping by scancode |
| * @rc_map: the struct rc_map to search |
| * @scancode: scancode to look for in the table |
| * |
| * This routine performs binary search in RC keykeymap table for |
| * given scancode. |
| * |
| * return: index in the table, -1U if not found |
| */ |
| static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, |
| u64 scancode) |
| { |
| struct rc_map_table *res; |
| |
| res = bsearch(&scancode, rc_map->scan, rc_map->len, |
| sizeof(struct rc_map_table), rc_map_cmp); |
| if (!res) |
| return -1U; |
| else |
| return res - rc_map->scan; |
| } |
| |
| /** |
| * ir_getkeycode() - get a keycode from the scancode->keycode table |
| * @idev: the struct input_dev device descriptor |
| * @ke: Input keymap entry |
| * |
| * This routine is used to handle evdev EVIOCGKEY ioctl. |
| * |
| * return: always returns zero. |
| */ |
| static int ir_getkeycode(struct input_dev *idev, |
| struct input_keymap_entry *ke) |
| { |
| struct rc_dev *rdev = input_get_drvdata(idev); |
| struct rc_map *rc_map = &rdev->rc_map; |
| struct rc_map_table *entry; |
| unsigned long flags; |
| unsigned int index; |
| u64 scancode; |
| int retval; |
| |
| spin_lock_irqsave(&rc_map->lock, flags); |
| |
| if (ke->flags & INPUT_KEYMAP_BY_INDEX) { |
| index = ke->index; |
| } else { |
| retval = scancode_to_u64(ke, &scancode); |
| if (retval) |
| goto out; |
| |
| index = ir_lookup_by_scancode(rc_map, scancode); |
| } |
| |
| if (index < rc_map->len) { |
| entry = &rc_map->scan[index]; |
| |
| ke->index = index; |
| ke->keycode = entry->keycode; |
| ke->len = sizeof(entry->scancode); |
| memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); |
| } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { |
| /* |
| * We do not really know the valid range of scancodes |
| * so let's respond with KEY_RESERVED to anything we |
| * do not have mapping for [yet]. |
| */ |
| ke->index = index; |
| ke->keycode = KEY_RESERVED; |
| } else { |
| retval = -EINVAL; |
| goto out; |
| } |
| |
| retval = 0; |
| |
| out: |
| spin_unlock_irqrestore(&rc_map->lock, flags); |
| return retval; |
| } |
| |
| /** |
| * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode |
| * @dev: the struct rc_dev descriptor of the device |
| * @scancode: the scancode to look for |
| * |
| * This routine is used by drivers which need to convert a scancode to a |
| * keycode. Normally it should not be used since drivers should have no |
| * interest in keycodes. |
| * |
| * return: the corresponding keycode, or KEY_RESERVED |
| */ |
| u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode) |
| { |
| struct rc_map *rc_map = &dev->rc_map; |
| unsigned int keycode; |
| unsigned int index; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rc_map->lock, flags); |
| |
| index = ir_lookup_by_scancode(rc_map, scancode); |
| keycode = index < rc_map->len ? |
| rc_map->scan[index].keycode : KEY_RESERVED; |
| |
| spin_unlock_irqrestore(&rc_map->lock, flags); |
| |
| if (keycode != KEY_RESERVED) |
| dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n", |
| dev->device_name, scancode, keycode); |
| |
| return keycode; |
| } |
| EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); |
| |
| /** |
| * ir_do_keyup() - internal function to signal the release of a keypress |
| * @dev: the struct rc_dev descriptor of the device |
| * @sync: whether or not to call input_sync |
| * |
| * This function is used internally to release a keypress, it must be |
| * called with keylock held. |
| */ |
| static void ir_do_keyup(struct rc_dev *dev, bool sync) |
| { |
| if (!dev->keypressed) |
| return; |
| |
| dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode); |
| del_timer(&dev->timer_repeat); |
| input_report_key(dev->input_dev, dev->last_keycode, 0); |
| led_trigger_event(led_feedback, LED_OFF); |
| if (sync) |
| input_sync(dev->input_dev); |
| dev->keypressed = false; |
| } |
| |
| /** |
| * rc_keyup() - signals the release of a keypress |
| * @dev: the struct rc_dev descriptor of the device |
| * |
| * This routine is used to signal that a key has been released on the |
| * remote control. |
| */ |
| void rc_keyup(struct rc_dev *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->keylock, flags); |
| ir_do_keyup(dev, true); |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| EXPORT_SYMBOL_GPL(rc_keyup); |
| |
| /** |
| * ir_timer_keyup() - generates a keyup event after a timeout |
| * |
| * @t: a pointer to the struct timer_list |
| * |
| * This routine will generate a keyup event some time after a keydown event |
| * is generated when no further activity has been detected. |
| */ |
| static void ir_timer_keyup(struct timer_list *t) |
| { |
| struct rc_dev *dev = from_timer(dev, t, timer_keyup); |
| unsigned long flags; |
| |
| /* |
| * ir->keyup_jiffies is used to prevent a race condition if a |
| * hardware interrupt occurs at this point and the keyup timer |
| * event is moved further into the future as a result. |
| * |
| * The timer will then be reactivated and this function called |
| * again in the future. We need to exit gracefully in that case |
| * to allow the input subsystem to do its auto-repeat magic or |
| * a keyup event might follow immediately after the keydown. |
| */ |
| spin_lock_irqsave(&dev->keylock, flags); |
| if (time_is_before_eq_jiffies(dev->keyup_jiffies)) |
| ir_do_keyup(dev, true); |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| |
| /** |
| * ir_timer_repeat() - generates a repeat event after a timeout |
| * |
| * @t: a pointer to the struct timer_list |
| * |
| * This routine will generate a soft repeat event every REP_PERIOD |
| * milliseconds. |
| */ |
| static void ir_timer_repeat(struct timer_list *t) |
| { |
| struct rc_dev *dev = from_timer(dev, t, timer_repeat); |
| struct input_dev *input = dev->input_dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->keylock, flags); |
| if (dev->keypressed) { |
| input_event(input, EV_KEY, dev->last_keycode, 2); |
| input_sync(input); |
| if (input->rep[REP_PERIOD]) |
| mod_timer(&dev->timer_repeat, jiffies + |
| msecs_to_jiffies(input->rep[REP_PERIOD])); |
| } |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| |
| static unsigned int repeat_period(int protocol) |
| { |
| if (protocol >= ARRAY_SIZE(protocols)) |
| return 100; |
| |
| return protocols[protocol].repeat_period; |
| } |
| |
| /** |
| * rc_repeat() - signals that a key is still pressed |
| * @dev: the struct rc_dev descriptor of the device |
| * |
| * This routine is used by IR decoders when a repeat message which does |
| * not include the necessary bits to reproduce the scancode has been |
| * received. |
| */ |
| void rc_repeat(struct rc_dev *dev) |
| { |
| unsigned long flags; |
| unsigned int timeout = nsecs_to_jiffies(dev->timeout) + |
| msecs_to_jiffies(repeat_period(dev->last_protocol)); |
| struct lirc_scancode sc = { |
| .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, |
| .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, |
| .flags = LIRC_SCANCODE_FLAG_REPEAT | |
| (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
| }; |
| |
| if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| ir_lirc_scancode_event(dev, &sc); |
| |
| spin_lock_irqsave(&dev->keylock, flags); |
| |
| if (dev->last_scancode <= U32_MAX) { |
| input_event(dev->input_dev, EV_MSC, MSC_SCAN, |
| dev->last_scancode); |
| input_sync(dev->input_dev); |
| } |
| |
| if (dev->keypressed) { |
| dev->keyup_jiffies = jiffies + timeout; |
| mod_timer(&dev->timer_keyup, dev->keyup_jiffies); |
| } |
| |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| EXPORT_SYMBOL_GPL(rc_repeat); |
| |
| /** |
| * ir_do_keydown() - internal function to process a keypress |
| * @dev: the struct rc_dev descriptor of the device |
| * @protocol: the protocol of the keypress |
| * @scancode: the scancode of the keypress |
| * @keycode: the keycode of the keypress |
| * @toggle: the toggle value of the keypress |
| * |
| * This function is used internally to register a keypress, it must be |
| * called with keylock held. |
| */ |
| static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, |
| u64 scancode, u32 keycode, u8 toggle) |
| { |
| bool new_event = (!dev->keypressed || |
| dev->last_protocol != protocol || |
| dev->last_scancode != scancode || |
| dev->last_toggle != toggle); |
| struct lirc_scancode sc = { |
| .scancode = scancode, .rc_proto = protocol, |
| .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, |
| .keycode = keycode |
| }; |
| |
| if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| ir_lirc_scancode_event(dev, &sc); |
| |
| if (new_event && dev->keypressed) |
| ir_do_keyup(dev, false); |
| |
| if (scancode <= U32_MAX) |
| input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); |
| |
| dev->last_protocol = protocol; |
| dev->last_scancode = scancode; |
| dev->last_toggle = toggle; |
| dev->last_keycode = keycode; |
| |
| if (new_event && keycode != KEY_RESERVED) { |
| /* Register a keypress */ |
| dev->keypressed = true; |
| |
| dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n", |
| dev->device_name, keycode, protocol, scancode); |
| input_report_key(dev->input_dev, keycode, 1); |
| |
| led_trigger_event(led_feedback, LED_FULL); |
| } |
| |
| /* |
| * For CEC, start sending repeat messages as soon as the first |
| * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD |
| * is non-zero. Otherwise, the input layer will generate repeat |
| * messages. |
| */ |
| if (!new_event && keycode != KEY_RESERVED && |
| dev->allowed_protocols == RC_PROTO_BIT_CEC && |
| !timer_pending(&dev->timer_repeat) && |
| dev->input_dev->rep[REP_PERIOD] && |
| !dev->input_dev->rep[REP_DELAY]) { |
| input_event(dev->input_dev, EV_KEY, keycode, 2); |
| mod_timer(&dev->timer_repeat, jiffies + |
| msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD])); |
| } |
| |
| input_sync(dev->input_dev); |
| } |
| |
| /** |
| * rc_keydown() - generates input event for a key press |
| * @dev: the struct rc_dev descriptor of the device |
| * @protocol: the protocol for the keypress |
| * @scancode: the scancode for the keypress |
| * @toggle: the toggle value (protocol dependent, if the protocol doesn't |
| * support toggle values, this should be set to zero) |
| * |
| * This routine is used to signal that a key has been pressed on the |
| * remote control. |
| */ |
| void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode, |
| u8 toggle) |
| { |
| unsigned long flags; |
| u32 keycode = rc_g_keycode_from_table(dev, scancode); |
| |
| spin_lock_irqsave(&dev->keylock, flags); |
| ir_do_keydown(dev, protocol, scancode, keycode, toggle); |
| |
| if (dev->keypressed) { |
| dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) + |
| msecs_to_jiffies(repeat_period(protocol)); |
| mod_timer(&dev->timer_keyup, dev->keyup_jiffies); |
| } |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| EXPORT_SYMBOL_GPL(rc_keydown); |
| |
| /** |
| * rc_keydown_notimeout() - generates input event for a key press without |
| * an automatic keyup event at a later time |
| * @dev: the struct rc_dev descriptor of the device |
| * @protocol: the protocol for the keypress |
| * @scancode: the scancode for the keypress |
| * @toggle: the toggle value (protocol dependent, if the protocol doesn't |
| * support toggle values, this should be set to zero) |
| * |
| * This routine is used to signal that a key has been pressed on the |
| * remote control. The driver must manually call rc_keyup() at a later stage. |
| */ |
| void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, |
| u64 scancode, u8 toggle) |
| { |
| unsigned long flags; |
| u32 keycode = rc_g_keycode_from_table(dev, scancode); |
| |
| spin_lock_irqsave(&dev->keylock, flags); |
| ir_do_keydown(dev, protocol, scancode, keycode, toggle); |
| spin_unlock_irqrestore(&dev->keylock, flags); |
| } |
| EXPORT_SYMBOL_GPL(rc_keydown_notimeout); |
| |
| /** |
| * rc_validate_scancode() - checks that a scancode is valid for a protocol. |
| * For nec, it should do the opposite of ir_nec_bytes_to_scancode() |
| * @proto: protocol |
| * @scancode: scancode |
| */ |
| bool rc_validate_scancode(enum rc_proto proto, u32 scancode) |
| { |
| switch (proto) { |
| /* |
| * NECX has a 16-bit address; if the lower 8 bits match the upper |
| * 8 bits inverted, then the address would match regular nec. |
| */ |
| case RC_PROTO_NECX: |
| if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) |
| return false; |
| break; |
| /* |
| * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits |
| * of the command match the upper 8 bits inverted, then it would |
| * be either NEC or NECX. |
| */ |
| case RC_PROTO_NEC32: |
| if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) |
| return false; |
| break; |
| /* |
| * If the customer code (top 32-bit) is 0x800f, it is MCE else it |
| * is regular mode-6a 32 bit |
| */ |
| case RC_PROTO_RC6_MCE: |
| if ((scancode & 0xffff0000) != 0x800f0000) |
| return false; |
| break; |
| case RC_PROTO_RC6_6A_32: |
| if ((scancode & 0xffff0000) == 0x800f0000) |
| return false; |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * rc_validate_filter() - checks that the scancode and mask are valid and |
| * provides sensible defaults |
| * @dev: the struct rc_dev descriptor of the device |
| * @filter: the scancode and mask |
| * |
| * return: 0 or -EINVAL if the filter is not valid |
| */ |
| static int rc_validate_filter(struct rc_dev *dev, |
| struct rc_scancode_filter *filter) |
| { |
| u32 mask, s = filter->data; |
| enum rc_proto protocol = dev->wakeup_protocol; |
| |
| if (protocol >= ARRAY_SIZE(protocols)) |
| return -EINVAL; |
| |
| mask = protocols[protocol].scancode_bits; |
| |
| if (!rc_validate_scancode(protocol, s)) |
| return -EINVAL; |
| |
| filter->data &= mask; |
| filter->mask &= mask; |
| |
| /* |
| * If we have to raw encode the IR for wakeup, we cannot have a mask |
| */ |
| if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| int rc_open(struct rc_dev *rdev) |
| { |
| int rval = 0; |
| |
| if (!rdev) |
| return -EINVAL; |
| |
| mutex_lock(&rdev->lock); |
| |
| if (!rdev->registered) { |
| rval = -ENODEV; |
| } else { |
| if (!rdev->users++ && rdev->open) |
| rval = rdev->open(rdev); |
| |
| if (rval) |
| rdev->users--; |
| } |
| |
| mutex_unlock(&rdev->lock); |
| |
| return rval; |
| } |
| |
| static int ir_open(struct input_dev *idev) |
| { |
| struct rc_dev *rdev = input_get_drvdata(idev); |
| |
| return rc_open(rdev); |
| } |
| |
| void rc_close(struct rc_dev *rdev) |
| { |
| if (rdev) { |
| mutex_lock(&rdev->lock); |
| |
| if (!--rdev->users && rdev->close && rdev->registered) |
| rdev->close(rdev); |
| |
| mutex_unlock(&rdev->lock); |
| } |
| } |
| |
| static void ir_close(struct input_dev *idev) |
| { |
| struct rc_dev *rdev = input_get_drvdata(idev); |
| rc_close(rdev); |
| } |
| |
| /* class for /sys/class/rc */ |
| static char *rc_devnode(struct device *dev, umode_t *mode) |
| { |
| return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); |
| } |
| |
| static struct class rc_class = { |
| .name = "rc", |
| .devnode = rc_devnode, |
| }; |
| |
| /* |
| * These are the protocol textual descriptions that are |
| * used by the sysfs protocols file. Note that the order |
| * of the entries is relevant. |
| */ |
| static const struct { |
| u64 type; |
| const char *name; |
| const char *module_name; |
| } proto_names[] = { |
| { RC_PROTO_BIT_NONE, "none", NULL }, |
| { RC_PROTO_BIT_OTHER, "other", NULL }, |
| { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, |
| { RC_PROTO_BIT_RC5 | |
| RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, |
| { RC_PROTO_BIT_NEC | |
| RC_PROTO_BIT_NECX | |
| RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, |
| { RC_PROTO_BIT_RC6_0 | |
| RC_PROTO_BIT_RC6_6A_20 | |
| RC_PROTO_BIT_RC6_6A_24 | |
| RC_PROTO_BIT_RC6_6A_32 | |
| RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, |
| { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, |
| { RC_PROTO_BIT_SONY12 | |
| RC_PROTO_BIT_SONY15 | |
| RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, |
| { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, |
| { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, |
| { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, |
| { RC_PROTO_BIT_MCIR2_KBD | |
| RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, |
| { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, |
| { RC_PROTO_BIT_CEC, "cec", NULL }, |
| { RC_PROTO_BIT_IMON, "imon", "ir-imon-decoder" }, |
| { RC_PROTO_BIT_RCMM12 | |
| RC_PROTO_BIT_RCMM24 | |
| RC_PROTO_BIT_RCMM32, "rc-mm", "ir-rcmm-decoder" }, |
| { RC_PROTO_BIT_XBOX_DVD, "xbox-dvd", NULL }, |
| }; |
| |
| /** |
| * struct rc_filter_attribute - Device attribute relating to a filter type. |
| * @attr: Device attribute. |
| * @type: Filter type. |
| * @mask: false for filter value, true for filter mask. |
| */ |
| struct rc_filter_attribute { |
| struct device_attribute attr; |
| enum rc_filter_type type; |
| bool mask; |
| }; |
| #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) |
| |
| #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ |
| struct rc_filter_attribute dev_attr_##_name = { \ |
| .attr = __ATTR(_name, _mode, _show, _store), \ |
| .type = (_type), \ |
| .mask = (_mask), \ |
| } |
| |
| /** |
| * show_protocols() - shows the current IR protocol(s) |
| * @device: the device descriptor |
| * @mattr: the device attribute struct |
| * @buf: a pointer to the output buffer |
| * |
| * This routine is a callback routine for input read the IR protocol type(s). |
| * it is triggered by reading /sys/class/rc/rc?/protocols. |
| * It returns the protocol names of supported protocols. |
| * Enabled protocols are printed in brackets. |
| * |
| * dev->lock is taken to guard against races between |
| * store_protocols and show_protocols. |
| */ |
| static ssize_t show_protocols(struct device *device, |
| struct device_attribute *mattr, char *buf) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| u64 allowed, enabled; |
| char *tmp = buf; |
| int i; |
| |
| mutex_lock(&dev->lock); |
| |
| enabled = dev->enabled_protocols; |
| allowed = dev->allowed_protocols; |
| if (dev->raw && !allowed) |
| allowed = ir_raw_get_allowed_protocols(); |
| |
| mutex_unlock(&dev->lock); |
| |
| dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n", |
| __func__, (long long)allowed, (long long)enabled); |
| |
| for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| if (allowed & enabled & proto_names[i].type) |
| tmp += sprintf(tmp, "[%s] ", proto_names[i].name); |
| else if (allowed & proto_names[i].type) |
| tmp += sprintf(tmp, "%s ", proto_names[i].name); |
| |
| if (allowed & proto_names[i].type) |
| allowed &= ~proto_names[i].type; |
| } |
| |
| #ifdef CONFIG_LIRC |
| if (dev->driver_type == RC_DRIVER_IR_RAW) |
| tmp += sprintf(tmp, "[lirc] "); |
| #endif |
| |
| if (tmp != buf) |
| tmp--; |
| *tmp = '\n'; |
| |
| return tmp + 1 - buf; |
| } |
| |
| /** |
| * parse_protocol_change() - parses a protocol change request |
| * @dev: rc_dev device |
| * @protocols: pointer to the bitmask of current protocols |
| * @buf: pointer to the buffer with a list of changes |
| * |
| * Writing "+proto" will add a protocol to the protocol mask. |
| * Writing "-proto" will remove a protocol from protocol mask. |
| * Writing "proto" will enable only "proto". |
| * Writing "none" will disable all protocols. |
| * Returns the number of changes performed or a negative error code. |
| */ |
| static int parse_protocol_change(struct rc_dev *dev, u64 *protocols, |
| const char *buf) |
| { |
| const char *tmp; |
| unsigned count = 0; |
| bool enable, disable; |
| u64 mask; |
| int i; |
| |
| while ((tmp = strsep((char **)&buf, " \n")) != NULL) { |
| if (!*tmp) |
| break; |
| |
| if (*tmp == '+') { |
| enable = true; |
| disable = false; |
| tmp++; |
| } else if (*tmp == '-') { |
| enable = false; |
| disable = true; |
| tmp++; |
| } else { |
| enable = false; |
| disable = false; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| if (!strcasecmp(tmp, proto_names[i].name)) { |
| mask = proto_names[i].type; |
| break; |
| } |
| } |
| |
| if (i == ARRAY_SIZE(proto_names)) { |
| if (!strcasecmp(tmp, "lirc")) |
| mask = 0; |
| else { |
| dev_dbg(&dev->dev, "Unknown protocol: '%s'\n", |
| tmp); |
| return -EINVAL; |
| } |
| } |
| |
| count++; |
| |
| if (enable) |
| *protocols |= mask; |
| else if (disable) |
| *protocols &= ~mask; |
| else |
| *protocols = mask; |
| } |
| |
| if (!count) { |
| dev_dbg(&dev->dev, "Protocol not specified\n"); |
| return -EINVAL; |
| } |
| |
| return count; |
| } |
| |
| void ir_raw_load_modules(u64 *protocols) |
| { |
| u64 available; |
| int i, ret; |
| |
| for (i = 0; i < ARRAY_SIZE(proto_names); i++) { |
| if (proto_names[i].type == RC_PROTO_BIT_NONE || |
| proto_names[i].type & (RC_PROTO_BIT_OTHER | |
| RC_PROTO_BIT_UNKNOWN)) |
| continue; |
| |
| available = ir_raw_get_allowed_protocols(); |
| if (!(*protocols & proto_names[i].type & ~available)) |
| continue; |
| |
| if (!proto_names[i].module_name) { |
| pr_err("Can't enable IR protocol %s\n", |
| proto_names[i].name); |
| *protocols &= ~proto_names[i].type; |
| continue; |
| } |
| |
| ret = request_module("%s", proto_names[i].module_name); |
| if (ret < 0) { |
| pr_err("Couldn't load IR protocol module %s\n", |
| proto_names[i].module_name); |
| *protocols &= ~proto_names[i].type; |
| continue; |
| } |
| msleep(20); |
| available = ir_raw_get_allowed_protocols(); |
| if (!(*protocols & proto_names[i].type & ~available)) |
| continue; |
| |
| pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", |
| proto_names[i].module_name, |
| proto_names[i].name); |
| *protocols &= ~proto_names[i].type; |
| } |
| } |
| |
| /** |
| * store_protocols() - changes the current/wakeup IR protocol(s) |
| * @device: the device descriptor |
| * @mattr: the device attribute struct |
| * @buf: a pointer to the input buffer |
| * @len: length of the input buffer |
| * |
| * This routine is for changing the IR protocol type. |
| * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols. |
| * See parse_protocol_change() for the valid commands. |
| * Returns @len on success or a negative error code. |
| * |
| * dev->lock is taken to guard against races between |
| * store_protocols and show_protocols. |
| */ |
| static ssize_t store_protocols(struct device *device, |
| struct device_attribute *mattr, |
| const char *buf, size_t len) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| u64 *current_protocols; |
| struct rc_scancode_filter *filter; |
| u64 old_protocols, new_protocols; |
| ssize_t rc; |
| |
| dev_dbg(&dev->dev, "Normal protocol change requested\n"); |
| current_protocols = &dev->enabled_protocols; |
| filter = &dev->scancode_filter; |
| |
| if (!dev->change_protocol) { |
| dev_dbg(&dev->dev, "Protocol switching not supported\n"); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&dev->lock); |
| |
| old_protocols = *current_protocols; |
| new_protocols = old_protocols; |
| rc = parse_protocol_change(dev, &new_protocols, buf); |
| if (rc < 0) |
| goto out; |
| |
| if (dev->driver_type == RC_DRIVER_IR_RAW) |
| ir_raw_load_modules(&new_protocols); |
| |
| rc = dev->change_protocol(dev, &new_protocols); |
| if (rc < 0) { |
| dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n", |
| (long long)new_protocols); |
| goto out; |
| } |
| |
| if (new_protocols != old_protocols) { |
| *current_protocols = new_protocols; |
| dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n", |
| (long long)new_protocols); |
| } |
| |
| /* |
| * If a protocol change was attempted the filter may need updating, even |
| * if the actual protocol mask hasn't changed (since the driver may have |
| * cleared the filter). |
| * Try setting the same filter with the new protocol (if any). |
| * Fall back to clearing the filter. |
| */ |
| if (dev->s_filter && filter->mask) { |
| if (new_protocols) |
| rc = dev->s_filter(dev, filter); |
| else |
| rc = -1; |
| |
| if (rc < 0) { |
| filter->data = 0; |
| filter->mask = 0; |
| dev->s_filter(dev, filter); |
| } |
| } |
| |
| rc = len; |
| |
| out: |
| mutex_unlock(&dev->lock); |
| return rc; |
| } |
| |
| /** |
| * show_filter() - shows the current scancode filter value or mask |
| * @device: the device descriptor |
| * @attr: the device attribute struct |
| * @buf: a pointer to the output buffer |
| * |
| * This routine is a callback routine to read a scancode filter value or mask. |
| * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. |
| * It prints the current scancode filter value or mask of the appropriate filter |
| * type in hexadecimal into @buf and returns the size of the buffer. |
| * |
| * Bits of the filter value corresponding to set bits in the filter mask are |
| * compared against input scancodes and non-matching scancodes are discarded. |
| * |
| * dev->lock is taken to guard against races between |
| * store_filter and show_filter. |
| */ |
| static ssize_t show_filter(struct device *device, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); |
| struct rc_scancode_filter *filter; |
| u32 val; |
| |
| mutex_lock(&dev->lock); |
| |
| if (fattr->type == RC_FILTER_NORMAL) |
| filter = &dev->scancode_filter; |
| else |
| filter = &dev->scancode_wakeup_filter; |
| |
| if (fattr->mask) |
| val = filter->mask; |
| else |
| val = filter->data; |
| mutex_unlock(&dev->lock); |
| |
| return sprintf(buf, "%#x\n", val); |
| } |
| |
| /** |
| * store_filter() - changes the scancode filter value |
| * @device: the device descriptor |
| * @attr: the device attribute struct |
| * @buf: a pointer to the input buffer |
| * @len: length of the input buffer |
| * |
| * This routine is for changing a scancode filter value or mask. |
| * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. |
| * Returns -EINVAL if an invalid filter value for the current protocol was |
| * specified or if scancode filtering is not supported by the driver, otherwise |
| * returns @len. |
| * |
| * Bits of the filter value corresponding to set bits in the filter mask are |
| * compared against input scancodes and non-matching scancodes are discarded. |
| * |
| * dev->lock is taken to guard against races between |
| * store_filter and show_filter. |
| */ |
| static ssize_t store_filter(struct device *device, |
| struct device_attribute *attr, |
| const char *buf, size_t len) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); |
| struct rc_scancode_filter new_filter, *filter; |
| int ret; |
| unsigned long val; |
| int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret < 0) |
| return ret; |
| |
| if (fattr->type == RC_FILTER_NORMAL) { |
| set_filter = dev->s_filter; |
| filter = &dev->scancode_filter; |
| } else { |
| set_filter = dev->s_wakeup_filter; |
| filter = &dev->scancode_wakeup_filter; |
| } |
| |
| if (!set_filter) |
| return -EINVAL; |
| |
| mutex_lock(&dev->lock); |
| |
| new_filter = *filter; |
| if (fattr->mask) |
| new_filter.mask = val; |
| else |
| new_filter.data = val; |
| |
| if (fattr->type == RC_FILTER_WAKEUP) { |
| /* |
| * Refuse to set a filter unless a protocol is enabled |
| * and the filter is valid for that protocol |
| */ |
| if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) |
| ret = rc_validate_filter(dev, &new_filter); |
| else |
| ret = -EINVAL; |
| |
| if (ret != 0) |
| goto unlock; |
| } |
| |
| if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && |
| val) { |
| /* refuse to set a filter unless a protocol is enabled */ |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| ret = set_filter(dev, &new_filter); |
| if (ret < 0) |
| goto unlock; |
| |
| *filter = new_filter; |
| |
| unlock: |
| mutex_unlock(&dev->lock); |
| return (ret < 0) ? ret : len; |
| } |
| |
| /** |
| * show_wakeup_protocols() - shows the wakeup IR protocol |
| * @device: the device descriptor |
| * @mattr: the device attribute struct |
| * @buf: a pointer to the output buffer |
| * |
| * This routine is a callback routine for input read the IR protocol type(s). |
| * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols. |
| * It returns the protocol names of supported protocols. |
| * The enabled protocols are printed in brackets. |
| * |
| * dev->lock is taken to guard against races between |
| * store_wakeup_protocols and show_wakeup_protocols. |
| */ |
| static ssize_t show_wakeup_protocols(struct device *device, |
| struct device_attribute *mattr, |
| char *buf) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| u64 allowed; |
| enum rc_proto enabled; |
| char *tmp = buf; |
| int i; |
| |
| mutex_lock(&dev->lock); |
| |
| allowed = dev->allowed_wakeup_protocols; |
| enabled = dev->wakeup_protocol; |
| |
| mutex_unlock(&dev->lock); |
| |
| dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n", |
| __func__, (long long)allowed, enabled); |
| |
| for (i = 0; i < ARRAY_SIZE(protocols); i++) { |
| if (allowed & (1ULL << i)) { |
| if (i == enabled) |
| tmp += sprintf(tmp, "[%s] ", protocols[i].name); |
| else |
| tmp += sprintf(tmp, "%s ", protocols[i].name); |
| } |
| } |
| |
| if (tmp != buf) |
| tmp--; |
| *tmp = '\n'; |
| |
| return tmp + 1 - buf; |
| } |
| |
| /** |
| * store_wakeup_protocols() - changes the wakeup IR protocol(s) |
| * @device: the device descriptor |
| * @mattr: the device attribute struct |
| * @buf: a pointer to the input buffer |
| * @len: length of the input buffer |
| * |
| * This routine is for changing the IR protocol type. |
| * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols. |
| * Returns @len on success or a negative error code. |
| * |
| * dev->lock is taken to guard against races between |
| * store_wakeup_protocols and show_wakeup_protocols. |
| */ |
| static ssize_t store_wakeup_protocols(struct device *device, |
| struct device_attribute *mattr, |
| const char *buf, size_t len) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| enum rc_proto protocol = RC_PROTO_UNKNOWN; |
| ssize_t rc; |
| u64 allowed; |
| int i; |
| |
| mutex_lock(&dev->lock); |
| |
| allowed = dev->allowed_wakeup_protocols; |
| |
| if (!sysfs_streq(buf, "none")) { |
| for (i = 0; i < ARRAY_SIZE(protocols); i++) { |
| if ((allowed & (1ULL << i)) && |
| sysfs_streq(buf, protocols[i].name)) { |
| protocol = i; |
| break; |
| } |
| } |
| |
| if (i == ARRAY_SIZE(protocols)) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (dev->encode_wakeup) { |
| u64 mask = 1ULL << protocol; |
| |
| ir_raw_load_modules(&mask); |
| if (!mask) { |
| rc = -EINVAL; |
| goto out; |
| } |
| } |
| } |
| |
| if (dev->wakeup_protocol != protocol) { |
| dev->wakeup_protocol = protocol; |
| dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol); |
| |
| if (protocol == RC_PROTO_RC6_MCE) |
| dev->scancode_wakeup_filter.data = 0x800f0000; |
| else |
| dev->scancode_wakeup_filter.data = 0; |
| dev->scancode_wakeup_filter.mask = 0; |
| |
| rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); |
| if (rc == 0) |
| rc = len; |
| } else { |
| rc = len; |
| } |
| |
| out: |
| mutex_unlock(&dev->lock); |
| return rc; |
| } |
| |
| static void rc_dev_release(struct device *device) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| |
| kfree(dev); |
| } |
| |
| #define ADD_HOTPLUG_VAR(fmt, val...) \ |
| do { \ |
| int err = add_uevent_var(env, fmt, val); \ |
| if (err) \ |
| return err; \ |
| } while (0) |
| |
| static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) |
| { |
| struct rc_dev *dev = to_rc_dev(device); |
| |
| if (dev->rc_map.name) |
| ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); |
| if (dev->driver_name) |
| ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); |
| if (dev->device_name) |
| ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); |
| |
| return 0; |
| } |
| |
| /* |
| * Static device attribute struct with the sysfs attributes for IR's |
| */ |
| static struct device_attribute dev_attr_ro_protocols = |
| __ATTR(protocols, 0444, show_protocols, NULL); |
| static struct device_attribute dev_attr_rw_protocols = |
| __ATTR(protocols, 0644, show_protocols, store_protocols); |
| static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, |
| store_wakeup_protocols); |
| static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, |
| show_filter, store_filter, RC_FILTER_NORMAL, false); |
| static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, |
| show_filter, store_filter, RC_FILTER_NORMAL, true); |
| static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, |
| show_filter, store_filter, RC_FILTER_WAKEUP, false); |
| static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, |
| show_filter, store_filter, RC_FILTER_WAKEUP, true); |
| |
| static struct attribute *rc_dev_rw_protocol_attrs[] = { |
| &dev_attr_rw_protocols.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group rc_dev_rw_protocol_attr_grp = { |
| .attrs = rc_dev_rw_protocol_attrs, |
| }; |
| |
| static struct attribute *rc_dev_ro_protocol_attrs[] = { |
| &dev_attr_ro_protocols.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group rc_dev_ro_protocol_attr_grp = { |
| .attrs = rc_dev_ro_protocol_attrs, |
| }; |
| |
| static struct attribute *rc_dev_filter_attrs[] = { |
| &dev_attr_filter.attr.attr, |
| &dev_attr_filter_mask.attr.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group rc_dev_filter_attr_grp = { |
| .attrs = rc_dev_filter_attrs, |
| }; |
| |
| static struct attribute *rc_dev_wakeup_filter_attrs[] = { |
| &dev_attr_wakeup_filter.attr.attr, |
| &dev_attr_wakeup_filter_mask.attr.attr, |
| &dev_attr_wakeup_protocols.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { |
| .attrs = rc_dev_wakeup_filter_attrs, |
| }; |
| |
| static const struct device_type rc_dev_type = { |
| .release = rc_dev_release, |
| .uevent = rc_dev_uevent, |
| }; |
| |
| struct rc_dev *rc_allocate_device(enum rc_driver_type type) |
| { |
| struct rc_dev *dev; |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return NULL; |
| |
| if (type != RC_DRIVER_IR_RAW_TX) { |
| dev->input_dev = input_allocate_device(); |
| if (!dev->input_dev) { |
| kfree(dev); |
| return NULL; |
| } |
| |
| dev->input_dev->getkeycode = ir_getkeycode; |
| dev->input_dev->setkeycode = ir_setkeycode; |
| input_set_drvdata(dev->input_dev, dev); |
| |
| dev->timeout = IR_DEFAULT_TIMEOUT; |
| timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); |
| timer_setup(&dev->timer_repeat, ir_timer_repeat, 0); |
| |
| spin_lock_init(&dev->rc_map.lock); |
| spin_lock_init(&dev->keylock); |
| } |
| mutex_init(&dev->lock); |
| |
| dev->dev.type = &rc_dev_type; |
| dev->dev.class = &rc_class; |
| device_initialize(&dev->dev); |
| |
| dev->driver_type = type; |
| |
| __module_get(THIS_MODULE); |
| return dev; |
| } |
| EXPORT_SYMBOL_GPL(rc_allocate_device); |
| |
| void rc_free_device(struct rc_dev *dev) |
| { |
| if (!dev) |
| return; |
| |
| input_free_device(dev->input_dev); |
| |
| put_device(&dev->dev); |
| |
| /* kfree(dev) will be called by the callback function |
| rc_dev_release() */ |
| |
| module_put(THIS_MODULE); |
| } |
| EXPORT_SYMBOL_GPL(rc_free_device); |
| |
| static void devm_rc_alloc_release(struct device *dev, void *res) |
| { |
| rc_free_device(*(struct rc_dev **)res); |
| } |
| |
| struct rc_dev *devm_rc_allocate_device(struct device *dev, |
| enum rc_driver_type type) |
| { |
| struct rc_dev **dr, *rc; |
| |
| dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); |
| if (!dr) |
| return NULL; |
| |
| rc = rc_allocate_device(type); |
| if (!rc) { |
| devres_free(dr); |
| return NULL; |
| } |
| |
| rc->dev.parent = dev; |
| rc->managed_alloc = true; |
| *dr = rc; |
| devres_add(dev, dr); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(devm_rc_allocate_device); |
| |
| static int rc_prepare_rx_device(struct rc_dev *dev) |
| { |
| int rc; |
| struct rc_map *rc_map; |
| u64 rc_proto; |
| |
| if (!dev->map_name) |
| return -EINVAL; |
| |
| rc_map = rc_map_get(dev->map_name); |
| if (!rc_map) |
| rc_map = rc_map_get(RC_MAP_EMPTY); |
| if (!rc_map || !rc_map->scan || rc_map->size == 0) |
| return -EINVAL; |
| |
| rc = ir_setkeytable(dev, rc_map); |
| if (rc) |
| return rc; |
| |
| rc_proto = BIT_ULL(rc_map->rc_proto); |
| |
| if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) |
| dev->enabled_protocols = dev->allowed_protocols; |
| |
| if (dev->driver_type == RC_DRIVER_IR_RAW) |
| ir_raw_load_modules(&rc_proto); |
| |
| if (dev->change_protocol) { |
| rc = dev->change_protocol(dev, &rc_proto); |
| if (rc < 0) |
| goto out_table; |
| dev->enabled_protocols = rc_proto; |
| } |
| |
| /* Keyboard events */ |
| set_bit(EV_KEY, dev->input_dev->evbit); |
| set_bit(EV_REP, dev->input_dev->evbit); |
| set_bit(EV_MSC, dev->input_dev->evbit); |
| set_bit(MSC_SCAN, dev->input_dev->mscbit); |
| |
| /* Pointer/mouse events */ |
| set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit); |
| set_bit(EV_REL, dev->input_dev->evbit); |
| set_bit(REL_X, dev->input_dev->relbit); |
| set_bit(REL_Y, dev->input_dev->relbit); |
| |
| if (dev->open) |
| dev->input_dev->open = ir_open; |
| if (dev->close) |
| dev->input_dev->close = ir_close; |
| |
| dev->input_dev->dev.parent = &dev->dev; |
| memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); |
| dev->input_dev->phys = dev->input_phys; |
| dev->input_dev->name = dev->device_name; |
| |
| return 0; |
| |
| out_table: |
| ir_free_table(&dev->rc_map); |
| |
| return rc; |
| } |
| |
| static int rc_setup_rx_device(struct rc_dev *dev) |
| { |
| int rc; |
| |
| /* rc_open will be called here */ |
| rc = input_register_device(dev->input_dev); |
| if (rc) |
| return rc; |
| |
| /* |
| * Default delay of 250ms is too short for some protocols, especially |
| * since the timeout is currently set to 250ms. Increase it to 500ms, |
| * to avoid wrong repetition of the keycodes. Note that this must be |
| * set after the call to input_register_device(). |
| */ |
| if (dev->allowed_protocols == RC_PROTO_BIT_CEC) |
| dev->input_dev->rep[REP_DELAY] = 0; |
| else |
| dev->input_dev->rep[REP_DELAY] = 500; |
| |
| /* |
| * As a repeat event on protocols like RC-5 and NEC take as long as |
| * 110/114ms, using 33ms as a repeat period is not the right thing |
| * to do. |
| */ |
| dev->input_dev->rep[REP_PERIOD] = 125; |
| |
| return 0; |
| } |
| |
| static void rc_free_rx_device(struct rc_dev *dev) |
| { |
| if (!dev) |
| return; |
| |
| if (dev->input_dev) { |
| input_unregister_device(dev->input_dev); |
| dev->input_dev = NULL; |
| } |
| |
| ir_free_table(&dev->rc_map); |
| } |
| |
| int rc_register_device(struct rc_dev *dev) |
| { |
| const char *path; |
| int attr = 0; |
| int minor; |
| int rc; |
| |
| if (!dev) |
| return -EINVAL; |
| |
| minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); |
| if (minor < 0) |
| return minor; |
| |
| dev->minor = minor; |
| dev_set_name(&dev->dev, "rc%u", dev->minor); |
| dev_set_drvdata(&dev->dev, dev); |
| |
| dev->dev.groups = dev->sysfs_groups; |
| if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) |
| dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; |
| else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) |
| dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; |
| if (dev->s_filter) |
| dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; |
| if (dev->s_wakeup_filter) |
| dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; |
| dev->sysfs_groups[attr++] = NULL; |
| |
| if (dev->driver_type == RC_DRIVER_IR_RAW) { |
| rc = ir_raw_event_prepare(dev); |
| if (rc < 0) |
| goto out_minor; |
| } |
| |
| if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { |
| rc = rc_prepare_rx_device(dev); |
| if (rc) |
| goto out_raw; |
| } |
| |
| rc = device_add(&dev->dev); |
| if (rc) |
| goto out_rx_free; |
| |
| path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); |
| dev_info(&dev->dev, "%s as %s\n", |
| dev->device_name ?: "Unspecified device", path ?: "N/A"); |
| kfree(path); |
| |
| dev->registered = true; |
| |
| /* |
| * once the the input device is registered in rc_setup_rx_device, |
| * userspace can open the input device and rc_open() will be called |
| * as a result. This results in driver code being allowed to submit |
| * keycodes with rc_keydown, so lirc must be registered first. |
| */ |
| if (dev->allowed_protocols != RC_PROTO_BIT_CEC) { |
| rc = ir_lirc_register(dev); |
| if (rc < 0) |
| goto out_dev; |
| } |
| |
| if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { |
| rc = rc_setup_rx_device(dev); |
| if (rc) |
| goto out_lirc; |
| } |
| |
| if (dev->driver_type == RC_DRIVER_IR_RAW) { |
| rc = ir_raw_event_register(dev); |
| if (rc < 0) |
| goto out_rx; |
| } |
| |
| dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor, |
| dev->driver_name ? dev->driver_name : "unknown"); |
| |
| return 0; |
| |
| out_rx: |
| rc_free_rx_device(dev); |
| out_lirc: |
| if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| ir_lirc_unregister(dev); |
| out_dev: |
| device_del(&dev->dev); |
| out_rx_free: |
| ir_free_table(&dev->rc_map); |
| out_raw: |
| ir_raw_event_free(dev); |
| out_minor: |
| ida_simple_remove(&rc_ida, minor); |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rc_register_device); |
| |
| static void devm_rc_release(struct device *dev, void *res) |
| { |
| rc_unregister_device(*(struct rc_dev **)res); |
| } |
| |
| int devm_rc_register_device(struct device *parent, struct rc_dev *dev) |
| { |
| struct rc_dev **dr; |
| int ret; |
| |
| dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); |
| if (!dr) |
| return -ENOMEM; |
| |
| ret = rc_register_device(dev); |
| if (ret) { |
| devres_free(dr); |
| return ret; |
| } |
| |
| *dr = dev; |
| devres_add(parent, dr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(devm_rc_register_device); |
| |
| void rc_unregister_device(struct rc_dev *dev) |
| { |
| if (!dev) |
| return; |
| |
| if (dev->driver_type == RC_DRIVER_IR_RAW) |
| ir_raw_event_unregister(dev); |
| |
| del_timer_sync(&dev->timer_keyup); |
| del_timer_sync(&dev->timer_repeat); |
| |
| rc_free_rx_device(dev); |
| |
| mutex_lock(&dev->lock); |
| if (dev->users && dev->close) |
| dev->close(dev); |
| dev->registered = false; |
| mutex_unlock(&dev->lock); |
| |
| /* |
| * lirc device should be freed with dev->registered = false, so |
| * that userspace polling will get notified. |
| */ |
| if (dev->allowed_protocols != RC_PROTO_BIT_CEC) |
| ir_lirc_unregister(dev); |
| |
| device_del(&dev->dev); |
| |
| ida_simple_remove(&rc_ida, dev->minor); |
| |
| if (!dev->managed_alloc) |
| rc_free_device(dev); |
| } |
| |
| EXPORT_SYMBOL_GPL(rc_unregister_device); |
| |
| /* |
| * Init/exit code for the module. Basically, creates/removes /sys/class/rc |
| */ |
| |
| static int __init rc_core_init(void) |
| { |
| int rc = class_register(&rc_class); |
| if (rc) { |
| pr_err("rc_core: unable to register rc class\n"); |
| return rc; |
| } |
| |
| rc = lirc_dev_init(); |
| if (rc) { |
| pr_err("rc_core: unable to init lirc\n"); |
| class_unregister(&rc_class); |
| return rc; |
| } |
| |
| led_trigger_register_simple("rc-feedback", &led_feedback); |
| rc_map_register(&empty_map); |
| |
| return 0; |
| } |
| |
| static void __exit rc_core_exit(void) |
| { |
| lirc_dev_exit(); |
| class_unregister(&rc_class); |
| led_trigger_unregister_simple(led_feedback); |
| rc_map_unregister(&empty_map); |
| } |
| |
| subsys_initcall(rc_core_init); |
| module_exit(rc_core_exit); |
| |
| MODULE_AUTHOR("Mauro Carvalho Chehab"); |
| MODULE_LICENSE("GPL v2"); |