| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NAND Flash Controller Device Driver |
| * Copyright © 2009-2010, Intel Corporation and its suppliers. |
| * |
| * Copyright (c) 2017-2019 Socionext Inc. |
| * Reworked by Masahiro Yamada <yamada.masahiro@socionext.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/completion.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| |
| #include "denali.h" |
| |
| #define DENALI_NAND_NAME "denali-nand" |
| |
| /* for Indexed Addressing */ |
| #define DENALI_INDEXED_CTRL 0x00 |
| #define DENALI_INDEXED_DATA 0x10 |
| |
| #define DENALI_MAP00 (0 << 26) /* direct access to buffer */ |
| #define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ |
| #define DENALI_MAP10 (2 << 26) /* high-level control plane */ |
| #define DENALI_MAP11 (3 << 26) /* direct controller access */ |
| |
| /* MAP11 access cycle type */ |
| #define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ |
| #define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ |
| #define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ |
| |
| #define DENALI_BANK(denali) ((denali)->active_bank << 24) |
| |
| #define DENALI_INVALID_BANK -1 |
| |
| static struct denali_chip *to_denali_chip(struct nand_chip *chip) |
| { |
| return container_of(chip, struct denali_chip, chip); |
| } |
| |
| static struct denali_controller *to_denali_controller(struct nand_chip *chip) |
| { |
| return container_of(chip->controller, struct denali_controller, |
| controller); |
| } |
| |
| /* |
| * Direct Addressing - the slave address forms the control information (command |
| * type, bank, block, and page address). The slave data is the actual data to |
| * be transferred. This mode requires 28 bits of address region allocated. |
| */ |
| static u32 denali_direct_read(struct denali_controller *denali, u32 addr) |
| { |
| return ioread32(denali->host + addr); |
| } |
| |
| static void denali_direct_write(struct denali_controller *denali, u32 addr, |
| u32 data) |
| { |
| iowrite32(data, denali->host + addr); |
| } |
| |
| /* |
| * Indexed Addressing - address translation module intervenes in passing the |
| * control information. This mode reduces the required address range. The |
| * control information and transferred data are latched by the registers in |
| * the translation module. |
| */ |
| static u32 denali_indexed_read(struct denali_controller *denali, u32 addr) |
| { |
| iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); |
| return ioread32(denali->host + DENALI_INDEXED_DATA); |
| } |
| |
| static void denali_indexed_write(struct denali_controller *denali, u32 addr, |
| u32 data) |
| { |
| iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); |
| iowrite32(data, denali->host + DENALI_INDEXED_DATA); |
| } |
| |
| static void denali_enable_irq(struct denali_controller *denali) |
| { |
| int i; |
| |
| for (i = 0; i < denali->nbanks; i++) |
| iowrite32(U32_MAX, denali->reg + INTR_EN(i)); |
| iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); |
| } |
| |
| static void denali_disable_irq(struct denali_controller *denali) |
| { |
| int i; |
| |
| for (i = 0; i < denali->nbanks; i++) |
| iowrite32(0, denali->reg + INTR_EN(i)); |
| iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); |
| } |
| |
| static void denali_clear_irq(struct denali_controller *denali, |
| int bank, u32 irq_status) |
| { |
| /* write one to clear bits */ |
| iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); |
| } |
| |
| static void denali_clear_irq_all(struct denali_controller *denali) |
| { |
| int i; |
| |
| for (i = 0; i < denali->nbanks; i++) |
| denali_clear_irq(denali, i, U32_MAX); |
| } |
| |
| static irqreturn_t denali_isr(int irq, void *dev_id) |
| { |
| struct denali_controller *denali = dev_id; |
| irqreturn_t ret = IRQ_NONE; |
| u32 irq_status; |
| int i; |
| |
| spin_lock(&denali->irq_lock); |
| |
| for (i = 0; i < denali->nbanks; i++) { |
| irq_status = ioread32(denali->reg + INTR_STATUS(i)); |
| if (irq_status) |
| ret = IRQ_HANDLED; |
| |
| denali_clear_irq(denali, i, irq_status); |
| |
| if (i != denali->active_bank) |
| continue; |
| |
| denali->irq_status |= irq_status; |
| |
| if (denali->irq_status & denali->irq_mask) |
| complete(&denali->complete); |
| } |
| |
| spin_unlock(&denali->irq_lock); |
| |
| return ret; |
| } |
| |
| static void denali_reset_irq(struct denali_controller *denali) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&denali->irq_lock, flags); |
| denali->irq_status = 0; |
| denali->irq_mask = 0; |
| spin_unlock_irqrestore(&denali->irq_lock, flags); |
| } |
| |
| static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask) |
| { |
| unsigned long time_left, flags; |
| u32 irq_status; |
| |
| spin_lock_irqsave(&denali->irq_lock, flags); |
| |
| irq_status = denali->irq_status; |
| |
| if (irq_mask & irq_status) { |
| /* return immediately if the IRQ has already happened. */ |
| spin_unlock_irqrestore(&denali->irq_lock, flags); |
| return irq_status; |
| } |
| |
| denali->irq_mask = irq_mask; |
| reinit_completion(&denali->complete); |
| spin_unlock_irqrestore(&denali->irq_lock, flags); |
| |
| time_left = wait_for_completion_timeout(&denali->complete, |
| msecs_to_jiffies(1000)); |
| if (!time_left) { |
| dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", |
| irq_mask); |
| return 0; |
| } |
| |
| return denali->irq_status; |
| } |
| |
| static void denali_select_target(struct nand_chip *chip, int cs) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs]; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| denali->active_bank = sel->bank; |
| |
| iowrite32(1 << (chip->phys_erase_shift - chip->page_shift), |
| denali->reg + PAGES_PER_BLOCK); |
| iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, |
| denali->reg + DEVICE_WIDTH); |
| iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); |
| iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); |
| iowrite32(chip->options & NAND_ROW_ADDR_3 ? |
| 0 : TWO_ROW_ADDR_CYCLES__FLAG, |
| denali->reg + TWO_ROW_ADDR_CYCLES); |
| iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | |
| FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), |
| denali->reg + ECC_CORRECTION); |
| iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); |
| iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); |
| iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS); |
| |
| if (chip->options & NAND_KEEP_TIMINGS) |
| return; |
| |
| /* update timing registers unless NAND_KEEP_TIMINGS is set */ |
| iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE); |
| iowrite32(sel->tcwaw_and_addr_2_data, |
| denali->reg + TCWAW_AND_ADDR_2_DATA); |
| iowrite32(sel->re_2_we, denali->reg + RE_2_WE); |
| iowrite32(sel->acc_clks, denali->reg + ACC_CLKS); |
| iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT); |
| iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT); |
| iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT); |
| iowrite32(sel->re_2_re, denali->reg + RE_2_RE); |
| } |
| |
| static int denali_change_column(struct nand_chip *chip, unsigned int offset, |
| void *buf, unsigned int len, bool write) |
| { |
| if (write) |
| return nand_change_write_column_op(chip, offset, buf, len, |
| false); |
| else |
| return nand_change_read_column_op(chip, offset, buf, len, |
| false); |
| } |
| |
| static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int writesize = mtd->writesize; |
| int oob_skip = denali->oob_skip_bytes; |
| int ret, i, pos, len; |
| |
| for (i = 0; i < ecc->steps; i++) { |
| pos = i * (ecc->size + ecc->bytes); |
| len = ecc->size; |
| |
| if (pos >= writesize) { |
| pos += oob_skip; |
| } else if (pos + len > writesize) { |
| /* This chunk overwraps the BBM area. Must be split */ |
| ret = denali_change_column(chip, pos, buf, |
| writesize - pos, write); |
| if (ret) |
| return ret; |
| |
| buf += writesize - pos; |
| len -= writesize - pos; |
| pos = writesize + oob_skip; |
| } |
| |
| ret = denali_change_column(chip, pos, buf, len, write); |
| if (ret) |
| return ret; |
| |
| buf += len; |
| } |
| |
| return 0; |
| } |
| |
| static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| int writesize = mtd->writesize; |
| int oobsize = mtd->oobsize; |
| int oob_skip = denali->oob_skip_bytes; |
| int ret, i, pos, len; |
| |
| /* BBM at the beginning of the OOB area */ |
| ret = denali_change_column(chip, writesize, buf, oob_skip, write); |
| if (ret) |
| return ret; |
| |
| buf += oob_skip; |
| |
| for (i = 0; i < ecc->steps; i++) { |
| pos = ecc->size + i * (ecc->size + ecc->bytes); |
| |
| if (i == ecc->steps - 1) |
| /* The last chunk includes OOB free */ |
| len = writesize + oobsize - pos - oob_skip; |
| else |
| len = ecc->bytes; |
| |
| if (pos >= writesize) { |
| pos += oob_skip; |
| } else if (pos + len > writesize) { |
| /* This chunk overwraps the BBM area. Must be split */ |
| ret = denali_change_column(chip, pos, buf, |
| writesize - pos, write); |
| if (ret) |
| return ret; |
| |
| buf += writesize - pos; |
| len -= writesize - pos; |
| pos = writesize + oob_skip; |
| } |
| |
| ret = denali_change_column(chip, pos, buf, len, write); |
| if (ret) |
| return ret; |
| |
| buf += len; |
| } |
| |
| return 0; |
| } |
| |
| static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf, |
| int page) |
| { |
| int ret; |
| |
| if (!buf && !oob_buf) |
| return -EINVAL; |
| |
| ret = nand_read_page_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| if (buf) { |
| ret = denali_payload_xfer(chip, buf, false); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_buf) { |
| ret = denali_oob_xfer(chip, oob_buf, false); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int denali_write_raw(struct nand_chip *chip, const void *buf, |
| const void *oob_buf, int page) |
| { |
| int ret; |
| |
| if (!buf && !oob_buf) |
| return -EINVAL; |
| |
| ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); |
| if (ret) |
| return ret; |
| |
| if (buf) { |
| ret = denali_payload_xfer(chip, (void *)buf, true); |
| if (ret) |
| return ret; |
| } |
| |
| if (oob_buf) { |
| ret = denali_oob_xfer(chip, (void *)oob_buf, true); |
| if (ret) |
| return ret; |
| } |
| |
| return nand_prog_page_end_op(chip); |
| } |
| |
| static int denali_read_page_raw(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL, |
| page); |
| } |
| |
| static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL, |
| page); |
| } |
| |
| static int denali_read_oob(struct nand_chip *chip, int page) |
| { |
| return denali_read_raw(chip, NULL, chip->oob_poi, page); |
| } |
| |
| static int denali_write_oob(struct nand_chip *chip, int page) |
| { |
| return denali_write_raw(chip, NULL, chip->oob_poi, page); |
| } |
| |
| static int denali_check_erased_page(struct nand_chip *chip, u8 *buf, |
| unsigned long uncor_ecc_flags, |
| unsigned int max_bitflips) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes; |
| int i, stat; |
| |
| for (i = 0; i < ecc->steps; i++) { |
| if (!(uncor_ecc_flags & BIT(i))) |
| continue; |
| |
| stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code, |
| ecc->bytes, NULL, 0, |
| ecc->strength); |
| if (stat < 0) { |
| ecc_stats->failed++; |
| } else { |
| ecc_stats->corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| |
| buf += ecc->size; |
| ecc_code += ecc->bytes; |
| } |
| |
| return max_bitflips; |
| } |
| |
| static int denali_hw_ecc_fixup(struct nand_chip *chip, |
| unsigned long *uncor_ecc_flags) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; |
| int bank = denali->active_bank; |
| u32 ecc_cor; |
| unsigned int max_bitflips; |
| |
| ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); |
| ecc_cor >>= ECC_COR_INFO__SHIFT(bank); |
| |
| if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { |
| /* |
| * This flag is set when uncorrectable error occurs at least in |
| * one ECC sector. We can not know "how many sectors", or |
| * "which sector(s)". We need erase-page check for all sectors. |
| */ |
| *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); |
| return 0; |
| } |
| |
| max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); |
| |
| /* |
| * The register holds the maximum of per-sector corrected bitflips. |
| * This is suitable for the return value of the ->read_page() callback. |
| * Unfortunately, we can not know the total number of corrected bits in |
| * the page. Increase the stats by max_bitflips. (compromised solution) |
| */ |
| ecc_stats->corrected += max_bitflips; |
| |
| return max_bitflips; |
| } |
| |
| static int denali_sw_ecc_fixup(struct nand_chip *chip, |
| unsigned long *uncor_ecc_flags, u8 *buf) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats; |
| unsigned int ecc_size = chip->ecc.size; |
| unsigned int bitflips = 0; |
| unsigned int max_bitflips = 0; |
| u32 err_addr, err_cor_info; |
| unsigned int err_byte, err_sector, err_device; |
| u8 err_cor_value; |
| unsigned int prev_sector = 0; |
| u32 irq_status; |
| |
| denali_reset_irq(denali); |
| |
| do { |
| err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); |
| err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); |
| err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); |
| |
| err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); |
| err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, |
| err_cor_info); |
| err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, |
| err_cor_info); |
| |
| /* reset the bitflip counter when crossing ECC sector */ |
| if (err_sector != prev_sector) |
| bitflips = 0; |
| |
| if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { |
| /* |
| * Check later if this is a real ECC error, or |
| * an erased sector. |
| */ |
| *uncor_ecc_flags |= BIT(err_sector); |
| } else if (err_byte < ecc_size) { |
| /* |
| * If err_byte is larger than ecc_size, means error |
| * happened in OOB, so we ignore it. It's no need for |
| * us to correct it err_device is represented the NAND |
| * error bits are happened in if there are more than |
| * one NAND connected. |
| */ |
| int offset; |
| unsigned int flips_in_byte; |
| |
| offset = (err_sector * ecc_size + err_byte) * |
| denali->devs_per_cs + err_device; |
| |
| /* correct the ECC error */ |
| flips_in_byte = hweight8(buf[offset] ^ err_cor_value); |
| buf[offset] ^= err_cor_value; |
| ecc_stats->corrected += flips_in_byte; |
| bitflips += flips_in_byte; |
| |
| max_bitflips = max(max_bitflips, bitflips); |
| } |
| |
| prev_sector = err_sector; |
| } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); |
| |
| /* |
| * Once handle all ECC errors, controller will trigger an |
| * ECC_TRANSACTION_DONE interrupt. |
| */ |
| irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); |
| if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) |
| return -EIO; |
| |
| return max_bitflips; |
| } |
| |
| static void denali_setup_dma64(struct denali_controller *denali, |
| dma_addr_t dma_addr, int page, bool write) |
| { |
| u32 mode; |
| const int page_count = 1; |
| |
| mode = DENALI_MAP10 | DENALI_BANK(denali) | page; |
| |
| /* DMA is a three step process */ |
| |
| /* |
| * 1. setup transfer type, interrupt when complete, |
| * burst len = 64 bytes, the number of pages |
| */ |
| denali->host_write(denali, mode, |
| 0x01002000 | (64 << 16) | |
| (write ? BIT(8) : 0) | page_count); |
| |
| /* 2. set memory low address */ |
| denali->host_write(denali, mode, lower_32_bits(dma_addr)); |
| |
| /* 3. set memory high address */ |
| denali->host_write(denali, mode, upper_32_bits(dma_addr)); |
| } |
| |
| static void denali_setup_dma32(struct denali_controller *denali, |
| dma_addr_t dma_addr, int page, bool write) |
| { |
| u32 mode; |
| const int page_count = 1; |
| |
| mode = DENALI_MAP10 | DENALI_BANK(denali); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| denali->host_write(denali, mode | page, |
| 0x2000 | (write ? BIT(8) : 0) | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes */ |
| denali->host_write(denali, mode | 0x14000, 0x2400); |
| } |
| |
| static int denali_pio_read(struct denali_controller *denali, u32 *buf, |
| size_t size, int page) |
| { |
| u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; |
| u32 irq_status, ecc_err_mask; |
| int i; |
| |
| if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) |
| ecc_err_mask = INTR__ECC_UNCOR_ERR; |
| else |
| ecc_err_mask = INTR__ECC_ERR; |
| |
| denali_reset_irq(denali); |
| |
| for (i = 0; i < size / 4; i++) |
| buf[i] = denali->host_read(denali, addr); |
| |
| irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); |
| if (!(irq_status & INTR__PAGE_XFER_INC)) |
| return -EIO; |
| |
| if (irq_status & INTR__ERASED_PAGE) |
| memset(buf, 0xff, size); |
| |
| return irq_status & ecc_err_mask ? -EBADMSG : 0; |
| } |
| |
| static int denali_pio_write(struct denali_controller *denali, const u32 *buf, |
| size_t size, int page) |
| { |
| u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; |
| u32 irq_status; |
| int i; |
| |
| denali_reset_irq(denali); |
| |
| for (i = 0; i < size / 4; i++) |
| denali->host_write(denali, addr, buf[i]); |
| |
| irq_status = denali_wait_for_irq(denali, |
| INTR__PROGRAM_COMP | |
| INTR__PROGRAM_FAIL); |
| if (!(irq_status & INTR__PROGRAM_COMP)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int denali_pio_xfer(struct denali_controller *denali, void *buf, |
| size_t size, int page, bool write) |
| { |
| if (write) |
| return denali_pio_write(denali, buf, size, page); |
| else |
| return denali_pio_read(denali, buf, size, page); |
| } |
| |
| static int denali_dma_xfer(struct denali_controller *denali, void *buf, |
| size_t size, int page, bool write) |
| { |
| dma_addr_t dma_addr; |
| u32 irq_mask, irq_status, ecc_err_mask; |
| enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| int ret = 0; |
| |
| dma_addr = dma_map_single(denali->dev, buf, size, dir); |
| if (dma_mapping_error(denali->dev, dma_addr)) { |
| dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); |
| return denali_pio_xfer(denali, buf, size, page, write); |
| } |
| |
| if (write) { |
| /* |
| * INTR__PROGRAM_COMP is never asserted for the DMA transfer. |
| * We can use INTR__DMA_CMD_COMP instead. This flag is asserted |
| * when the page program is completed. |
| */ |
| irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; |
| ecc_err_mask = 0; |
| } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { |
| irq_mask = INTR__DMA_CMD_COMP; |
| ecc_err_mask = INTR__ECC_UNCOR_ERR; |
| } else { |
| irq_mask = INTR__DMA_CMD_COMP; |
| ecc_err_mask = INTR__ECC_ERR; |
| } |
| |
| iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); |
| /* |
| * The ->setup_dma() hook kicks DMA by using the data/command |
| * interface, which belongs to a different AXI port from the |
| * register interface. Read back the register to avoid a race. |
| */ |
| ioread32(denali->reg + DMA_ENABLE); |
| |
| denali_reset_irq(denali); |
| denali->setup_dma(denali, dma_addr, page, write); |
| |
| irq_status = denali_wait_for_irq(denali, irq_mask); |
| if (!(irq_status & INTR__DMA_CMD_COMP)) |
| ret = -EIO; |
| else if (irq_status & ecc_err_mask) |
| ret = -EBADMSG; |
| |
| iowrite32(0, denali->reg + DMA_ENABLE); |
| |
| dma_unmap_single(denali->dev, dma_addr, size, dir); |
| |
| if (irq_status & INTR__ERASED_PAGE) |
| memset(buf, 0xff, size); |
| |
| return ret; |
| } |
| |
| static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size, |
| int page, bool write) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| |
| denali_select_target(chip, chip->cur_cs); |
| |
| if (denali->dma_avail) |
| return denali_dma_xfer(denali, buf, size, page, write); |
| else |
| return denali_pio_xfer(denali, buf, size, page, write); |
| } |
| |
| static int denali_read_page(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned long uncor_ecc_flags = 0; |
| int stat = 0; |
| int ret; |
| |
| ret = denali_page_xfer(chip, buf, mtd->writesize, page, false); |
| if (ret && ret != -EBADMSG) |
| return ret; |
| |
| if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) |
| stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags); |
| else if (ret == -EBADMSG) |
| stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf); |
| |
| if (stat < 0) |
| return stat; |
| |
| if (uncor_ecc_flags) { |
| ret = denali_read_oob(chip, page); |
| if (ret) |
| return ret; |
| |
| stat = denali_check_erased_page(chip, buf, |
| uncor_ecc_flags, stat); |
| } |
| |
| return stat; |
| } |
| |
| static int denali_write_page(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| |
| return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true); |
| } |
| |
| static int denali_setup_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_interface_config *conf) |
| { |
| static const unsigned int data_setup_on_host = 10000; |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct denali_chip_sel *sel; |
| const struct nand_sdr_timings *timings; |
| unsigned long t_x, mult_x; |
| int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; |
| int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; |
| int addr_2_data_mask; |
| u32 tmp; |
| |
| timings = nand_get_sdr_timings(conf); |
| if (IS_ERR(timings)) |
| return PTR_ERR(timings); |
| |
| /* clk_x period in picoseconds */ |
| t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); |
| if (!t_x) |
| return -EINVAL; |
| |
| /* |
| * The bus interface clock, clk_x, is phase aligned with the core clock. |
| * The clk_x is an integral multiple N of the core clk. The value N is |
| * configured at IP delivery time, and its available value is 4, 5, 6. |
| */ |
| mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate); |
| if (mult_x < 4 || mult_x > 6) |
| return -EINVAL; |
| |
| if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) |
| return 0; |
| |
| sel = &to_denali_chip(chip)->sels[chipnr]; |
| |
| /* tRWH -> RE_2_WE */ |
| re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x); |
| re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); |
| |
| tmp = ioread32(denali->reg + RE_2_WE); |
| tmp &= ~RE_2_WE__VALUE; |
| tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); |
| sel->re_2_we = tmp; |
| |
| /* tRHZ -> RE_2_RE */ |
| re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x); |
| re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); |
| |
| tmp = ioread32(denali->reg + RE_2_RE); |
| tmp &= ~RE_2_RE__VALUE; |
| tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); |
| sel->re_2_re = tmp; |
| |
| /* |
| * tCCS, tWHR -> WE_2_RE |
| * |
| * With WE_2_RE properly set, the Denali controller automatically takes |
| * care of the delay; the driver need not set NAND_WAIT_TCCS. |
| */ |
| we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x); |
| we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); |
| |
| tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); |
| tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; |
| tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); |
| sel->hwhr2_and_we_2_re = tmp; |
| |
| /* tADL -> ADDR_2_DATA */ |
| |
| /* for older versions, ADDR_2_DATA is only 6 bit wide */ |
| addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; |
| if (denali->revision < 0x0501) |
| addr_2_data_mask >>= 1; |
| |
| addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x); |
| addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); |
| |
| tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); |
| tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; |
| tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); |
| sel->tcwaw_and_addr_2_data = tmp; |
| |
| /* tREH, tWH -> RDWR_EN_HI_CNT */ |
| rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), |
| t_x); |
| rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); |
| |
| tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); |
| tmp &= ~RDWR_EN_HI_CNT__VALUE; |
| tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); |
| sel->rdwr_en_hi_cnt = tmp; |
| |
| /* |
| * tREA -> ACC_CLKS |
| * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT |
| */ |
| |
| /* |
| * Determine the minimum of acc_clks to meet the setup timing when |
| * capturing the incoming data. |
| * |
| * The delay on the chip side is well-defined as tREA, but we need to |
| * take additional delay into account. This includes a certain degree |
| * of unknowledge, such as signal propagation delays on the PCB and |
| * in the SoC, load capacity of the I/O pins, etc. |
| */ |
| acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x); |
| |
| /* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */ |
| rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x); |
| |
| /* Extend rdwr_en_lo to meet the data hold timing */ |
| rdwr_en_lo = max_t(int, rdwr_en_lo, |
| acc_clks - timings->tRHOH_min / t_x); |
| |
| /* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */ |
| rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), |
| t_x); |
| rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); |
| rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); |
| |
| /* Center the data latch timing for extra safety */ |
| acc_clks = (acc_clks + rdwr_en_lo + |
| DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2; |
| acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); |
| |
| tmp = ioread32(denali->reg + ACC_CLKS); |
| tmp &= ~ACC_CLKS__VALUE; |
| tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); |
| sel->acc_clks = tmp; |
| |
| tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); |
| tmp &= ~RDWR_EN_LO_CNT__VALUE; |
| tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); |
| sel->rdwr_en_lo_cnt = tmp; |
| |
| /* tCS, tCEA -> CS_SETUP_CNT */ |
| cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo, |
| (int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks, |
| 0); |
| cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); |
| |
| tmp = ioread32(denali->reg + CS_SETUP_CNT); |
| tmp &= ~CS_SETUP_CNT__VALUE; |
| tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); |
| sel->cs_setup_cnt = tmp; |
| |
| return 0; |
| } |
| |
| int denali_calc_ecc_bytes(int step_size, int strength) |
| { |
| /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ |
| return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; |
| } |
| EXPORT_SYMBOL(denali_calc_ecc_bytes); |
| |
| static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct denali_controller *denali = to_denali_controller(chip); |
| |
| if (section > 0) |
| return -ERANGE; |
| |
| oobregion->offset = denali->oob_skip_bytes; |
| oobregion->length = chip->ecc.total; |
| |
| return 0; |
| } |
| |
| static int denali_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct denali_controller *denali = to_denali_controller(chip); |
| |
| if (section > 0) |
| return -ERANGE; |
| |
| oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops denali_ooblayout_ops = { |
| .ecc = denali_ooblayout_ecc, |
| .free = denali_ooblayout_free, |
| }; |
| |
| static int denali_multidev_fixup(struct nand_chip *chip) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg; |
| |
| memorg = nanddev_get_memorg(&chip->base); |
| |
| /* |
| * Support for multi device: |
| * When the IP configuration is x16 capable and two x8 chips are |
| * connected in parallel, DEVICES_CONNECTED should be set to 2. |
| * In this case, the core framework knows nothing about this fact, |
| * so we should tell it the _logical_ pagesize and anything necessary. |
| */ |
| denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); |
| |
| /* |
| * On some SoCs, DEVICES_CONNECTED is not auto-detected. |
| * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. |
| */ |
| if (denali->devs_per_cs == 0) { |
| denali->devs_per_cs = 1; |
| iowrite32(1, denali->reg + DEVICES_CONNECTED); |
| } |
| |
| if (denali->devs_per_cs == 1) |
| return 0; |
| |
| if (denali->devs_per_cs != 2) { |
| dev_err(denali->dev, "unsupported number of devices %d\n", |
| denali->devs_per_cs); |
| return -EINVAL; |
| } |
| |
| /* 2 chips in parallel */ |
| memorg->pagesize <<= 1; |
| memorg->oobsize <<= 1; |
| mtd->size <<= 1; |
| mtd->erasesize <<= 1; |
| mtd->writesize <<= 1; |
| mtd->oobsize <<= 1; |
| chip->page_shift += 1; |
| chip->phys_erase_shift += 1; |
| chip->bbt_erase_shift += 1; |
| chip->chip_shift += 1; |
| chip->pagemask <<= 1; |
| chip->ecc.size <<= 1; |
| chip->ecc.bytes <<= 1; |
| chip->ecc.strength <<= 1; |
| denali->oob_skip_bytes <<= 1; |
| |
| return 0; |
| } |
| |
| static int denali_attach_chip(struct nand_chip *chip) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| ret = nand_ecc_choose_conf(chip, denali->ecc_caps, |
| mtd->oobsize - denali->oob_skip_bytes); |
| if (ret) { |
| dev_err(denali->dev, "Failed to setup ECC settings.\n"); |
| return ret; |
| } |
| |
| dev_dbg(denali->dev, |
| "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", |
| chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); |
| |
| ret = denali_multidev_fixup(chip); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void denali_exec_in8(struct denali_controller *denali, u32 type, |
| u8 *buf, unsigned int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| buf[i] = denali->host_read(denali, type | DENALI_BANK(denali)); |
| } |
| |
| static void denali_exec_in16(struct denali_controller *denali, u32 type, |
| u8 *buf, unsigned int len) |
| { |
| u32 data; |
| int i; |
| |
| for (i = 0; i < len; i += 2) { |
| data = denali->host_read(denali, type | DENALI_BANK(denali)); |
| /* bit 31:24 and 15:8 are used for DDR */ |
| buf[i] = data; |
| buf[i + 1] = data >> 16; |
| } |
| } |
| |
| static void denali_exec_in(struct denali_controller *denali, u32 type, |
| u8 *buf, unsigned int len, bool width16) |
| { |
| if (width16) |
| denali_exec_in16(denali, type, buf, len); |
| else |
| denali_exec_in8(denali, type, buf, len); |
| } |
| |
| static void denali_exec_out8(struct denali_controller *denali, u32 type, |
| const u8 *buf, unsigned int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| denali->host_write(denali, type | DENALI_BANK(denali), buf[i]); |
| } |
| |
| static void denali_exec_out16(struct denali_controller *denali, u32 type, |
| const u8 *buf, unsigned int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i += 2) |
| denali->host_write(denali, type | DENALI_BANK(denali), |
| buf[i + 1] << 16 | buf[i]); |
| } |
| |
| static void denali_exec_out(struct denali_controller *denali, u32 type, |
| const u8 *buf, unsigned int len, bool width16) |
| { |
| if (width16) |
| denali_exec_out16(denali, type, buf, len); |
| else |
| denali_exec_out8(denali, type, buf, len); |
| } |
| |
| static int denali_exec_waitrdy(struct denali_controller *denali) |
| { |
| u32 irq_stat; |
| |
| /* R/B# pin transitioned from low to high? */ |
| irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT); |
| |
| /* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */ |
| denali_reset_irq(denali); |
| |
| return irq_stat & INTR__INT_ACT ? 0 : -EIO; |
| } |
| |
| static int denali_exec_instr(struct nand_chip *chip, |
| const struct nand_op_instr *instr) |
| { |
| struct denali_controller *denali = to_denali_controller(chip); |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| denali_exec_out8(denali, DENALI_MAP11_CMD, |
| &instr->ctx.cmd.opcode, 1); |
| return 0; |
| case NAND_OP_ADDR_INSTR: |
| denali_exec_out8(denali, DENALI_MAP11_ADDR, |
| instr->ctx.addr.addrs, |
| instr->ctx.addr.naddrs); |
| return 0; |
| case NAND_OP_DATA_IN_INSTR: |
| denali_exec_in(denali, DENALI_MAP11_DATA, |
| instr->ctx.data.buf.in, |
| instr->ctx.data.len, |
| !instr->ctx.data.force_8bit && |
| chip->options & NAND_BUSWIDTH_16); |
| return 0; |
| case NAND_OP_DATA_OUT_INSTR: |
| denali_exec_out(denali, DENALI_MAP11_DATA, |
| instr->ctx.data.buf.out, |
| instr->ctx.data.len, |
| !instr->ctx.data.force_8bit && |
| chip->options & NAND_BUSWIDTH_16); |
| return 0; |
| case NAND_OP_WAITRDY_INSTR: |
| return denali_exec_waitrdy(denali); |
| default: |
| WARN_ONCE(1, "unsupported NAND instruction type: %d\n", |
| instr->type); |
| |
| return -EINVAL; |
| } |
| } |
| |
| static int denali_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, bool check_only) |
| { |
| int i, ret; |
| |
| if (check_only) |
| return 0; |
| |
| denali_select_target(chip, op->cs); |
| |
| /* |
| * Some commands contain NAND_OP_WAITRDY_INSTR. |
| * irq must be cleared here to catch the R/B# interrupt there. |
| */ |
| denali_reset_irq(to_denali_controller(chip)); |
| |
| for (i = 0; i < op->ninstrs; i++) { |
| ret = denali_exec_instr(chip, &op->instrs[i]); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops denali_controller_ops = { |
| .attach_chip = denali_attach_chip, |
| .exec_op = denali_exec_op, |
| .setup_interface = denali_setup_interface, |
| }; |
| |
| int denali_chip_init(struct denali_controller *denali, |
| struct denali_chip *dchip) |
| { |
| struct nand_chip *chip = &dchip->chip; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct denali_chip *dchip2; |
| int i, j, ret; |
| |
| chip->controller = &denali->controller; |
| |
| /* sanity checks for bank numbers */ |
| for (i = 0; i < dchip->nsels; i++) { |
| unsigned int bank = dchip->sels[i].bank; |
| |
| if (bank >= denali->nbanks) { |
| dev_err(denali->dev, "unsupported bank %d\n", bank); |
| return -EINVAL; |
| } |
| |
| for (j = 0; j < i; j++) { |
| if (bank == dchip->sels[j].bank) { |
| dev_err(denali->dev, |
| "bank %d is assigned twice in the same chip\n", |
| bank); |
| return -EINVAL; |
| } |
| } |
| |
| list_for_each_entry(dchip2, &denali->chips, node) { |
| for (j = 0; j < dchip2->nsels; j++) { |
| if (bank == dchip2->sels[j].bank) { |
| dev_err(denali->dev, |
| "bank %d is already used\n", |
| bank); |
| return -EINVAL; |
| } |
| } |
| } |
| } |
| |
| mtd->dev.parent = denali->dev; |
| |
| /* |
| * Fallback to the default name if DT did not give "label" property. |
| * Use "label" property if multiple chips are connected. |
| */ |
| if (!mtd->name && list_empty(&denali->chips)) |
| mtd->name = "denali-nand"; |
| |
| if (denali->dma_avail) { |
| chip->options |= NAND_USES_DMA; |
| chip->buf_align = 16; |
| } |
| |
| /* clk rate info is needed for setup_interface */ |
| if (!denali->clk_rate || !denali->clk_x_rate) |
| chip->options |= NAND_KEEP_TIMINGS; |
| |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| chip->ecc.mode = NAND_ECC_HW_SYNDROME; |
| chip->ecc.read_page = denali_read_page; |
| chip->ecc.write_page = denali_write_page; |
| chip->ecc.read_page_raw = denali_read_page_raw; |
| chip->ecc.write_page_raw = denali_write_page_raw; |
| chip->ecc.read_oob = denali_read_oob; |
| chip->ecc.write_oob = denali_write_oob; |
| |
| mtd_set_ooblayout(mtd, &denali_ooblayout_ops); |
| |
| ret = nand_scan(chip, dchip->nsels); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(denali->dev, "Failed to register MTD: %d\n", ret); |
| goto cleanup_nand; |
| } |
| |
| list_add_tail(&dchip->node, &denali->chips); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(chip); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(denali_chip_init); |
| |
| int denali_init(struct denali_controller *denali) |
| { |
| u32 features = ioread32(denali->reg + FEATURES); |
| int ret; |
| |
| nand_controller_init(&denali->controller); |
| denali->controller.ops = &denali_controller_ops; |
| init_completion(&denali->complete); |
| spin_lock_init(&denali->irq_lock); |
| INIT_LIST_HEAD(&denali->chips); |
| denali->active_bank = DENALI_INVALID_BANK; |
| |
| /* |
| * The REVISION register may not be reliable. Platforms are allowed to |
| * override it. |
| */ |
| if (!denali->revision) |
| denali->revision = swab16(ioread32(denali->reg + REVISION)); |
| |
| denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features); |
| |
| /* the encoding changed from rev 5.0 to 5.1 */ |
| if (denali->revision < 0x0501) |
| denali->nbanks <<= 1; |
| |
| if (features & FEATURES__DMA) |
| denali->dma_avail = true; |
| |
| if (denali->dma_avail) { |
| int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; |
| |
| ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); |
| if (ret) { |
| dev_info(denali->dev, |
| "Failed to set DMA mask. Disabling DMA.\n"); |
| denali->dma_avail = false; |
| } |
| } |
| |
| if (denali->dma_avail) { |
| if (denali->caps & DENALI_CAP_DMA_64BIT) |
| denali->setup_dma = denali_setup_dma64; |
| else |
| denali->setup_dma = denali_setup_dma32; |
| } |
| |
| if (features & FEATURES__INDEX_ADDR) { |
| denali->host_read = denali_indexed_read; |
| denali->host_write = denali_indexed_write; |
| } else { |
| denali->host_read = denali_direct_read; |
| denali->host_write = denali_direct_write; |
| } |
| |
| /* |
| * Set how many bytes should be skipped before writing data in OOB. |
| * If a platform requests a non-zero value, set it to the register. |
| * Otherwise, read the value out, expecting it has already been set up |
| * by firmware. |
| */ |
| if (denali->oob_skip_bytes) |
| iowrite32(denali->oob_skip_bytes, |
| denali->reg + SPARE_AREA_SKIP_BYTES); |
| else |
| denali->oob_skip_bytes = ioread32(denali->reg + |
| SPARE_AREA_SKIP_BYTES); |
| |
| iowrite32(0, denali->reg + TRANSFER_SPARE_REG); |
| iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED); |
| iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); |
| iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); |
| iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); |
| iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT); |
| |
| denali_clear_irq_all(denali); |
| |
| ret = devm_request_irq(denali->dev, denali->irq, denali_isr, |
| IRQF_SHARED, DENALI_NAND_NAME, denali); |
| if (ret) { |
| dev_err(denali->dev, "Unable to request IRQ\n"); |
| return ret; |
| } |
| |
| denali_enable_irq(denali); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(denali_init); |
| |
| void denali_remove(struct denali_controller *denali) |
| { |
| struct denali_chip *dchip, *tmp; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry_safe(dchip, tmp, &denali->chips, node) { |
| chip = &dchip->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&dchip->node); |
| } |
| |
| denali_disable_irq(denali); |
| } |
| EXPORT_SYMBOL(denali_remove); |
| |
| MODULE_DESCRIPTION("Driver core for Denali NAND controller"); |
| MODULE_AUTHOR("Intel Corporation and its suppliers"); |
| MODULE_LICENSE("GPL v2"); |