blob: bd7a7251429bd91c5e59eea53034ef893114a307 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/dma/qcom_bam_dma.h>
/* NANDc reg offsets */
#define NAND_FLASH_CMD 0x00
#define NAND_ADDR0 0x04
#define NAND_ADDR1 0x08
#define NAND_FLASH_CHIP_SELECT 0x0c
#define NAND_EXEC_CMD 0x10
#define NAND_FLASH_STATUS 0x14
#define NAND_BUFFER_STATUS 0x18
#define NAND_DEV0_CFG0 0x20
#define NAND_DEV0_CFG1 0x24
#define NAND_DEV0_ECC_CFG 0x28
#define NAND_DEV1_ECC_CFG 0x2c
#define NAND_DEV1_CFG0 0x30
#define NAND_DEV1_CFG1 0x34
#define NAND_READ_ID 0x40
#define NAND_READ_STATUS 0x44
#define NAND_DEV_CMD0 0xa0
#define NAND_DEV_CMD1 0xa4
#define NAND_DEV_CMD2 0xa8
#define NAND_DEV_CMD_VLD 0xac
#define SFLASHC_BURST_CFG 0xe0
#define NAND_ERASED_CW_DETECT_CFG 0xe8
#define NAND_ERASED_CW_DETECT_STATUS 0xec
#define NAND_EBI2_ECC_BUF_CFG 0xf0
#define FLASH_BUF_ACC 0x100
#define NAND_CTRL 0xf00
#define NAND_VERSION 0xf08
#define NAND_READ_LOCATION_0 0xf20
#define NAND_READ_LOCATION_1 0xf24
#define NAND_READ_LOCATION_2 0xf28
#define NAND_READ_LOCATION_3 0xf2c
/* dummy register offsets, used by write_reg_dma */
#define NAND_DEV_CMD1_RESTORE 0xdead
#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
/* NAND_FLASH_CMD bits */
#define PAGE_ACC BIT(4)
#define LAST_PAGE BIT(5)
/* NAND_FLASH_CHIP_SELECT bits */
#define NAND_DEV_SEL 0
#define DM_EN BIT(2)
/* NAND_FLASH_STATUS bits */
#define FS_OP_ERR BIT(4)
#define FS_READY_BSY_N BIT(5)
#define FS_MPU_ERR BIT(8)
#define FS_DEVICE_STS_ERR BIT(16)
#define FS_DEVICE_WP BIT(23)
/* NAND_BUFFER_STATUS bits */
#define BS_UNCORRECTABLE_BIT BIT(8)
#define BS_CORRECTABLE_ERR_MSK 0x1f
/* NAND_DEVn_CFG0 bits */
#define DISABLE_STATUS_AFTER_WRITE 4
#define CW_PER_PAGE 6
#define UD_SIZE_BYTES 9
#define ECC_PARITY_SIZE_BYTES_RS 19
#define SPARE_SIZE_BYTES 23
#define NUM_ADDR_CYCLES 27
#define STATUS_BFR_READ 30
#define SET_RD_MODE_AFTER_STATUS 31
/* NAND_DEVn_CFG0 bits */
#define DEV0_CFG1_ECC_DISABLE 0
#define WIDE_FLASH 1
#define NAND_RECOVERY_CYCLES 2
#define CS_ACTIVE_BSY 5
#define BAD_BLOCK_BYTE_NUM 6
#define BAD_BLOCK_IN_SPARE_AREA 16
#define WR_RD_BSY_GAP 17
#define ENABLE_BCH_ECC 27
/* NAND_DEV0_ECC_CFG bits */
#define ECC_CFG_ECC_DISABLE 0
#define ECC_SW_RESET 1
#define ECC_MODE 4
#define ECC_PARITY_SIZE_BYTES_BCH 8
#define ECC_NUM_DATA_BYTES 16
#define ECC_FORCE_CLK_OPEN 30
/* NAND_DEV_CMD1 bits */
#define READ_ADDR 0
/* NAND_DEV_CMD_VLD bits */
#define READ_START_VLD BIT(0)
#define READ_STOP_VLD BIT(1)
#define WRITE_START_VLD BIT(2)
#define ERASE_START_VLD BIT(3)
#define SEQ_READ_START_VLD BIT(4)
/* NAND_EBI2_ECC_BUF_CFG bits */
#define NUM_STEPS 0
/* NAND_ERASED_CW_DETECT_CFG bits */
#define ERASED_CW_ECC_MASK 1
#define AUTO_DETECT_RES 0
#define MASK_ECC (1 << ERASED_CW_ECC_MASK)
#define RESET_ERASED_DET (1 << AUTO_DETECT_RES)
#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
/* NAND_ERASED_CW_DETECT_STATUS bits */
#define PAGE_ALL_ERASED BIT(7)
#define CODEWORD_ALL_ERASED BIT(6)
#define PAGE_ERASED BIT(5)
#define CODEWORD_ERASED BIT(4)
#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
/* NAND_READ_LOCATION_n bits */
#define READ_LOCATION_OFFSET 0
#define READ_LOCATION_SIZE 16
#define READ_LOCATION_LAST 31
/* Version Mask */
#define NAND_VERSION_MAJOR_MASK 0xf0000000
#define NAND_VERSION_MAJOR_SHIFT 28
#define NAND_VERSION_MINOR_MASK 0x0fff0000
#define NAND_VERSION_MINOR_SHIFT 16
/* NAND OP_CMDs */
#define OP_PAGE_READ 0x2
#define OP_PAGE_READ_WITH_ECC 0x3
#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
#define OP_PROGRAM_PAGE 0x6
#define OP_PAGE_PROGRAM_WITH_ECC 0x7
#define OP_PROGRAM_PAGE_SPARE 0x9
#define OP_BLOCK_ERASE 0xa
#define OP_FETCH_ID 0xb
#define OP_RESET_DEVICE 0xd
/* Default Value for NAND_DEV_CMD_VLD */
#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
ERASE_START_VLD | SEQ_READ_START_VLD)
/* NAND_CTRL bits */
#define BAM_MODE_EN BIT(0)
/*
* the NAND controller performs reads/writes with ECC in 516 byte chunks.
* the driver calls the chunks 'step' or 'codeword' interchangeably
*/
#define NANDC_STEP_SIZE 512
/*
* the largest page size we support is 8K, this will have 16 steps/codewords
* of 512 bytes each
*/
#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
/* we read at most 3 registers per codeword scan */
#define MAX_REG_RD (3 * MAX_NUM_STEPS)
/* ECC modes supported by the controller */
#define ECC_NONE BIT(0)
#define ECC_RS_4BIT BIT(1)
#define ECC_BCH_4BIT BIT(2)
#define ECC_BCH_8BIT BIT(3)
#define nandc_set_read_loc(nandc, reg, offset, size, is_last) \
nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
((offset) << READ_LOCATION_OFFSET) | \
((size) << READ_LOCATION_SIZE) | \
((is_last) << READ_LOCATION_LAST))
/*
* Returns the actual register address for all NAND_DEV_ registers
* (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
*/
#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
/* Returns the NAND register physical address */
#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
/* Returns the dma address for reg read buffer */
#define reg_buf_dma_addr(chip, vaddr) \
((chip)->reg_read_dma + \
((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
#define QPIC_PER_CW_CMD_ELEMENTS 32
#define QPIC_PER_CW_CMD_SGL 32
#define QPIC_PER_CW_DATA_SGL 8
#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
/*
* Flags used in DMA descriptor preparation helper functions
* (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
*/
/* Don't set the EOT in current tx BAM sgl */
#define NAND_BAM_NO_EOT BIT(0)
/* Set the NWD flag in current BAM sgl */
#define NAND_BAM_NWD BIT(1)
/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
#define NAND_BAM_NEXT_SGL BIT(2)
/*
* Erased codeword status is being used two times in single transfer so this
* flag will determine the current value of erased codeword status register
*/
#define NAND_ERASED_CW_SET BIT(4)
/*
* This data type corresponds to the BAM transaction which will be used for all
* NAND transfers.
* @bam_ce - the array of BAM command elements
* @cmd_sgl - sgl for NAND BAM command pipe
* @data_sgl - sgl for NAND BAM consumer/producer pipe
* @bam_ce_pos - the index in bam_ce which is available for next sgl
* @bam_ce_start - the index in bam_ce which marks the start position ce
* for current sgl. It will be used for size calculation
* for current sgl
* @cmd_sgl_pos - current index in command sgl.
* @cmd_sgl_start - start index in command sgl.
* @tx_sgl_pos - current index in data sgl for tx.
* @tx_sgl_start - start index in data sgl for tx.
* @rx_sgl_pos - current index in data sgl for rx.
* @rx_sgl_start - start index in data sgl for rx.
* @wait_second_completion - wait for second DMA desc completion before making
* the NAND transfer completion.
* @txn_done - completion for NAND transfer.
* @last_data_desc - last DMA desc in data channel (tx/rx).
* @last_cmd_desc - last DMA desc in command channel.
*/
struct bam_transaction {
struct bam_cmd_element *bam_ce;
struct scatterlist *cmd_sgl;
struct scatterlist *data_sgl;
u32 bam_ce_pos;
u32 bam_ce_start;
u32 cmd_sgl_pos;
u32 cmd_sgl_start;
u32 tx_sgl_pos;
u32 tx_sgl_start;
u32 rx_sgl_pos;
u32 rx_sgl_start;
bool wait_second_completion;
struct completion txn_done;
struct dma_async_tx_descriptor *last_data_desc;
struct dma_async_tx_descriptor *last_cmd_desc;
};
/*
* This data type corresponds to the nand dma descriptor
* @list - list for desc_info
* @dir - DMA transfer direction
* @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
* ADM
* @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
* @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
* @dma_desc - low level DMA engine descriptor
*/
struct desc_info {
struct list_head node;
enum dma_data_direction dir;
union {
struct scatterlist adm_sgl;
struct {
struct scatterlist *bam_sgl;
int sgl_cnt;
};
};
struct dma_async_tx_descriptor *dma_desc;
};
/*
* holds the current register values that we want to write. acts as a contiguous
* chunk of memory which we use to write the controller registers through DMA.
*/
struct nandc_regs {
__le32 cmd;
__le32 addr0;
__le32 addr1;
__le32 chip_sel;
__le32 exec;
__le32 cfg0;
__le32 cfg1;
__le32 ecc_bch_cfg;
__le32 clrflashstatus;
__le32 clrreadstatus;
__le32 cmd1;
__le32 vld;
__le32 orig_cmd1;
__le32 orig_vld;
__le32 ecc_buf_cfg;
__le32 read_location0;
__le32 read_location1;
__le32 read_location2;
__le32 read_location3;
__le32 erased_cw_detect_cfg_clr;
__le32 erased_cw_detect_cfg_set;
};
/*
* NAND controller data struct
*
* @controller: base controller structure
* @host_list: list containing all the chips attached to the
* controller
* @dev: parent device
* @base: MMIO base
* @base_phys: physical base address of controller registers
* @base_dma: dma base address of controller registers
* @core_clk: controller clock
* @aon_clk: another controller clock
*
* @chan: dma channel
* @cmd_crci: ADM DMA CRCI for command flow control
* @data_crci: ADM DMA CRCI for data flow control
* @desc_list: DMA descriptor list (list of desc_infos)
*
* @data_buffer: our local DMA buffer for page read/writes,
* used when we can't use the buffer provided
* by upper layers directly
* @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
* functions
* @reg_read_buf: local buffer for reading back registers via DMA
* @reg_read_dma: contains dma address for register read buffer
* @reg_read_pos: marker for data read in reg_read_buf
*
* @regs: a contiguous chunk of memory for DMA register
* writes. contains the register values to be
* written to controller
* @cmd1/vld: some fixed controller register values
* @props: properties of current NAND controller,
* initialized via DT match data
* @max_cwperpage: maximum QPIC codewords required. calculated
* from all connected NAND devices pagesize
*/
struct qcom_nand_controller {
struct nand_controller controller;
struct list_head host_list;
struct device *dev;
void __iomem *base;
phys_addr_t base_phys;
dma_addr_t base_dma;
struct clk *core_clk;
struct clk *aon_clk;
union {
/* will be used only by QPIC for BAM DMA */
struct {
struct dma_chan *tx_chan;
struct dma_chan *rx_chan;
struct dma_chan *cmd_chan;
};
/* will be used only by EBI2 for ADM DMA */
struct {
struct dma_chan *chan;
unsigned int cmd_crci;
unsigned int data_crci;
};
};
struct list_head desc_list;
struct bam_transaction *bam_txn;
u8 *data_buffer;
int buf_size;
int buf_count;
int buf_start;
unsigned int max_cwperpage;
__le32 *reg_read_buf;
dma_addr_t reg_read_dma;
int reg_read_pos;
struct nandc_regs *regs;
u32 cmd1, vld;
const struct qcom_nandc_props *props;
};
/*
* NAND chip structure
*
* @chip: base NAND chip structure
* @node: list node to add itself to host_list in
* qcom_nand_controller
*
* @cs: chip select value for this chip
* @cw_size: the number of bytes in a single step/codeword
* of a page, consisting of all data, ecc, spare
* and reserved bytes
* @cw_data: the number of bytes within a codeword protected
* by ECC
* @use_ecc: request the controller to use ECC for the
* upcoming read/write
* @bch_enabled: flag to tell whether BCH ECC mode is used
* @ecc_bytes_hw: ECC bytes used by controller hardware for this
* chip
* @status: value to be returned if NAND_CMD_STATUS command
* is executed
* @last_command: keeps track of last command on this chip. used
* for reading correct status
*
* @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
* ecc/non-ecc mode for the current nand flash
* device
*/
struct qcom_nand_host {
struct nand_chip chip;
struct list_head node;
int cs;
int cw_size;
int cw_data;
bool use_ecc;
bool bch_enabled;
int ecc_bytes_hw;
int spare_bytes;
int bbm_size;
u8 status;
int last_command;
u32 cfg0, cfg1;
u32 cfg0_raw, cfg1_raw;
u32 ecc_buf_cfg;
u32 ecc_bch_cfg;
u32 clrflashstatus;
u32 clrreadstatus;
};
/*
* This data type corresponds to the NAND controller properties which varies
* among different NAND controllers.
* @ecc_modes - ecc mode for NAND
* @is_bam - whether NAND controller is using BAM
* @is_qpic - whether NAND CTRL is part of qpic IP
* @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
*/
struct qcom_nandc_props {
u32 ecc_modes;
bool is_bam;
bool is_qpic;
u32 dev_cmd_reg_start;
};
/* Frees the BAM transaction memory */
static void free_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn = nandc->bam_txn;
devm_kfree(nandc->dev, bam_txn);
}
/* Allocates and Initializes the BAM transaction */
static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn;
size_t bam_txn_size;
unsigned int num_cw = nandc->max_cwperpage;
void *bam_txn_buf;
bam_txn_size =
sizeof(*bam_txn) + num_cw *
((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
if (!bam_txn_buf)
return NULL;
bam_txn = bam_txn_buf;
bam_txn_buf += sizeof(*bam_txn);
bam_txn->bam_ce = bam_txn_buf;
bam_txn_buf +=
sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
bam_txn->cmd_sgl = bam_txn_buf;
bam_txn_buf +=
sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
bam_txn->data_sgl = bam_txn_buf;
init_completion(&bam_txn->txn_done);
return bam_txn;
}
/* Clears the BAM transaction indexes */
static void clear_bam_transaction(struct qcom_nand_controller *nandc)
{
struct bam_transaction *bam_txn = nandc->bam_txn;
if (!nandc->props->is_bam)
return;
bam_txn->bam_ce_pos = 0;
bam_txn->bam_ce_start = 0;
bam_txn->cmd_sgl_pos = 0;
bam_txn->cmd_sgl_start = 0;
bam_txn->tx_sgl_pos = 0;
bam_txn->tx_sgl_start = 0;
bam_txn->rx_sgl_pos = 0;
bam_txn->rx_sgl_start = 0;
bam_txn->last_data_desc = NULL;
bam_txn->wait_second_completion = false;
sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
QPIC_PER_CW_CMD_SGL);
sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
QPIC_PER_CW_DATA_SGL);
reinit_completion(&bam_txn->txn_done);
}
/* Callback for DMA descriptor completion */
static void qpic_bam_dma_done(void *data)
{
struct bam_transaction *bam_txn = data;
/*
* In case of data transfer with NAND, 2 callbacks will be generated.
* One for command channel and another one for data channel.
* If current transaction has data descriptors
* (i.e. wait_second_completion is true), then set this to false
* and wait for second DMA descriptor completion.
*/
if (bam_txn->wait_second_completion)
bam_txn->wait_second_completion = false;
else
complete(&bam_txn->txn_done);
}
static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
{
return container_of(chip, struct qcom_nand_host, chip);
}
static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip *chip)
{
return container_of(chip->controller, struct qcom_nand_controller,
controller);
}
static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
{
return ioread32(nandc->base + offset);
}
static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
u32 val)
{
iowrite32(val, nandc->base + offset);
}
static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
bool is_cpu)
{
if (!nandc->props->is_bam)
return;
if (is_cpu)
dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
else
dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
}
static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
{
switch (offset) {
case NAND_FLASH_CMD:
return &regs->cmd;
case NAND_ADDR0:
return &regs->addr0;
case NAND_ADDR1:
return &regs->addr1;
case NAND_FLASH_CHIP_SELECT:
return &regs->chip_sel;
case NAND_EXEC_CMD:
return &regs->exec;
case NAND_FLASH_STATUS:
return &regs->clrflashstatus;
case NAND_DEV0_CFG0:
return &regs->cfg0;
case NAND_DEV0_CFG1:
return &regs->cfg1;
case NAND_DEV0_ECC_CFG:
return &regs->ecc_bch_cfg;
case NAND_READ_STATUS:
return &regs->clrreadstatus;
case NAND_DEV_CMD1:
return &regs->cmd1;
case NAND_DEV_CMD1_RESTORE:
return &regs->orig_cmd1;
case NAND_DEV_CMD_VLD:
return &regs->vld;
case NAND_DEV_CMD_VLD_RESTORE:
return &regs->orig_vld;
case NAND_EBI2_ECC_BUF_CFG:
return &regs->ecc_buf_cfg;
case NAND_READ_LOCATION_0:
return &regs->read_location0;
case NAND_READ_LOCATION_1:
return &regs->read_location1;
case NAND_READ_LOCATION_2:
return &regs->read_location2;
case NAND_READ_LOCATION_3:
return &regs->read_location3;
default:
return NULL;
}
}
static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
u32 val)
{
struct nandc_regs *regs = nandc->regs;
__le32 *reg;
reg = offset_to_nandc_reg(regs, offset);
if (reg)
*reg = cpu_to_le32(val);
}
/* helper to configure address register values */
static void set_address(struct qcom_nand_host *host, u16 column, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
if (chip->options & NAND_BUSWIDTH_16)
column >>= 1;
nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
}
/*
* update_rw_regs: set up read/write register values, these will be
* written to the NAND controller registers via DMA
*
* @num_cw: number of steps for the read/write operation
* @read: read or write operation
*/
static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
u32 cmd, cfg0, cfg1, ecc_bch_cfg;
if (read) {
if (host->use_ecc)
cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
else
cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
} else {
cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
}
if (host->use_ecc) {
cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
(num_cw - 1) << CW_PER_PAGE;
cfg1 = host->cfg1;
ecc_bch_cfg = host->ecc_bch_cfg;
} else {
cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
(num_cw - 1) << CW_PER_PAGE;
cfg1 = host->cfg1_raw;
ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
}
nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
if (read)
nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
host->cw_data : host->cw_size, 1);
}
/*
* Maps the scatter gather list for DMA transfer and forms the DMA descriptor
* for BAM. This descriptor will be added in the NAND DMA descriptor queue
* which will be submitted to DMA engine.
*/
static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
struct dma_chan *chan,
unsigned long flags)
{
struct desc_info *desc;
struct scatterlist *sgl;
unsigned int sgl_cnt;
int ret;
struct bam_transaction *bam_txn = nandc->bam_txn;
enum dma_transfer_direction dir_eng;
struct dma_async_tx_descriptor *dma_desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
if (chan == nandc->cmd_chan) {
sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
} else if (chan == nandc->tx_chan) {
sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
} else {
sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
dir_eng = DMA_DEV_TO_MEM;
desc->dir = DMA_FROM_DEVICE;
}
sg_mark_end(sgl + sgl_cnt - 1);
ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
if (ret == 0) {
dev_err(nandc->dev, "failure in mapping desc\n");
kfree(desc);
return -ENOMEM;
}
desc->sgl_cnt = sgl_cnt;
desc->bam_sgl = sgl;
dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
flags);
if (!dma_desc) {
dev_err(nandc->dev, "failure in prep desc\n");
dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
kfree(desc);
return -EINVAL;
}
desc->dma_desc = dma_desc;
/* update last data/command descriptor */
if (chan == nandc->cmd_chan)
bam_txn->last_cmd_desc = dma_desc;
else
bam_txn->last_data_desc = dma_desc;
list_add_tail(&desc->node, &nandc->desc_list);
return 0;
}
/*
* Prepares the command descriptor for BAM DMA which will be used for NAND
* register reads and writes. The command descriptor requires the command
* to be formed in command element type so this function uses the command
* element from bam transaction ce array and fills the same with required
* data. A single SGL can contain multiple command elements so
* NAND_BAM_NEXT_SGL will be used for starting the separate SGL
* after the current command element.
*/
static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
int reg_off, const void *vaddr,
int size, unsigned int flags)
{
int bam_ce_size;
int i, ret;
struct bam_cmd_element *bam_ce_buffer;
struct bam_transaction *bam_txn = nandc->bam_txn;
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
/* fill the command desc */
for (i = 0; i < size; i++) {
if (read)
bam_prep_ce(&bam_ce_buffer[i],
nandc_reg_phys(nandc, reg_off + 4 * i),
BAM_READ_COMMAND,
reg_buf_dma_addr(nandc,
(__le32 *)vaddr + i));
else
bam_prep_ce_le32(&bam_ce_buffer[i],
nandc_reg_phys(nandc, reg_off + 4 * i),
BAM_WRITE_COMMAND,
*((__le32 *)vaddr + i));
}
bam_txn->bam_ce_pos += size;
/* use the separate sgl after this command */
if (flags & NAND_BAM_NEXT_SGL) {
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
bam_ce_size = (bam_txn->bam_ce_pos -
bam_txn->bam_ce_start) *
sizeof(struct bam_cmd_element);
sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
bam_ce_buffer, bam_ce_size);
bam_txn->cmd_sgl_pos++;
bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
if (flags & NAND_BAM_NWD) {
ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
DMA_PREP_FENCE |
DMA_PREP_CMD);
if (ret)
return ret;
}
}
return 0;
}
/*
* Prepares the data descriptor for BAM DMA which will be used for NAND
* data reads and writes.
*/
static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
const void *vaddr,
int size, unsigned int flags)
{
int ret;
struct bam_transaction *bam_txn = nandc->bam_txn;
if (read) {
sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
vaddr, size);
bam_txn->rx_sgl_pos++;
} else {
sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
vaddr, size);
bam_txn->tx_sgl_pos++;
/*
* BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
* is not set, form the DMA descriptor
*/
if (!(flags & NAND_BAM_NO_EOT)) {
ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
DMA_PREP_INTERRUPT);
if (ret)
return ret;
}
}
return 0;
}
static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
int reg_off, const void *vaddr, int size,
bool flow_control)
{
struct desc_info *desc;
struct dma_async_tx_descriptor *dma_desc;
struct scatterlist *sgl;
struct dma_slave_config slave_conf;
enum dma_transfer_direction dir_eng;
int ret;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
sgl = &desc->adm_sgl;
sg_init_one(sgl, vaddr, size);
if (read) {
dir_eng = DMA_DEV_TO_MEM;
desc->dir = DMA_FROM_DEVICE;
} else {
dir_eng = DMA_MEM_TO_DEV;
desc->dir = DMA_TO_DEVICE;
}
ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
if (ret == 0) {
ret = -ENOMEM;
goto err;
}
memset(&slave_conf, 0x00, sizeof(slave_conf));
slave_conf.device_fc = flow_control;
if (read) {
slave_conf.src_maxburst = 16;
slave_conf.src_addr = nandc->base_dma + reg_off;
slave_conf.slave_id = nandc->data_crci;
} else {
slave_conf.dst_maxburst = 16;
slave_conf.dst_addr = nandc->base_dma + reg_off;
slave_conf.slave_id = nandc->cmd_crci;
}
ret = dmaengine_slave_config(nandc->chan, &slave_conf);
if (ret) {
dev_err(nandc->dev, "failed to configure dma channel\n");
goto err;
}
dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
if (!dma_desc) {
dev_err(nandc->dev, "failed to prepare desc\n");
ret = -EINVAL;
goto err;
}
desc->dma_desc = dma_desc;
list_add_tail(&desc->node, &nandc->desc_list);
return 0;
err:
kfree(desc);
return ret;
}
/*
* read_reg_dma: prepares a descriptor to read a given number of
* contiguous registers to the reg_read_buf pointer
*
* @first: offset of the first register in the contiguous block
* @num_regs: number of registers to read
* @flags: flags to control DMA descriptor preparation
*/
static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
int num_regs, unsigned int flags)
{
bool flow_control = false;
void *vaddr;
vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
nandc->reg_read_pos += num_regs;
if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
first = dev_cmd_reg_addr(nandc, first);
if (nandc->props->is_bam)
return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
num_regs, flags);
if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
flow_control = true;
return prep_adm_dma_desc(nandc, true, first, vaddr,
num_regs * sizeof(u32), flow_control);
}
/*
* write_reg_dma: prepares a descriptor to write a given number of
* contiguous registers
*
* @first: offset of the first register in the contiguous block
* @num_regs: number of registers to write
* @flags: flags to control DMA descriptor preparation
*/
static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
int num_regs, unsigned int flags)
{
bool flow_control = false;
struct nandc_regs *regs = nandc->regs;
void *vaddr;
vaddr = offset_to_nandc_reg(regs, first);
if (first == NAND_ERASED_CW_DETECT_CFG) {
if (flags & NAND_ERASED_CW_SET)
vaddr = &regs->erased_cw_detect_cfg_set;
else
vaddr = &regs->erased_cw_detect_cfg_clr;
}
if (first == NAND_EXEC_CMD)
flags |= NAND_BAM_NWD;
if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
if (nandc->props->is_bam)
return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
num_regs, flags);
if (first == NAND_FLASH_CMD)
flow_control = true;
return prep_adm_dma_desc(nandc, false, first, vaddr,
num_regs * sizeof(u32), flow_control);
}
/*
* read_data_dma: prepares a DMA descriptor to transfer data from the
* controller's internal buffer to the buffer 'vaddr'
*
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to write to
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*/
static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
const u8 *vaddr, int size, unsigned int flags)
{
if (nandc->props->is_bam)
return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
}
/*
* write_data_dma: prepares a DMA descriptor to transfer data from
* 'vaddr' to the controller's internal buffer
*
* @reg_off: offset within the controller's data buffer
* @vaddr: virtual address of the buffer we want to read from
* @size: DMA transaction size in bytes
* @flags: flags to control DMA descriptor preparation
*/
static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
const u8 *vaddr, int size, unsigned int flags)
{
if (nandc->props->is_bam)
return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before reading a NAND page.
*/
static void config_nand_page_read(struct qcom_nand_controller *nandc)
{
write_reg_dma(nandc, NAND_ADDR0, 2, 0);
write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before reading each codeword in NAND page.
*/
static void
config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
{
if (nandc->props->is_bam)
write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
if (use_ecc) {
read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
NAND_BAM_NEXT_SGL);
} else {
read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
}
}
/*
* Helper to prepare dma descriptors to configure registers needed for reading a
* single codeword in page
*/
static void
config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
bool use_ecc)
{
config_nand_page_read(nandc);
config_nand_cw_read(nandc, use_ecc);
}
/*
* Helper to prepare DMA descriptors used to configure registers needed for
* before writing a NAND page.
*/
static void config_nand_page_write(struct qcom_nand_controller *nandc)
{
write_reg_dma(nandc, NAND_ADDR0, 2, 0);
write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
NAND_BAM_NEXT_SGL);
}
/*
* Helper to prepare DMA descriptors for configuring registers
* before writing each codeword in NAND page.
*/
static void config_nand_cw_write(struct qcom_nand_controller *nandc)
{
write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
}
/*
* the following functions are used within chip->legacy.cmdfunc() to
* perform different NAND_CMD_* commands
*/
/* sets up descriptors for NAND_CMD_PARAM */
static int nandc_param(struct qcom_nand_host *host)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
/*
* NAND_CMD_PARAM is called before we know much about the FLASH chip
* in use. we configure the controller to perform a raw read of 512
* bytes to read onfi params
*/
nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
nandc_set_reg(nandc, NAND_ADDR0, 0);
nandc_set_reg(nandc, NAND_ADDR1, 0);
nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
| 512 << UD_SIZE_BYTES
| 5 << NUM_ADDR_CYCLES
| 0 << SPARE_SIZE_BYTES);
nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
| 0 << CS_ACTIVE_BSY
| 17 << BAD_BLOCK_BYTE_NUM
| 1 << BAD_BLOCK_IN_SPARE_AREA
| 2 << WR_RD_BSY_GAP
| 0 << WIDE_FLASH
| 1 << DEV0_CFG1_ECC_DISABLE);
nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
/* configure CMD1 and VLD for ONFI param probing */
nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
(nandc->vld & ~READ_START_VLD));
nandc_set_reg(nandc, NAND_DEV_CMD1,
(nandc->cmd1 & ~(0xFF << READ_ADDR))
| NAND_CMD_PARAM << READ_ADDR);
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
nandc_set_read_loc(nandc, 0, 0, 512, 1);
write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
nandc->buf_count = 512;
memset(nandc->data_buffer, 0xff, nandc->buf_count);
config_nand_single_cw_page_read(nandc, false);
read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
nandc->buf_count, 0);
/* restore CMD1 and VLD regs */
write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
return 0;
}
/* sets up descriptors for NAND_CMD_ERASE1 */
static int erase_block(struct qcom_nand_host *host, int page_addr)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
nandc_set_reg(nandc, NAND_FLASH_CMD,
OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
nandc_set_reg(nandc, NAND_ADDR0, page_addr);
nandc_set_reg(nandc, NAND_ADDR1, 0);
nandc_set_reg(nandc, NAND_DEV0_CFG0,
host->cfg0_raw & ~(7 << CW_PER_PAGE));
nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
return 0;
}
/* sets up descriptors for NAND_CMD_READID */
static int read_id(struct qcom_nand_host *host, int column)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
if (column == -1)
return 0;
nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
nandc_set_reg(nandc, NAND_ADDR0, column);
nandc_set_reg(nandc, NAND_ADDR1, 0);
nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
nandc->props->is_bam ? 0 : DM_EN);
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
return 0;
}
/* sets up descriptors for NAND_CMD_RESET */
static int reset(struct qcom_nand_host *host)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
return 0;
}
/* helpers to submit/free our list of dma descriptors */
static int submit_descs(struct qcom_nand_controller *nandc)
{
struct desc_info *desc;
dma_cookie_t cookie = 0;
struct bam_transaction *bam_txn = nandc->bam_txn;
int r;
if (nandc->props->is_bam) {
if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
if (r)
return r;
}
if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
r = prepare_bam_async_desc(nandc, nandc->tx_chan,
DMA_PREP_INTERRUPT);
if (r)
return r;
}
if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
DMA_PREP_CMD);
if (r)
return r;
}
}
list_for_each_entry(desc, &nandc->desc_list, node)
cookie = dmaengine_submit(desc->dma_desc);
if (nandc->props->is_bam) {
bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
bam_txn->last_cmd_desc->callback_param = bam_txn;
if (bam_txn->last_data_desc) {
bam_txn->last_data_desc->callback = qpic_bam_dma_done;
bam_txn->last_data_desc->callback_param = bam_txn;
bam_txn->wait_second_completion = true;
}
dma_async_issue_pending(nandc->tx_chan);
dma_async_issue_pending(nandc->rx_chan);
dma_async_issue_pending(nandc->cmd_chan);
if (!wait_for_completion_timeout(&bam_txn->txn_done,
QPIC_NAND_COMPLETION_TIMEOUT))
return -ETIMEDOUT;
} else {
if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
return -ETIMEDOUT;
}
return 0;
}
static void free_descs(struct qcom_nand_controller *nandc)
{
struct desc_info *desc, *n;
list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
list_del(&desc->node);
if (nandc->props->is_bam)
dma_unmap_sg(nandc->dev, desc->bam_sgl,
desc->sgl_cnt, desc->dir);
else
dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
desc->dir);
kfree(desc);
}
}
/* reset the register read buffer for next NAND operation */
static void clear_read_regs(struct qcom_nand_controller *nandc)
{
nandc->reg_read_pos = 0;
nandc_read_buffer_sync(nandc, false);
}
static void pre_command(struct qcom_nand_host *host, int command)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
nandc->buf_count = 0;
nandc->buf_start = 0;
host->use_ecc = false;
host->last_command = command;
clear_read_regs(nandc);
if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
clear_bam_transaction(nandc);
}
/*
* this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
* privately maintained status byte, this status byte can be read after
* NAND_CMD_STATUS is called
*/
static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int num_cw;
int i;
num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
nandc_read_buffer_sync(nandc, true);
for (i = 0; i < num_cw; i++) {
u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
if (flash_status & FS_MPU_ERR)
host->status &= ~NAND_STATUS_WP;
if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
(flash_status &
FS_DEVICE_STS_ERR)))
host->status |= NAND_STATUS_FAIL;
}
}
static void post_command(struct qcom_nand_host *host, int command)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
switch (command) {
case NAND_CMD_READID:
nandc_read_buffer_sync(nandc, true);
memcpy(nandc->data_buffer, nandc->reg_read_buf,
nandc->buf_count);
break;
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
parse_erase_write_errors(host, command);
break;
default:
break;
}
}
/*
* Implements chip->legacy.cmdfunc. It's only used for a limited set of
* commands. The rest of the commands wouldn't be called by upper layers.
* For example, NAND_CMD_READOOB would never be called because we have our own
* versions of read_oob ops for nand_ecc_ctrl.
*/
static void qcom_nandc_command(struct nand_chip *chip, unsigned int command,
int column, int page_addr)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
bool wait = false;
int ret = 0;
pre_command(host, command);
switch (command) {
case NAND_CMD_RESET:
ret = reset(host);
wait = true;
break;
case NAND_CMD_READID:
nandc->buf_count = 4;
ret = read_id(host, column);
wait = true;
break;
case NAND_CMD_PARAM:
ret = nandc_param(host);
wait = true;
break;
case NAND_CMD_ERASE1:
ret = erase_block(host, page_addr);
wait = true;
break;
case NAND_CMD_READ0:
/* we read the entire page for now */
WARN_ON(column != 0);
host->use_ecc = true;
set_address(host, 0, page_addr);
update_rw_regs(host, ecc->steps, true);
break;
case NAND_CMD_SEQIN:
WARN_ON(column != 0);
set_address(host, 0, page_addr);
break;
case NAND_CMD_PAGEPROG:
case NAND_CMD_STATUS:
case NAND_CMD_NONE:
default:
break;
}
if (ret) {
dev_err(nandc->dev, "failure executing command %d\n",
command);
free_descs(nandc);
return;
}
if (wait) {
ret = submit_descs(nandc);
if (ret)
dev_err(nandc->dev,
"failure submitting descs for command %d\n",
command);
}
free_descs(nandc);
post_command(host, command);
}
/*
* when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
* an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
*
* when using RS ECC, the HW reports the same erros when reading an erased CW,
* but it notifies that it is an erased CW by placing special characters at
* certain offsets in the buffer.
*
* verify if the page is erased or not, and fix up the page for RS ECC by
* replacing the special characters with 0xff.
*/
static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
{
u8 empty1, empty2;
/*
* an erased page flags an error in NAND_FLASH_STATUS, check if the page
* is erased by looking for 0x54s at offsets 3 and 175 from the
* beginning of each codeword
*/
empty1 = data_buf[3];
empty2 = data_buf[175];
/*
* if the erased codework markers, if they exist override them with
* 0xffs
*/
if ((empty1 == 0x54 && empty2 == 0xff) ||
(empty1 == 0xff && empty2 == 0x54)) {
data_buf[3] = 0xff;
data_buf[175] = 0xff;
}
/*
* check if the entire chunk contains 0xffs or not. if it doesn't, then
* restore the original values at the special offsets
*/
if (memchr_inv(data_buf, 0xff, data_len)) {
data_buf[3] = empty1;
data_buf[175] = empty2;
return false;
}
return true;
}
struct read_stats {
__le32 flash;
__le32 buffer;
__le32 erased_cw;
};
/* reads back FLASH_STATUS register set by the controller */
static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int i;
for (i = 0; i < cw_cnt; i++) {
u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
if (flash & (FS_OP_ERR | FS_MPU_ERR))
return -EIO;
}
return 0;
}
/* performs raw read for one codeword */
static int
qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *data_buf, u8 *oob_buf, int page, int cw)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int data_size1, data_size2, oob_size1, oob_size2;
int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
nand_read_page_op(chip, page, 0, NULL, 0);
host->use_ecc = false;
clear_bam_transaction(nandc);
set_address(host, host->cw_size * cw, page);
update_rw_regs(host, 1, true);
config_nand_page_read(nandc);
data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
oob_size1 = host->bbm_size;
if (cw == (ecc->steps - 1)) {
data_size2 = ecc->size - data_size1 -
((ecc->steps - 1) * 4);
oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size2 = host->cw_data - data_size1;
oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
}
if (nandc->props->is_bam) {
nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
read_loc += data_size1;
nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
read_loc += oob_size1;
nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
read_loc += data_size2;
nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
}
config_nand_cw_read(nandc, false);
read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
reg_off += data_size1;
read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
reg_off += oob_size1;
read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
reg_off += data_size2;
read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
ret = submit_descs(nandc);
free_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
return ret;
}
return check_flash_errors(host, 1);
}
/*
* Bitflips can happen in erased codewords also so this function counts the
* number of 0 in each CW for which ECC engine returns the uncorrectable
* error. The page will be assumed as erased if this count is less than or
* equal to the ecc->strength for each CW.
*
* 1. Both DATA and OOB need to be checked for number of 0. The
* top-level API can be called with only data buf or OOB buf so use
* chip->data_buf if data buf is null and chip->oob_poi if oob buf
* is null for copying the raw bytes.
* 2. Perform raw read for all the CW which has uncorrectable errors.
* 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
* The BBM and spare bytes bit flip won’t affect the ECC so don’t check
* the number of bitflips in this area.
*/
static int
check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, unsigned long uncorrectable_cws,
int page, unsigned int max_bitflips)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *cw_data_buf, *cw_oob_buf;
int cw, data_size, oob_size, ret = 0;
if (!data_buf)
data_buf = nand_get_data_buf(chip);
if (!oob_buf) {
nand_get_data_buf(chip);
oob_buf = chip->oob_poi;
}
for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
if (cw == (ecc->steps - 1)) {
data_size = ecc->size - ((ecc->steps - 1) * 4);
oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
} else {
data_size = host->cw_data;
oob_size = host->ecc_bytes_hw;
}
/* determine starting buffer address for current CW */
cw_data_buf = data_buf + (cw * host->cw_data);
cw_oob_buf = oob_buf + (cw * ecc->bytes);
ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
cw_oob_buf, page, cw);
if (ret)
return ret;
/*
* make sure it isn't an erased page reported
* as not-erased by HW because of a few bitflips
*/
ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
cw_oob_buf + host->bbm_size,
oob_size, NULL,
0, ecc->strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
}
}
return max_bitflips;
}
/*
* reads back status registers set by the controller to notify page read
* errors. this is equivalent to what 'ecc->correct()' would do.
*/
static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
unsigned int max_bitflips = 0, uncorrectable_cws = 0;
struct read_stats *buf;
bool flash_op_err = false, erased;
int i;
u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
buf = (struct read_stats *)nandc->reg_read_buf;
nandc_read_buffer_sync(nandc, true);
for (i = 0; i < ecc->steps; i++, buf++) {
u32 flash, buffer, erased_cw;
int data_len, oob_len;
if (i == (ecc->steps - 1)) {
data_len = ecc->size - ((ecc->steps - 1) << 2);
oob_len = ecc->steps << 2;
} else {
data_len = host->cw_data;
oob_len = 0;
}
flash = le32_to_cpu(buf->flash);
buffer = le32_to_cpu(buf->buffer);
erased_cw = le32_to_cpu(buf->erased_cw);
/*
* Check ECC failure for each codeword. ECC failure can
* happen in either of the following conditions
* 1. If number of bitflips are greater than ECC engine
* capability.
* 2. If this codeword contains all 0xff for which erased
* codeword detection check will be done.
*/
if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
/*
* For BCH ECC, ignore erased codeword errors, if
* ERASED_CW bits are set.
*/
if (host->bch_enabled) {
erased = (erased_cw & ERASED_CW) == ERASED_CW ?
true : false;
/*
* For RS ECC, HW reports the erased CW by placing
* special characters at certain offsets in the buffer.
* These special characters will be valid only if
* complete page is read i.e. data_buf is not NULL.
*/
} else if (data_buf) {
erased = erased_chunk_check_and_fixup(data_buf,
data_len);
} else {
erased = false;
}
if (!erased)
uncorrectable_cws |= BIT(i);
/*
* Check if MPU or any other operational error (timeout,
* device failure, etc.) happened for this codeword and
* make flash_op_err true. If flash_op_err is set, then
* EIO will be returned for page read.
*/
} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
flash_op_err = true;
/*
* No ECC or operational errors happened. Check the number of
* bits corrected and update the ecc_stats.corrected.
*/
} else {
unsigned int stat;
stat = buffer & BS_CORRECTABLE_ERR_MSK;
mtd->ecc_stats.corrected += stat;
max_bitflips = max(max_bitflips, stat);
}
if (data_buf)
data_buf += data_len;
if (oob_buf)
oob_buf += oob_len + ecc->bytes;
}
if (flash_op_err)
return -EIO;
if (!uncorrectable_cws)
return max_bitflips;
return check_for_erased_page(host, data_buf_start, oob_buf_start,
uncorrectable_cws, page,
max_bitflips);
}
/*
* helper to perform the actual page read operation, used by ecc->read_page(),
* ecc->read_oob()
*/
static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
u8 *oob_buf, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
int i, ret;
config_nand_page_read(nandc);
/* queue cmd descs for each codeword */
for (i = 0; i < ecc->steps; i++) {
int data_size, oob_size;
if (i == (ecc->steps - 1)) {
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size = host->cw_data;
oob_size = host->ecc_bytes_hw + host->spare_bytes;
}
if (nandc->props->is_bam) {
if (data_buf && oob_buf) {
nandc_set_read_loc(nandc, 0, 0, data_size, 0);
nandc_set_read_loc(nandc, 1, data_size,
oob_size, 1);
} else if (data_buf) {
nandc_set_read_loc(nandc, 0, 0, data_size, 1);
} else {
nandc_set_read_loc(nandc, 0, data_size,
oob_size, 1);
}
}
config_nand_cw_read(nandc, true);
if (data_buf)
read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
data_size, 0);
/*
* when ecc is enabled, the controller doesn't read the real
* or dummy bad block markers in each chunk. To maintain a
* consistent layout across RAW and ECC reads, we just
* leave the real/dummy BBM offsets empty (i.e, filled with
* 0xffs)
*/
if (oob_buf) {
int j;
for (j = 0; j < host->bbm_size; j++)
*oob_buf++ = 0xff;
read_data_dma(nandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
if (data_buf)
data_buf += data_size;
if (oob_buf)
oob_buf += oob_size;
}
ret = submit_descs(nandc);
free_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to read page/oob\n");
return ret;
}
return parse_read_errors(host, data_buf_start, oob_buf_start, page);
}
/*
* a helper that copies the last step/codeword of a page (containing free oob)
* into our local buffer
*/
static int copy_last_cw(struct qcom_nand_host *host, int page)
{
struct nand_chip *chip = &host->chip;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int size;
int ret;
clear_read_regs(nandc);
size = host->use_ecc ? host->cw_data : host->cw_size;
/* prepare a clean read buffer */
memset(nandc->data_buffer, 0xff, size);
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, true);
config_nand_single_cw_page_read(nandc, host->use_ecc);
read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
ret = submit_descs(nandc);
if (ret)
dev_err(nandc->dev, "failed to copy last codeword\n");
free_descs(nandc);
return ret;
}
/* implements ecc->read_page() */
static int qcom_nandc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
u8 *data_buf, *oob_buf = NULL;
nand_read_page_op(chip, page, 0, NULL, 0);
data_buf = buf;
oob_buf = oob_required ? chip->oob_poi : NULL;
clear_bam_transaction(nandc);
return read_page_ecc(host, data_buf, oob_buf, page);
}
/* implements ecc->read_page_raw() */
static int qcom_nandc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int cw, ret;
u8 *data_buf = buf, *oob_buf = chip->oob_poi;
for (cw = 0; cw < ecc->steps; cw++) {
ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
page, cw);
if (ret)
return ret;
data_buf += host->cw_data;
oob_buf += ecc->bytes;
}
return 0;
}
/* implements ecc->read_oob() */
static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
clear_read_regs(nandc);
clear_bam_transaction(nandc);
host->use_ecc = true;
set_address(host, 0, page);
update_rw_regs(host, ecc->steps, true);
return read_page_ecc(host, NULL, chip->oob_poi, page);
}
/* implements ecc->write_page() */
static int qcom_nandc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf, *oob_buf;
int i, ret;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
clear_read_regs(nandc);
clear_bam_transaction(nandc);
data_buf = (u8 *)buf;
oob_buf = chip->oob_poi;
host->use_ecc = true;
update_rw_regs(host, ecc->steps, false);
config_nand_page_write(nandc);
for (i = 0; i < ecc->steps; i++) {
int data_size, oob_size;
if (i == (ecc->steps - 1)) {
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size = host->cw_data;
oob_size = ecc->bytes;
}
write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
/*
* when ECC is enabled, we don't really need to write anything
* to oob for the first n - 1 codewords since these oob regions
* just contain ECC bytes that's written by the controller
* itself. For the last codeword, we skip the bbm positions and
* write to the free oob area.
*/
if (i == (ecc->steps - 1)) {
oob_buf += host->bbm_size;
write_data_dma(nandc, FLASH_BUF_ACC + data_size,
oob_buf, oob_size, 0);
}
config_nand_cw_write(nandc);
data_buf += data_size;
oob_buf += oob_size;
}
ret = submit_descs(nandc);
if (ret)
dev_err(nandc->dev, "failure to write page\n");
free_descs(nandc);
if (!ret)
ret = nand_prog_page_end_op(chip);
return ret;
}
/* implements ecc->write_page_raw() */
static int qcom_nandc_write_page_raw(struct nand_chip *chip,
const uint8_t *buf, int oob_required,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *data_buf, *oob_buf;
int i, ret;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
clear_read_regs(nandc);
clear_bam_transaction(nandc);
data_buf = (u8 *)buf;
oob_buf = chip->oob_poi;
host->use_ecc = false;
update_rw_regs(host, ecc->steps, false);
config_nand_page_write(nandc);
for (i = 0; i < ecc->steps; i++) {
int data_size1, data_size2, oob_size1, oob_size2;
int reg_off = FLASH_BUF_ACC;
data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
oob_size1 = host->bbm_size;
if (i == (ecc->steps - 1)) {
data_size2 = ecc->size - data_size1 -
((ecc->steps - 1) << 2);
oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
host->spare_bytes;
} else {
data_size2 = host->cw_data - data_size1;
oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
}
write_data_dma(nandc, reg_off, data_buf, data_size1,
NAND_BAM_NO_EOT);
reg_off += data_size1;
data_buf += data_size1;
write_data_dma(nandc, reg_off, oob_buf, oob_size1,
NAND_BAM_NO_EOT);
reg_off += oob_size1;
oob_buf += oob_size1;
write_data_dma(nandc, reg_off, data_buf, data_size2,
NAND_BAM_NO_EOT);
reg_off += data_size2;
data_buf += data_size2;
write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
oob_buf += oob_size2;
config_nand_cw_write(nandc);
}
ret = submit_descs(nandc);
if (ret)
dev_err(nandc->dev, "failure to write raw page\n");
free_descs(nandc);
if (!ret)
ret = nand_prog_page_end_op(chip);
return ret;
}
/*
* implements ecc->write_oob()
*
* the NAND controller cannot write only data or only OOB within a codeword
* since ECC is calculated for the combined codeword. So update the OOB from
* chip->oob_poi, and pad the data area with OxFF before writing.
*/
static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u8 *oob = chip->oob_poi;
int data_size, oob_size;
int ret;
host->use_ecc = true;
clear_bam_transaction(nandc);
/* calculate the data and oob size for the last codeword/step */
data_size = ecc->size - ((ecc->steps - 1) << 2);
oob_size = mtd->oobavail;
memset(nandc->data_buffer, 0xff, host->cw_data);
/* override new oob content to last codeword */
mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
0, mtd->oobavail);
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, false);
config_nand_page_write(nandc);
write_data_dma(nandc, FLASH_BUF_ACC,
nandc->data_buffer, data_size + oob_size, 0);
config_nand_cw_write(nandc);
ret = submit_descs(nandc);
free_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to write oob\n");
return -EIO;
}
return nand_prog_page_end_op(chip);
}
static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int page, ret, bbpos, bad = 0;
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
/*
* configure registers for a raw sub page read, the address is set to
* the beginning of the last codeword, we don't care about reading ecc
* portion of oob. we just want the first few bytes from this codeword
* that contains the BBM
*/
host->use_ecc = false;
clear_bam_transaction(nandc);
ret = copy_last_cw(host, page);
if (ret)
goto err;
if (check_flash_errors(host, 1)) {
dev_warn(nandc->dev, "error when trying to read BBM\n");
goto err;
}
bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
bad = nandc->data_buffer[bbpos] != 0xff;
if (chip->options & NAND_BUSWIDTH_16)
bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
err:
return bad;
}
static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int page, ret;
clear_read_regs(nandc);
clear_bam_transaction(nandc);
/*
* to mark the BBM as bad, we flash the entire last codeword with 0s.
* we don't care about the rest of the content in the codeword since
* we aren't going to use this block again
*/
memset(nandc->data_buffer, 0x00, host->cw_size);
page = (int)(ofs >> chip->page_shift) & chip->pagemask;
/* prepare write */
host->use_ecc = false;
set_address(host, host->cw_size * (ecc->steps - 1), page);
update_rw_regs(host, 1, false);
config_nand_page_write(nandc);
write_data_dma(nandc, FLASH_BUF_ACC,
nandc->data_buffer, host->cw_size, 0);
config_nand_cw_write(nandc);
ret = submit_descs(nandc);
free_descs(nandc);
if (ret) {
dev_err(nandc->dev, "failure to update BBM\n");
return -EIO;
}
return nand_prog_page_end_op(chip);
}
/*
* the three functions below implement chip->legacy.read_byte(),
* chip->legacy.read_buf() and chip->legacy.write_buf() respectively. these
* aren't used for reading/writing page data, they are used for smaller data
* like reading id, status etc
*/
static uint8_t qcom_nandc_read_byte(struct nand_chip *chip)
{
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
u8 *buf = nandc->data_buffer;
u8 ret = 0x0;
if (host->last_command == NAND_CMD_STATUS) {
ret = host->status;
host->status = NAND_STATUS_READY | NAND_STATUS_WP;
return ret;
}
if (nandc->buf_start < nandc->buf_count)
ret = buf[nandc->buf_start++];
return ret;
}
static void qcom_nandc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
nandc->buf_start += real_len;
}
static void qcom_nandc_write_buf(struct nand_chip *chip, const uint8_t *buf,
int len)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
nandc->buf_start += real_len;
}
/* we support only one external chip for now */
static void qcom_nandc_select_chip(struct nand_chip *chip, int chipnr)
{
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
if (chipnr <= 0)
return;
dev_warn(nandc->dev, "invalid chip select\n");
}
/*
* NAND controller page layout info
*
* Layout with ECC enabled:
*
* |----------------------| |---------------------------------|
* | xx.......yy| | *********xx.......yy|
* | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
* | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
* | xx.......yy| | *********xx.......yy|
* |----------------------| |---------------------------------|
* codeword 1,2..n-1 codeword n
* <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
*
* n = Number of codewords in the page
* . = ECC bytes
* * = Spare/free bytes
* x = Unused byte(s)
* y = Reserved byte(s)
*
* 2K page: n = 4, spare = 16 bytes
* 4K page: n = 8, spare = 32 bytes
* 8K page: n = 16, spare = 64 bytes
*
* the qcom nand controller operates at a sub page/codeword level. each
* codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
* the number of ECC bytes vary based on the ECC strength and the bus width.
*
* the first n - 1 codewords contains 516 bytes of user data, the remaining
* 12/16 bytes consist of ECC and reserved data. The nth codeword contains
* both user data and spare(oobavail) bytes that sum up to 516 bytes.
*
* When we access a page with ECC enabled, the reserved bytes(s) are not
* accessible at all. When reading, we fill up these unreadable positions
* with 0xffs. When writing, the controller skips writing the inaccessible
* bytes.
*
* Layout with ECC disabled:
*
* |------------------------------| |---------------------------------------|
* | yy xx.......| | bb *********xx.......|
* | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
* | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
* | yy xx.......| | bb *********xx.......|
* |------------------------------| |---------------------------------------|
* codeword 1,2..n-1 codeword n
* <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
*
* n = Number of codewords in the page
* . = ECC bytes
* * = Spare/free bytes
* x = Unused byte(s)
* y = Dummy Bad Bock byte(s)
* b = Real Bad Block byte(s)
* size1/size2 = function of codeword size and 'n'
*
* when the ECC block is disabled, one reserved byte (or two for 16 bit bus
* width) is now accessible. For the first n - 1 codewords, these are dummy Bad
* Block Markers. In the last codeword, this position contains the real BBM
*
* In order to have a consistent layout between RAW and ECC modes, we assume
* the following OOB layout arrangement:
*
* |-----------| |--------------------|
* |yyxx.......| |bb*********xx.......|
* |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
* |yyxx.......| |bb*********xx.......|
* |yyxx.......| |bb*********xx.......|
* |-----------| |--------------------|
* first n - 1 nth OOB region
* OOB regions
*
* n = Number of codewords in the page
* . = ECC bytes
* * = FREE OOB bytes
* y = Dummy bad block byte(s) (inaccessible when ECC enabled)
* x = Unused byte(s)
* b = Real bad block byte(s) (inaccessible when ECC enabled)
*
* This layout is read as is when ECC is disabled. When ECC is enabled, the
* inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
* and assumed as 0xffs when we read a page/oob. The ECC, unused and
* dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
* the sum of the three).
*/
static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section > 1)
return -ERANGE;
if (!section) {
oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
host->bbm_size;
oobregion->offset = 0;
} else {
oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
oobregion->offset = mtd->oobsize - oobregion->length;
}
return 0;
}
static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = ecc->steps * 4;
oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
return 0;
}
static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
.ecc = qcom_nand_ooblayout_ecc,
.free = qcom_nand_ooblayout_free,
};
static int
qcom_nandc_calc_ecc_bytes(int step_size, int strength)
{
return strength == 4 ? 12 : 16;
}
NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
NANDC_STEP_SIZE, 4, 8);
static int qcom_nand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct qcom_nand_host *host = to_qcom_nand_host(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int cwperpage, bad_block_byte, ret;
bool wide_bus;
int ecc_mode = 1;
/* controller only supports 512 bytes data steps */
ecc->size = NANDC_STEP_SIZE;
wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
cwperpage = mtd->writesize / NANDC_STEP_SIZE;
/*
* Each CW has 4 available OOB bytes which will be protected with ECC
* so remaining bytes can be used for ECC.
*/
ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
mtd->oobsize - (cwperpage * 4));
if (ret) {
dev_err(nandc->dev, "No valid ECC settings possible\n");
return ret;
}
if (ecc->strength >= 8) {
/* 8 bit ECC defaults to BCH ECC on all platforms */
host->bch_enabled = true;
ecc_mode = 1;
if (wide_bus) {
host->ecc_bytes_hw = 14;
host->spare_bytes = 0;
host->bbm_size = 2;
} else {
host->ecc_bytes_hw = 13;
host->spare_bytes = 2;
host->bbm_size = 1;
}
} else {
/*
* if the controller supports BCH for 4 bit ECC, the controller
* uses lesser bytes for ECC. If RS is used, the ECC bytes is
* always 10 bytes
*/
if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
/* BCH */
host->bch_enabled = true;
ecc_mode = 0;
if (wide_bus) {
host->ecc_bytes_hw = 8;
host->spare_bytes = 2;
host->bbm_size = 2;
} else {
host->ecc_bytes_hw = 7;
host->spare_bytes = 4;
host->bbm_size = 1;
}
} else {
/* RS */
host->ecc_bytes_hw = 10;
if (wide_bus) {
host->spare_bytes = 0;
host->bbm_size = 2;
} else {
host->spare_bytes = 1;
host->bbm_size = 1;
}
}
}
/*
* we consider ecc->bytes as the sum of all the non-data content in a
* step. It gives us a clean representation of the oob area (even if
* all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
* ECC and 12 bytes for 4 bit ECC
*/
ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
ecc->read_page = qcom_nandc_read_page;
ecc->read_page_raw = qcom_nandc_read_page_raw;
ecc->read_oob = qcom_nandc_read_oob;
ecc->write_page = qcom_nandc_write_page;
ecc->write_page_raw = qcom_nandc_write_page_raw;
ecc->write_oob = qcom_nandc_write_oob;
ecc->mode = NAND_ECC_HW;
mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
cwperpage);
/*
* DATA_UD_BYTES varies based on whether the read/write command protects
* spare data with ECC too. We protect spare data by default, so we set
* it to main + spare data, which are 512 and 4 bytes respectively.
*/
host->cw_data = 516;
/*
* total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
* for 8 bit ECC
*/
host->cw_size = host->cw_data + ecc->bytes;
bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
| host->cw_data << UD_SIZE_BYTES
| 0 << DISABLE_STATUS_AFTER_WRITE
| 5 << NUM_ADDR_CYCLES
| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
| 0 << STATUS_BFR_READ
| 1 << SET_RD_MODE_AFTER_STATUS
| host->spare_bytes << SPARE_SIZE_BYTES;
host->cfg1 = 7 << NAND_RECOVERY_CYCLES
| 0 << CS_ACTIVE_BSY
| bad_block_byte << BAD_BLOCK_BYTE_NUM
| 0 << BAD_BLOCK_IN_SPARE_AREA
| 2 << WR_RD_BSY_GAP
| wide_bus << WIDE_FLASH
| host->bch_enabled << ENABLE_BCH_ECC;
host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
| host->cw_size << UD_SIZE_BYTES
| 5 << NUM_ADDR_CYCLES
| 0 << SPARE_SIZE_BYTES;
host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
| 0 << CS_ACTIVE_BSY
| 17 << BAD_BLOCK_BYTE_NUM
| 1 << BAD_BLOCK_IN_SPARE_AREA
| 2 << WR_RD_BSY_GAP
| wide_bus << WIDE_FLASH
| 1 << DEV0_CFG1_ECC_DISABLE;
host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
| 0 << ECC_SW_RESET
| host->cw_data << ECC_NUM_DATA_BYTES
| 1 << ECC_FORCE_CLK_OPEN
| ecc_mode << ECC_MODE
| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
host->ecc_buf_cfg = 0x203 << NUM_STEPS;
host->clrflashstatus = FS_READY_BSY_N;
host->clrreadstatus = 0xc0;
nandc->regs->erased_cw_detect_cfg_clr =
cpu_to_le32(CLR_ERASED_PAGE_DET);
nandc->regs->erased_cw_detect_cfg_set =
cpu_to_le32(SET_ERASED_PAGE_DET);
dev_dbg(nandc->dev,
"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
cwperpage);
return 0;
}
static const struct nand_controller_ops qcom_nandc_ops = {
.attach_chip = qcom_nand_attach_chip,
};
static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
{
if (nandc->props->is_bam) {
if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
dma_unmap_single(nandc->dev, nandc->reg_read_dma,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (nandc->tx_chan)
dma_release_channel(nandc->tx_chan);
if (nandc->rx_chan)
dma_release_channel(nandc->rx_chan);
if (nandc->cmd_chan)
dma_release_channel(nandc->cmd_chan);
} else {
if (nandc->chan)
dma_release_channel(nandc->chan);
}
}
static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
{
int ret;
ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(nandc->dev, "failed to set DMA mask\n");
return ret;
}
/*
* we use the internal buffer for reading ONFI params, reading small
* data like ID and status, and preforming read-copy-write operations
* when writing to a codeword partially. 532 is the maximum possible
* size of a codeword for our nand controller
*/
nandc->buf_size = 532;
nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
GFP_KERNEL);
if (!nandc->data_buffer)
return -ENOMEM;
nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
GFP_KERNEL);
if (!nandc->regs)
return -ENOMEM;
nandc->reg_read_buf = devm_kcalloc(nandc->dev,
MAX_REG_RD, sizeof(*nandc->reg_read_buf),
GFP_KERNEL);
if (!nandc->reg_read_buf)
return -ENOMEM;
if (nandc->props->is_bam) {
nandc->reg_read_dma =
dma_map_single(nandc->dev, nandc->reg_read_buf,
MAX_REG_RD *
sizeof(*nandc->reg_read_buf),
DMA_FROM_DEVICE);
if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
return -EIO;
}
nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
if (IS_ERR(nandc->tx_chan)) {
ret = PTR_ERR(nandc->tx_chan);
nandc->tx_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"tx DMA channel request failed: %d\n",
ret);
goto unalloc;
}
nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
if (IS_ERR(nandc->rx_chan)) {
ret = PTR_ERR(nandc->rx_chan);
nandc->rx_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"rx DMA channel request failed: %d\n",
ret);
goto unalloc;
}
nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
if (IS_ERR(nandc->cmd_chan)) {
ret = PTR_ERR(nandc->cmd_chan);
nandc->cmd_chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"cmd DMA channel request failed: %d\n",
ret);
goto unalloc;
}
/*
* Initially allocate BAM transaction to read ONFI param page.
* After detecting all the devices, this BAM transaction will
* be freed and the next BAM tranasction will be allocated with
* maximum codeword size
*/
nandc->max_cwperpage = 1;
nandc->bam_txn = alloc_bam_transaction(nandc);
if (!nandc->bam_txn) {
dev_err(nandc->dev,
"failed to allocate bam transaction\n");
ret = -ENOMEM;
goto unalloc;
}
} else {
nandc->chan = dma_request_chan(nandc->dev, "rxtx");
if (IS_ERR(nandc->chan)) {
ret = PTR_ERR(nandc->chan);
nandc->chan = NULL;
if (ret != -EPROBE_DEFER)
dev_err(nandc->dev,
"rxtx DMA channel request failed: %d\n",
ret);
return ret;
}
}
INIT_LIST_HEAD(&nandc->desc_list);
INIT_LIST_HEAD(&nandc->host_list);
nand_controller_init(&nandc->controller);
nandc->controller.ops = &qcom_nandc_ops;
return 0;
unalloc:
qcom_nandc_unalloc(nandc);
return ret;
}
/* one time setup of a few nand controller registers */
static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
{
u32 nand_ctrl;
/* kill onenand */
if (!nandc->props->is_qpic)
nandc_write(nandc, SFLASHC_BURST_CFG, 0);
nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
NAND_DEV_CMD_VLD_VAL);
/* enable ADM or BAM DMA */
if (nandc->props->is_bam) {
nand_ctrl = nandc_read(nandc, NAND_CTRL);
/*
*NAND_CTRL is an operational registers, and CPU
* access to operational registers are read only
* in BAM mode. So update the NAND_CTRL register
* only if it is not in BAM mode. In most cases BAM
* mode will be enabled in bootloader
*/
if (!(nand_ctrl & BAM_MODE_EN))
nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
} else {
nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
}
/* save the original values of these registers */
nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
nandc->vld = NAND_DEV_CMD_VLD_VAL;
return 0;
}
static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
struct qcom_nand_host *host,
struct device_node *dn)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = nandc->dev;
int ret;
ret = of_property_read_u32(dn, "reg", &host->cs);
if (ret) {
dev_err(dev, "can't get chip-select\n");
return -ENXIO;
}
nand_set_flash_node(chip, dn);
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
if (!mtd->name)
return -ENOMEM;
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
chip->legacy.cmdfunc = qcom_nandc_command;
chip->legacy.select_chip = qcom_nandc_select_chip;
chip->legacy.read_byte = qcom_nandc_read_byte;
chip->legacy.read_buf = qcom_nandc_read_buf;
chip->legacy.write_buf = qcom_nandc_write_buf;
chip->legacy.set_features = nand_get_set_features_notsupp;
chip->legacy.get_features = nand_get_set_features_notsupp;
/*
* the bad block marker is readable only when we read the last codeword
* of a page with ECC disabled. currently, the nand_base and nand_bbt
* helpers don't allow us to read BB from a nand chip with ECC
* disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
* and block_markbad helpers until we permanently switch to using
* MTD_OPS_RAW for all drivers (with the help of badblockbits)
*/
chip->legacy.block_bad = qcom_nandc_block_bad;
chip->legacy.block_markbad = qcom_nandc_block_markbad;
chip->controller = &nandc->controller;
chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
NAND_SKIP_BBTSCAN;
/* set up initial status value */
host->status = NAND_STATUS_READY | NAND_STATUS_WP;
ret = nand_scan(chip, 1);
if (ret)
return ret;
if (nandc->props->is_bam) {
free_bam_transaction(nandc);
nandc->bam_txn = alloc_bam_transaction(nandc);
if (!nandc->bam_txn) {
dev_err(nandc->dev,
"failed to allocate bam transaction\n");
return -ENOMEM;
}
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
nand_cleanup(chip);
return ret;
}
static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
{
struct device *dev = nandc->dev;
struct device_node *dn = dev->of_node, *child;
struct qcom_nand_host *host;
int ret;
for_each_available_child_of_node(dn, child) {
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
of_node_put(child);
return -ENOMEM;
}
ret = qcom_nand_host_init_and_register(nandc, host, child);
if (ret) {
devm_kfree(dev, host);
continue;
}
list_add_tail(&host->node, &nandc->host_list);
}
if (list_empty(&nandc->host_list))
return -ENODEV;
return 0;
}
/* parse custom DT properties here */
static int qcom_nandc_parse_dt(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
struct device_node *np = nandc->dev->of_node;
int ret;
if (!nandc->props->is_bam) {
ret = of_property_read_u32(np, "qcom,cmd-crci",
&nandc->cmd_crci);
if (ret) {
dev_err(nandc->dev, "command CRCI unspecified\n");
return ret;
}
ret = of_property_read_u32(np, "qcom,data-crci",
&nandc->data_crci);
if (ret) {
dev_err(nandc->dev, "data CRCI unspecified\n");
return ret;
}
}
return 0;
}
static int qcom_nandc_probe(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc;
const void *dev_data;
struct device *dev = &pdev->dev;
struct resource *res;
int ret;
nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
if (!nandc)
return -ENOMEM;
platform_set_drvdata(pdev, nandc);
nandc->dev = dev;
dev_data = of_device_get_match_data(dev);
if (!dev_data) {
dev_err(&pdev->dev, "failed to get device data\n");
return -ENODEV;
}
nandc->props = dev_data;
nandc->core_clk = devm_clk_get(dev, "core");
if (IS_ERR(nandc->core_clk))
return PTR_ERR(nandc->core_clk);
nandc->aon_clk = devm_clk_get(dev, "aon");
if (IS_ERR(nandc->aon_clk))
return PTR_ERR(nandc->aon_clk);
ret = qcom_nandc_parse_dt(pdev);
if (ret)
return ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nandc->base = devm_ioremap_resource(dev, res);
if (IS_ERR(nandc->base))
return PTR_ERR(nandc->base);
nandc->base_phys = res->start;
nandc->base_dma = dma_map_resource(dev, res->start,
resource_size(res),
DMA_BIDIRECTIONAL, 0);
if (!nandc->base_dma)
return -ENXIO;
ret = qcom_nandc_alloc(nandc);
if (ret)
goto err_nandc_alloc;
ret = clk_prepare_enable(nandc->core_clk);
if (ret)
goto err_core_clk;
ret = clk_prepare_enable(nandc->aon_clk);
if (ret)
goto err_aon_clk;
ret = qcom_nandc_setup(nandc);
if (ret)
goto err_setup;
ret = qcom_probe_nand_devices(nandc);
if (ret)
goto err_setup;
return 0;
err_setup:
clk_disable_unprepare(nandc->aon_clk);
err_aon_clk:
clk_disable_unprepare(nandc->core_clk);
err_core_clk:
qcom_nandc_unalloc(nandc);
err_nandc_alloc:
dma_unmap_resource(dev, res->start, resource_size(res),
DMA_BIDIRECTIONAL, 0);
return ret;
}
static int qcom_nandc_remove(struct platform_device *pdev)
{
struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
struct qcom_nand_host *host;
struct nand_chip *chip;
int ret;
list_for_each_entry(host, &nandc->host_list, node) {
chip = &host->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
}
qcom_nandc_unalloc(nandc);
clk_disable_unprepare(nandc->aon_clk);
clk_disable_unprepare(nandc->core_clk);
dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
DMA_BIDIRECTIONAL, 0);
return 0;
}
static const struct qcom_nandc_props ipq806x_nandc_props = {
.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
.is_bam = false,
.dev_cmd_reg_start = 0x0,
};
static const struct qcom_nandc_props ipq4019_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.is_bam = true,
.is_qpic = true,
.dev_cmd_reg_start = 0x0,
};
static const struct qcom_nandc_props ipq8074_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.is_bam = true,
.is_qpic = true,
.dev_cmd_reg_start = 0x7000,
};
/*
* data will hold a struct pointer containing more differences once we support
* more controller variants
*/
static const struct of_device_id qcom_nandc_of_match[] = {
{
.compatible = "qcom,ipq806x-nand",
.data = &ipq806x_nandc_props,
},
{
.compatible = "qcom,ipq4019-nand",
.data = &ipq4019_nandc_props,
},
{
.compatible = "qcom,ipq8074-nand",
.data = &ipq8074_nandc_props,
},
{}
};
MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
static struct platform_driver qcom_nandc_driver = {
.driver = {
.name = "qcom-nandc",
.of_match_table = qcom_nandc_of_match,
},
.probe = qcom_nandc_probe,
.remove = qcom_nandc_remove,
};
module_platform_driver(qcom_nandc_driver);
MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
MODULE_LICENSE("GPL v2");