blob: 2b02fefd094d53fc1ed2342625c8f479f5652cae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved.
*/
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include <uapi/linux/mdio.h>
#include <linux/mdio.h>
#include <linux/usb/cdc.h>
#include <linux/suspend.h>
#include <linux/atomic.h>
#include <linux/acpi.h>
#include <linux/firmware.h>
#include <crypto/hash.h>
/* Information for net-next */
#define NETNEXT_VERSION "11"
/* Information for net */
#define NET_VERSION "11"
#define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION
#define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>"
#define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters"
#define MODULENAME "r8152"
#define R8152_PHY_ID 32
#define PLA_IDR 0xc000
#define PLA_RCR 0xc010
#define PLA_RMS 0xc016
#define PLA_RXFIFO_CTRL0 0xc0a0
#define PLA_RXFIFO_CTRL1 0xc0a4
#define PLA_RXFIFO_CTRL2 0xc0a8
#define PLA_DMY_REG0 0xc0b0
#define PLA_FMC 0xc0b4
#define PLA_CFG_WOL 0xc0b6
#define PLA_TEREDO_CFG 0xc0bc
#define PLA_TEREDO_WAKE_BASE 0xc0c4
#define PLA_MAR 0xcd00
#define PLA_BACKUP 0xd000
#define PLA_BDC_CR 0xd1a0
#define PLA_TEREDO_TIMER 0xd2cc
#define PLA_REALWOW_TIMER 0xd2e8
#define PLA_UPHY_TIMER 0xd388
#define PLA_SUSPEND_FLAG 0xd38a
#define PLA_INDICATE_FALG 0xd38c
#define PLA_MACDBG_PRE 0xd38c /* RTL_VER_04 only */
#define PLA_MACDBG_POST 0xd38e /* RTL_VER_04 only */
#define PLA_EXTRA_STATUS 0xd398
#define PLA_EFUSE_DATA 0xdd00
#define PLA_EFUSE_CMD 0xdd02
#define PLA_LEDSEL 0xdd90
#define PLA_LED_FEATURE 0xdd92
#define PLA_PHYAR 0xde00
#define PLA_BOOT_CTRL 0xe004
#define PLA_LWAKE_CTRL_REG 0xe007
#define PLA_GPHY_INTR_IMR 0xe022
#define PLA_EEE_CR 0xe040
#define PLA_EEEP_CR 0xe080
#define PLA_MAC_PWR_CTRL 0xe0c0
#define PLA_MAC_PWR_CTRL2 0xe0ca
#define PLA_MAC_PWR_CTRL3 0xe0cc
#define PLA_MAC_PWR_CTRL4 0xe0ce
#define PLA_WDT6_CTRL 0xe428
#define PLA_TCR0 0xe610
#define PLA_TCR1 0xe612
#define PLA_MTPS 0xe615
#define PLA_TXFIFO_CTRL 0xe618
#define PLA_RSTTALLY 0xe800
#define PLA_CR 0xe813
#define PLA_CRWECR 0xe81c
#define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */
#define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */
#define PLA_CONFIG5 0xe822
#define PLA_PHY_PWR 0xe84c
#define PLA_OOB_CTRL 0xe84f
#define PLA_CPCR 0xe854
#define PLA_MISC_0 0xe858
#define PLA_MISC_1 0xe85a
#define PLA_OCP_GPHY_BASE 0xe86c
#define PLA_TALLYCNT 0xe890
#define PLA_SFF_STS_7 0xe8de
#define PLA_PHYSTATUS 0xe908
#define PLA_CONFIG6 0xe90a /* CONFIG6 */
#define PLA_BP_BA 0xfc26
#define PLA_BP_0 0xfc28
#define PLA_BP_1 0xfc2a
#define PLA_BP_2 0xfc2c
#define PLA_BP_3 0xfc2e
#define PLA_BP_4 0xfc30
#define PLA_BP_5 0xfc32
#define PLA_BP_6 0xfc34
#define PLA_BP_7 0xfc36
#define PLA_BP_EN 0xfc38
#define USB_USB2PHY 0xb41e
#define USB_SSPHYLINK1 0xb426
#define USB_SSPHYLINK2 0xb428
#define USB_U2P3_CTRL 0xb460
#define USB_CSR_DUMMY1 0xb464
#define USB_CSR_DUMMY2 0xb466
#define USB_DEV_STAT 0xb808
#define USB_CONNECT_TIMER 0xcbf8
#define USB_MSC_TIMER 0xcbfc
#define USB_BURST_SIZE 0xcfc0
#define USB_FW_FIX_EN0 0xcfca
#define USB_FW_FIX_EN1 0xcfcc
#define USB_LPM_CONFIG 0xcfd8
#define USB_CSTMR 0xcfef /* RTL8153A */
#define USB_FW_CTRL 0xd334 /* RTL8153B */
#define USB_FC_TIMER 0xd340
#define USB_USB_CTRL 0xd406
#define USB_PHY_CTRL 0xd408
#define USB_TX_AGG 0xd40a
#define USB_RX_BUF_TH 0xd40c
#define USB_USB_TIMER 0xd428
#define USB_RX_EARLY_TIMEOUT 0xd42c
#define USB_RX_EARLY_SIZE 0xd42e
#define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */
#define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */
#define USB_TX_DMA 0xd434
#define USB_UPT_RXDMA_OWN 0xd437
#define USB_TOLERANCE 0xd490
#define USB_LPM_CTRL 0xd41a
#define USB_BMU_RESET 0xd4b0
#define USB_U1U2_TIMER 0xd4da
#define USB_FW_TASK 0xd4e8 /* RTL8153B */
#define USB_UPS_CTRL 0xd800
#define USB_POWER_CUT 0xd80a
#define USB_MISC_0 0xd81a
#define USB_MISC_1 0xd81f
#define USB_AFE_CTRL2 0xd824
#define USB_UPS_CFG 0xd842
#define USB_UPS_FLAGS 0xd848
#define USB_WDT1_CTRL 0xe404
#define USB_WDT11_CTRL 0xe43c
#define USB_BP_BA PLA_BP_BA
#define USB_BP_0 PLA_BP_0
#define USB_BP_1 PLA_BP_1
#define USB_BP_2 PLA_BP_2
#define USB_BP_3 PLA_BP_3
#define USB_BP_4 PLA_BP_4
#define USB_BP_5 PLA_BP_5
#define USB_BP_6 PLA_BP_6
#define USB_BP_7 PLA_BP_7
#define USB_BP_EN PLA_BP_EN /* RTL8153A */
#define USB_BP_8 0xfc38 /* RTL8153B */
#define USB_BP_9 0xfc3a
#define USB_BP_10 0xfc3c
#define USB_BP_11 0xfc3e
#define USB_BP_12 0xfc40
#define USB_BP_13 0xfc42
#define USB_BP_14 0xfc44
#define USB_BP_15 0xfc46
#define USB_BP2_EN 0xfc48
/* OCP Registers */
#define OCP_ALDPS_CONFIG 0x2010
#define OCP_EEE_CONFIG1 0x2080
#define OCP_EEE_CONFIG2 0x2092
#define OCP_EEE_CONFIG3 0x2094
#define OCP_BASE_MII 0xa400
#define OCP_EEE_AR 0xa41a
#define OCP_EEE_DATA 0xa41c
#define OCP_PHY_STATUS 0xa420
#define OCP_NCTL_CFG 0xa42c
#define OCP_POWER_CFG 0xa430
#define OCP_EEE_CFG 0xa432
#define OCP_SRAM_ADDR 0xa436
#define OCP_SRAM_DATA 0xa438
#define OCP_DOWN_SPEED 0xa442
#define OCP_EEE_ABLE 0xa5c4
#define OCP_EEE_ADV 0xa5d0
#define OCP_EEE_LPABLE 0xa5d2
#define OCP_PHY_STATE 0xa708 /* nway state for 8153 */
#define OCP_PHY_PATCH_STAT 0xb800
#define OCP_PHY_PATCH_CMD 0xb820
#define OCP_PHY_LOCK 0xb82e
#define OCP_ADC_IOFFSET 0xbcfc
#define OCP_ADC_CFG 0xbc06
#define OCP_SYSCLK_CFG 0xc416
/* SRAM Register */
#define SRAM_GREEN_CFG 0x8011
#define SRAM_LPF_CFG 0x8012
#define SRAM_10M_AMP1 0x8080
#define SRAM_10M_AMP2 0x8082
#define SRAM_IMPEDANCE 0x8084
#define SRAM_PHY_LOCK 0xb82e
/* PLA_RCR */
#define RCR_AAP 0x00000001
#define RCR_APM 0x00000002
#define RCR_AM 0x00000004
#define RCR_AB 0x00000008
#define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB)
/* PLA_RXFIFO_CTRL0 */
#define RXFIFO_THR1_NORMAL 0x00080002
#define RXFIFO_THR1_OOB 0x01800003
/* PLA_RXFIFO_CTRL1 */
#define RXFIFO_THR2_FULL 0x00000060
#define RXFIFO_THR2_HIGH 0x00000038
#define RXFIFO_THR2_OOB 0x0000004a
#define RXFIFO_THR2_NORMAL 0x00a0
/* PLA_RXFIFO_CTRL2 */
#define RXFIFO_THR3_FULL 0x00000078
#define RXFIFO_THR3_HIGH 0x00000048
#define RXFIFO_THR3_OOB 0x0000005a
#define RXFIFO_THR3_NORMAL 0x0110
/* PLA_TXFIFO_CTRL */
#define TXFIFO_THR_NORMAL 0x00400008
#define TXFIFO_THR_NORMAL2 0x01000008
/* PLA_DMY_REG0 */
#define ECM_ALDPS 0x0002
/* PLA_FMC */
#define FMC_FCR_MCU_EN 0x0001
/* PLA_EEEP_CR */
#define EEEP_CR_EEEP_TX 0x0002
/* PLA_WDT6_CTRL */
#define WDT6_SET_MODE 0x0010
/* PLA_TCR0 */
#define TCR0_TX_EMPTY 0x0800
#define TCR0_AUTO_FIFO 0x0080
/* PLA_TCR1 */
#define VERSION_MASK 0x7cf0
/* PLA_MTPS */
#define MTPS_JUMBO (12 * 1024 / 64)
#define MTPS_DEFAULT (6 * 1024 / 64)
/* PLA_RSTTALLY */
#define TALLY_RESET 0x0001
/* PLA_CR */
#define CR_RST 0x10
#define CR_RE 0x08
#define CR_TE 0x04
/* PLA_CRWECR */
#define CRWECR_NORAML 0x00
#define CRWECR_CONFIG 0xc0
/* PLA_OOB_CTRL */
#define NOW_IS_OOB 0x80
#define TXFIFO_EMPTY 0x20
#define RXFIFO_EMPTY 0x10
#define LINK_LIST_READY 0x02
#define DIS_MCU_CLROOB 0x01
#define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY)
/* PLA_MISC_1 */
#define RXDY_GATED_EN 0x0008
/* PLA_SFF_STS_7 */
#define RE_INIT_LL 0x8000
#define MCU_BORW_EN 0x4000
/* PLA_CPCR */
#define CPCR_RX_VLAN 0x0040
/* PLA_CFG_WOL */
#define MAGIC_EN 0x0001
/* PLA_TEREDO_CFG */
#define TEREDO_SEL 0x8000
#define TEREDO_WAKE_MASK 0x7f00
#define TEREDO_RS_EVENT_MASK 0x00fe
#define OOB_TEREDO_EN 0x0001
/* PLA_BDC_CR */
#define ALDPS_PROXY_MODE 0x0001
/* PLA_EFUSE_CMD */
#define EFUSE_READ_CMD BIT(15)
#define EFUSE_DATA_BIT16 BIT(7)
/* PLA_CONFIG34 */
#define LINK_ON_WAKE_EN 0x0010
#define LINK_OFF_WAKE_EN 0x0008
/* PLA_CONFIG6 */
#define LANWAKE_CLR_EN BIT(0)
/* PLA_CONFIG5 */
#define BWF_EN 0x0040
#define MWF_EN 0x0020
#define UWF_EN 0x0010
#define LAN_WAKE_EN 0x0002
/* PLA_LED_FEATURE */
#define LED_MODE_MASK 0x0700
/* PLA_PHY_PWR */
#define TX_10M_IDLE_EN 0x0080
#define PFM_PWM_SWITCH 0x0040
#define TEST_IO_OFF BIT(4)
/* PLA_MAC_PWR_CTRL */
#define D3_CLK_GATED_EN 0x00004000
#define MCU_CLK_RATIO 0x07010f07
#define MCU_CLK_RATIO_MASK 0x0f0f0f0f
#define ALDPS_SPDWN_RATIO 0x0f87
/* PLA_MAC_PWR_CTRL2 */
#define EEE_SPDWN_RATIO 0x8007
#define MAC_CLK_SPDWN_EN BIT(15)
/* PLA_MAC_PWR_CTRL3 */
#define PLA_MCU_SPDWN_EN BIT(14)
#define PKT_AVAIL_SPDWN_EN 0x0100
#define SUSPEND_SPDWN_EN 0x0004
#define U1U2_SPDWN_EN 0x0002
#define L1_SPDWN_EN 0x0001
/* PLA_MAC_PWR_CTRL4 */
#define PWRSAVE_SPDWN_EN 0x1000
#define RXDV_SPDWN_EN 0x0800
#define TX10MIDLE_EN 0x0100
#define TP100_SPDWN_EN 0x0020
#define TP500_SPDWN_EN 0x0010
#define TP1000_SPDWN_EN 0x0008
#define EEE_SPDWN_EN 0x0001
/* PLA_GPHY_INTR_IMR */
#define GPHY_STS_MSK 0x0001
#define SPEED_DOWN_MSK 0x0002
#define SPDWN_RXDV_MSK 0x0004
#define SPDWN_LINKCHG_MSK 0x0008
/* PLA_PHYAR */
#define PHYAR_FLAG 0x80000000
/* PLA_EEE_CR */
#define EEE_RX_EN 0x0001
#define EEE_TX_EN 0x0002
/* PLA_BOOT_CTRL */
#define AUTOLOAD_DONE 0x0002
/* PLA_LWAKE_CTRL_REG */
#define LANWAKE_PIN BIT(7)
/* PLA_SUSPEND_FLAG */
#define LINK_CHG_EVENT BIT(0)
/* PLA_INDICATE_FALG */
#define UPCOMING_RUNTIME_D3 BIT(0)
/* PLA_MACDBG_PRE and PLA_MACDBG_POST */
#define DEBUG_OE BIT(0)
#define DEBUG_LTSSM 0x0082
/* PLA_EXTRA_STATUS */
#define CUR_LINK_OK BIT(15)
#define U3P3_CHECK_EN BIT(7) /* RTL_VER_05 only */
#define LINK_CHANGE_FLAG BIT(8)
#define POLL_LINK_CHG BIT(0)
/* USB_USB2PHY */
#define USB2PHY_SUSPEND 0x0001
#define USB2PHY_L1 0x0002
/* USB_SSPHYLINK1 */
#define DELAY_PHY_PWR_CHG BIT(1)
/* USB_SSPHYLINK2 */
#define pwd_dn_scale_mask 0x3ffe
#define pwd_dn_scale(x) ((x) << 1)
/* USB_CSR_DUMMY1 */
#define DYNAMIC_BURST 0x0001
/* USB_CSR_DUMMY2 */
#define EP4_FULL_FC 0x0001
/* USB_DEV_STAT */
#define STAT_SPEED_MASK 0x0006
#define STAT_SPEED_HIGH 0x0000
#define STAT_SPEED_FULL 0x0002
/* USB_FW_FIX_EN0 */
#define FW_FIX_SUSPEND BIT(14)
/* USB_FW_FIX_EN1 */
#define FW_IP_RESET_EN BIT(9)
/* USB_LPM_CONFIG */
#define LPM_U1U2_EN BIT(0)
/* USB_TX_AGG */
#define TX_AGG_MAX_THRESHOLD 0x03
/* USB_RX_BUF_TH */
#define RX_THR_SUPPER 0x0c350180
#define RX_THR_HIGH 0x7a120180
#define RX_THR_SLOW 0xffff0180
#define RX_THR_B 0x00010001
/* USB_TX_DMA */
#define TEST_MODE_DISABLE 0x00000001
#define TX_SIZE_ADJUST1 0x00000100
/* USB_BMU_RESET */
#define BMU_RESET_EP_IN 0x01
#define BMU_RESET_EP_OUT 0x02
/* USB_UPT_RXDMA_OWN */
#define OWN_UPDATE BIT(0)
#define OWN_CLEAR BIT(1)
/* USB_FW_TASK */
#define FC_PATCH_TASK BIT(1)
/* USB_UPS_CTRL */
#define POWER_CUT 0x0100
/* USB_PM_CTRL_STATUS */
#define RESUME_INDICATE 0x0001
/* USB_CSTMR */
#define FORCE_SUPER BIT(0)
/* USB_FW_CTRL */
#define FLOW_CTRL_PATCH_OPT BIT(1)
/* USB_FC_TIMER */
#define CTRL_TIMER_EN BIT(15)
/* USB_USB_CTRL */
#define RX_AGG_DISABLE 0x0010
#define RX_ZERO_EN 0x0080
/* USB_U2P3_CTRL */
#define U2P3_ENABLE 0x0001
/* USB_POWER_CUT */
#define PWR_EN 0x0001
#define PHASE2_EN 0x0008
#define UPS_EN BIT(4)
#define USP_PREWAKE BIT(5)
/* USB_MISC_0 */
#define PCUT_STATUS 0x0001
/* USB_RX_EARLY_TIMEOUT */
#define COALESCE_SUPER 85000U
#define COALESCE_HIGH 250000U
#define COALESCE_SLOW 524280U
/* USB_WDT1_CTRL */
#define WTD1_EN BIT(0)
/* USB_WDT11_CTRL */
#define TIMER11_EN 0x0001
/* USB_LPM_CTRL */
/* bit 4 ~ 5: fifo empty boundary */
#define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */
/* bit 2 ~ 3: LMP timer */
#define LPM_TIMER_MASK 0x0c
#define LPM_TIMER_500MS 0x04 /* 500 ms */
#define LPM_TIMER_500US 0x0c /* 500 us */
#define ROK_EXIT_LPM 0x02
/* USB_AFE_CTRL2 */
#define SEN_VAL_MASK 0xf800
#define SEN_VAL_NORMAL 0xa000
#define SEL_RXIDLE 0x0100
/* USB_UPS_CFG */
#define SAW_CNT_1MS_MASK 0x0fff
/* USB_UPS_FLAGS */
#define UPS_FLAGS_R_TUNE BIT(0)
#define UPS_FLAGS_EN_10M_CKDIV BIT(1)
#define UPS_FLAGS_250M_CKDIV BIT(2)
#define UPS_FLAGS_EN_ALDPS BIT(3)
#define UPS_FLAGS_CTAP_SHORT_DIS BIT(4)
#define ups_flags_speed(x) ((x) << 16)
#define UPS_FLAGS_EN_EEE BIT(20)
#define UPS_FLAGS_EN_500M_EEE BIT(21)
#define UPS_FLAGS_EN_EEE_CKDIV BIT(22)
#define UPS_FLAGS_EEE_PLLOFF_100 BIT(23)
#define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24)
#define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25)
#define UPS_FLAGS_EN_GREEN BIT(26)
#define UPS_FLAGS_EN_FLOW_CTR BIT(27)
enum spd_duplex {
NWAY_10M_HALF,
NWAY_10M_FULL,
NWAY_100M_HALF,
NWAY_100M_FULL,
NWAY_1000M_FULL,
FORCE_10M_HALF,
FORCE_10M_FULL,
FORCE_100M_HALF,
FORCE_100M_FULL,
};
/* OCP_ALDPS_CONFIG */
#define ENPWRSAVE 0x8000
#define ENPDNPS 0x0200
#define LINKENA 0x0100
#define DIS_SDSAVE 0x0010
/* OCP_PHY_STATUS */
#define PHY_STAT_MASK 0x0007
#define PHY_STAT_EXT_INIT 2
#define PHY_STAT_LAN_ON 3
#define PHY_STAT_PWRDN 5
/* OCP_NCTL_CFG */
#define PGA_RETURN_EN BIT(1)
/* OCP_POWER_CFG */
#define EEE_CLKDIV_EN 0x8000
#define EN_ALDPS 0x0004
#define EN_10M_PLLOFF 0x0001
/* OCP_EEE_CONFIG1 */
#define RG_TXLPI_MSK_HFDUP 0x8000
#define RG_MATCLR_EN 0x4000
#define EEE_10_CAP 0x2000
#define EEE_NWAY_EN 0x1000
#define TX_QUIET_EN 0x0200
#define RX_QUIET_EN 0x0100
#define sd_rise_time_mask 0x0070
#define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */
#define RG_RXLPI_MSK_HFDUP 0x0008
#define SDFALLTIME 0x0007 /* bit 0 ~ 2 */
/* OCP_EEE_CONFIG2 */
#define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */
#define RG_DACQUIET_EN 0x0400
#define RG_LDVQUIET_EN 0x0200
#define RG_CKRSEL 0x0020
#define RG_EEEPRG_EN 0x0010
/* OCP_EEE_CONFIG3 */
#define fast_snr_mask 0xff80
#define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */
#define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */
#define MSK_PH 0x0006 /* bit 0 ~ 3 */
/* OCP_EEE_AR */
/* bit[15:14] function */
#define FUN_ADDR 0x0000
#define FUN_DATA 0x4000
/* bit[4:0] device addr */
/* OCP_EEE_CFG */
#define CTAP_SHORT_EN 0x0040
#define EEE10_EN 0x0010
/* OCP_DOWN_SPEED */
#define EN_EEE_CMODE BIT(14)
#define EN_EEE_1000 BIT(13)
#define EN_EEE_100 BIT(12)
#define EN_10M_CLKDIV BIT(11)
#define EN_10M_BGOFF 0x0080
/* OCP_PHY_STATE */
#define TXDIS_STATE 0x01
#define ABD_STATE 0x02
/* OCP_PHY_PATCH_STAT */
#define PATCH_READY BIT(6)
/* OCP_PHY_PATCH_CMD */
#define PATCH_REQUEST BIT(4)
/* OCP_PHY_LOCK */
#define PATCH_LOCK BIT(0)
/* OCP_ADC_CFG */
#define CKADSEL_L 0x0100
#define ADC_EN 0x0080
#define EN_EMI_L 0x0040
/* OCP_SYSCLK_CFG */
#define clk_div_expo(x) (min(x, 5) << 8)
/* SRAM_GREEN_CFG */
#define GREEN_ETH_EN BIT(15)
#define R_TUNE_EN BIT(11)
/* SRAM_LPF_CFG */
#define LPF_AUTO_TUNE 0x8000
/* SRAM_10M_AMP1 */
#define GDAC_IB_UPALL 0x0008
/* SRAM_10M_AMP2 */
#define AMP_DN 0x0200
/* SRAM_IMPEDANCE */
#define RX_DRIVING_MASK 0x6000
/* SRAM_PHY_LOCK */
#define PHY_PATCH_LOCK 0x0001
/* MAC PASSTHRU */
#define AD_MASK 0xfee0
#define BND_MASK 0x0004
#define BD_MASK 0x0001
#define EFUSE 0xcfdb
#define PASS_THRU_MASK 0x1
#define BP4_SUPER_ONLY 0x1578 /* RTL_VER_04 only */
enum rtl_register_content {
_1000bps = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LINK_STATUS = 0x02,
FULL_DUP = 0x01,
};
#define RTL8152_MAX_TX 4
#define RTL8152_MAX_RX 10
#define INTBUFSIZE 2
#define TX_ALIGN 4
#define RX_ALIGN 8
#define RTL8152_RX_MAX_PENDING 4096
#define RTL8152_RXFG_HEADSZ 256
#define INTR_LINK 0x0004
#define RTL8152_REQT_READ 0xc0
#define RTL8152_REQT_WRITE 0x40
#define RTL8152_REQ_GET_REGS 0x05
#define RTL8152_REQ_SET_REGS 0x05
#define BYTE_EN_DWORD 0xff
#define BYTE_EN_WORD 0x33
#define BYTE_EN_BYTE 0x11
#define BYTE_EN_SIX_BYTES 0x3f
#define BYTE_EN_START_MASK 0x0f
#define BYTE_EN_END_MASK 0xf0
#define RTL8153_MAX_PACKET 9216 /* 9K */
#define RTL8153_MAX_MTU (RTL8153_MAX_PACKET - VLAN_ETH_HLEN - \
ETH_FCS_LEN)
#define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
#define RTL8153_RMS RTL8153_MAX_PACKET
#define RTL8152_TX_TIMEOUT (5 * HZ)
#define RTL8152_NAPI_WEIGHT 64
#define rx_reserved_size(x) ((x) + VLAN_ETH_HLEN + ETH_FCS_LEN + \
sizeof(struct rx_desc) + RX_ALIGN)
/* rtl8152 flags */
enum rtl8152_flags {
RTL8152_UNPLUG = 0,
RTL8152_SET_RX_MODE,
WORK_ENABLE,
RTL8152_LINK_CHG,
SELECTIVE_SUSPEND,
PHY_RESET,
SCHEDULE_TASKLET,
GREEN_ETHERNET,
DELL_TB_RX_AGG_BUG,
LENOVO_MACPASSTHRU,
};
/* Define these values to match your device */
#define VENDOR_ID_REALTEK 0x0bda
#define VENDOR_ID_MICROSOFT 0x045e
#define VENDOR_ID_SAMSUNG 0x04e8
#define VENDOR_ID_LENOVO 0x17ef
#define VENDOR_ID_LINKSYS 0x13b1
#define VENDOR_ID_NVIDIA 0x0955
#define VENDOR_ID_TPLINK 0x2357
#define DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2 0x3082
#define DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2 0xa387
#define MCU_TYPE_PLA 0x0100
#define MCU_TYPE_USB 0x0000
struct tally_counter {
__le64 tx_packets;
__le64 rx_packets;
__le64 tx_errors;
__le32 rx_errors;
__le16 rx_missed;
__le16 align_errors;
__le32 tx_one_collision;
__le32 tx_multi_collision;
__le64 rx_unicast;
__le64 rx_broadcast;
__le32 rx_multicast;
__le16 tx_aborted;
__le16 tx_underrun;
};
struct rx_desc {
__le32 opts1;
#define RX_LEN_MASK 0x7fff
__le32 opts2;
#define RD_UDP_CS BIT(23)
#define RD_TCP_CS BIT(22)
#define RD_IPV6_CS BIT(20)
#define RD_IPV4_CS BIT(19)
__le32 opts3;
#define IPF BIT(23) /* IP checksum fail */
#define UDPF BIT(22) /* UDP checksum fail */
#define TCPF BIT(21) /* TCP checksum fail */
#define RX_VLAN_TAG BIT(16)
__le32 opts4;
__le32 opts5;
__le32 opts6;
};
struct tx_desc {
__le32 opts1;
#define TX_FS BIT(31) /* First segment of a packet */
#define TX_LS BIT(30) /* Final segment of a packet */
#define GTSENDV4 BIT(28)
#define GTSENDV6 BIT(27)
#define GTTCPHO_SHIFT 18
#define GTTCPHO_MAX 0x7fU
#define TX_LEN_MAX 0x3ffffU
__le32 opts2;
#define UDP_CS BIT(31) /* Calculate UDP/IP checksum */
#define TCP_CS BIT(30) /* Calculate TCP/IP checksum */
#define IPV4_CS BIT(29) /* Calculate IPv4 checksum */
#define IPV6_CS BIT(28) /* Calculate IPv6 checksum */
#define MSS_SHIFT 17
#define MSS_MAX 0x7ffU
#define TCPHO_SHIFT 17
#define TCPHO_MAX 0x7ffU
#define TX_VLAN_TAG BIT(16)
};
struct r8152;
struct rx_agg {
struct list_head list, info_list;
struct urb *urb;
struct r8152 *context;
struct page *page;
void *buffer;
};
struct tx_agg {
struct list_head list;
struct urb *urb;
struct r8152 *context;
void *buffer;
void *head;
u32 skb_num;
u32 skb_len;
};
struct r8152 {
unsigned long flags;
struct usb_device *udev;
struct napi_struct napi;
struct usb_interface *intf;
struct net_device *netdev;
struct urb *intr_urb;
struct tx_agg tx_info[RTL8152_MAX_TX];
struct list_head rx_info, rx_used;
struct list_head rx_done, tx_free;
struct sk_buff_head tx_queue, rx_queue;
spinlock_t rx_lock, tx_lock;
struct delayed_work schedule, hw_phy_work;
struct mii_if_info mii;
struct mutex control; /* use for hw setting */
#ifdef CONFIG_PM_SLEEP
struct notifier_block pm_notifier;
#endif
struct tasklet_struct tx_tl;
struct rtl_ops {
void (*init)(struct r8152 *tp);
int (*enable)(struct r8152 *tp);
void (*disable)(struct r8152 *tp);
void (*up)(struct r8152 *tp);
void (*down)(struct r8152 *tp);
void (*unload)(struct r8152 *tp);
int (*eee_get)(struct r8152 *tp, struct ethtool_eee *eee);
int (*eee_set)(struct r8152 *tp, struct ethtool_eee *eee);
bool (*in_nway)(struct r8152 *tp);
void (*hw_phy_cfg)(struct r8152 *tp);
void (*autosuspend_en)(struct r8152 *tp, bool enable);
} rtl_ops;
struct ups_info {
u32 _10m_ckdiv:1;
u32 _250m_ckdiv:1;
u32 aldps:1;
u32 lite_mode:2;
u32 speed_duplex:4;
u32 eee:1;
u32 eee_lite:1;
u32 eee_ckdiv:1;
u32 eee_plloff_100:1;
u32 eee_plloff_giga:1;
u32 eee_cmod_lv:1;
u32 green:1;
u32 flow_control:1;
u32 ctap_short_off:1;
} ups_info;
#define RTL_VER_SIZE 32
struct rtl_fw {
const char *fw_name;
const struct firmware *fw;
char version[RTL_VER_SIZE];
int (*pre_fw)(struct r8152 *tp);
int (*post_fw)(struct r8152 *tp);
bool retry;
} rtl_fw;
atomic_t rx_count;
bool eee_en;
int intr_interval;
u32 saved_wolopts;
u32 msg_enable;
u32 tx_qlen;
u32 coalesce;
u32 advertising;
u32 rx_buf_sz;
u32 rx_copybreak;
u32 rx_pending;
u16 ocp_base;
u16 speed;
u16 eee_adv;
u8 *intr_buff;
u8 version;
u8 duplex;
u8 autoneg;
};
/**
* struct fw_block - block type and total length
* @type: type of the current block, such as RTL_FW_END, RTL_FW_PLA,
* RTL_FW_USB and so on.
* @length: total length of the current block.
*/
struct fw_block {
__le32 type;
__le32 length;
} __packed;
/**
* struct fw_header - header of the firmware file
* @checksum: checksum of sha256 which is calculated from the whole file
* except the checksum field of the file. That is, calculate sha256
* from the version field to the end of the file.
* @version: version of this firmware.
* @blocks: the first firmware block of the file
*/
struct fw_header {
u8 checksum[32];
char version[RTL_VER_SIZE];
struct fw_block blocks[];
} __packed;
/**
* struct fw_mac - a firmware block used by RTL_FW_PLA and RTL_FW_USB.
* The layout of the firmware block is:
* <struct fw_mac> + <info> + <firmware data>.
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_mac + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @bp_ba_addr: the register to write break point base address. Depends on
* chip.
* @bp_ba_value: break point base address. Depends on chip.
* @bp_en_addr: the register to write break point enabled mask. Depends
* on chip.
* @bp_en_value: break point enabled mask. Depends on the firmware.
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @fw_ver_reg: the register to store the fw version.
* @fw_ver_data: the firmware version of the current type.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_mac {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 bp_ba_addr;
__le16 bp_ba_value;
__le16 bp_en_addr;
__le16 bp_en_value;
__le16 bp_start;
__le16 bp_num;
__le16 bp[16]; /* any value determined by firmware */
__le32 reserved;
__le16 fw_ver_reg;
u8 fw_ver_data;
char info[];
} __packed;
/**
* struct fw_phy_patch_key - a firmware block used by RTL_FW_PHY_START.
* This is used to set patch key when loading the firmware of PHY.
* @key_reg: the register to write the patch key.
* @key_data: patch key.
*/
struct fw_phy_patch_key {
struct fw_block blk_hdr;
__le16 key_reg;
__le16 key_data;
__le32 reserved;
} __packed;
/**
* struct fw_phy_nc - a firmware block used by RTL_FW_PHY_NC.
* The layout of the firmware block is:
* <struct fw_phy_nc> + <info> + <firmware data>.
* @fw_offset: offset of the firmware binary data. The start address of
* the data would be the address of struct fw_phy_nc + @fw_offset.
* @fw_reg: the register to load the firmware. Depends on chip.
* @ba_reg: the register to write the base address. Depends on chip.
* @ba_data: base address. Depends on chip.
* @patch_en_addr: the register of enabling patch mode. Depends on chip.
* @patch_en_value: patch mode enabled mask. Depends on the firmware.
* @mode_reg: the regitster of switching the mode.
* @mod_pre: the mode needing to be set before loading the firmware.
* @mod_post: the mode to be set when finishing to load the firmware.
* @bp_start: the start register of break points. Depends on chip.
* @bp_num: the break point number which needs to be set for this firmware.
* Depends on the firmware.
* @bp: break points. Depends on firmware.
* @info: additional information for debugging, and is followed by the
* binary data of firmware.
*/
struct fw_phy_nc {
struct fw_block blk_hdr;
__le16 fw_offset;
__le16 fw_reg;
__le16 ba_reg;
__le16 ba_data;
__le16 patch_en_addr;
__le16 patch_en_value;
__le16 mode_reg;
__le16 mode_pre;
__le16 mode_post;
__le16 reserved;
__le16 bp_start;
__le16 bp_num;
__le16 bp[4];
char info[];
} __packed;
enum rtl_fw_type {
RTL_FW_END = 0,
RTL_FW_PLA,
RTL_FW_USB,
RTL_FW_PHY_START,
RTL_FW_PHY_STOP,
RTL_FW_PHY_NC,
};
enum rtl_version {
RTL_VER_UNKNOWN = 0,
RTL_VER_01,
RTL_VER_02,
RTL_VER_03,
RTL_VER_04,
RTL_VER_05,
RTL_VER_06,
RTL_VER_07,
RTL_VER_08,
RTL_VER_09,
RTL_VER_MAX
};
enum tx_csum_stat {
TX_CSUM_SUCCESS = 0,
TX_CSUM_TSO,
TX_CSUM_NONE
};
#define RTL_ADVERTISED_10_HALF BIT(0)
#define RTL_ADVERTISED_10_FULL BIT(1)
#define RTL_ADVERTISED_100_HALF BIT(2)
#define RTL_ADVERTISED_100_FULL BIT(3)
#define RTL_ADVERTISED_1000_HALF BIT(4)
#define RTL_ADVERTISED_1000_FULL BIT(5)
/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
* The RTL chips use a 64 element hash table based on the Ethernet CRC.
*/
static const int multicast_filter_limit = 32;
static unsigned int agg_buf_sz = 16384;
#define RTL_LIMITED_TSO_SIZE (agg_buf_sz - sizeof(struct tx_desc) - \
VLAN_ETH_HLEN - ETH_FCS_LEN)
static
int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmalloc(size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_rcvctrlpipe(tp->udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
value, index, tmp, size, 500);
if (ret < 0)
memset(data, 0xff, size);
else
memcpy(data, tmp, size);
kfree(tmp);
return ret;
}
static
int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data)
{
int ret;
void *tmp;
tmp = kmemdup(data, size, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = usb_control_msg(tp->udev, usb_sndctrlpipe(tp->udev, 0),
RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE,
value, index, tmp, size, 500);
kfree(tmp);
return ret;
}
static void rtl_set_unplug(struct r8152 *tp)
{
if (tp->udev->state == USB_STATE_NOTATTACHED) {
set_bit(RTL8152_UNPLUG, &tp->flags);
smp_mb__after_atomic();
}
}
static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size,
void *data, u16 type)
{
u16 limit = 64;
int ret = 0;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
while (size) {
if (size > limit) {
ret = get_registers(tp, index, type, limit, data);
if (ret < 0)
break;
index += limit;
data += limit;
size -= limit;
} else {
ret = get_registers(tp, index, type, size, data);
if (ret < 0)
break;
index += size;
data += size;
size = 0;
break;
}
}
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen,
u16 size, void *data, u16 type)
{
int ret;
u16 byteen_start, byteen_end, byen;
u16 limit = 512;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
/* both size and indix must be 4 bytes align */
if ((size & 3) || !size || (index & 3) || !data)
return -EPERM;
if ((u32)index + (u32)size > 0xffff)
return -EPERM;
byteen_start = byteen & BYTE_EN_START_MASK;
byteen_end = byteen & BYTE_EN_END_MASK;
byen = byteen_start | (byteen_start << 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
index += 4;
data += 4;
size -= 4;
if (size) {
size -= 4;
while (size) {
if (size > limit) {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
limit, data);
if (ret < 0)
goto error1;
index += limit;
data += limit;
size -= limit;
} else {
ret = set_registers(tp, index,
type | BYTE_EN_DWORD,
size, data);
if (ret < 0)
goto error1;
index += size;
data += size;
size = 0;
break;
}
}
byen = byteen_end | (byteen_end >> 4);
ret = set_registers(tp, index, type | byen, 4, data);
if (ret < 0)
goto error1;
}
error1:
if (ret == -ENODEV)
rtl_set_unplug(tp);
return ret;
}
static inline
int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data)
{
return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA);
}
static inline
int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA);
}
static inline
int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data)
{
return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB);
}
static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index)
{
__le32 data;
generic_ocp_read(tp, index, sizeof(data), &data, type);
return __le32_to_cpu(data);
}
static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data)
{
__le32 tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type);
}
static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
index &= ~3;
byen <<= shift;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xffff;
return (u16)data;
}
static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xffff;
__le32 tmp;
u16 byen = BYTE_EN_WORD;
u8 shift = index & 2;
data &= mask;
if (index & 2) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index)
{
u32 data;
__le32 tmp;
u8 shift = index & 3;
index &= ~3;
generic_ocp_read(tp, index, sizeof(tmp), &tmp, type);
data = __le32_to_cpu(tmp);
data >>= (shift * 8);
data &= 0xff;
return (u8)data;
}
static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data)
{
u32 mask = 0xff;
__le32 tmp;
u16 byen = BYTE_EN_BYTE;
u8 shift = index & 3;
data &= mask;
if (index & 3) {
byen <<= shift;
mask <<= (shift * 8);
data <<= (shift * 8);
index &= ~3;
}
tmp = __cpu_to_le32(data);
generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type);
}
static u16 ocp_reg_read(struct r8152 *tp, u16 addr)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index);
}
static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data)
{
u16 ocp_base, ocp_index;
ocp_base = addr & 0xf000;
if (ocp_base != tp->ocp_base) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base);
tp->ocp_base = ocp_base;
}
ocp_index = (addr & 0x0fff) | 0xb000;
ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data);
}
static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value)
{
ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value);
}
static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr)
{
return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2);
}
static void sram_write(struct r8152 *tp, u16 addr, u16 data)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
ocp_reg_write(tp, OCP_SRAM_DATA, data);
}
static u16 sram_read(struct r8152 *tp, u16 addr)
{
ocp_reg_write(tp, OCP_SRAM_ADDR, addr);
return ocp_reg_read(tp, OCP_SRAM_DATA);
}
static int read_mii_word(struct net_device *netdev, int phy_id, int reg)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
if (phy_id != R8152_PHY_ID)
return -EINVAL;
ret = r8152_mdio_read(tp, reg);
return ret;
}
static
void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val)
{
struct r8152 *tp = netdev_priv(netdev);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (phy_id != R8152_PHY_ID)
return;
r8152_mdio_write(tp, reg, val);
}
static int
r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags);
static int rtl8152_set_mac_address(struct net_device *netdev, void *p)
{
struct r8152 *tp = netdev_priv(netdev);
struct sockaddr *addr = p;
int ret = -EADDRNOTAVAIL;
if (!is_valid_ether_addr(addr->sa_data))
goto out1;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out1;
mutex_lock(&tp->control);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out1:
return ret;
}
/* Devices containing proper chips can support a persistent
* host system provided MAC address.
* Examples of this are Dell TB15 and Dell WD15 docks
*/
static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa)
{
acpi_status status;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
int ret = -EINVAL;
u32 ocp_data;
unsigned char buf[6];
char *mac_obj_name;
acpi_object_type mac_obj_type;
int mac_strlen;
if (test_bit(LENOVO_MACPASSTHRU, &tp->flags)) {
mac_obj_name = "\\MACA";
mac_obj_type = ACPI_TYPE_STRING;
mac_strlen = 0x16;
} else {
/* test for -AD variant of RTL8153 */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
if ((ocp_data & AD_MASK) == 0x1000) {
/* test for MAC address pass-through bit */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE);
if ((ocp_data & PASS_THRU_MASK) != 1) {
netif_dbg(tp, probe, tp->netdev,
"No efuse for RTL8153-AD MAC pass through\n");
return -ENODEV;
}
} else {
/* test for RTL8153-BND and RTL8153-BD */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1);
if ((ocp_data & BND_MASK) == 0 && (ocp_data & BD_MASK) == 0) {
netif_dbg(tp, probe, tp->netdev,
"Invalid variant for MAC pass through\n");
return -ENODEV;
}
}
mac_obj_name = "\\_SB.AMAC";
mac_obj_type = ACPI_TYPE_BUFFER;
mac_strlen = 0x17;
}
/* returns _AUXMAC_#AABBCCDDEEFF# */
status = acpi_evaluate_object(NULL, mac_obj_name, NULL, &buffer);
obj = (union acpi_object *)buffer.pointer;
if (!ACPI_SUCCESS(status))
return -ENODEV;
if (obj->type != mac_obj_type || obj->string.length != mac_strlen) {
netif_warn(tp, probe, tp->netdev,
"Invalid buffer for pass-thru MAC addr: (%d, %d)\n",
obj->type, obj->string.length);
goto amacout;
}
if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 ||
strncmp(obj->string.pointer + 0x15, "#", 1) != 0) {
netif_warn(tp, probe, tp->netdev,
"Invalid header when reading pass-thru MAC addr\n");
goto amacout;
}
ret = hex2bin(buf, obj->string.pointer + 9, 6);
if (!(ret == 0 && is_valid_ether_addr(buf))) {
netif_warn(tp, probe, tp->netdev,
"Invalid MAC for pass-thru MAC addr: %d, %pM\n",
ret, buf);
ret = -EINVAL;
goto amacout;
}
memcpy(sa->sa_data, buf, 6);
netif_info(tp, probe, tp->netdev,
"Using pass-thru MAC addr %pM\n", sa->sa_data);
amacout:
kfree(obj);
return ret;
}
static int determine_ethernet_addr(struct r8152 *tp, struct sockaddr *sa)
{
struct net_device *dev = tp->netdev;
int ret;
sa->sa_family = dev->type;
ret = eth_platform_get_mac_address(&tp->udev->dev, sa->sa_data);
if (ret < 0) {
if (tp->version == RTL_VER_01) {
ret = pla_ocp_read(tp, PLA_IDR, 8, sa->sa_data);
} else {
/* if device doesn't support MAC pass through this will
* be expected to be non-zero
*/
ret = vendor_mac_passthru_addr_read(tp, sa);
if (ret < 0)
ret = pla_ocp_read(tp, PLA_BACKUP, 8,
sa->sa_data);
}
}
if (ret < 0) {
netif_err(tp, probe, dev, "Get ether addr fail\n");
} else if (!is_valid_ether_addr(sa->sa_data)) {
netif_err(tp, probe, dev, "Invalid ether addr %pM\n",
sa->sa_data);
eth_hw_addr_random(dev);
ether_addr_copy(sa->sa_data, dev->dev_addr);
netif_info(tp, probe, dev, "Random ether addr %pM\n",
sa->sa_data);
return 0;
}
return ret;
}
static int set_ethernet_addr(struct r8152 *tp)
{
struct net_device *dev = tp->netdev;
struct sockaddr sa;
int ret;
ret = determine_ethernet_addr(tp, &sa);
if (ret < 0)
return ret;
if (tp->version == RTL_VER_01)
ether_addr_copy(dev->dev_addr, sa.sa_data);
else
ret = rtl8152_set_mac_address(dev, &sa);
return ret;
}
static void read_bulk_callback(struct urb *urb)
{
struct net_device *netdev;
int status = urb->status;
struct rx_agg *agg;
struct r8152 *tp;
unsigned long flags;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
netdev = tp->netdev;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(netdev))
return;
usb_mark_last_busy(tp->udev);
switch (status) {
case 0:
if (urb->actual_length < ETH_ZLEN)
break;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
napi_schedule(&tp->napi);
return;
case -ESHUTDOWN:
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
return;
case -ENOENT:
return; /* the urb is in unlink state */
case -ETIME:
if (net_ratelimit())
netdev_warn(netdev, "maybe reset is needed?\n");
break;
default:
if (net_ratelimit())
netdev_warn(netdev, "Rx status %d\n", status);
break;
}
r8152_submit_rx(tp, agg, GFP_ATOMIC);
}
static void write_bulk_callback(struct urb *urb)
{
struct net_device_stats *stats;
struct net_device *netdev;
struct tx_agg *agg;
struct r8152 *tp;
unsigned long flags;
int status = urb->status;
agg = urb->context;
if (!agg)
return;
tp = agg->context;
if (!tp)
return;
netdev = tp->netdev;
stats = &netdev->stats;
if (status) {
if (net_ratelimit())
netdev_warn(netdev, "Tx status %d\n", status);
stats->tx_errors += agg->skb_num;
} else {
stats->tx_packets += agg->skb_num;
stats->tx_bytes += agg->skb_len;
}
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
usb_autopm_put_interface_async(tp->intf);
if (!netif_carrier_ok(netdev))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!skb_queue_empty(&tp->tx_queue))
tasklet_schedule(&tp->tx_tl);
}
static void intr_callback(struct urb *urb)
{
struct r8152 *tp;
__le16 *d;
int status = urb->status;
int res;
tp = urb->context;
if (!tp)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
switch (status) {
case 0: /* success */
break;
case -ECONNRESET: /* unlink */
case -ESHUTDOWN:
netif_device_detach(tp->netdev);
/* fall through */
case -ENOENT:
case -EPROTO:
netif_info(tp, intr, tp->netdev,
"Stop submitting intr, status %d\n", status);
return;
case -EOVERFLOW:
netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n");
goto resubmit;
/* -EPIPE: should clear the halt */
default:
netif_info(tp, intr, tp->netdev, "intr status %d\n", status);
goto resubmit;
}
d = urb->transfer_buffer;
if (INTR_LINK & __le16_to_cpu(d[0])) {
if (!netif_carrier_ok(tp->netdev)) {
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
} else {
if (netif_carrier_ok(tp->netdev)) {
netif_stop_queue(tp->netdev);
set_bit(RTL8152_LINK_CHG, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
resubmit:
res = usb_submit_urb(urb, GFP_ATOMIC);
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (res) {
netif_err(tp, intr, tp->netdev,
"can't resubmit intr, status %d\n", res);
}
}
static inline void *rx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, RX_ALIGN);
}
static inline void *tx_agg_align(void *data)
{
return (void *)ALIGN((uintptr_t)data, TX_ALIGN);
}
static void free_rx_agg(struct r8152 *tp, struct rx_agg *agg)
{
list_del(&agg->info_list);
usb_free_urb(agg->urb);
put_page(agg->page);
kfree(agg);
atomic_dec(&tp->rx_count);
}
static struct rx_agg *alloc_rx_agg(struct r8152 *tp, gfp_t mflags)
{
struct net_device *netdev = tp->netdev;
int node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
unsigned int order = get_order(tp->rx_buf_sz);
struct rx_agg *rx_agg;
unsigned long flags;
rx_agg = kmalloc_node(sizeof(*rx_agg), mflags, node);
if (!rx_agg)
return NULL;
rx_agg->page = alloc_pages(mflags | __GFP_COMP, order);
if (!rx_agg->page)
goto free_rx;
rx_agg->buffer = page_address(rx_agg->page);
rx_agg->urb = usb_alloc_urb(0, mflags);
if (!rx_agg->urb)
goto free_buf;
rx_agg->context = tp;
INIT_LIST_HEAD(&rx_agg->list);
INIT_LIST_HEAD(&rx_agg->info_list);
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&rx_agg->info_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
atomic_inc(&tp->rx_count);
return rx_agg;
free_buf:
__free_pages(rx_agg->page, order);
free_rx:
kfree(rx_agg);
return NULL;
}
static void free_all_mem(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
unsigned long flags;
int i;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_info, info_list)
free_rx_agg(tp, agg);
spin_unlock_irqrestore(&tp->rx_lock, flags);
WARN_ON(atomic_read(&tp->rx_count));
for (i = 0; i < RTL8152_MAX_TX; i++) {
usb_free_urb(tp->tx_info[i].urb);
tp->tx_info[i].urb = NULL;
kfree(tp->tx_info[i].buffer);
tp->tx_info[i].buffer = NULL;
tp->tx_info[i].head = NULL;
}
usb_free_urb(tp->intr_urb);
tp->intr_urb = NULL;
kfree(tp->intr_buff);
tp->intr_buff = NULL;
}
static int alloc_all_mem(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct usb_interface *intf = tp->intf;
struct usb_host_interface *alt = intf->cur_altsetting;
struct usb_host_endpoint *ep_intr = alt->endpoint + 2;
int node, i;
node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1;
spin_lock_init(&tp->rx_lock);
spin_lock_init(&tp->tx_lock);
INIT_LIST_HEAD(&tp->rx_info);
INIT_LIST_HEAD(&tp->tx_free);
INIT_LIST_HEAD(&tp->rx_done);
skb_queue_head_init(&tp->tx_queue);
skb_queue_head_init(&tp->rx_queue);
atomic_set(&tp->rx_count, 0);
for (i = 0; i < RTL8152_MAX_RX; i++) {
if (!alloc_rx_agg(tp, GFP_KERNEL))
goto err1;
}
for (i = 0; i < RTL8152_MAX_TX; i++) {
struct urb *urb;
u8 *buf;
buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node);
if (!buf)
goto err1;
if (buf != tx_agg_align(buf)) {
kfree(buf);
buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL,
node);
if (!buf)
goto err1;
}
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
kfree(buf);
goto err1;
}
INIT_LIST_HEAD(&tp->tx_info[i].list);
tp->tx_info[i].context = tp;
tp->tx_info[i].urb = urb;
tp->tx_info[i].buffer = buf;
tp->tx_info[i].head = tx_agg_align(buf);
list_add_tail(&tp->tx_info[i].list, &tp->tx_free);
}
tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!tp->intr_urb)
goto err1;
tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL);
if (!tp->intr_buff)
goto err1;
tp->intr_interval = (int)ep_intr->desc.bInterval;
usb_fill_int_urb(tp->intr_urb, tp->udev, usb_rcvintpipe(tp->udev, 3),
tp->intr_buff, INTBUFSIZE, intr_callback,
tp, tp->intr_interval);
return 0;
err1:
free_all_mem(tp);
return -ENOMEM;
}
static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp)
{
struct tx_agg *agg = NULL;
unsigned long flags;
if (list_empty(&tp->tx_free))
return NULL;
spin_lock_irqsave(&tp->tx_lock, flags);
if (!list_empty(&tp->tx_free)) {
struct list_head *cursor;
cursor = tp->tx_free.next;
list_del_init(cursor);
agg = list_entry(cursor, struct tx_agg, list);
}
spin_unlock_irqrestore(&tp->tx_lock, flags);
return agg;
}
/* r8152_csum_workaround()
* The hw limits the value of the transport offset. When the offset is out of
* range, calculate the checksum by sw.
*/
static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb,
struct sk_buff_head *list)
{
if (skb_shinfo(skb)->gso_size) {
netdev_features_t features = tp->netdev->features;
struct sk_buff *segs, *seg, *next;
struct sk_buff_head seg_list;
features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6);
segs = skb_gso_segment(skb, features);
if (IS_ERR(segs) || !segs)
goto drop;
__skb_queue_head_init(&seg_list);
skb_list_walk_safe(segs, seg, next) {
skb_mark_not_on_list(seg);
__skb_queue_tail(&seg_list, seg);
}
skb_queue_splice(&seg_list, list);
dev_kfree_skb(skb);
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_help(skb) < 0)
goto drop;
__skb_queue_head(list, skb);
} else {
struct net_device_stats *stats;
drop:
stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb(skb);
}
}
static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb)
{
if (skb_vlan_tag_present(skb)) {
u32 opts2;
opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb));
desc->opts2 |= cpu_to_le32(opts2);
}
}
static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
if (opts2 & RX_VLAN_TAG)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
swab16(opts2 & 0xffff));
}
static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc,
struct sk_buff *skb, u32 len, u32 transport_offset)
{
u32 mss = skb_shinfo(skb)->gso_size;
u32 opts1, opts2 = 0;
int ret = TX_CSUM_SUCCESS;
WARN_ON_ONCE(len > TX_LEN_MAX);
opts1 = len | TX_FS | TX_LS;
if (mss) {
if (transport_offset > GTTCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x for TSO\n",
transport_offset);
ret = TX_CSUM_TSO;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts1 |= GTSENDV4;
break;
case htons(ETH_P_IPV6):
if (skb_cow_head(skb, 0)) {
ret = TX_CSUM_TSO;
goto unavailable;
}
tcp_v6_gso_csum_prep(skb);
opts1 |= GTSENDV6;
break;
default:
WARN_ON_ONCE(1);
break;
}
opts1 |= transport_offset << GTTCPHO_SHIFT;
opts2 |= min(mss, MSS_MAX) << MSS_SHIFT;
} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_protocol;
if (transport_offset > TCPHO_MAX) {
netif_warn(tp, tx_err, tp->netdev,
"Invalid transport offset 0x%x\n",
transport_offset);
ret = TX_CSUM_NONE;
goto unavailable;
}
switch (vlan_get_protocol(skb)) {
case htons(ETH_P_IP):
opts2 |= IPV4_CS;
ip_protocol = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
opts2 |= IPV6_CS;
ip_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_protocol = IPPROTO_RAW;
break;
}
if (ip_protocol == IPPROTO_TCP)
opts2 |= TCP_CS;
else if (ip_protocol == IPPROTO_UDP)
opts2 |= UDP_CS;
else
WARN_ON_ONCE(1);
opts2 |= transport_offset << TCPHO_SHIFT;
}
desc->opts2 = cpu_to_le32(opts2);
desc->opts1 = cpu_to_le32(opts1);
unavailable:
return ret;
}
static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg)
{
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
int remain, ret;
u8 *tx_data;
__skb_queue_head_init(&skb_head);
spin_lock(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock(&tx_queue->lock);
tx_data = agg->head;
agg->skb_num = 0;
agg->skb_len = 0;
remain = agg_buf_sz;
while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) {
struct tx_desc *tx_desc;
struct sk_buff *skb;
unsigned int len;
u32 offset;
skb = __skb_dequeue(&skb_head);
if (!skb)
break;
len = skb->len + sizeof(*tx_desc);
if (len > remain) {
__skb_queue_head(&skb_head, skb);
break;
}
tx_data = tx_agg_align(tx_data);
tx_desc = (struct tx_desc *)tx_data;
offset = (u32)skb_transport_offset(skb);
if (r8152_tx_csum(tp, tx_desc, skb, skb->len, offset)) {
r8152_csum_workaround(tp, skb, &skb_head);
continue;
}
rtl_tx_vlan_tag(tx_desc, skb);
tx_data += sizeof(*tx_desc);
len = skb->len;
if (skb_copy_bits(skb, 0, tx_data, len) < 0) {
struct net_device_stats *stats = &tp->netdev->stats;
stats->tx_dropped++;
dev_kfree_skb_any(skb);
tx_data -= sizeof(*tx_desc);
continue;
}
tx_data += len;
agg->skb_len += len;
agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1;
dev_kfree_skb_any(skb);
remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
break;
}
if (!skb_queue_empty(&skb_head)) {
spin_lock(&tx_queue->lock);
skb_queue_splice(&skb_head, tx_queue);
spin_unlock(&tx_queue->lock);
}
netif_tx_lock(tp->netdev);
if (netif_queue_stopped(tp->netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen)
netif_wake_queue(tp->netdev);
netif_tx_unlock(tp->netdev);
ret = usb_autopm_get_interface_async(tp->intf);
if (ret < 0)
goto out_tx_fill;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_sndbulkpipe(tp->udev, 2),
agg->head, (int)(tx_data - (u8 *)agg->head),
(usb_complete_t)write_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, GFP_ATOMIC);
if (ret < 0)
usb_autopm_put_interface_async(tp->intf);
out_tx_fill:
return ret;
}
static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc)
{
u8 checksum = CHECKSUM_NONE;
u32 opts2, opts3;
if (!(tp->netdev->features & NETIF_F_RXCSUM))
goto return_result;
opts2 = le32_to_cpu(rx_desc->opts2);
opts3 = le32_to_cpu(rx_desc->opts3);
if (opts2 & RD_IPV4_CS) {
if (opts3 & IPF)
checksum = CHECKSUM_NONE;
else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
} else if (opts2 & RD_IPV6_CS) {
if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF))
checksum = CHECKSUM_UNNECESSARY;
else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF))
checksum = CHECKSUM_UNNECESSARY;
}
return_result:
return checksum;
}
static inline bool rx_count_exceed(struct r8152 *tp)
{
return atomic_read(&tp->rx_count) > RTL8152_MAX_RX;
}
static inline int agg_offset(struct rx_agg *agg, void *addr)
{
return (int)(addr - agg->buffer);
}
static struct rx_agg *rtl_get_free_rx(struct r8152 *tp, gfp_t mflags)
{
struct rx_agg *agg, *agg_next, *agg_free = NULL;
unsigned long flags;
spin_lock_irqsave(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tp->rx_used, list) {
if (page_count(agg->page) == 1) {
if (!agg_free) {
list_del_init(&agg->list);
agg_free = agg;
continue;
}
if (rx_count_exceed(tp)) {
list_del_init(&agg->list);
free_rx_agg(tp, agg);
}
break;
}
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
if (!agg_free && atomic_read(&tp->rx_count) < tp->rx_pending)
agg_free = alloc_rx_agg(tp, mflags);
return agg_free;
}
static int rx_bottom(struct r8152 *tp, int budget)
{
unsigned long flags;
struct list_head *cursor, *next, rx_queue;
int ret = 0, work_done = 0;
struct napi_struct *napi = &tp->napi;
if (!skb_queue_empty(&tp->rx_queue)) {
while (work_done < budget) {
struct sk_buff *skb = __skb_dequeue(&tp->rx_queue);
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len;
if (!skb)
break;
pkt_len = skb->len;
napi_gro_receive(napi, skb);
work_done++;
stats->rx_packets++;
stats->rx_bytes += pkt_len;
}
}
if (list_empty(&tp->rx_done))
goto out1;
INIT_LIST_HEAD(&rx_queue);
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_done, &rx_queue);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_safe(cursor, next, &rx_queue) {
struct rx_desc *rx_desc;
struct rx_agg *agg, *agg_free;
int len_used = 0;
struct urb *urb;
u8 *rx_data;
list_del_init(cursor);
agg = list_entry(cursor, struct rx_agg, list);
urb = agg->urb;
if (urb->actual_length < ETH_ZLEN)
goto submit;
agg_free = rtl_get_free_rx(tp, GFP_ATOMIC);
rx_desc = agg->buffer;
rx_data = agg->buffer;
len_used += sizeof(struct rx_desc);
while (urb->actual_length > len_used) {
struct net_device *netdev = tp->netdev;
struct net_device_stats *stats = &netdev->stats;
unsigned int pkt_len, rx_frag_head_sz;
struct sk_buff *skb;
/* limite the skb numbers for rx_queue */
if (unlikely(skb_queue_len(&tp->rx_queue) >= 1000))
break;
pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK;
if (pkt_len < ETH_ZLEN)
break;
len_used += pkt_len;
if (urb->actual_length < len_used)
break;
pkt_len -= ETH_FCS_LEN;
rx_data += sizeof(struct rx_desc);
if (!agg_free || tp->rx_copybreak > pkt_len)
rx_frag_head_sz = pkt_len;
else
rx_frag_head_sz = tp->rx_copybreak;
skb = napi_alloc_skb(napi, rx_frag_head_sz);
if (!skb) {
stats->rx_dropped++;
goto find_next_rx;
}
skb->ip_summed = r8152_rx_csum(tp, rx_desc);
memcpy(skb->data, rx_data, rx_frag_head_sz);
skb_put(skb, rx_frag_head_sz);
pkt_len -= rx_frag_head_sz;
rx_data += rx_frag_head_sz;
if (pkt_len) {
skb_add_rx_frag(skb, 0, agg->page,
agg_offset(agg, rx_data),
pkt_len,
SKB_DATA_ALIGN(pkt_len));
get_page(agg->page);
}
skb->protocol = eth_type_trans(skb, netdev);
rtl_rx_vlan_tag(rx_desc, skb);
if (work_done < budget) {
work_done++;
stats->rx_packets++;
stats->rx_bytes += skb->len;
napi_gro_receive(napi, skb);
} else {
__skb_queue_tail(&tp->rx_queue, skb);
}
find_next_rx:
rx_data = rx_agg_align(rx_data + pkt_len + ETH_FCS_LEN);
rx_desc = (struct rx_desc *)rx_data;
len_used = agg_offset(agg, rx_data);
len_used += sizeof(struct rx_desc);
}
WARN_ON(!agg_free && page_count(agg->page) > 1);
if (agg_free) {
spin_lock_irqsave(&tp->rx_lock, flags);
if (page_count(agg->page) == 1) {
list_add(&agg_free->list, &tp->rx_used);
} else {
list_add_tail(&agg->list, &tp->rx_used);
agg = agg_free;
urb = agg->urb;
}
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
submit:
if (!ret) {
ret = r8152_submit_rx(tp, agg, GFP_ATOMIC);
} else {
urb->actual_length = 0;
list_add_tail(&agg->list, next);
}
}
if (!list_empty(&rx_queue)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_tail(&rx_queue, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
}
out1:
return work_done;
}
static void tx_bottom(struct r8152 *tp)
{
int res;
do {
struct net_device *netdev = tp->netdev;
struct tx_agg *agg;
if (skb_queue_empty(&tp->tx_queue))
break;
agg = r8152_get_tx_agg(tp);
if (!agg)
break;
res = r8152_tx_agg_fill(tp, agg);
if (!res)
continue;
if (res == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(netdev);
} else {
struct net_device_stats *stats = &netdev->stats;
unsigned long flags;
netif_warn(tp, tx_err, netdev,
"failed tx_urb %d\n", res);
stats->tx_dropped += agg->skb_num;
spin_lock_irqsave(&tp->tx_lock, flags);
list_add_tail(&agg->list, &tp->tx_free);
spin_unlock_irqrestore(&tp->tx_lock, flags);
}
} while (res == 0);
}
static void bottom_half(unsigned long data)
{
struct r8152 *tp;
tp = (struct r8152 *)data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
return;
/* When link down, the driver would cancel all bulks. */
/* This avoid the re-submitting bulk */
if (!netif_carrier_ok(tp->netdev))
return;
clear_bit(SCHEDULE_TASKLET, &tp->flags);
tx_bottom(tp);
}
static int r8152_poll(struct napi_struct *napi, int budget)
{
struct r8152 *tp = container_of(napi, struct r8152, napi);
int work_done;
work_done = rx_bottom(tp, budget);
if (work_done < budget) {
if (!napi_complete_done(napi, work_done))
goto out;
if (!list_empty(&tp->rx_done))
napi_schedule(napi);
}
out:
return work_done;
}
static
int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags)
{
int ret;
/* The rx would be stopped, so skip submitting */
if (test_bit(RTL8152_UNPLUG, &tp->flags) ||
!test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev))
return 0;
usb_fill_bulk_urb(agg->urb, tp->udev, usb_rcvbulkpipe(tp->udev, 1),
agg->buffer, tp->rx_buf_sz,
(usb_complete_t)read_bulk_callback, agg);
ret = usb_submit_urb(agg->urb, mem_flags);
if (ret == -ENODEV) {
rtl_set_unplug(tp);
netif_device_detach(tp->netdev);
} else if (ret) {
struct urb *urb = agg->urb;
unsigned long flags;
urb->actual_length = 0;
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
netif_err(tp, rx_err, tp->netdev,
"Couldn't submit rx[%p], ret = %d\n", agg, ret);
napi_schedule(&tp->napi);
}
return ret;
}
static void rtl_drop_queued_tx(struct r8152 *tp)
{
struct net_device_stats *stats = &tp->netdev->stats;
struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue;
struct sk_buff *skb;
if (skb_queue_empty(tx_queue))
return;
__skb_queue_head_init(&skb_head);
spin_lock_bh(&tx_queue->lock);
skb_queue_splice_init(tx_queue, &skb_head);
spin_unlock_bh(&tx_queue->lock);
while ((skb = __skb_dequeue(&skb_head))) {
dev_kfree_skb(skb);
stats->tx_dropped++;
}
}
static void rtl8152_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct r8152 *tp = netdev_priv(netdev);
netif_warn(tp, tx_err, netdev, "Tx timeout\n");
usb_queue_reset_device(tp->intf);
}
static void rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
if (netif_carrier_ok(netdev)) {
set_bit(RTL8152_SET_RX_MODE, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
}
}
static void _rtl8152_set_rx_mode(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
u32 mc_filter[2]; /* Multicast hash filter */
__le32 tmp[2];
u32 ocp_data;
netif_stop_queue(netdev);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_data |= RCR_AB | RCR_APM;
if (netdev->flags & IFF_PROMISC) {
/* Unconditionally log net taps. */
netif_notice(tp, link, netdev, "Promiscuous mode enabled\n");
ocp_data |= RCR_AM | RCR_AAP;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else if ((netdev_mc_count(netdev) > multicast_filter_limit) ||
(netdev->flags & IFF_ALLMULTI)) {
/* Too many to filter perfectly -- accept all multicasts. */
ocp_data |= RCR_AM;
mc_filter[1] = 0xffffffff;
mc_filter[0] = 0xffffffff;
} else {
struct netdev_hw_addr *ha;
mc_filter[1] = 0;
mc_filter[0] = 0;
netdev_for_each_mc_addr(ha, netdev) {
int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
ocp_data |= RCR_AM;
}
}
tmp[0] = __cpu_to_le32(swab32(mc_filter[1]));
tmp[1] = __cpu_to_le32(swab32(mc_filter[0]));
pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
netif_wake_queue(netdev);
}
static netdev_features_t
rtl8152_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
u32 mss = skb_shinfo(skb)->gso_size;
int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX;
int offset = skb_transport_offset(skb);
if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && offset > max_offset)
features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz)
features &= ~NETIF_F_GSO_MASK;
return features;
}
static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
skb_tx_timestamp(skb);
skb_queue_tail(&tp->tx_queue, skb);
if (!list_empty(&tp->tx_free)) {
if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) {
set_bit(SCHEDULE_TASKLET, &tp->flags);
schedule_delayed_work(&tp->schedule, 0);
} else {
usb_mark_last_busy(tp->udev);
tasklet_schedule(&tp->tx_tl);
}
} else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) {
netif_stop_queue(netdev);
}
return NETDEV_TX_OK;
}
static void r8152b_reset_packet_filter(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC);
ocp_data &= ~FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
ocp_data |= FMC_FCR_MCU_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data);
}
static void rtl8152_nic_reset(struct r8152 *tp)
{
int i;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST);
for (i = 0; i < 1000; i++) {
if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST))
break;
usleep_range(100, 400);
}
}
static void set_tx_qlen(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
tp->tx_qlen = agg_buf_sz / (netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN +
sizeof(struct tx_desc));
}
static inline u8 rtl8152_get_speed(struct r8152 *tp)
{
return ocp_read_byte(tp, MCU_TYPE_PLA, PLA_PHYSTATUS);
}
static void rtl_set_eee_plus(struct r8152 *tp)
{
u32 ocp_data;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & _10bps) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data |= EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
} else {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR);
ocp_data &= ~EEEP_CR_EEEP_TX;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data);
}
}
static void rxdy_gated_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1);
if (enable)
ocp_data |= RXDY_GATED_EN;
else
ocp_data &= ~RXDY_GATED_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data);
}
static int rtl_start_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
int ret = 0, i = 0;
INIT_LIST_HEAD(&tmp_list);
spin_lock_irqsave(&tp->rx_lock, flags);
INIT_LIST_HEAD(&tp->rx_done);
INIT_LIST_HEAD(&tp->rx_used);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
INIT_LIST_HEAD(&agg->list);
/* Only RTL8152_MAX_RX rx_agg need to be submitted. */
if (++i > RTL8152_MAX_RX) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_used);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else if (unlikely(ret < 0)) {
spin_lock_irqsave(&tp->rx_lock, flags);
list_add_tail(&agg->list, &tp->rx_done);
spin_unlock_irqrestore(&tp->rx_lock, flags);
} else {
ret = r8152_submit_rx(tp, agg, GFP_KERNEL);
}
}
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
return ret;
}
static int rtl_stop_rx(struct r8152 *tp)
{
struct rx_agg *agg, *agg_next;
struct list_head tmp_list;
unsigned long flags;
INIT_LIST_HEAD(&tmp_list);
/* The usb_kill_urb() couldn't be used in atomic.
* Therefore, move the list of rx_info to a tmp one.
* Then, list_for_each_entry_safe could be used without
* spin lock.
*/
spin_lock_irqsave(&tp->rx_lock, flags);
list_splice_init(&tp->rx_info, &tmp_list);
spin_unlock_irqrestore(&tp->rx_lock, flags);
list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) {
/* At least RTL8152_MAX_RX rx_agg have the page_count being
* equal to 1, so the other ones could be freed safely.
*/
if (page_count(agg->page) > 1)
free_rx_agg(tp, agg);
else
usb_kill_urb(agg->urb);
}
/* Move back the list of temp to the rx_info */
spin_lock_irqsave(&tp->rx_lock, flags);
WARN_ON(!list_empty(&tp->rx_info));
list_splice(&tmp_list, &tp->rx_info);
spin_unlock_irqrestore(&tp->rx_lock, flags);
while (!skb_queue_empty(&tp->rx_queue))
dev_kfree_skb(__skb_dequeue(&tp->rx_queue));
return 0;
}
static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp)
{
ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN,
OWN_UPDATE | OWN_CLEAR);
}
static int rtl_enable(struct r8152 *tp)
{
u32 ocp_data;
r8152b_reset_packet_filter(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR);
ocp_data |= CR_RE | CR_TE;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data);
switch (tp->version) {
case RTL_VER_08:
case RTL_VER_09:
r8153b_rx_agg_chg_indicate(tp);
break;
default:
break;
}
rxdy_gated_en(tp, false);
return 0;
}
static int rtl8152_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
return rtl_enable(tp);
}
static void r8153_set_rx_early_timeout(struct r8152 *tp)
{
u32 ocp_data = tp->coalesce / 8;
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout
* primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns.
*/
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT,
128 / 8);
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR,
ocp_data);
break;
default:
break;
}
}
static void r8153_set_rx_early_size(struct r8152 *tp)
{
u32 ocp_data = tp->rx_buf_sz - rx_reserved_size(tp->netdev->mtu);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 4);
break;
case RTL_VER_08:
case RTL_VER_09:
ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE,
ocp_data / 8);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
static int rtl8153_enable(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
set_tx_qlen(tp);
rtl_set_eee_plus(tp);
r8153_set_rx_early_timeout(tp);
r8153_set_rx_early_size(tp);
if (tp->version == RTL_VER_09) {
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK);
ocp_data &= ~FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
usleep_range(1000, 2000);
ocp_data |= FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
}
return rtl_enable(tp);
}
static void rtl_disable(struct r8152 *tp)
{
u32 ocp_data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl_drop_queued_tx(tp);
for (i = 0; i < RTL8152_MAX_TX; i++)
usb_kill_urb(tp->tx_info[i].urb);
rxdy_gated_en(tp, true);
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY)
break;
usleep_range(1000, 2000);
}
for (i = 0; i < 1000; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY)
break;
usleep_range(1000, 2000);
}
rtl_stop_rx(tp);
rtl8152_nic_reset(tp);
}
static void r8152_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL);
if (enable)
ocp_data |= POWER_CUT;
else
ocp_data &= ~POWER_CUT;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS);
ocp_data &= ~RESUME_INDICATE;
ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data);
}
static void rtl_rx_vlan_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR);
if (enable)
ocp_data |= CPCR_RX_VLAN;
else
ocp_data &= ~CPCR_RX_VLAN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data);
}
static int rtl8152_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
rtl_rx_vlan_en(tp, true);
else
rtl_rx_vlan_en(tp, false);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
#define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)
static u32 __rtl_get_wol(struct r8152 *tp)
{
u32 ocp_data;
u32 wolopts = 0;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
if (ocp_data & LINK_ON_WAKE_EN)
wolopts |= WAKE_PHY;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
if (ocp_data & UWF_EN)
wolopts |= WAKE_UCAST;
if (ocp_data & BWF_EN)
wolopts |= WAKE_BCAST;
if (ocp_data & MWF_EN)
wolopts |= WAKE_MCAST;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
if (ocp_data & MAGIC_EN)
wolopts |= WAKE_MAGIC;
return wolopts;
}
static void __rtl_set_wol(struct r8152 *tp, u32 wolopts)
{
u32 ocp_data;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_ON_WAKE_EN;
if (wolopts & WAKE_PHY)
ocp_data |= LINK_ON_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5);
ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN);
if (wolopts & WAKE_UCAST)
ocp_data |= UWF_EN;
if (wolopts & WAKE_BCAST)
ocp_data |= BWF_EN;
if (wolopts & WAKE_MCAST)
ocp_data |= MWF_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL);
ocp_data &= ~MAGIC_EN;
if (wolopts & WAKE_MAGIC)
ocp_data |= MAGIC_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data);
if (wolopts & WAKE_ANY)
device_set_wakeup_enable(&tp->udev->dev, true);
else
device_set_wakeup_enable(&tp->udev->dev, false);
}
static void r8153_mac_clk_spd(struct r8152 *tp, bool enable)
{
/* MAC clock speed down */
if (enable) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL,
ALDPS_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2,
EEE_SPDWN_RATIO);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3,
PKT_AVAIL_SPDWN_EN | SUSPEND_SPDWN_EN |
U1U2_SPDWN_EN | L1_SPDWN_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4,
PWRSAVE_SPDWN_EN | RXDV_SPDWN_EN | TX10MIDLE_EN |
TP100_SPDWN_EN | TP500_SPDWN_EN | EEE_SPDWN_EN |
TP1000_SPDWN_EN);
} else {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, 0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, 0);
}
}
static void r8153_u1u2en(struct r8152 *tp, bool enable)
{
u8 u1u2[8];
if (enable)
memset(u1u2, 0xff, sizeof(u1u2));
else
memset(u1u2, 0x00, sizeof(u1u2));
usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2);
}
static void r8153b_u1u2en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG);
if (enable)
ocp_data |= LPM_U1U2_EN;
else
ocp_data &= ~LPM_U1U2_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG, ocp_data);
}
static void r8153_u2p3en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL);
if (enable)
ocp_data |= U2P3_ENABLE;
else
ocp_data &= ~U2P3_ENABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data);
}
static void r8153b_ups_flags(struct r8152 *tp)
{
u32 ups_flags = 0;
if (tp->ups_info.green)
ups_flags |= UPS_FLAGS_EN_GREEN;
if (tp->ups_info.aldps)
ups_flags |= UPS_FLAGS_EN_ALDPS;
if (tp->ups_info.eee)
ups_flags |= UPS_FLAGS_EN_EEE;
if (tp->ups_info.flow_control)
ups_flags |= UPS_FLAGS_EN_FLOW_CTR;
if (tp->ups_info.eee_ckdiv)
ups_flags |= UPS_FLAGS_EN_EEE_CKDIV;
if (tp->ups_info.eee_cmod_lv)
ups_flags |= UPS_FLAGS_EEE_CMOD_LV_EN;
if (tp->ups_info._10m_ckdiv)
ups_flags |= UPS_FLAGS_EN_10M_CKDIV;
if (tp->ups_info.eee_plloff_100)
ups_flags |= UPS_FLAGS_EEE_PLLOFF_100;
if (tp->ups_info.eee_plloff_giga)
ups_flags |= UPS_FLAGS_EEE_PLLOFF_GIGA;
if (tp->ups_info._250m_ckdiv)
ups_flags |= UPS_FLAGS_250M_CKDIV;
if (tp->ups_info.ctap_short_off)
ups_flags |= UPS_FLAGS_CTAP_SHORT_DIS;
switch (tp->ups_info.speed_duplex) {
case NWAY_10M_HALF:
ups_flags |= ups_flags_speed(1);
break;
case NWAY_10M_FULL:
ups_flags |= ups_flags_speed(2);
break;
case NWAY_100M_HALF:
ups_flags |= ups_flags_speed(3);
break;
case NWAY_100M_FULL:
ups_flags |= ups_flags_speed(4);
break;
case NWAY_1000M_FULL:
ups_flags |= ups_flags_speed(5);
break;
case FORCE_10M_HALF:
ups_flags |= ups_flags_speed(6);
break;
case FORCE_10M_FULL:
ups_flags |= ups_flags_speed(7);
break;
case FORCE_100M_HALF:
ups_flags |= ups_flags_speed(8);
break;
case FORCE_100M_FULL:
ups_flags |= ups_flags_speed(9);
break;
default:
break;
}
ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ups_flags);
}
static void r8153b_green_en(struct r8152 *tp, bool enable)
{
u16 data;
if (enable) {
sram_write(tp, 0x8045, 0); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x1222); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x0022); /* 1000M short abiq&ldvbias */
} else {
sram_write(tp, 0x8045, 0x2444); /* 10M abiq&ldvbias */
sram_write(tp, 0x804d, 0x2444); /* 100M short abiq&ldvbias */
sram_write(tp, 0x805d, 0x2444); /* 1000M short abiq&ldvbias */
}
data = sram_read(tp, SRAM_GREEN_CFG);
data |= GREEN_ETH_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
tp->ups_info.green = enable;
}
static u16 r8153_phy_status(struct r8152 *tp, u16 desired)
{
u16 data;
int i;
for (i = 0; i < 500; i++) {
data = ocp_reg_read(tp, OCP_PHY_STATUS);
data &= PHY_STAT_MASK;
if (desired) {
if (data == desired)
break;
} else if (data == PHY_STAT_LAN_ON || data == PHY_STAT_PWRDN ||
data == PHY_STAT_EXT_INIT) {
break;
}
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
return data;
}
static void r8153b_ups_en(struct r8152 *tp, bool enable)
{
u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable) {
r8153b_ups_flags(tp);
ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN;
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data |= BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
} else {
u16 data;
ocp_data &= ~(UPS_EN | USP_PREWAKE);
ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, 0xcfff);
ocp_data &= ~BIT(0);
ocp_write_byte(tp, MCU_TYPE_USB, 0xcfff, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
data = r8153_phy_status(tp, 0);
switch (data) {
case PHY_STAT_PWRDN:
case PHY_STAT_EXT_INIT:
r8153b_green_en(tp,
test_bit(GREEN_ETHERNET, &tp->flags));
data = r8152_mdio_read(tp, MII_BMCR);
data &= ~BMCR_PDOWN;
data |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, data);
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
/* fall through */
default:
if (data != PHY_STAT_LAN_ON)
netif_warn(tp, link, tp->netdev,
"PHY not ready");
break;
}
}
}
static void r8153_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~(PWR_EN | PHASE2_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153b_power_cut_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT);
if (enable)
ocp_data |= PWR_EN | PHASE2_EN;
else
ocp_data &= ~PWR_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0);
ocp_data &= ~PCUT_STATUS;
ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data);
}
static void r8153_queue_wake(struct r8152 *tp, bool enable)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG);
if (enable)
ocp_data |= UPCOMING_RUNTIME_D3;
else
ocp_data &= ~UPCOMING_RUNTIME_D3;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG);
ocp_data &= ~LINK_CHG_EVENT;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
ocp_data &= ~LINK_CHANGE_FLAG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
}
static bool rtl_can_wakeup(struct r8152 *tp)
{
struct usb_device *udev = tp->udev;
return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP);
}
static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable)
{
if (enable) {
u32 ocp_data;
__rtl_set_wol(tp, WAKE_ANY);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data |= LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
} else {
u32 ocp_data;
__rtl_set_wol(tp, tp->saved_wolopts);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34);
ocp_data &= ~LINK_OFF_WAKE_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
}
}
static void rtl8153_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_mac_clk_spd(tp, true);
rtl_runtime_suspend_enable(tp, true);
} else {
rtl_runtime_suspend_enable(tp, false);
r8153_mac_clk_spd(tp, false);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
}
static void rtl8153b_runtime_enable(struct r8152 *tp, bool enable)
{
if (enable) {
r8153_queue_wake(tp, true);
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
rtl_runtime_suspend_enable(tp, true);
r8153b_ups_en(tp, true);
} else {
r8153b_ups_en(tp, false);
r8153_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
}
}
static void r8153_teredo_off(struct r8152 *tp)
{
u32 ocp_data;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_07:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK |
OOB_TEREDO_EN);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* The bit 0 ~ 7 are relative with teredo settings. They are
* W1C (write 1 to clear), so set all 1 to disable it.
*/
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, 0xff);
break;
default:
break;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0);
}
static void rtl_reset_bmu(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_RESET);
ocp_data &= ~(BMU_RESET_EP_IN | BMU_RESET_EP_OUT);
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
ocp_data |= BMU_RESET_EP_IN | BMU_RESET_EP_OUT;
ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data);
}
/* Clear the bp to stop the firmware before loading a new one */
static void rtl_clear_bp(struct r8152 *tp, u16 type)
{
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_write_byte(tp, type, PLA_BP_EN, 0);
break;
case RTL_VER_08:
case RTL_VER_09:
default:
if (type == MCU_TYPE_USB) {
ocp_write_byte(tp, MCU_TYPE_USB, USB_BP2_EN, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_8, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_9, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_10, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_11, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_12, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_13, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_14, 0);
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_15, 0);
} else {
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_BP_EN, 0);
}
break;
}
ocp_write_word(tp, type, PLA_BP_0, 0);
ocp_write_word(tp, type, PLA_BP_1, 0);
ocp_write_word(tp, type, PLA_BP_2, 0);
ocp_write_word(tp, type, PLA_BP_3, 0);
ocp_write_word(tp, type, PLA_BP_4, 0);
ocp_write_word(tp, type, PLA_BP_5, 0);
ocp_write_word(tp, type, PLA_BP_6, 0);
ocp_write_word(tp, type, PLA_BP_7, 0);
/* wait 3 ms to make sure the firmware is stopped */
usleep_range(3000, 6000);
ocp_write_word(tp, type, PLA_BP_BA, 0);
}
static int r8153_patch_request(struct r8152 *tp, bool request)
{
u16 data;
int i;
data = ocp_reg_read(tp, OCP_PHY_PATCH_CMD);
if (request)
data |= PATCH_REQUEST;
else
data &= ~PATCH_REQUEST;
ocp_reg_write(tp, OCP_PHY_PATCH_CMD, data);
for (i = 0; request && i < 5000; i++) {
usleep_range(1000, 2000);
if (ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)
break;
}
if (request && !(ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)) {
netif_err(tp, drv, tp->netdev, "patch request fail\n");
r8153_patch_request(tp, false);
return -ETIME;
} else {
return 0;
}
}
static int r8153_pre_ram_code(struct r8152 *tp, u16 key_addr, u16 patch_key)
{
if (r8153_patch_request(tp, true)) {
dev_err(&tp->intf->dev, "patch request fail\n");
return -ETIME;
}
sram_write(tp, key_addr, patch_key);
sram_write(tp, SRAM_PHY_LOCK, PHY_PATCH_LOCK);
return 0;
}
static int r8153_post_ram_code(struct r8152 *tp, u16 key_addr)
{
u16 data;
sram_write(tp, 0x0000, 0x0000);
data = ocp_reg_read(tp, OCP_PHY_LOCK);
data &= ~PATCH_LOCK;
ocp_reg_write(tp, OCP_PHY_LOCK, data);
sram_write(tp, key_addr, 0x0000);
r8153_patch_request(tp, false);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, tp->ocp_base);
return 0;
}
static bool rtl8152_is_fw_phy_nc_ok(struct r8152 *tp, struct fw_phy_nc *phy)
{
u32 length;
u16 fw_offset, fw_reg, ba_reg, patch_en_addr, mode_reg, bp_start;
bool rc = false;
switch (tp->version) {
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
fw_reg = 0xa014;
ba_reg = 0xa012;
patch_en_addr = 0xa01a;
mode_reg = 0xb820;
bp_start = 0xa000;
break;
default:
goto out;
}
fw_offset = __le16_to_cpu(phy->fw_offset);
if (fw_offset < sizeof(*phy)) {
dev_err(&tp->intf->dev, "fw_offset too small\n");
goto out;
}
length = __le32_to_cpu(phy->blk_hdr.length);
if (length < fw_offset) {
dev_err(&tp->intf->dev, "invalid fw_offset\n");
goto out;
}
length -= __le16_to_cpu(phy->fw_offset);
if (!length || (length & 1)) {
dev_err(&tp->intf->dev, "invalid block length\n");
goto out;
}
if (__le16_to_cpu(phy->fw_reg) != fw_reg) {
dev_err(&tp->intf->dev, "invalid register to load firmware\n");
goto out;
}
if (__le16_to_cpu(phy->ba_reg) != ba_reg) {
dev_err(&tp->intf->dev, "invalid base address register\n");
goto out;
}
if (__le16_to_cpu(phy->patch_en_addr) != patch_en_addr) {
dev_err(&tp->intf->dev,
"invalid patch mode enabled register\n");
goto out;
}
if (__le16_to_cpu(phy->mode_reg) != mode_reg) {
dev_err(&tp->intf->dev,
"invalid register to switch the mode\n");
goto out;
}
if (__le16_to_cpu(phy->bp_start) != bp_start) {
dev_err(&tp->intf->dev,
"invalid start register of break point\n");
goto out;
}
if (__le16_to_cpu(phy->bp_num) > 4) {
dev_err(&tp->intf->dev, "invalid break point number\n");
goto out;
}
rc = true;
out:
return rc;
}
static bool rtl8152_is_fw_mac_ok(struct r8152 *tp, struct fw_mac *mac)
{
u16 fw_reg, bp_ba_addr, bp_en_addr, bp_start, fw_offset;
bool rc = false;
u32 length, type;
int i, max_bp;
type = __le32_to_cpu(mac->blk_hdr.type);
if (type == RTL_FW_PLA) {
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
fw_reg = 0xf800;
bp_ba_addr = PLA_BP_BA;
bp_en_addr = 0;
bp_start = PLA_BP_0;
max_bp = 8;
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_08:
case RTL_VER_09:
fw_reg = 0xf800;
bp_ba_addr = PLA_BP_BA;
bp_en_addr = PLA_BP_EN;
bp_start = PLA_BP_0;
max_bp = 8;
break;
default:
goto out;
}
} else if (type == RTL_FW_USB) {
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
fw_reg = 0xf800;
bp_ba_addr = USB_BP_BA;
bp_en_addr = USB_BP_EN;
bp_start = USB_BP_0;
max_bp = 8;
break;
case RTL_VER_08:
case RTL_VER_09:
fw_reg = 0xe600;
bp_ba_addr = USB_BP_BA;
bp_en_addr = USB_BP2_EN;
bp_start = USB_BP_0;
max_bp = 16;
break;
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
default:
goto out;
}
} else {
goto out;
}
fw_offset = __le16_to_cpu(mac->fw_offset);
if (fw_offset < sizeof(*mac)) {
dev_err(&tp->intf->dev, "fw_offset too small\n");
goto out;
}
length = __le32_to_cpu(mac->blk_hdr.length);
if (length < fw_offset) {
dev_err(&tp->intf->dev, "invalid fw_offset\n");
goto out;
}
length -= fw_offset;
if (length < 4 || (length & 3)) {
dev_err(&tp->intf->dev, "invalid block length\n");
goto out;
}
if (__le16_to_cpu(mac->fw_reg) != fw_reg) {
dev_err(&tp->intf->dev, "invalid register to load firmware\n");
goto out;
}
if (__le16_to_cpu(mac->bp_ba_addr) != bp_ba_addr) {
dev_err(&tp->intf->dev, "invalid base address register\n");
goto out;
}
if (__le16_to_cpu(mac->bp_en_addr) != bp_en_addr) {
dev_err(&tp->intf->dev, "invalid enabled mask register\n");
goto out;
}
if (__le16_to_cpu(mac->bp_start) != bp_start) {
dev_err(&tp->intf->dev,
"invalid start register of break point\n");
goto out;
}
if (__le16_to_cpu(mac->bp_num) > max_bp) {
dev_err(&tp->intf->dev, "invalid break point number\n");
goto out;
}
for (i = __le16_to_cpu(mac->bp_num); i < max_bp; i++) {
if (mac->bp[i]) {
dev_err(&tp->intf->dev, "unused bp%u is not zero\n", i);
goto out;
}
}
rc = true;
out:
return rc;
}
/* Verify the checksum for the firmware file. It is calculated from the version
* field to the end of the file. Compare the result with the checksum field to
* make sure the file is correct.
*/
static long rtl8152_fw_verify_checksum(struct r8152 *tp,
struct fw_header *fw_hdr, size_t size)
{
unsigned char checksum[sizeof(fw_hdr->checksum)];
struct crypto_shash *alg;
struct shash_desc *sdesc;
size_t len;
long rc;
alg = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(alg)) {
rc = PTR_ERR(alg);
goto out;
}
if (crypto_shash_digestsize(alg) != sizeof(fw_hdr->checksum)) {
rc = -EFAULT;
dev_err(&tp->intf->dev, "digestsize incorrect (%u)\n",
crypto_shash_digestsize(alg));
goto free_shash;
}
len = sizeof(*sdesc) + crypto_shash_descsize(alg);
sdesc = kmalloc(len, GFP_KERNEL);
if (!sdesc) {
rc = -ENOMEM;
goto free_shash;
}
sdesc->tfm = alg;
len = size - sizeof(fw_hdr->checksum);
rc = crypto_shash_digest(sdesc, fw_hdr->version, len, checksum);
kfree(sdesc);
if (rc)
goto free_shash;
if (memcmp(fw_hdr->checksum, checksum, sizeof(fw_hdr->checksum))) {
dev_err(&tp->intf->dev, "checksum fail\n");
rc = -EFAULT;
}
free_shash:
crypto_free_shash(alg);
out:
return rc;
}
static long rtl8152_check_firmware(struct r8152 *tp, struct rtl_fw *rtl_fw)
{
const struct firmware *fw = rtl_fw->fw;
struct fw_header *fw_hdr = (struct fw_header *)fw->data;
struct fw_mac *pla = NULL, *usb = NULL;
struct fw_phy_patch_key *start = NULL;
struct fw_phy_nc *phy_nc = NULL;
struct fw_block *stop = NULL;
long ret = -EFAULT;
int i;
if (fw->size < sizeof(*fw_hdr)) {
dev_err(&tp->intf->dev, "file too small\n");
goto fail;
}
ret = rtl8152_fw_verify_checksum(tp, fw_hdr, fw->size);
if (ret)
goto fail;
ret = -EFAULT;
for (i = sizeof(*fw_hdr); i < fw->size;) {
struct fw_block *block = (struct fw_block *)&fw->data[i];
u32 type;
if ((i + sizeof(*block)) > fw->size)
goto fail;
type = __le32_to_cpu(block->type);
switch (type) {
case RTL_FW_END:
if (__le32_to_cpu(block->length) != sizeof(*block))
goto fail;
goto fw_end;
case RTL_FW_PLA:
if (pla) {
dev_err(&tp->intf->dev,
"multiple PLA firmware encountered");
goto fail;
}
pla = (struct fw_mac *)block;
if (!rtl8152_is_fw_mac_ok(tp, pla)) {
dev_err(&tp->intf->dev,
"check PLA firmware failed\n");
goto fail;
}
break;
case RTL_FW_USB:
if (usb) {
dev_err(&tp->intf->dev,
"multiple USB firmware encountered");
goto fail;
}
usb = (struct fw_mac *)block;
if (!rtl8152_is_fw_mac_ok(tp, usb)) {
dev_err(&tp->intf->dev,
"check USB firmware failed\n");
goto fail;
}
break;
case RTL_FW_PHY_START:
if (start || phy_nc || stop) {
dev_err(&tp->intf->dev,
"check PHY_START fail\n");
goto fail;
}
if (__le32_to_cpu(block->length) != sizeof(*start)) {
dev_err(&tp->intf->dev,
"Invalid length for PHY_START\n");
goto fail;
}
start = (struct fw_phy_patch_key *)block;
break;
case RTL_FW_PHY_STOP:
if (stop || !start) {
dev_err(&tp->intf->dev,
"Check PHY_STOP fail\n");
goto fail;
}
if (__le32_to_cpu(block->length) != sizeof(*block)) {
dev_err(&tp->intf->dev,
"Invalid length for PHY_STOP\n");
goto fail;
}
stop = block;
break;
case RTL_FW_PHY_NC:
if (!start || stop) {
dev_err(&tp->intf->dev,
"check PHY_NC fail\n");
goto fail;
}
if (phy_nc) {
dev_err(&tp->intf->dev,
"multiple PHY NC encountered\n");
goto fail;
}
phy_nc = (struct fw_phy_nc *)block;
if (!rtl8152_is_fw_phy_nc_ok(tp, phy_nc)) {
dev_err(&tp->intf->dev,
"check PHY NC firmware failed\n");
goto fail;
}
break;
default:
dev_warn(&tp->intf->dev, "Unknown type %u is found\n",
type);
break;
}
/* next block */
i += ALIGN(__le32_to_cpu(block->length), 8);
}
fw_end:
if ((phy_nc || start) && !stop) {
dev_err(&tp->intf->dev, "without PHY_STOP\n");
goto fail;
}
return 0;
fail:
return ret;
}
static void rtl8152_fw_phy_nc_apply(struct r8152 *tp, struct fw_phy_nc *phy)
{
u16 mode_reg, bp_index;
u32 length, i, num;
__le16 *data;
mode_reg = __le16_to_cpu(phy->mode_reg);
sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_pre));
sram_write(tp, __le16_to_cpu(phy->ba_reg),
__le16_to_cpu(phy->ba_data));
length = __le32_to_cpu(phy->blk_hdr.length);
length -= __le16_to_cpu(phy->fw_offset);
num = length / 2;
data = (__le16 *)((u8 *)phy + __le16_to_cpu(phy->fw_offset));
ocp_reg_write(tp, OCP_SRAM_ADDR, __le16_to_cpu(phy->fw_reg));
for (i = 0; i < num; i++)
ocp_reg_write(tp, OCP_SRAM_DATA, __le16_to_cpu(data[i]));
sram_write(tp, __le16_to_cpu(phy->patch_en_addr),
__le16_to_cpu(phy->patch_en_value));
bp_index = __le16_to_cpu(phy->bp_start);
num = __le16_to_cpu(phy->bp_num);
for (i = 0; i < num; i++) {
sram_write(tp, bp_index, __le16_to_cpu(phy->bp[i]));
bp_index += 2;
}
sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_post));
dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info);
}
static void rtl8152_fw_mac_apply(struct r8152 *tp, struct fw_mac *mac)
{
u16 bp_en_addr, bp_index, type, bp_num, fw_ver_reg;
u32 length;
u8 *data;
int i;
switch (__le32_to_cpu(mac->blk_hdr.type)) {
case RTL_FW_PLA:
type = MCU_TYPE_PLA;
break;
case RTL_FW_USB:
type = MCU_TYPE_USB;
break;
default:
return;
}
rtl_clear_bp(tp, type);
/* Enable backup/restore of MACDBG. This is required after clearing PLA
* break points and before applying the PLA firmware.
*/
if (tp->version == RTL_VER_04 && type == MCU_TYPE_PLA &&
!(ocp_read_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST) & DEBUG_OE)) {
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_PRE, DEBUG_LTSSM);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST, DEBUG_LTSSM);
}
length = __le32_to_cpu(mac->blk_hdr.length);
length -= __le16_to_cpu(mac->fw_offset);
data = (u8 *)mac;
data += __le16_to_cpu(mac->fw_offset);
generic_ocp_write(tp, __le16_to_cpu(mac->fw_reg), 0xff, length, data,
type);
ocp_write_word(tp, type, __le16_to_cpu(mac->bp_ba_addr),
__le16_to_cpu(mac->bp_ba_value));
bp_index = __le16_to_cpu(mac->bp_start);
bp_num = __le16_to_cpu(mac->bp_num);
for (i = 0; i < bp_num; i++) {
ocp_write_word(tp, type, bp_index, __le16_to_cpu(mac->bp[i]));
bp_index += 2;
}
bp_en_addr = __le16_to_cpu(mac->bp_en_addr);
if (bp_en_addr)
ocp_write_word(tp, type, bp_en_addr,
__le16_to_cpu(mac->bp_en_value));
fw_ver_reg = __le16_to_cpu(mac->fw_ver_reg);
if (fw_ver_reg)
ocp_write_byte(tp, MCU_TYPE_USB, fw_ver_reg,
mac->fw_ver_data);
dev_dbg(&tp->intf->dev, "successfully applied %s\n", mac->info);
}
static void rtl8152_apply_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
const struct firmware *fw;
struct fw_header *fw_hdr;
struct fw_phy_patch_key *key;
u16 key_addr = 0;
int i;
if (IS_ERR_OR_NULL(rtl_fw->fw))
return;
fw = rtl_fw->fw;
fw_hdr = (struct fw_header *)fw->data;
if (rtl_fw->pre_fw)
rtl_fw->pre_fw(tp);
for (i = offsetof(struct fw_header, blocks); i < fw->size;) {
struct fw_block *block = (struct fw_block *)&fw->data[i];
switch (__le32_to_cpu(block->type)) {
case RTL_FW_END:
goto post_fw;
case RTL_FW_PLA:
case RTL_FW_USB:
rtl8152_fw_mac_apply(tp, (struct fw_mac *)block);
break;
case RTL_FW_PHY_START:
key = (struct fw_phy_patch_key *)block;
key_addr = __le16_to_cpu(key->key_reg);
r8153_pre_ram_code(tp, key_addr,
__le16_to_cpu(key->key_data));
break;
case RTL_FW_PHY_STOP:
WARN_ON(!key_addr);
r8153_post_ram_code(tp, key_addr);
break;
case RTL_FW_PHY_NC:
rtl8152_fw_phy_nc_apply(tp, (struct fw_phy_nc *)block);
break;
default:
break;
}
i += ALIGN(__le32_to_cpu(block->length), 8);
}
post_fw:
if (rtl_fw->post_fw)
rtl_fw->post_fw(tp);
strscpy(rtl_fw->version, fw_hdr->version, RTL_VER_SIZE);
dev_info(&tp->intf->dev, "load %s successfully\n", rtl_fw->version);
}
static void rtl8152_release_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
if (!IS_ERR_OR_NULL(rtl_fw->fw)) {
release_firmware(rtl_fw->fw);
rtl_fw->fw = NULL;
}
}
static int rtl8152_request_firmware(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
long rc;
if (rtl_fw->fw || !rtl_fw->fw_name) {
dev_info(&tp->intf->dev, "skip request firmware\n");
rc = 0;
goto result;
}
rc = request_firmware(&rtl_fw->fw, rtl_fw->fw_name, &tp->intf->dev);
if (rc < 0)
goto result;
rc = rtl8152_check_firmware(tp, rtl_fw);
if (rc < 0)
release_firmware(rtl_fw->fw);
result:
if (rc) {
rtl_fw->fw = ERR_PTR(rc);
dev_warn(&tp->intf->dev,
"unable to load firmware patch %s (%ld)\n",
rtl_fw->fw_name, rc);
}
return rc;
}
static void r8152_aldps_en(struct r8152 *tp, bool enable)
{
if (enable) {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS |
LINKENA | DIS_SDSAVE);
} else {
ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA |
DIS_SDSAVE);
msleep(20);
}
}
static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg)
{
ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev);
ocp_reg_write(tp, OCP_EEE_DATA, reg);
ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev);
}
static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg)
{
u16 data;
r8152_mmd_indirect(tp, dev, reg);
data = ocp_reg_read(tp, OCP_EEE_DATA);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
return data;
}
static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data)
{
r8152_mmd_indirect(tp, dev, reg);
ocp_reg_write(tp, OCP_EEE_DATA, data);
ocp_reg_write(tp, OCP_EEE_AR, 0x0000);
}
static void r8152_eee_en(struct r8152 *tp, bool enable)
{
u16 config1, config2, config3;
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask;
config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2);
config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask;
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN;
config1 |= sd_rise_time(1);
config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN;
config3 |= fast_snr(42);
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN |
RX_QUIET_EN);
config1 |= sd_rise_time(7);
config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN);
config3 |= fast_snr(511);
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CONFIG1, config1);
ocp_reg_write(tp, OCP_EEE_CONFIG2, config2);
ocp_reg_write(tp, OCP_EEE_CONFIG3, config3);
}
static void r8153_eee_en(struct r8152 *tp, bool enable)
{
u32 ocp_data;
u16 config;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR);
config = ocp_reg_read(tp, OCP_EEE_CFG);
if (enable) {
ocp_data |= EEE_RX_EN | EEE_TX_EN;
config |= EEE10_EN;
} else {
ocp_data &= ~(EEE_RX_EN | EEE_TX_EN);
config &= ~EEE10_EN;
}
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data);
ocp_reg_write(tp, OCP_EEE_CFG, config);
tp->ups_info.eee = enable;
}
static void rtl_eee_enable(struct r8152 *tp, bool enable)
{
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
if (enable) {
r8152_eee_en(tp, true);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV,
tp->eee_adv);
} else {
r8152_eee_en(tp, false);
r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0);
}
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
case RTL_VER_08:
case RTL_VER_09:
if (enable) {
r8153_eee_en(tp, true);
ocp_reg_write(tp, OCP_EEE_ADV, tp->eee_adv);
} else {
r8153_eee_en(tp, false);
ocp_reg_write(tp, OCP_EEE_ADV, 0);
}
break;
default:
break;
}
}
static void r8152b_enable_fc(struct r8152 *tp)
{
u16 anar;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
r8152_mdio_write(tp, MII_ADVERTISE, anar);
tp->ups_info.flow_control = true;
}
static void rtl8152_disable(struct r8152 *tp)
{
r8152_aldps_en(tp, false);
rtl_disable(tp);
r8152_aldps_en(tp, true);
}
static void r8152b_hw_phy_cfg(struct r8152 *tp)
{
rtl8152_apply_firmware(tp);
rtl_eee_enable(tp, tp->eee_en);
r8152_aldps_en(tp, true);
r8152b_enable_fc(tp);
set_bit(PHY_RESET, &tp->flags);
}
static void wait_oob_link_list_ready(struct r8152 *tp)
{
u32 ocp_data;
int i;
for (i = 0; i < 1000; i++) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
if (ocp_data & LINK_LIST_READY)
break;
usleep_range(1000, 2000);
}
}
static void r8152b_exit_oob(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
if (tp->udev->speed == USB_SPEED_FULL ||
tp->udev->speed == USB_SPEED_LOW) {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_FULL);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_FULL);
} else {
/* rx share fifo credit near full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1,
RXFIFO_THR2_HIGH);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2,
RXFIFO_THR3_HIGH);
}
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL);
ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH);
ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA,
TEST_MODE_DISABLE | TX_SIZE_ADJUST1);
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
}
static void r8152b_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB);
rtl_disable(tp);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS);
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static int r8153_pre_firmware_1(struct r8152 *tp)
{
int i;
/* Wait till the WTD timer is ready. It would take at most 104 ms. */
for (i = 0; i < 104; i++) {
u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_WDT1_CTRL);
if (!(ocp_data & WTD1_EN))
break;
usleep_range(1000, 2000);
}
return 0;
}
static int r8153_post_firmware_1(struct r8152 *tp)
{
/* set USB_BP_4 to support USB_SPEED_SUPER only */
if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER)
ocp_write_word(tp, MCU_TYPE_USB, USB_BP_4, BP4_SUPER_ONLY);
/* reset UPHY timer to 36 ms */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16);
return 0;
}
static int r8153_pre_firmware_2(struct r8152 *tp)
{
u32 ocp_data;
r8153_pre_firmware_1(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0);
ocp_data &= ~FW_FIX_SUSPEND;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data);
return 0;
}
static int r8153_post_firmware_2(struct r8152 *tp)
{
u32 ocp_data;
/* enable bp0 if support USB_SPEED_SUPER only */
if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN);
ocp_data |= BIT(0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data);
}
/* reset UPHY timer to 36 ms */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16);
/* enable U3P3 check, set the counter to 4 */
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, U3P3_CHECK_EN | 4);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0);
ocp_data |= FW_FIX_SUSPEND;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
return 0;
}
static int r8153_post_firmware_3(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1);
ocp_data |= FW_IP_RESET_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data);
return 0;
}
static int r8153b_pre_firmware_1(struct r8152 *tp)
{
/* enable fc timer and set timer to 1 second. */
ocp_write_word(tp, MCU_TYPE_USB, USB_FC_TIMER,
CTRL_TIMER_EN | (1000 / 8));
return 0;
}
static int r8153b_post_firmware_1(struct r8152 *tp)
{
u32 ocp_data;
/* enable bp0 for RTL8153-BND */
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1);
if (ocp_data & BND_MASK) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN);
ocp_data |= BIT(0);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL);
ocp_data |= FLOW_CTRL_PATCH_OPT;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK);
ocp_data |= FC_PATCH_TASK;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1);
ocp_data |= FW_IP_RESET_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data);
return 0;
}
static void r8153_aldps_en(struct r8152 *tp, bool enable)
{
u16 data;
data = ocp_reg_read(tp, OCP_POWER_CFG);
if (enable) {
data |= EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
} else {
int i;
data &= ~EN_ALDPS;
ocp_reg_write(tp, OCP_POWER_CFG, data);
for (i = 0; i < 20; i++) {
usleep_range(1000, 2000);
if (ocp_read_word(tp, MCU_TYPE_PLA, 0xe000) & 0x0100)
break;
}
}
tp->ups_info.aldps = enable;
}
static void r8153_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
rtl_eee_enable(tp, false);
rtl8152_apply_firmware(tp);
if (tp->version == RTL_VER_03) {
data = ocp_reg_read(tp, OCP_EEE_CFG);
data &= ~CTAP_SHORT_EN;
ocp_reg_write(tp, OCP_EEE_CFG, data);
}
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_10M_BGOFF;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EN_10M_PLLOFF;
ocp_reg_write(tp, OCP_POWER_CFG, data);
sram_write(tp, SRAM_IMPEDANCE, 0x0b13);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Enable LPF corner auto tune */
sram_write(tp, SRAM_LPF_CFG, 0xf70f);
/* Adjust 10M Amplitude */
sram_write(tp, SRAM_10M_AMP1, 0x00af);
sram_write(tp, SRAM_10M_AMP2, 0x0208);
if (tp->eee_en)
rtl_eee_enable(tp, true);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
set_bit(PHY_RESET, &tp->flags);
}
static u32 r8152_efuse_read(struct r8152 *tp, u8 addr)
{
u32 ocp_data;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD, EFUSE_READ_CMD | addr);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD);
ocp_data = (ocp_data & EFUSE_DATA_BIT16) << 9; /* data of bit16 */
ocp_data |= ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_DATA);
return ocp_data;
}
static void r8153b_hw_phy_cfg(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
/* disable ALDPS before updating the PHY parameters */
r8153_aldps_en(tp, false);
/* disable EEE before updating the PHY parameters */
rtl_eee_enable(tp, false);
rtl8152_apply_firmware(tp);
r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags));
data = sram_read(tp, SRAM_GREEN_CFG);
data |= R_TUNE_EN;
sram_write(tp, SRAM_GREEN_CFG, data);
data = ocp_reg_read(tp, OCP_NCTL_CFG);
data |= PGA_RETURN_EN;
ocp_reg_write(tp, OCP_NCTL_CFG, data);
/* ADC Bias Calibration:
* read efuse offset 0x7d to get a 17-bit data. Remove the dummy/fake
* bit (bit3) to rebuild the real 16-bit data. Write the data to the
* ADC ioffset.
*/
ocp_data = r8152_efuse_read(tp, 0x7d);
data = (u16)(((ocp_data & 0x1fff0) >> 1) | (ocp_data & 0x7));
if (data != 0xffff)
ocp_reg_write(tp, OCP_ADC_IOFFSET, data);
/* ups mode tx-link-pulse timing adjustment:
* rg_saw_cnt = OCP reg 0xC426 Bit[13:0]
* swr_cnt_1ms_ini = 16000000 / rg_saw_cnt
*/
ocp_data = ocp_reg_read(tp, 0xc426);
ocp_data &= 0x3fff;
if (ocp_data) {
u32 swr_cnt_1ms_ini;
swr_cnt_1ms_ini = (16000000 / ocp_data) & SAW_CNT_1MS_MASK;
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG);
ocp_data = (ocp_data & ~SAW_CNT_1MS_MASK) | swr_cnt_1ms_ini;
ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CFG, ocp_data);
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
/* Advnace EEE */
if (!r8153_patch_request(tp, true)) {
data = ocp_reg_read(tp, OCP_POWER_CFG);
data |= EEE_CLKDIV_EN;
ocp_reg_write(tp, OCP_POWER_CFG, data);
tp->ups_info.eee_ckdiv = true;
data = ocp_reg_read(tp, OCP_DOWN_SPEED);
data |= EN_EEE_CMODE | EN_EEE_1000 | EN_10M_CLKDIV;
ocp_reg_write(tp, OCP_DOWN_SPEED, data);
tp->ups_info.eee_cmod_lv = true;
tp->ups_info._10m_ckdiv = true;
tp->ups_info.eee_plloff_giga = true;
ocp_reg_write(tp, OCP_SYSCLK_CFG, 0);
ocp_reg_write(tp, OCP_SYSCLK_CFG, clk_div_expo(5));
tp->ups_info._250m_ckdiv = true;
r8153_patch_request(tp, false);
}
if (tp->eee_en)
rtl_eee_enable(tp, true);
r8153_aldps_en(tp, true);
r8152b_enable_fc(tp);
set_bit(PHY_RESET, &tp->flags);
}
static void r8153_first_init(struct r8152 *tp)
{
u32 ocp_data;
r8153_mac_clk_spd(tp, false);
rxdy_gated_en(tp, true);
r8153_teredo_off(tp);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data &= ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rtl8152_nic_reset(tp);
rtl_reset_bmu(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data &= ~MCU_BORW_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX);
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0);
ocp_data |= TCR0_AUTO_FIFO;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data);
rtl8152_nic_reset(tp);
/* rx share fifo credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL);
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL);
/* TX share fifo free credit full threshold */
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2);
}
static void r8153_enter_oob(struct r8152 *tp)
{
u32 ocp_data;
r8153_mac_clk_spd(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data &= ~NOW_IS_OOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rtl_disable(tp);
rtl_reset_bmu(tp);
wait_oob_link_list_ready(tp);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7);
ocp_data |= RE_INIT_LL;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data);
wait_oob_link_list_ready(tp);
ocp_data = tp->netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, ocp_data);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG);
ocp_data &= ~TEREDO_WAKE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data);
break;
case RTL_VER_08:
case RTL_VER_09:
/* Clear teredo wake event. bit[15:8] is the teredo wakeup
* type. Set it to zero. bits[7:0] are the W1C bits about
* the events. Set them to all 1 to clear them.
*/
ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff);
break;
default:
break;
}
rtl_rx_vlan_en(tp, true);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR);
ocp_data |= ALDPS_PROXY_MODE;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL);
ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data);
rxdy_gated_en(tp, false);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data |= RCR_APM | RCR_AM | RCR_AB;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
}
static void rtl8153_disable(struct r8152 *tp)
{
r8153_aldps_en(tp, false);
rtl_disable(tp);
rtl_reset_bmu(tp);
r8153_aldps_en(tp, true);
}
static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex,
u32 advertising)
{
u16 bmcr;
int ret = 0;
if (autoneg == AUTONEG_DISABLE) {
if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL)
return -EINVAL;
switch (speed) {
case SPEED_10:
bmcr = BMCR_SPEED10;
if (duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
tp->ups_info.speed_duplex = FORCE_10M_FULL;
} else {
tp->ups_info.speed_duplex = FORCE_10M_HALF;
}
break;
case SPEED_100:
bmcr = BMCR_SPEED100;
if (duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
tp->ups_info.speed_duplex = FORCE_100M_FULL;
} else {
tp->ups_info.speed_duplex = FORCE_100M_HALF;
}
break;
case SPEED_1000:
if (tp->mii.supports_gmii) {
bmcr = BMCR_SPEED1000 | BMCR_FULLDPLX;
tp->ups_info.speed_duplex = NWAY_1000M_FULL;
break;
}
/* fall through */
default:
ret = -EINVAL;
goto out;
}
if (duplex == DUPLEX_FULL)
tp->mii.full_duplex = 1;
else
tp->mii.full_duplex = 0;
tp->mii.force_media = 1;
} else {
u16 anar, tmp1;
u32 support;
support = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL |
RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL;
if (tp->mii.supports_gmii)
support |= RTL_ADVERTISED_1000_FULL;
if (!(advertising & support))
return -EINVAL;
anar = r8152_mdio_read(tp, MII_ADVERTISE);
tmp1 = anar & ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
if (advertising & RTL_ADVERTISED_10_HALF) {
tmp1 |= ADVERTISE_10HALF;
tp->ups_info.speed_duplex = NWAY_10M_HALF;
}
if (advertising & RTL_ADVERTISED_10_FULL) {
tmp1 |= ADVERTISE_10FULL;
tp->ups_info.speed_duplex = NWAY_10M_FULL;
}
if (advertising & RTL_ADVERTISED_100_HALF) {
tmp1 |= ADVERTISE_100HALF;
tp->ups_info.speed_duplex = NWAY_100M_HALF;
}
if (advertising & RTL_ADVERTISED_100_FULL) {
tmp1 |= ADVERTISE_100FULL;
tp->ups_info.speed_duplex = NWAY_100M_FULL;
}
if (anar != tmp1) {
r8152_mdio_write(tp, MII_ADVERTISE, tmp1);
tp->mii.advertising = tmp1;
}
if (tp->mii.supports_gmii) {
u16 gbcr;
gbcr = r8152_mdio_read(tp, MII_CTRL1000);
tmp1 = gbcr & ~(ADVERTISE_1000FULL |
ADVERTISE_1000HALF);
if (advertising & RTL_ADVERTISED_1000_FULL) {
tmp1 |= ADVERTISE_1000FULL;
tp->ups_info.speed_duplex = NWAY_1000M_FULL;
}
if (gbcr != tmp1)
r8152_mdio_write(tp, MII_CTRL1000, tmp1);
}
bmcr = BMCR_ANENABLE | BMCR_ANRESTART;
tp->mii.force_media = 0;
}
if (test_and_clear_bit(PHY_RESET, &tp->flags))
bmcr |= BMCR_RESET;
r8152_mdio_write(tp, MII_BMCR, bmcr);
if (bmcr & BMCR_RESET) {
int i;
for (i = 0; i < 50; i++) {
msleep(20);
if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0)
break;
}
}
out:
return ret;
}
static void rtl8152_up(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8152_aldps_en(tp, false);
r8152b_exit_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8152_down(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
r8152_power_cut_en(tp, false);
r8152_aldps_en(tp, false);
r8152b_enter_oob(tp);
r8152_aldps_en(tp, true);
}
static void rtl8153_up(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data |= LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG);
ocp_data &= ~LANWAKE_PIN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1);
ocp_data &= ~DELAY_PHY_PWR_CHG;
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1, ocp_data);
r8153_aldps_en(tp, true);
switch (tp->version) {
case RTL_VER_03:
case RTL_VER_04:
break;
case RTL_VER_05:
case RTL_VER_06:
default:
r8153_u2p3en(tp, true);
break;
}
r8153_u1u2en(tp, true);
}
static void rtl8153_down(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data &= ~LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
r8153_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_power_cut_en(tp, false);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_aldps_en(tp, true);
}
static void rtl8153b_up(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153_aldps_en(tp, false);
r8153_first_init(tp);
ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data &= ~PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
r8153_aldps_en(tp, true);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
}
static void rtl8153b_down(struct r8152 *tp)
{
u32 ocp_data;
if (test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
return;
}
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data |= PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
r8153b_u1u2en(tp, false);
r8153_u2p3en(tp, false);
r8153b_power_cut_en(tp, false);
r8153_aldps_en(tp, false);
r8153_enter_oob(tp);
r8153_aldps_en(tp, true);
}
static bool rtl8152_in_nway(struct r8152 *tp)
{
u16 nway_state;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000);
tp->ocp_base = 0x2000;
ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */
nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a);
/* bit 15: TXDIS_STATE, bit 14: ABD_STATE */
if (nway_state & 0xc000)
return false;
else
return true;
}
static bool rtl8153_in_nway(struct r8152 *tp)
{
u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff;
if (phy_state == TXDIS_STATE || phy_state == ABD_STATE)
return false;
else
return true;
}
static void set_carrier(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
struct napi_struct *napi = &tp->napi;
u8 speed;
speed = rtl8152_get_speed(tp);
if (speed & LINK_STATUS) {
if (!netif_carrier_ok(netdev)) {
tp->rtl_ops.enable(tp);
netif_stop_queue(netdev);
napi_disable(napi);
netif_carrier_on(netdev);
rtl_start_rx(tp);
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
_rtl8152_set_rx_mode(netdev);
napi_enable(&tp->napi);
netif_wake_queue(netdev);
netif_info(tp, link, netdev, "carrier on\n");
} else if (netif_queue_stopped(netdev) &&
skb_queue_len(&tp->tx_queue) < tp->tx_qlen) {
netif_wake_queue(netdev);
}
} else {
if (netif_carrier_ok(netdev)) {
netif_carrier_off(netdev);
tasklet_disable(&tp->tx_tl);
napi_disable(napi);
tp->rtl_ops.disable(tp);
napi_enable(napi);
tasklet_enable(&tp->tx_tl);
netif_info(tp, link, netdev, "carrier off\n");
}
}
}
static void rtl_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, schedule.work);
/* If the device is unplugged or !netif_running(), the workqueue
* doesn't need to wake the device, and could return directly.
*/
if (test_bit(RTL8152_UNPLUG, &tp->flags) || !netif_running(tp->netdev))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!test_bit(WORK_ENABLE, &tp->flags))
goto out1;
if (!mutex_trylock(&tp->control)) {
schedule_delayed_work(&tp->schedule, 0);
goto out1;
}
if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags))
set_carrier(tp);
if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags))
_rtl8152_set_rx_mode(tp->netdev);
/* don't schedule tasket before linking */
if (test_and_clear_bit(SCHEDULE_TASKLET, &tp->flags) &&
netif_carrier_ok(tp->netdev))
tasklet_schedule(&tp->tx_tl);
mutex_unlock(&tp->control);
out1:
usb_autopm_put_interface(tp->intf);
}
static void rtl_hw_phy_work_func_t(struct work_struct *work)
{
struct r8152 *tp = container_of(work, struct r8152, hw_phy_work.work);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
mutex_lock(&tp->control);
if (rtl8152_request_firmware(tp) == -ENODEV && tp->rtl_fw.retry) {
tp->rtl_fw.retry = false;
tp->rtl_fw.fw = NULL;
/* Delay execution in case request_firmware() is not ready yet.
*/
queue_delayed_work(system_long_wq, &tp->hw_phy_work, HZ * 10);
goto ignore_once;
}
tp->rtl_ops.hw_phy_cfg(tp);
rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex,
tp->advertising);
ignore_once:
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
#ifdef CONFIG_PM_SLEEP
static int rtl_notifier(struct notifier_block *nb, unsigned long action,
void *data)
{
struct r8152 *tp = container_of(nb, struct r8152, pm_notifier);
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
usb_autopm_get_interface(tp->intf);
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
usb_autopm_put_interface(tp->intf);
break;
case PM_POST_RESTORE:
case PM_RESTORE_PREPARE:
default:
break;
}
return NOTIFY_DONE;
}
#endif
static int rtl8152_open(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
if (work_busy(&tp->hw_phy_work.work) & WORK_BUSY_PENDING) {
cancel_delayed_work_sync(&tp->hw_phy_work);
rtl_hw_phy_work_func_t(&tp->hw_phy_work.work);
}
res = alloc_all_mem(tp);
if (res)
goto out;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out_free;
mutex_lock(&tp->control);
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
netif_start_queue(netdev);
set_bit(WORK_ENABLE, &tp->flags);
res = usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (res) {
if (res == -ENODEV)
netif_device_detach(tp->netdev);
netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n",
res);
goto out_unlock;
}
napi_enable(&tp->napi);
tasklet_enable(&tp->tx_tl);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
#ifdef CONFIG_PM_SLEEP
tp->pm_notifier.notifier_call = rtl_notifier;
register_pm_notifier(&tp->pm_notifier);
#endif
return 0;
out_unlock:
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_free:
free_all_mem(tp);
out:
return res;
}
static int rtl8152_close(struct net_device *netdev)
{
struct r8152 *tp = netdev_priv(netdev);
int res = 0;
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&tp->pm_notifier);
#endif
tasklet_disable(&tp->tx_tl);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
napi_disable(&tp->napi);
netif_stop_queue(netdev);
res = usb_autopm_get_interface(tp->intf);
if (res < 0 || test_bit(RTL8152_UNPLUG, &tp->flags)) {
rtl_drop_queued_tx(tp);
rtl_stop_rx(tp);
} else {
mutex_lock(&tp->control);
tp->rtl_ops.down(tp);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
}
free_all_mem(tp);
return res;
}
static void rtl_tally_reset(struct r8152 *tp)
{
u32 ocp_data;
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY);
ocp_data |= TALLY_RESET;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data);
}
static void r8152b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
r8152_aldps_en(tp, false);
if (tp->version == RTL_VER_01) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
}
r8152_power_cut_en(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL);
ocp_data &= ~MCU_CLK_RATIO_MASK;
ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data);
ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK |
SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data);
rtl_tally_reset(tp);
/* enable rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
}
static void r8153_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
data = r8153_phy_status(tp, 0);
if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 ||
tp->version == RTL_VER_05)
ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
if (tp->version == RTL_VER_04) {
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2);
ocp_data &= ~pwd_dn_scale_mask;
ocp_data |= pwd_dn_scale(96);
ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY);
ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND;
ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data);
} else if (tp->version == RTL_VER_05) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0);
ocp_data &= ~ECM_ALDPS;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
} else if (tp->version == RTL_VER_06) {
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1);
if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0)
ocp_data &= ~DYNAMIC_BURST;
else
ocp_data |= DYNAMIC_BURST;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data);
r8153_queue_wake(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
if (rtl8152_get_speed(tp) & LINK_STATUS)
ocp_data |= CUR_LINK_OK;
else
ocp_data &= ~CUR_LINK_OK;
ocp_data |= POLL_LINK_CHG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
}
ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2);
ocp_data |= EP4_FULL_FC;
ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL);
ocp_data &= ~TIMER11_EN;
ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE);
ocp_data &= ~LED_MODE_MASK;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data);
ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM;
if (tp->version == RTL_VER_04 && tp->udev->speed < USB_SPEED_SUPER)
ocp_data |= LPM_TIMER_500MS;
else
ocp_data |= LPM_TIMER_500US;
ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2);
ocp_data &= ~SEN_VAL_MASK;
ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data);
ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001);
r8153_power_cut_en(tp, false);
rtl_runtime_suspend_enable(tp, false);
r8153_u1u2en(tp, true);
r8153_mac_clk_spd(tp, false);
usb_enable_lpm(tp->udev);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6);
ocp_data |= LANWAKE_CLR_EN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG);
ocp_data &= ~LANWAKE_PIN;
ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
if (test_bit(DELL_TB_RX_AGG_BUG, &tp->flags))
ocp_data |= RX_AGG_DISABLE;
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
switch (tp->udev->speed) {
case USB_SPEED_SUPER:
case USB_SPEED_SUPER_PLUS:
tp->coalesce = COALESCE_SUPER;
break;
case USB_SPEED_HIGH:
tp->coalesce = COALESCE_HIGH;
break;
default:
tp->coalesce = COALESCE_SLOW;
break;
}
}
static void r8153b_init(struct r8152 *tp)
{
u32 ocp_data;
u16 data;
int i;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_u1u2en(tp, false);
for (i = 0; i < 500; i++) {
if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) &
AUTOLOAD_DONE)
break;
msleep(20);
if (test_bit(RTL8152_UNPLUG, &tp->flags))
break;
}
data = r8153_phy_status(tp, 0);
data = r8152_mdio_read(tp, MII_BMCR);
if (data & BMCR_PDOWN) {
data &= ~BMCR_PDOWN;
r8152_mdio_write(tp, MII_BMCR, data);
}
data = r8153_phy_status(tp, PHY_STAT_LAN_ON);
r8153_u2p3en(tp, false);
/* MSC timer = 0xfff * 8ms = 32760 ms */
ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff);
/* U1/U2/L1 idle timer. 500 us */
ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500);
r8153b_power_cut_en(tp, false);
r8153b_ups_en(tp, false);
r8153_queue_wake(tp, false);
rtl_runtime_suspend_enable(tp, false);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS);
if (rtl8152_get_speed(tp) & LINK_STATUS)
ocp_data |= CUR_LINK_OK;
else
ocp_data &= ~CUR_LINK_OK;
ocp_data |= POLL_LINK_CHG;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data);
if (tp->udev->speed != USB_SPEED_HIGH)
r8153b_u1u2en(tp, true);
usb_enable_lpm(tp->udev);
/* MAC clock speed down */
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2);
ocp_data |= MAC_CLK_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data);
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3);
ocp_data &= ~PLA_MCU_SPDWN_EN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data);
if (tp->version == RTL_VER_09) {
/* Disable Test IO for 32QFN */
if (ocp_read_byte(tp, MCU_TYPE_PLA, 0xdc00) & BIT(5)) {
ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR);
ocp_data |= TEST_IO_OFF;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data);
}
}
set_bit(GREEN_ETHERNET, &tp->flags);
/* rx aggregation */
ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL);
ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN);
ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data);
rtl_tally_reset(tp);
tp->coalesce = 15000; /* 15 us */
}
static int rtl8152_pre_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
if (!tp)
return 0;
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
netif_stop_queue(netdev);
tasklet_disable(&tp->tx_tl);
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
cancel_delayed_work_sync(&tp->schedule);
napi_disable(&tp->napi);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.disable(tp);
mutex_unlock(&tp->control);
}
return 0;
}
static int rtl8152_post_reset(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
struct net_device *netdev;
struct sockaddr sa;
if (!tp)
return 0;
/* reset the MAC adddress in case of policy change */
if (determine_ethernet_addr(tp, &sa) >= 0) {
rtnl_lock();
dev_set_mac_address (tp->netdev, &sa, NULL);
rtnl_unlock();
}
netdev = tp->netdev;
if (!netif_running(netdev))
return 0;
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
mutex_lock(&tp->control);
tp->rtl_ops.enable(tp);
rtl_start_rx(tp);
_rtl8152_set_rx_mode(netdev);
mutex_unlock(&tp->control);
}
napi_enable(&tp->napi);
tasklet_enable(&tp->tx_tl);
netif_wake_queue(netdev);
usb_submit_urb(tp->intr_urb, GFP_KERNEL);
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
return 0;
}
static bool delay_autosuspend(struct r8152 *tp)
{
bool sw_linking = !!netif_carrier_ok(tp->netdev);
bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS);
/* This means a linking change occurs and the driver doesn't detect it,
* yet. If the driver has disabled tx/rx and hw is linking on, the
* device wouldn't wake up by receiving any packet.
*/
if (work_busy(&tp->schedule.work) || sw_linking != hw_linking)
return true;
/* If the linking down is occurred by nway, the device may miss the
* linking change event. And it wouldn't wake when linking on.
*/
if (!sw_linking && tp->rtl_ops.in_nway(tp))
return true;
else if (!skb_queue_empty(&tp->tx_queue))
return true;
else
return false;
}
static int rtl8152_runtime_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
if (netif_running(netdev) && netdev->flags & IFF_UP) {
struct napi_struct *napi = &tp->napi;
tp->rtl_ops.autosuspend_en(tp, false);
napi_disable(napi);
set_bit(WORK_ENABLE, &tp->flags);
if (netif_carrier_ok(netdev)) {
if (rtl8152_get_speed(tp) & LINK_STATUS) {
rtl_start_rx(tp);
} else {
netif_carrier_off(netdev);
tp->rtl_ops.disable(tp);
netif_info(tp, link, netdev, "linking down\n");
}
}
napi_enable(napi);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (!list_empty(&tp->rx_done))
napi_schedule(&tp->napi);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
} else {
if (netdev->flags & IFF_UP)
tp->rtl_ops.autosuspend_en(tp, false);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
}
return 0;
}
static int rtl8152_system_resume(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
netif_device_attach(netdev);
if (netif_running(netdev) && (netdev->flags & IFF_UP)) {
tp->rtl_ops.up(tp);
netif_carrier_off(netdev);
set_bit(WORK_ENABLE, &tp->flags);
usb_submit_urb(tp->intr_urb, GFP_NOIO);
}
return 0;
}
static int rtl8152_runtime_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
int ret = 0;
set_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
u32 rcr = 0;
if (netif_carrier_ok(netdev)) {
u32 ocp_data;
rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR);
ocp_data = rcr & ~RCR_ACPT_ALL;
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data);
rxdy_gated_en(tp, true);
ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA,
PLA_OOB_CTRL);
if (!(ocp_data & RXFIFO_EMPTY)) {
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
smp_mb__after_atomic();
ret = -EBUSY;
goto out1;
}
}
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
tp->rtl_ops.autosuspend_en(tp, true);
if (netif_carrier_ok(netdev)) {
struct napi_struct *napi = &tp->napi;
napi_disable(napi);
rtl_stop_rx(tp);
rxdy_gated_en(tp, false);
ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr);
napi_enable(napi);
}
if (delay_autosuspend(tp)) {
rtl8152_runtime_resume(tp);
ret = -EBUSY;
}
}
out1:
return ret;
}
static int rtl8152_system_suspend(struct r8152 *tp)
{
struct net_device *netdev = tp->netdev;
netif_device_detach(netdev);
if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) {
struct napi_struct *napi = &tp->napi;
clear_bit(WORK_ENABLE, &tp->flags);
usb_kill_urb(tp->intr_urb);
tasklet_disable(&tp->tx_tl);
napi_disable(napi);
cancel_delayed_work_sync(&tp->schedule);
tp->rtl_ops.down(tp);
napi_enable(napi);
tasklet_enable(&tp->tx_tl);
}
return 0;
}
static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (PMSG_IS_AUTO(message))
ret = rtl8152_runtime_suspend(tp);
else
ret = rtl8152_system_suspend(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
int ret;
mutex_lock(&tp->control);
if (test_bit(SELECTIVE_SUSPEND, &tp->flags))
ret = rtl8152_runtime_resume(tp);
else
ret = rtl8152_system_resume(tp);
mutex_unlock(&tp->control);
return ret;
}
static int rtl8152_reset_resume(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
clear_bit(SELECTIVE_SUSPEND, &tp->flags);
tp->rtl_ops.init(tp);
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
set_ethernet_addr(tp);
return rtl8152_resume(intf);
}
static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
if (usb_autopm_get_interface(tp->intf) < 0)
return;
if (!rtl_can_wakeup(tp)) {
wol->supported = 0;
wol->wolopts = 0;
} else {
mutex_lock(&tp->control);
wol->supported = WAKE_ANY;
wol->wolopts = __rtl_get_wol(tp);
mutex_unlock(&tp->control);
}
usb_autopm_put_interface(tp->intf);
}
static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
if (!rtl_can_wakeup(tp))
return -EOPNOTSUPP;
if (wol->wolopts & ~WAKE_ANY)
return -EINVAL;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out_set_wol;
mutex_lock(&tp->control);
__rtl_set_wol(tp, wol->wolopts);
tp->saved_wolopts = wol->wolopts & WAKE_ANY;
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out_set_wol:
return ret;
}
static u32 rtl8152_get_msglevel(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
return tp->msg_enable;
}
static void rtl8152_set_msglevel(struct net_device *dev, u32 value)
{
struct r8152 *tp = netdev_priv(dev);
tp->msg_enable = value;
}
static void rtl8152_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct r8152 *tp = netdev_priv(netdev);
strlcpy(info->driver, MODULENAME, sizeof(info->driver));
strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info));
if (!IS_ERR_OR_NULL(tp->rtl_fw.fw))
strlcpy(info->fw_version, tp->rtl_fw.version,
sizeof(info->fw_version));
}
static
int rtl8152_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
if (!tp->mii.mdio_read)
return -EOPNOTSUPP;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
mii_ethtool_get_link_ksettings(&tp->mii, cmd);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct r8152 *tp = netdev_priv(dev);
u32 advertising = 0;
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
if (test_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_10_HALF;
if (test_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_10_FULL;
if (test_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_100_HALF;
if (test_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_100_FULL;
if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_1000_HALF;
if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
cmd->link_modes.advertising))
advertising |= RTL_ADVERTISED_1000_FULL;
mutex_lock(&tp->control);
ret = rtl8152_set_speed(tp, cmd->base.autoneg, cmd->base.speed,
cmd->base.duplex, advertising);
if (!ret) {
tp->autoneg = cmd->base.autoneg;
tp->speed = cmd->base.speed;
tp->duplex = cmd->base.duplex;
tp->advertising = advertising;
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = {
"tx_packets",
"rx_packets",
"tx_errors",
"rx_errors",
"rx_missed",
"align_errors",
"tx_single_collisions",
"tx_multi_collisions",
"rx_unicast",
"rx_broadcast",
"rx_multicast",
"tx_aborted",
"tx_underrun",
};
static int rtl8152_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(rtl8152_gstrings);
default:
return -EOPNOTSUPP;
}
}
static void rtl8152_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct r8152 *tp = netdev_priv(dev);
struct tally_counter tally;
if (usb_autopm_get_interface(tp->intf) < 0)
return;
generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA);
usb_autopm_put_interface(tp->intf);
data[0] = le64_to_cpu(tally.tx_packets);
data[1] = le64_to_cpu(tally.rx_packets);
data[2] = le64_to_cpu(tally.tx_errors);
data[3] = le32_to_cpu(tally.rx_errors);
data[4] = le16_to_cpu(tally.rx_missed);
data[5] = le16_to_cpu(tally.align_errors);
data[6] = le32_to_cpu(tally.tx_one_collision);
data[7] = le32_to_cpu(tally.tx_multi_collision);
data[8] = le64_to_cpu(tally.rx_unicast);
data[9] = le64_to_cpu(tally.rx_broadcast);
data[10] = le32_to_cpu(tally.rx_multicast);
data[11] = le16_to_cpu(tally.tx_aborted);
data[12] = le16_to_cpu(tally.tx_underrun);
}
static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *rtl8152_gstrings, sizeof(rtl8152_gstrings));
break;
}
}
static int r8152_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 lp, adv, supported = 0;
u16 val;
val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
eee->eee_enabled = tp->eee_en;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = tp->eee_adv;
eee->lp_advertised = lp;
return 0;
}
static int r8152_set_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u16 val = ethtool_adv_to_mmd_eee_adv_t(eee->advertised);
tp->eee_en = eee->eee_enabled;
tp->eee_adv = val;
rtl_eee_enable(tp, tp->eee_en);
return 0;
}
static int r8153_get_eee(struct r8152 *tp, struct ethtool_eee *eee)
{
u32 lp, adv, supported = 0;
u16 val;
val = ocp_reg_read(tp, OCP_EEE_ABLE);
supported = mmd_eee_cap_to_ethtool_sup_t(val);
val = ocp_reg_read(tp, OCP_EEE_ADV);
adv = mmd_eee_adv_to_ethtool_adv_t(val);
val = ocp_reg_read(tp, OCP_EEE_LPABLE);
lp = mmd_eee_adv_to_ethtool_adv_t(val);
eee->eee_enabled = tp->eee_en;
eee->eee_active = !!(supported & adv & lp);
eee->supported = supported;
eee->advertised = tp->eee_adv;
eee->lp_advertised = lp;
return 0;
}
static int
rtl_ethtool_get_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_get(tp, edata);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int
rtl_ethtool_set_eee(struct net_device *net, struct ethtool_eee *edata)
{
struct r8152 *tp = netdev_priv(net);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = tp->rtl_ops.eee_set(tp, edata);
if (!ret)
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_nway_reset(struct net_device *dev)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
goto out;
mutex_lock(&tp->control);
ret = mii_nway_restart(&tp->mii);
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
out:
return ret;
}
static int rtl8152_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
coalesce->rx_coalesce_usecs = tp->coalesce;
return 0;
}
static int rtl8152_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *coalesce)
{
struct r8152 *tp = netdev_priv(netdev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
return -EOPNOTSUPP;
default:
break;
}
if (coalesce->rx_coalesce_usecs > COALESCE_SLOW)
return -EINVAL;
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
if (tp->coalesce != coalesce->rx_coalesce_usecs) {
tp->coalesce = coalesce->rx_coalesce_usecs;
if (netif_running(netdev) && netif_carrier_ok(netdev)) {
netif_stop_queue(netdev);
napi_disable(&tp->napi);
tp->rtl_ops.disable(tp);
tp->rtl_ops.enable(tp);
rtl_start_rx(tp);
clear_bit(RTL8152_SET_RX_MODE, &tp->flags);
_rtl8152_set_rx_mode(netdev);
napi_enable(&tp->napi);
netif_wake_queue(netdev);
}
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static int rtl8152_get_tunable(struct net_device *netdev,
const struct ethtool_tunable *tunable, void *d)
{
struct r8152 *tp = netdev_priv(netdev);
switch (tunable->id) {
case ETHTOOL_RX_COPYBREAK:
*(u32 *)d = tp->rx_copybreak;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int rtl8152_set_tunable(struct net_device *netdev,
const struct ethtool_tunable *tunable,
const void *d)
{
struct r8152 *tp = netdev_priv(netdev);
u32 val;
switch (tunable->id) {
case ETHTOOL_RX_COPYBREAK:
val = *(u32 *)d;
if (val < ETH_ZLEN) {
netif_err(tp, rx_err, netdev,
"Invalid rx copy break value\n");
return -EINVAL;
}
if (tp->rx_copybreak != val) {
if (netdev->flags & IFF_UP) {
mutex_lock(&tp->control);
napi_disable(&tp->napi);
tp->rx_copybreak = val;
napi_enable(&tp->napi);
mutex_unlock(&tp->control);
} else {
tp->rx_copybreak = val;
}
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static void rtl8152_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct r8152 *tp = netdev_priv(netdev);
ring->rx_max_pending = RTL8152_RX_MAX_PENDING;
ring->rx_pending = tp->rx_pending;
}
static int rtl8152_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct r8152 *tp = netdev_priv(netdev);
if (ring->rx_pending < (RTL8152_MAX_RX * 2))
return -EINVAL;
if (tp->rx_pending != ring->rx_pending) {
if (netdev->flags & IFF_UP) {
mutex_lock(&tp->control);
napi_disable(&tp->napi);
tp->rx_pending = ring->rx_pending;
napi_enable(&tp->napi);
mutex_unlock(&tp->control);
} else {
tp->rx_pending = ring->rx_pending;
}
}
return 0;
}
static const struct ethtool_ops ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
.get_drvinfo = rtl8152_get_drvinfo,
.get_link = ethtool_op_get_link,
.nway_reset = rtl8152_nway_reset,
.get_msglevel = rtl8152_get_msglevel,
.set_msglevel = rtl8152_set_msglevel,
.get_wol = rtl8152_get_wol,
.set_wol = rtl8152_set_wol,
.get_strings = rtl8152_get_strings,
.get_sset_count = rtl8152_get_sset_count,
.get_ethtool_stats = rtl8152_get_ethtool_stats,
.get_coalesce = rtl8152_get_coalesce,
.set_coalesce = rtl8152_set_coalesce,
.get_eee = rtl_ethtool_get_eee,
.set_eee = rtl_ethtool_set_eee,
.get_link_ksettings = rtl8152_get_link_ksettings,
.set_link_ksettings = rtl8152_set_link_ksettings,
.get_tunable = rtl8152_get_tunable,
.set_tunable = rtl8152_set_tunable,
.get_ringparam = rtl8152_get_ringparam,
.set_ringparam = rtl8152_set_ringparam,
};
static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct r8152 *tp = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(rq);
int res;
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return -ENODEV;
res = usb_autopm_get_interface(tp->intf);
if (res < 0)
goto out;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = R8152_PHY_ID; /* Internal PHY */
break;
case SIOCGMIIREG:
mutex_lock(&tp->control);
data->val_out = r8152_mdio_read(tp, data->reg_num);
mutex_unlock(&tp->control);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN)) {
res = -EPERM;
break;
}
mutex_lock(&tp->control);
r8152_mdio_write(tp, data->reg_num, data->val_in);
mutex_unlock(&tp->control);
break;
default:
res = -EOPNOTSUPP;
}
usb_autopm_put_interface(tp->intf);
out:
return res;
}
static int rtl8152_change_mtu(struct net_device *dev, int new_mtu)
{
struct r8152 *tp = netdev_priv(dev);
int ret;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
dev->mtu = new_mtu;
return 0;
default:
break;
}
ret = usb_autopm_get_interface(tp->intf);
if (ret < 0)
return ret;
mutex_lock(&tp->control);
dev->mtu = new_mtu;
if (netif_running(dev)) {
u32 rms = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, rms);
if (netif_carrier_ok(dev))
r8153_set_rx_early_size(tp);
}
mutex_unlock(&tp->control);
usb_autopm_put_interface(tp->intf);
return ret;
}
static const struct net_device_ops rtl8152_netdev_ops = {
.ndo_open = rtl8152_open,
.ndo_stop = rtl8152_close,
.ndo_do_ioctl = rtl8152_ioctl,
.ndo_start_xmit = rtl8152_start_xmit,
.ndo_tx_timeout = rtl8152_tx_timeout,
.ndo_set_features = rtl8152_set_features,
.ndo_set_rx_mode = rtl8152_set_rx_mode,
.ndo_set_mac_address = rtl8152_set_mac_address,
.ndo_change_mtu = rtl8152_change_mtu,
.ndo_validate_addr = eth_validate_addr,
.ndo_features_check = rtl8152_features_check,
};
static void rtl8152_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
if (tp->version != RTL_VER_01)
r8152_power_cut_en(tp, true);
}
static void rtl8153_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153_power_cut_en(tp, false);
}
static void rtl8153b_unload(struct r8152 *tp)
{
if (test_bit(RTL8152_UNPLUG, &tp->flags))
return;
r8153b_power_cut_en(tp, false);
}
static int rtl_ops_init(struct r8152 *tp)
{
struct rtl_ops *ops = &tp->rtl_ops;
int ret = 0;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
ops->init = r8152b_init;
ops->enable = rtl8152_enable;
ops->disable = rtl8152_disable;
ops->up = rtl8152_up;
ops->down = rtl8152_down;
ops->unload = rtl8152_unload;
ops->eee_get = r8152_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8152_in_nway;
ops->hw_phy_cfg = r8152b_hw_phy_cfg;
ops->autosuspend_en = rtl_runtime_suspend_enable;
tp->rx_buf_sz = 16 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_100TX;
break;
case RTL_VER_03:
case RTL_VER_04:
case RTL_VER_05:
case RTL_VER_06:
ops->init = r8153_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153_up;
ops->down = rtl8153_down;
ops->unload = rtl8153_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153_hw_phy_cfg;
ops->autosuspend_en = rtl8153_runtime_enable;
tp->rx_buf_sz = 32 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX;
break;
case RTL_VER_08:
case RTL_VER_09:
ops->init = r8153b_init;
ops->enable = rtl8153_enable;
ops->disable = rtl8153_disable;
ops->up = rtl8153b_up;
ops->down = rtl8153b_down;
ops->unload = rtl8153b_unload;
ops->eee_get = r8153_get_eee;
ops->eee_set = r8152_set_eee;
ops->in_nway = rtl8153_in_nway;
ops->hw_phy_cfg = r8153b_hw_phy_cfg;
ops->autosuspend_en = rtl8153b_runtime_enable;
tp->rx_buf_sz = 32 * 1024;
tp->eee_en = true;
tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX;
break;
default:
ret = -ENODEV;
netif_err(tp, probe, tp->netdev, "Unknown Device\n");
break;
}
return ret;
}
#define FIRMWARE_8153A_2 "rtl_nic/rtl8153a-2.fw"
#define FIRMWARE_8153A_3 "rtl_nic/rtl8153a-3.fw"
#define FIRMWARE_8153A_4 "rtl_nic/rtl8153a-4.fw"
#define FIRMWARE_8153B_2 "rtl_nic/rtl8153b-2.fw"
MODULE_FIRMWARE(FIRMWARE_8153A_2);
MODULE_FIRMWARE(FIRMWARE_8153A_3);
MODULE_FIRMWARE(FIRMWARE_8153A_4);
MODULE_FIRMWARE(FIRMWARE_8153B_2);
static int rtl_fw_init(struct r8152 *tp)
{
struct rtl_fw *rtl_fw = &tp->rtl_fw;
switch (tp->version) {
case RTL_VER_04:
rtl_fw->fw_name = FIRMWARE_8153A_2;
rtl_fw->pre_fw = r8153_pre_firmware_1;
rtl_fw->post_fw = r8153_post_firmware_1;
break;
case RTL_VER_05:
rtl_fw->fw_name = FIRMWARE_8153A_3;
rtl_fw->pre_fw = r8153_pre_firmware_2;
rtl_fw->post_fw = r8153_post_firmware_2;
break;
case RTL_VER_06:
rtl_fw->fw_name = FIRMWARE_8153A_4;
rtl_fw->post_fw = r8153_post_firmware_3;
break;
case RTL_VER_09:
rtl_fw->fw_name = FIRMWARE_8153B_2;
rtl_fw->pre_fw = r8153b_pre_firmware_1;
rtl_fw->post_fw = r8153b_post_firmware_1;
break;
default:
break;
}
return 0;
}
static u8 rtl_get_version(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
u32 ocp_data = 0;
__le32 *tmp;
u8 version;
int ret;
tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return 0;
ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
RTL8152_REQ_GET_REGS, RTL8152_REQT_READ,
PLA_TCR0, MCU_TYPE_PLA, tmp, sizeof(*tmp), 500);
if (ret > 0)
ocp_data = (__le32_to_cpu(*tmp) >> 16) & VERSION_MASK;
kfree(tmp);
switch (ocp_data) {
case 0x4c00:
version = RTL_VER_01;
break;
case 0x4c10:
version = RTL_VER_02;
break;
case 0x5c00:
version = RTL_VER_03;
break;
case 0x5c10:
version = RTL_VER_04;
break;
case 0x5c20:
version = RTL_VER_05;
break;
case 0x5c30:
version = RTL_VER_06;
break;
case 0x4800:
version = RTL_VER_07;
break;
case 0x6000:
version = RTL_VER_08;
break;
case 0x6010:
version = RTL_VER_09;
break;
default:
version = RTL_VER_UNKNOWN;
dev_info(&intf->dev, "Unknown version 0x%04x\n", ocp_data);
break;
}
dev_dbg(&intf->dev, "Detected version 0x%04x\n", version);
return version;
}
static int rtl8152_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
u8 version = rtl_get_version(intf);
struct r8152 *tp;
struct net_device *netdev;
int ret;
if (version == RTL_VER_UNKNOWN)
return -ENODEV;
if (udev->actconfig->desc.bConfigurationValue != 1) {
usb_driver_set_configuration(udev, 1);
return -ENODEV;
}
if (intf->cur_altsetting->desc.bNumEndpoints < 3)
return -ENODEV;
usb_reset_device(udev);
netdev = alloc_etherdev(sizeof(struct r8152));
if (!netdev) {
dev_err(&intf->dev, "Out of memory\n");
return -ENOMEM;
}
SET_NETDEV_DEV(netdev, &intf->dev);
tp = netdev_priv(netdev);
tp->msg_enable = 0x7FFF;
tp->udev = udev;
tp->netdev = netdev;
tp->intf = intf;
tp->version = version;
switch (version) {
case RTL_VER_01:
case RTL_VER_02:
case RTL_VER_07:
tp->mii.supports_gmii = 0;
break;
default:
tp->mii.supports_gmii = 1;
break;
}
ret = rtl_ops_init(tp);
if (ret)
goto out;
rtl_fw_init(tp);
mutex_init(&tp->control);
INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t);
INIT_DELAYED_WORK(&tp->hw_phy_work, rtl_hw_phy_work_func_t);
tasklet_init(&tp->tx_tl, bottom_half, (unsigned long)tp);
tasklet_disable(&tp->tx_tl);
netdev->netdev_ops = &rtl8152_netdev_ops;
netdev->watchdog_timeo = RTL8152_TX_TIMEOUT;
netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM |
NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX;
netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6 |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
if (tp->version == RTL_VER_01) {
netdev->features &= ~NETIF_F_RXCSUM;
netdev->hw_features &= ~NETIF_F_RXCSUM;
}
if (le16_to_cpu(udev->descriptor.idVendor) == VENDOR_ID_LENOVO) {
switch (le16_to_cpu(udev->descriptor.idProduct)) {
case DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2:
case DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2:
set_bit(LENOVO_MACPASSTHRU, &tp->flags);
}
}
if (le16_to_cpu(udev->descriptor.bcdDevice) == 0x3011 && udev->serial &&
(!strcmp(udev->serial, "000001000000") ||
!strcmp(udev->serial, "000002000000"))) {
dev_info(&udev->dev, "Dell TB16 Dock, disable RX aggregation");
set_bit(DELL_TB_RX_AGG_BUG, &tp->flags);
}
netdev->ethtool_ops = &ops;
netif_set_gso_max_size(netdev, RTL_LIMITED_TSO_SIZE);
/* MTU range: 68 - 1500 or 9194 */
netdev->min_mtu = ETH_MIN_MTU;
switch (tp->version) {
case RTL_VER_01:
case RTL_VER_02:
netdev->max_mtu = ETH_DATA_LEN;
break;
default:
netdev->max_mtu = RTL8153_MAX_MTU;
break;
}
tp->mii.dev = netdev;
tp->mii.mdio_read = read_mii_word;
tp->mii.mdio_write = write_mii_word;
tp->mii.phy_id_mask = 0x3f;
tp->mii.reg_num_mask = 0x1f;
tp->mii.phy_id = R8152_PHY_ID;
tp->autoneg = AUTONEG_ENABLE;
tp->speed = SPEED_100;
tp->advertising = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL |
RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL;
if (tp->mii.supports_gmii) {
tp->speed = SPEED_1000;
tp->advertising |= RTL_ADVERTISED_1000_FULL;
}
tp->duplex = DUPLEX_FULL;
tp->rx_copybreak = RTL8152_RXFG_HEADSZ;
tp->rx_pending = 10 * RTL8152_MAX_RX;
intf->needs_remote_wakeup = 1;
if (!rtl_can_wakeup(tp))
__rtl_set_wol(tp, 0);
else
tp->saved_wolopts = __rtl_get_wol(tp);
tp->rtl_ops.init(tp);
#if IS_BUILTIN(CONFIG_USB_RTL8152)
/* Retry in case request_firmware() is not ready yet. */
tp->rtl_fw.retry = true;
#endif
queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0);
set_ethernet_addr(tp);
usb_set_intfdata(intf, tp);
netif_napi_add(netdev, &tp->napi, r8152_poll, RTL8152_NAPI_WEIGHT);
ret = register_netdev(netdev);
if (ret != 0) {
netif_err(tp, probe, netdev, "couldn't register the device\n");
goto out1;
}
if (tp->saved_wolopts)
device_set_wakeup_enable(&udev->dev, true);
else
device_set_wakeup_enable(&udev->dev, false);
netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION);
return 0;
out1:
tasklet_kill(&tp->tx_tl);
usb_set_intfdata(intf, NULL);
out:
free_netdev(netdev);
return ret;
}
static void rtl8152_disconnect(struct usb_interface *intf)
{
struct r8152 *tp = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (tp) {
rtl_set_unplug(tp);
unregister_netdev(tp->netdev);
tasklet_kill(&tp->tx_tl);
cancel_delayed_work_sync(&tp->hw_phy_work);
tp->rtl_ops.unload(tp);
rtl8152_release_firmware(tp);
free_netdev(tp->netdev);
}
}
#define REALTEK_USB_DEVICE(vend, prod) \
.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
USB_DEVICE_ID_MATCH_INT_CLASS, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_VENDOR_SPEC \
}, \
{ \
.match_flags = USB_DEVICE_ID_MATCH_INT_INFO | \
USB_DEVICE_ID_MATCH_DEVICE, \
.idVendor = (vend), \
.idProduct = (prod), \
.bInterfaceClass = USB_CLASS_COMM, \
.bInterfaceSubClass = USB_CDC_SUBCLASS_ETHERNET, \
.bInterfaceProtocol = USB_CDC_PROTO_NONE
/* table of devices that work with this driver */
static const struct usb_device_id rtl8152_table[] = {
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8050)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8152)},
{REALTEK_USB_DEVICE(VENDOR_ID_REALTEK, 0x8153)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07ab)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07c6)},
{REALTEK_USB_DEVICE(VENDOR_ID_MICROSOFT, 0x0927)},
{REALTEK_USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x304f)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3062)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3069)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x3082)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7205)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x720c)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0x7214)},
{REALTEK_USB_DEVICE(VENDOR_ID_LENOVO, 0xa387)},
{REALTEK_USB_DEVICE(VENDOR_ID_LINKSYS, 0x0041)},
{REALTEK_USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff)},
{REALTEK_USB_DEVICE(VENDOR_ID_TPLINK, 0x0601)},
{}
};
MODULE_DEVICE_TABLE(usb, rtl8152_table);
static struct usb_driver rtl8152_driver = {
.name = MODULENAME,
.id_table = rtl8152_table,
.probe = rtl8152_probe,
.disconnect = rtl8152_disconnect,
.suspend = rtl8152_suspend,
.resume = rtl8152_resume,
.reset_resume = rtl8152_reset_resume,
.pre_reset = rtl8152_pre_reset,
.post_reset = rtl8152_post_reset,
.supports_autosuspend = 1,
.disable_hub_initiated_lpm = 1,
};
module_usb_driver(rtl8152_driver);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRIVER_VERSION);