| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * APM X-Gene MSI Driver |
| * |
| * Copyright (c) 2014, Applied Micro Circuits Corporation |
| * Author: Tanmay Inamdar <tinamdar@apm.com> |
| * Duc Dang <dhdang@apm.com> |
| */ |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/msi.h> |
| #include <linux/of_irq.h> |
| #include <linux/irqchip/chained_irq.h> |
| #include <linux/pci.h> |
| #include <linux/platform_device.h> |
| #include <linux/of_pci.h> |
| |
| #define MSI_IR0 0x000000 |
| #define MSI_INT0 0x800000 |
| #define IDX_PER_GROUP 8 |
| #define IRQS_PER_IDX 16 |
| #define NR_HW_IRQS 16 |
| #define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS) |
| |
| struct xgene_msi_group { |
| struct xgene_msi *msi; |
| int gic_irq; |
| u32 msi_grp; |
| }; |
| |
| struct xgene_msi { |
| struct device_node *node; |
| struct irq_domain *inner_domain; |
| struct irq_domain *msi_domain; |
| u64 msi_addr; |
| void __iomem *msi_regs; |
| unsigned long *bitmap; |
| struct mutex bitmap_lock; |
| struct xgene_msi_group *msi_groups; |
| int num_cpus; |
| }; |
| |
| /* Global data */ |
| static struct xgene_msi xgene_msi_ctrl; |
| |
| static struct irq_chip xgene_msi_top_irq_chip = { |
| .name = "X-Gene1 MSI", |
| .irq_enable = pci_msi_unmask_irq, |
| .irq_disable = pci_msi_mask_irq, |
| .irq_mask = pci_msi_mask_irq, |
| .irq_unmask = pci_msi_unmask_irq, |
| }; |
| |
| static struct msi_domain_info xgene_msi_domain_info = { |
| .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | |
| MSI_FLAG_PCI_MSIX), |
| .chip = &xgene_msi_top_irq_chip, |
| }; |
| |
| /* |
| * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where |
| * n is group number (0..F), x is index of registers in each group (0..7) |
| * The register layout is as follows: |
| * MSI0IR0 base_addr |
| * MSI0IR1 base_addr + 0x10000 |
| * ... ... |
| * MSI0IR6 base_addr + 0x60000 |
| * MSI0IR7 base_addr + 0x70000 |
| * MSI1IR0 base_addr + 0x80000 |
| * MSI1IR1 base_addr + 0x90000 |
| * ... ... |
| * MSI1IR7 base_addr + 0xF0000 |
| * MSI2IR0 base_addr + 0x100000 |
| * ... ... |
| * MSIFIR0 base_addr + 0x780000 |
| * MSIFIR1 base_addr + 0x790000 |
| * ... ... |
| * MSIFIR7 base_addr + 0x7F0000 |
| * MSIINT0 base_addr + 0x800000 |
| * MSIINT1 base_addr + 0x810000 |
| * ... ... |
| * MSIINTF base_addr + 0x8F0000 |
| * |
| * Each index register supports 16 MSI vectors (0..15) to generate interrupt. |
| * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination |
| * registers. |
| * |
| * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate |
| * the MSI pending status caused by 1 of its 8 index registers. |
| */ |
| |
| /* MSInIRx read helper */ |
| static u32 xgene_msi_ir_read(struct xgene_msi *msi, |
| u32 msi_grp, u32 msir_idx) |
| { |
| return readl_relaxed(msi->msi_regs + MSI_IR0 + |
| (msi_grp << 19) + (msir_idx << 16)); |
| } |
| |
| /* MSIINTn read helper */ |
| static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp) |
| { |
| return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16)); |
| } |
| |
| /* |
| * With 2048 MSI vectors supported, the MSI message can be constructed using |
| * following scheme: |
| * - Divide into 8 256-vector groups |
| * Group 0: 0-255 |
| * Group 1: 256-511 |
| * Group 2: 512-767 |
| * ... |
| * Group 7: 1792-2047 |
| * - Each 256-vector group is divided into 16 16-vector groups |
| * As an example: 16 16-vector groups for 256-vector group 0-255 is |
| * Group 0: 0-15 |
| * Group 1: 16-32 |
| * ... |
| * Group 15: 240-255 |
| * - The termination address of MSI vector in 256-vector group n and 16-vector |
| * group x is the address of MSIxIRn |
| * - The data for MSI vector in 16-vector group x is x |
| */ |
| static u32 hwirq_to_reg_set(unsigned long hwirq) |
| { |
| return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX)); |
| } |
| |
| static u32 hwirq_to_group(unsigned long hwirq) |
| { |
| return (hwirq % NR_HW_IRQS); |
| } |
| |
| static u32 hwirq_to_msi_data(unsigned long hwirq) |
| { |
| return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX); |
| } |
| |
| static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct xgene_msi *msi = irq_data_get_irq_chip_data(data); |
| u32 reg_set = hwirq_to_reg_set(data->hwirq); |
| u32 group = hwirq_to_group(data->hwirq); |
| u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16); |
| |
| msg->address_hi = upper_32_bits(target_addr); |
| msg->address_lo = lower_32_bits(target_addr); |
| msg->data = hwirq_to_msi_data(data->hwirq); |
| } |
| |
| /* |
| * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain |
| * the expected behaviour of .set_affinity for each MSI interrupt, the 16 |
| * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs |
| * for each core). The MSI vector is moved fom 1 MSI GIC IRQ to another |
| * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a |
| * consequence, the total MSI vectors that X-Gene v1 supports will be |
| * reduced to 256 (2048/8) vectors. |
| */ |
| static int hwirq_to_cpu(unsigned long hwirq) |
| { |
| return (hwirq % xgene_msi_ctrl.num_cpus); |
| } |
| |
| static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq) |
| { |
| return (hwirq - hwirq_to_cpu(hwirq)); |
| } |
| |
| static int xgene_msi_set_affinity(struct irq_data *irqdata, |
| const struct cpumask *mask, bool force) |
| { |
| int target_cpu = cpumask_first(mask); |
| int curr_cpu; |
| |
| curr_cpu = hwirq_to_cpu(irqdata->hwirq); |
| if (curr_cpu == target_cpu) |
| return IRQ_SET_MASK_OK_DONE; |
| |
| /* Update MSI number to target the new CPU */ |
| irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu; |
| |
| return IRQ_SET_MASK_OK; |
| } |
| |
| static struct irq_chip xgene_msi_bottom_irq_chip = { |
| .name = "MSI", |
| .irq_set_affinity = xgene_msi_set_affinity, |
| .irq_compose_msi_msg = xgene_compose_msi_msg, |
| }; |
| |
| static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *args) |
| { |
| struct xgene_msi *msi = domain->host_data; |
| int msi_irq; |
| |
| mutex_lock(&msi->bitmap_lock); |
| |
| msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0, |
| msi->num_cpus, 0); |
| if (msi_irq < NR_MSI_VEC) |
| bitmap_set(msi->bitmap, msi_irq, msi->num_cpus); |
| else |
| msi_irq = -ENOSPC; |
| |
| mutex_unlock(&msi->bitmap_lock); |
| |
| if (msi_irq < 0) |
| return msi_irq; |
| |
| irq_domain_set_info(domain, virq, msi_irq, |
| &xgene_msi_bottom_irq_chip, domain->host_data, |
| handle_simple_irq, NULL, NULL); |
| |
| return 0; |
| } |
| |
| static void xgene_irq_domain_free(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs) |
| { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| struct xgene_msi *msi = irq_data_get_irq_chip_data(d); |
| u32 hwirq; |
| |
| mutex_lock(&msi->bitmap_lock); |
| |
| hwirq = hwirq_to_canonical_hwirq(d->hwirq); |
| bitmap_clear(msi->bitmap, hwirq, msi->num_cpus); |
| |
| mutex_unlock(&msi->bitmap_lock); |
| |
| irq_domain_free_irqs_parent(domain, virq, nr_irqs); |
| } |
| |
| static const struct irq_domain_ops msi_domain_ops = { |
| .alloc = xgene_irq_domain_alloc, |
| .free = xgene_irq_domain_free, |
| }; |
| |
| static int xgene_allocate_domains(struct xgene_msi *msi) |
| { |
| msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC, |
| &msi_domain_ops, msi); |
| if (!msi->inner_domain) |
| return -ENOMEM; |
| |
| msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node), |
| &xgene_msi_domain_info, |
| msi->inner_domain); |
| |
| if (!msi->msi_domain) { |
| irq_domain_remove(msi->inner_domain); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void xgene_free_domains(struct xgene_msi *msi) |
| { |
| if (msi->msi_domain) |
| irq_domain_remove(msi->msi_domain); |
| if (msi->inner_domain) |
| irq_domain_remove(msi->inner_domain); |
| } |
| |
| static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi) |
| { |
| int size = BITS_TO_LONGS(NR_MSI_VEC) * sizeof(long); |
| |
| xgene_msi->bitmap = kzalloc(size, GFP_KERNEL); |
| if (!xgene_msi->bitmap) |
| return -ENOMEM; |
| |
| mutex_init(&xgene_msi->bitmap_lock); |
| |
| xgene_msi->msi_groups = kcalloc(NR_HW_IRQS, |
| sizeof(struct xgene_msi_group), |
| GFP_KERNEL); |
| if (!xgene_msi->msi_groups) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void xgene_msi_isr(struct irq_desc *desc) |
| { |
| struct irq_chip *chip = irq_desc_get_chip(desc); |
| struct xgene_msi_group *msi_groups; |
| struct xgene_msi *xgene_msi; |
| unsigned int virq; |
| int msir_index, msir_val, hw_irq; |
| u32 intr_index, grp_select, msi_grp; |
| |
| chained_irq_enter(chip, desc); |
| |
| msi_groups = irq_desc_get_handler_data(desc); |
| xgene_msi = msi_groups->msi; |
| msi_grp = msi_groups->msi_grp; |
| |
| /* |
| * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt |
| * If bit x of this register is set (x is 0..7), one or more interupts |
| * corresponding to MSInIRx is set. |
| */ |
| grp_select = xgene_msi_int_read(xgene_msi, msi_grp); |
| while (grp_select) { |
| msir_index = ffs(grp_select) - 1; |
| /* |
| * Calculate MSInIRx address to read to check for interrupts |
| * (refer to termination address and data assignment |
| * described in xgene_compose_msi_msg() ) |
| */ |
| msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index); |
| while (msir_val) { |
| intr_index = ffs(msir_val) - 1; |
| /* |
| * Calculate MSI vector number (refer to the termination |
| * address and data assignment described in |
| * xgene_compose_msi_msg function) |
| */ |
| hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) * |
| NR_HW_IRQS) + msi_grp; |
| /* |
| * As we have multiple hw_irq that maps to single MSI, |
| * always look up the virq using the hw_irq as seen from |
| * CPU0 |
| */ |
| hw_irq = hwirq_to_canonical_hwirq(hw_irq); |
| virq = irq_find_mapping(xgene_msi->inner_domain, hw_irq); |
| WARN_ON(!virq); |
| if (virq != 0) |
| generic_handle_irq(virq); |
| msir_val &= ~(1 << intr_index); |
| } |
| grp_select &= ~(1 << msir_index); |
| |
| if (!grp_select) { |
| /* |
| * We handled all interrupts happened in this group, |
| * resample this group MSI_INTx register in case |
| * something else has been made pending in the meantime |
| */ |
| grp_select = xgene_msi_int_read(xgene_msi, msi_grp); |
| } |
| } |
| |
| chained_irq_exit(chip, desc); |
| } |
| |
| static enum cpuhp_state pci_xgene_online; |
| |
| static int xgene_msi_remove(struct platform_device *pdev) |
| { |
| struct xgene_msi *msi = platform_get_drvdata(pdev); |
| |
| if (pci_xgene_online) |
| cpuhp_remove_state(pci_xgene_online); |
| cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD); |
| |
| kfree(msi->msi_groups); |
| |
| kfree(msi->bitmap); |
| msi->bitmap = NULL; |
| |
| xgene_free_domains(msi); |
| |
| return 0; |
| } |
| |
| static int xgene_msi_hwirq_alloc(unsigned int cpu) |
| { |
| struct xgene_msi *msi = &xgene_msi_ctrl; |
| struct xgene_msi_group *msi_group; |
| cpumask_var_t mask; |
| int i; |
| int err; |
| |
| for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) { |
| msi_group = &msi->msi_groups[i]; |
| if (!msi_group->gic_irq) |
| continue; |
| |
| irq_set_chained_handler(msi_group->gic_irq, |
| xgene_msi_isr); |
| err = irq_set_handler_data(msi_group->gic_irq, msi_group); |
| if (err) { |
| pr_err("failed to register GIC IRQ handler\n"); |
| return -EINVAL; |
| } |
| /* |
| * Statically allocate MSI GIC IRQs to each CPU core. |
| * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated |
| * to each core. |
| */ |
| if (alloc_cpumask_var(&mask, GFP_KERNEL)) { |
| cpumask_clear(mask); |
| cpumask_set_cpu(cpu, mask); |
| err = irq_set_affinity(msi_group->gic_irq, mask); |
| if (err) |
| pr_err("failed to set affinity for GIC IRQ"); |
| free_cpumask_var(mask); |
| } else { |
| pr_err("failed to alloc CPU mask for affinity\n"); |
| err = -EINVAL; |
| } |
| |
| if (err) { |
| irq_set_chained_handler_and_data(msi_group->gic_irq, |
| NULL, NULL); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int xgene_msi_hwirq_free(unsigned int cpu) |
| { |
| struct xgene_msi *msi = &xgene_msi_ctrl; |
| struct xgene_msi_group *msi_group; |
| int i; |
| |
| for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) { |
| msi_group = &msi->msi_groups[i]; |
| if (!msi_group->gic_irq) |
| continue; |
| |
| irq_set_chained_handler_and_data(msi_group->gic_irq, NULL, |
| NULL); |
| } |
| return 0; |
| } |
| |
| static const struct of_device_id xgene_msi_match_table[] = { |
| {.compatible = "apm,xgene1-msi"}, |
| {}, |
| }; |
| |
| static int xgene_msi_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| int rc, irq_index; |
| struct xgene_msi *xgene_msi; |
| int virt_msir; |
| u32 msi_val, msi_idx; |
| |
| xgene_msi = &xgene_msi_ctrl; |
| |
| platform_set_drvdata(pdev, xgene_msi); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(xgene_msi->msi_regs)) { |
| dev_err(&pdev->dev, "no reg space\n"); |
| rc = -EINVAL; |
| goto error; |
| } |
| xgene_msi->msi_addr = res->start; |
| xgene_msi->node = pdev->dev.of_node; |
| xgene_msi->num_cpus = num_possible_cpus(); |
| |
| rc = xgene_msi_init_allocator(xgene_msi); |
| if (rc) { |
| dev_err(&pdev->dev, "Error allocating MSI bitmap\n"); |
| goto error; |
| } |
| |
| rc = xgene_allocate_domains(xgene_msi); |
| if (rc) { |
| dev_err(&pdev->dev, "Failed to allocate MSI domain\n"); |
| goto error; |
| } |
| |
| for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) { |
| virt_msir = platform_get_irq(pdev, irq_index); |
| if (virt_msir < 0) { |
| dev_err(&pdev->dev, "Cannot translate IRQ index %d\n", |
| irq_index); |
| rc = virt_msir; |
| goto error; |
| } |
| xgene_msi->msi_groups[irq_index].gic_irq = virt_msir; |
| xgene_msi->msi_groups[irq_index].msi_grp = irq_index; |
| xgene_msi->msi_groups[irq_index].msi = xgene_msi; |
| } |
| |
| /* |
| * MSInIRx registers are read-to-clear; before registering |
| * interrupt handlers, read all of them to clear spurious |
| * interrupts that may occur before the driver is probed. |
| */ |
| for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) { |
| for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++) |
| msi_val = xgene_msi_ir_read(xgene_msi, irq_index, |
| msi_idx); |
| /* Read MSIINTn to confirm */ |
| msi_val = xgene_msi_int_read(xgene_msi, irq_index); |
| if (msi_val) { |
| dev_err(&pdev->dev, "Failed to clear spurious IRQ\n"); |
| rc = -EINVAL; |
| goto error; |
| } |
| } |
| |
| rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online", |
| xgene_msi_hwirq_alloc, NULL); |
| if (rc < 0) |
| goto err_cpuhp; |
| pci_xgene_online = rc; |
| rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL, |
| xgene_msi_hwirq_free); |
| if (rc) |
| goto err_cpuhp; |
| |
| dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n"); |
| |
| return 0; |
| |
| err_cpuhp: |
| dev_err(&pdev->dev, "failed to add CPU MSI notifier\n"); |
| error: |
| xgene_msi_remove(pdev); |
| return rc; |
| } |
| |
| static struct platform_driver xgene_msi_driver = { |
| .driver = { |
| .name = "xgene-msi", |
| .of_match_table = xgene_msi_match_table, |
| }, |
| .probe = xgene_msi_probe, |
| .remove = xgene_msi_remove, |
| }; |
| |
| static int __init xgene_pcie_msi_init(void) |
| { |
| return platform_driver_register(&xgene_msi_driver); |
| } |
| subsys_initcall(xgene_pcie_msi_init); |