| // SPDX-License-Identifier: GPL-2.0-or-later |
| // |
| // core.c -- Voltage/Current Regulator framework. |
| // |
| // Copyright 2007, 2008 Wolfson Microelectronics PLC. |
| // Copyright 2008 SlimLogic Ltd. |
| // |
| // Author: Liam Girdwood <lrg@slimlogic.co.uk> |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/slab.h> |
| #include <linux/async.h> |
| #include <linux/err.h> |
| #include <linux/mutex.h> |
| #include <linux/suspend.h> |
| #include <linux/delay.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/of.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/of_regulator.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/regulator/coupler.h> |
| #include <linux/regulator/driver.h> |
| #include <linux/regulator/machine.h> |
| #include <linux/module.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/regulator.h> |
| |
| #include "dummy.h" |
| #include "internal.h" |
| |
| static DEFINE_WW_CLASS(regulator_ww_class); |
| static DEFINE_MUTEX(regulator_nesting_mutex); |
| static DEFINE_MUTEX(regulator_list_mutex); |
| static LIST_HEAD(regulator_map_list); |
| static LIST_HEAD(regulator_ena_gpio_list); |
| static LIST_HEAD(regulator_supply_alias_list); |
| static LIST_HEAD(regulator_coupler_list); |
| static bool has_full_constraints; |
| |
| static struct dentry *debugfs_root; |
| |
| /* |
| * struct regulator_map |
| * |
| * Used to provide symbolic supply names to devices. |
| */ |
| struct regulator_map { |
| struct list_head list; |
| const char *dev_name; /* The dev_name() for the consumer */ |
| const char *supply; |
| struct regulator_dev *regulator; |
| }; |
| |
| /* |
| * struct regulator_enable_gpio |
| * |
| * Management for shared enable GPIO pin |
| */ |
| struct regulator_enable_gpio { |
| struct list_head list; |
| struct gpio_desc *gpiod; |
| u32 enable_count; /* a number of enabled shared GPIO */ |
| u32 request_count; /* a number of requested shared GPIO */ |
| }; |
| |
| /* |
| * struct regulator_supply_alias |
| * |
| * Used to map lookups for a supply onto an alternative device. |
| */ |
| struct regulator_supply_alias { |
| struct list_head list; |
| struct device *src_dev; |
| const char *src_supply; |
| struct device *alias_dev; |
| const char *alias_supply; |
| }; |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev); |
| static int _regulator_disable(struct regulator *regulator); |
| static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags); |
| static int _regulator_get_current_limit(struct regulator_dev *rdev); |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev); |
| static int _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data); |
| static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV); |
| static int regulator_balance_voltage(struct regulator_dev *rdev, |
| suspend_state_t state); |
| static struct regulator *create_regulator(struct regulator_dev *rdev, |
| struct device *dev, |
| const char *supply_name); |
| static void destroy_regulator(struct regulator *regulator); |
| static void _regulator_put(struct regulator *regulator); |
| |
| const char *rdev_get_name(struct regulator_dev *rdev) |
| { |
| if (rdev->constraints && rdev->constraints->name) |
| return rdev->constraints->name; |
| else if (rdev->desc->name) |
| return rdev->desc->name; |
| else |
| return ""; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_name); |
| |
| static bool have_full_constraints(void) |
| { |
| return has_full_constraints || of_have_populated_dt(); |
| } |
| |
| static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops) |
| { |
| if (!rdev->constraints) { |
| rdev_err(rdev, "no constraints\n"); |
| return false; |
| } |
| |
| if (rdev->constraints->valid_ops_mask & ops) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * regulator_lock_nested - lock a single regulator |
| * @rdev: regulator source |
| * @ww_ctx: w/w mutex acquire context |
| * |
| * This function can be called many times by one task on |
| * a single regulator and its mutex will be locked only |
| * once. If a task, which is calling this function is other |
| * than the one, which initially locked the mutex, it will |
| * wait on mutex. |
| */ |
| static inline int regulator_lock_nested(struct regulator_dev *rdev, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| bool lock = false; |
| int ret = 0; |
| |
| mutex_lock(®ulator_nesting_mutex); |
| |
| if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) { |
| if (rdev->mutex_owner == current) |
| rdev->ref_cnt++; |
| else |
| lock = true; |
| |
| if (lock) { |
| mutex_unlock(®ulator_nesting_mutex); |
| ret = ww_mutex_lock(&rdev->mutex, ww_ctx); |
| mutex_lock(®ulator_nesting_mutex); |
| } |
| } else { |
| lock = true; |
| } |
| |
| if (lock && ret != -EDEADLK) { |
| rdev->ref_cnt++; |
| rdev->mutex_owner = current; |
| } |
| |
| mutex_unlock(®ulator_nesting_mutex); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_lock - lock a single regulator |
| * @rdev: regulator source |
| * |
| * This function can be called many times by one task on |
| * a single regulator and its mutex will be locked only |
| * once. If a task, which is calling this function is other |
| * than the one, which initially locked the mutex, it will |
| * wait on mutex. |
| */ |
| static void regulator_lock(struct regulator_dev *rdev) |
| { |
| regulator_lock_nested(rdev, NULL); |
| } |
| |
| /** |
| * regulator_unlock - unlock a single regulator |
| * @rdev: regulator_source |
| * |
| * This function unlocks the mutex when the |
| * reference counter reaches 0. |
| */ |
| static void regulator_unlock(struct regulator_dev *rdev) |
| { |
| mutex_lock(®ulator_nesting_mutex); |
| |
| if (--rdev->ref_cnt == 0) { |
| rdev->mutex_owner = NULL; |
| ww_mutex_unlock(&rdev->mutex); |
| } |
| |
| WARN_ON_ONCE(rdev->ref_cnt < 0); |
| |
| mutex_unlock(®ulator_nesting_mutex); |
| } |
| |
| static bool regulator_supply_is_couple(struct regulator_dev *rdev) |
| { |
| struct regulator_dev *c_rdev; |
| int i; |
| |
| for (i = 1; i < rdev->coupling_desc.n_coupled; i++) { |
| c_rdev = rdev->coupling_desc.coupled_rdevs[i]; |
| |
| if (rdev->supply->rdev == c_rdev) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void regulator_unlock_recursive(struct regulator_dev *rdev, |
| unsigned int n_coupled) |
| { |
| struct regulator_dev *c_rdev, *supply_rdev; |
| int i, supply_n_coupled; |
| |
| for (i = n_coupled; i > 0; i--) { |
| c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1]; |
| |
| if (!c_rdev) |
| continue; |
| |
| if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { |
| supply_rdev = c_rdev->supply->rdev; |
| supply_n_coupled = supply_rdev->coupling_desc.n_coupled; |
| |
| regulator_unlock_recursive(supply_rdev, |
| supply_n_coupled); |
| } |
| |
| regulator_unlock(c_rdev); |
| } |
| } |
| |
| static int regulator_lock_recursive(struct regulator_dev *rdev, |
| struct regulator_dev **new_contended_rdev, |
| struct regulator_dev **old_contended_rdev, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| struct regulator_dev *c_rdev; |
| int i, err; |
| |
| for (i = 0; i < rdev->coupling_desc.n_coupled; i++) { |
| c_rdev = rdev->coupling_desc.coupled_rdevs[i]; |
| |
| if (!c_rdev) |
| continue; |
| |
| if (c_rdev != *old_contended_rdev) { |
| err = regulator_lock_nested(c_rdev, ww_ctx); |
| if (err) { |
| if (err == -EDEADLK) { |
| *new_contended_rdev = c_rdev; |
| goto err_unlock; |
| } |
| |
| /* shouldn't happen */ |
| WARN_ON_ONCE(err != -EALREADY); |
| } |
| } else { |
| *old_contended_rdev = NULL; |
| } |
| |
| if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) { |
| err = regulator_lock_recursive(c_rdev->supply->rdev, |
| new_contended_rdev, |
| old_contended_rdev, |
| ww_ctx); |
| if (err) { |
| regulator_unlock(c_rdev); |
| goto err_unlock; |
| } |
| } |
| } |
| |
| return 0; |
| |
| err_unlock: |
| regulator_unlock_recursive(rdev, i); |
| |
| return err; |
| } |
| |
| /** |
| * regulator_unlock_dependent - unlock regulator's suppliers and coupled |
| * regulators |
| * @rdev: regulator source |
| * @ww_ctx: w/w mutex acquire context |
| * |
| * Unlock all regulators related with rdev by coupling or supplying. |
| */ |
| static void regulator_unlock_dependent(struct regulator_dev *rdev, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled); |
| ww_acquire_fini(ww_ctx); |
| } |
| |
| /** |
| * regulator_lock_dependent - lock regulator's suppliers and coupled regulators |
| * @rdev: regulator source |
| * @ww_ctx: w/w mutex acquire context |
| * |
| * This function as a wrapper on regulator_lock_recursive(), which locks |
| * all regulators related with rdev by coupling or supplying. |
| */ |
| static void regulator_lock_dependent(struct regulator_dev *rdev, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| struct regulator_dev *new_contended_rdev = NULL; |
| struct regulator_dev *old_contended_rdev = NULL; |
| int err; |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| ww_acquire_init(ww_ctx, ®ulator_ww_class); |
| |
| do { |
| if (new_contended_rdev) { |
| ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); |
| old_contended_rdev = new_contended_rdev; |
| old_contended_rdev->ref_cnt++; |
| } |
| |
| err = regulator_lock_recursive(rdev, |
| &new_contended_rdev, |
| &old_contended_rdev, |
| ww_ctx); |
| |
| if (old_contended_rdev) |
| regulator_unlock(old_contended_rdev); |
| |
| } while (err == -EDEADLK); |
| |
| ww_acquire_done(ww_ctx); |
| |
| mutex_unlock(®ulator_list_mutex); |
| } |
| |
| /** |
| * of_get_child_regulator - get a child regulator device node |
| * based on supply name |
| * @parent: Parent device node |
| * @prop_name: Combination regulator supply name and "-supply" |
| * |
| * Traverse all child nodes. |
| * Extract the child regulator device node corresponding to the supply name. |
| * returns the device node corresponding to the regulator if found, else |
| * returns NULL. |
| */ |
| static struct device_node *of_get_child_regulator(struct device_node *parent, |
| const char *prop_name) |
| { |
| struct device_node *regnode = NULL; |
| struct device_node *child = NULL; |
| |
| for_each_child_of_node(parent, child) { |
| regnode = of_parse_phandle(child, prop_name, 0); |
| |
| if (!regnode) { |
| regnode = of_get_child_regulator(child, prop_name); |
| if (regnode) |
| goto err_node_put; |
| } else { |
| goto err_node_put; |
| } |
| } |
| return NULL; |
| |
| err_node_put: |
| of_node_put(child); |
| return regnode; |
| } |
| |
| /** |
| * of_get_regulator - get a regulator device node based on supply name |
| * @dev: Device pointer for the consumer (of regulator) device |
| * @supply: regulator supply name |
| * |
| * Extract the regulator device node corresponding to the supply name. |
| * returns the device node corresponding to the regulator if found, else |
| * returns NULL. |
| */ |
| static struct device_node *of_get_regulator(struct device *dev, const char *supply) |
| { |
| struct device_node *regnode = NULL; |
| char prop_name[64]; /* 64 is max size of property name */ |
| |
| dev_dbg(dev, "Looking up %s-supply from device tree\n", supply); |
| |
| snprintf(prop_name, 64, "%s-supply", supply); |
| regnode = of_parse_phandle(dev->of_node, prop_name, 0); |
| |
| if (!regnode) { |
| regnode = of_get_child_regulator(dev->of_node, prop_name); |
| if (regnode) |
| return regnode; |
| |
| dev_dbg(dev, "Looking up %s property in node %pOF failed\n", |
| prop_name, dev->of_node); |
| return NULL; |
| } |
| return regnode; |
| } |
| |
| /* Platform voltage constraint check */ |
| int regulator_check_voltage(struct regulator_dev *rdev, |
| int *min_uV, int *max_uV) |
| { |
| BUG_ON(*min_uV > *max_uV); |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { |
| rdev_err(rdev, "voltage operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| if (*max_uV > rdev->constraints->max_uV) |
| *max_uV = rdev->constraints->max_uV; |
| if (*min_uV < rdev->constraints->min_uV) |
| *min_uV = rdev->constraints->min_uV; |
| |
| if (*min_uV > *max_uV) { |
| rdev_err(rdev, "unsupportable voltage range: %d-%duV\n", |
| *min_uV, *max_uV); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* return 0 if the state is valid */ |
| static int regulator_check_states(suspend_state_t state) |
| { |
| return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE); |
| } |
| |
| /* Make sure we select a voltage that suits the needs of all |
| * regulator consumers |
| */ |
| int regulator_check_consumers(struct regulator_dev *rdev, |
| int *min_uV, int *max_uV, |
| suspend_state_t state) |
| { |
| struct regulator *regulator; |
| struct regulator_voltage *voltage; |
| |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| voltage = ®ulator->voltage[state]; |
| /* |
| * Assume consumers that didn't say anything are OK |
| * with anything in the constraint range. |
| */ |
| if (!voltage->min_uV && !voltage->max_uV) |
| continue; |
| |
| if (*max_uV > voltage->max_uV) |
| *max_uV = voltage->max_uV; |
| if (*min_uV < voltage->min_uV) |
| *min_uV = voltage->min_uV; |
| } |
| |
| if (*min_uV > *max_uV) { |
| rdev_err(rdev, "Restricting voltage, %u-%uuV\n", |
| *min_uV, *max_uV); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* current constraint check */ |
| static int regulator_check_current_limit(struct regulator_dev *rdev, |
| int *min_uA, int *max_uA) |
| { |
| BUG_ON(*min_uA > *max_uA); |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) { |
| rdev_err(rdev, "current operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| if (*max_uA > rdev->constraints->max_uA) |
| *max_uA = rdev->constraints->max_uA; |
| if (*min_uA < rdev->constraints->min_uA) |
| *min_uA = rdev->constraints->min_uA; |
| |
| if (*min_uA > *max_uA) { |
| rdev_err(rdev, "unsupportable current range: %d-%duA\n", |
| *min_uA, *max_uA); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* operating mode constraint check */ |
| static int regulator_mode_constrain(struct regulator_dev *rdev, |
| unsigned int *mode) |
| { |
| switch (*mode) { |
| case REGULATOR_MODE_FAST: |
| case REGULATOR_MODE_NORMAL: |
| case REGULATOR_MODE_IDLE: |
| case REGULATOR_MODE_STANDBY: |
| break; |
| default: |
| rdev_err(rdev, "invalid mode %x specified\n", *mode); |
| return -EINVAL; |
| } |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) { |
| rdev_err(rdev, "mode operation not allowed\n"); |
| return -EPERM; |
| } |
| |
| /* The modes are bitmasks, the most power hungry modes having |
| * the lowest values. If the requested mode isn't supported |
| * try higher modes. |
| */ |
| while (*mode) { |
| if (rdev->constraints->valid_modes_mask & *mode) |
| return 0; |
| *mode /= 2; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static inline struct regulator_state * |
| regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state) |
| { |
| if (rdev->constraints == NULL) |
| return NULL; |
| |
| switch (state) { |
| case PM_SUSPEND_STANDBY: |
| return &rdev->constraints->state_standby; |
| case PM_SUSPEND_MEM: |
| return &rdev->constraints->state_mem; |
| case PM_SUSPEND_MAX: |
| return &rdev->constraints->state_disk; |
| default: |
| return NULL; |
| } |
| } |
| |
| static const struct regulator_state * |
| regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state) |
| { |
| const struct regulator_state *rstate; |
| |
| rstate = regulator_get_suspend_state(rdev, state); |
| if (rstate == NULL) |
| return NULL; |
| |
| /* If we have no suspend mode configuration don't set anything; |
| * only warn if the driver implements set_suspend_voltage or |
| * set_suspend_mode callback. |
| */ |
| if (rstate->enabled != ENABLE_IN_SUSPEND && |
| rstate->enabled != DISABLE_IN_SUSPEND) { |
| if (rdev->desc->ops->set_suspend_voltage || |
| rdev->desc->ops->set_suspend_mode) |
| rdev_warn(rdev, "No configuration\n"); |
| return NULL; |
| } |
| |
| return rstate; |
| } |
| |
| static ssize_t microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| int uV; |
| |
| regulator_lock(rdev); |
| uV = regulator_get_voltage_rdev(rdev); |
| regulator_unlock(rdev); |
| |
| if (uV < 0) |
| return uV; |
| return sprintf(buf, "%d\n", uV); |
| } |
| static DEVICE_ATTR_RO(microvolts); |
| |
| static ssize_t microamps_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev)); |
| } |
| static DEVICE_ATTR_RO(microamps); |
| |
| static ssize_t name_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%s\n", rdev_get_name(rdev)); |
| } |
| static DEVICE_ATTR_RO(name); |
| |
| static const char *regulator_opmode_to_str(int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| return "fast"; |
| case REGULATOR_MODE_NORMAL: |
| return "normal"; |
| case REGULATOR_MODE_IDLE: |
| return "idle"; |
| case REGULATOR_MODE_STANDBY: |
| return "standby"; |
| } |
| return "unknown"; |
| } |
| |
| static ssize_t regulator_print_opmode(char *buf, int mode) |
| { |
| return sprintf(buf, "%s\n", regulator_opmode_to_str(mode)); |
| } |
| |
| static ssize_t opmode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, _regulator_get_mode(rdev)); |
| } |
| static DEVICE_ATTR_RO(opmode); |
| |
| static ssize_t regulator_print_state(char *buf, int state) |
| { |
| if (state > 0) |
| return sprintf(buf, "enabled\n"); |
| else if (state == 0) |
| return sprintf(buf, "disabled\n"); |
| else |
| return sprintf(buf, "unknown\n"); |
| } |
| |
| static ssize_t state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| ssize_t ret; |
| |
| regulator_lock(rdev); |
| ret = regulator_print_state(buf, _regulator_is_enabled(rdev)); |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| static DEVICE_ATTR_RO(state); |
| |
| static ssize_t status_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| int status; |
| char *label; |
| |
| status = rdev->desc->ops->get_status(rdev); |
| if (status < 0) |
| return status; |
| |
| switch (status) { |
| case REGULATOR_STATUS_OFF: |
| label = "off"; |
| break; |
| case REGULATOR_STATUS_ON: |
| label = "on"; |
| break; |
| case REGULATOR_STATUS_ERROR: |
| label = "error"; |
| break; |
| case REGULATOR_STATUS_FAST: |
| label = "fast"; |
| break; |
| case REGULATOR_STATUS_NORMAL: |
| label = "normal"; |
| break; |
| case REGULATOR_STATUS_IDLE: |
| label = "idle"; |
| break; |
| case REGULATOR_STATUS_STANDBY: |
| label = "standby"; |
| break; |
| case REGULATOR_STATUS_BYPASS: |
| label = "bypass"; |
| break; |
| case REGULATOR_STATUS_UNDEFINED: |
| label = "undefined"; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| return sprintf(buf, "%s\n", label); |
| } |
| static DEVICE_ATTR_RO(status); |
| |
| static ssize_t min_microamps_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uA); |
| } |
| static DEVICE_ATTR_RO(min_microamps); |
| |
| static ssize_t max_microamps_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uA); |
| } |
| static DEVICE_ATTR_RO(max_microamps); |
| |
| static ssize_t min_microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->min_uV); |
| } |
| static DEVICE_ATTR_RO(min_microvolts); |
| |
| static ssize_t max_microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| if (!rdev->constraints) |
| return sprintf(buf, "constraint not defined\n"); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->max_uV); |
| } |
| static DEVICE_ATTR_RO(max_microvolts); |
| |
| static ssize_t requested_microamps_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| struct regulator *regulator; |
| int uA = 0; |
| |
| regulator_lock(rdev); |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| if (regulator->enable_count) |
| uA += regulator->uA_load; |
| } |
| regulator_unlock(rdev); |
| return sprintf(buf, "%d\n", uA); |
| } |
| static DEVICE_ATTR_RO(requested_microamps); |
| |
| static ssize_t num_users_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| return sprintf(buf, "%d\n", rdev->use_count); |
| } |
| static DEVICE_ATTR_RO(num_users); |
| |
| static ssize_t type_show(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| switch (rdev->desc->type) { |
| case REGULATOR_VOLTAGE: |
| return sprintf(buf, "voltage\n"); |
| case REGULATOR_CURRENT: |
| return sprintf(buf, "current\n"); |
| } |
| return sprintf(buf, "unknown\n"); |
| } |
| static DEVICE_ATTR_RO(type); |
| |
| static ssize_t suspend_mem_microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV); |
| } |
| static DEVICE_ATTR_RO(suspend_mem_microvolts); |
| |
| static ssize_t suspend_disk_microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV); |
| } |
| static DEVICE_ATTR_RO(suspend_disk_microvolts); |
| |
| static ssize_t suspend_standby_microvolts_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV); |
| } |
| static DEVICE_ATTR_RO(suspend_standby_microvolts); |
| |
| static ssize_t suspend_mem_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_mem.mode); |
| } |
| static DEVICE_ATTR_RO(suspend_mem_mode); |
| |
| static ssize_t suspend_disk_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_disk.mode); |
| } |
| static DEVICE_ATTR_RO(suspend_disk_mode); |
| |
| static ssize_t suspend_standby_mode_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_opmode(buf, |
| rdev->constraints->state_standby.mode); |
| } |
| static DEVICE_ATTR_RO(suspend_standby_mode); |
| |
| static ssize_t suspend_mem_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_mem.enabled); |
| } |
| static DEVICE_ATTR_RO(suspend_mem_state); |
| |
| static ssize_t suspend_disk_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_disk.enabled); |
| } |
| static DEVICE_ATTR_RO(suspend_disk_state); |
| |
| static ssize_t suspend_standby_state_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| return regulator_print_state(buf, |
| rdev->constraints->state_standby.enabled); |
| } |
| static DEVICE_ATTR_RO(suspend_standby_state); |
| |
| static ssize_t bypass_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| const char *report; |
| bool bypass; |
| int ret; |
| |
| ret = rdev->desc->ops->get_bypass(rdev, &bypass); |
| |
| if (ret != 0) |
| report = "unknown"; |
| else if (bypass) |
| report = "enabled"; |
| else |
| report = "disabled"; |
| |
| return sprintf(buf, "%s\n", report); |
| } |
| static DEVICE_ATTR_RO(bypass); |
| |
| #define REGULATOR_ERROR_ATTR(name, bit) \ |
| static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \ |
| char *buf) \ |
| { \ |
| int ret; \ |
| unsigned int flags; \ |
| struct regulator_dev *rdev = dev_get_drvdata(dev); \ |
| ret = _regulator_get_error_flags(rdev, &flags); \ |
| if (ret) \ |
| return ret; \ |
| return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \ |
| } \ |
| static DEVICE_ATTR_RO(name) |
| |
| REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE); |
| REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT); |
| REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT); |
| REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL); |
| REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP); |
| REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN); |
| REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN); |
| REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN); |
| REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN); |
| |
| /* Calculate the new optimum regulator operating mode based on the new total |
| * consumer load. All locks held by caller |
| */ |
| static int drms_uA_update(struct regulator_dev *rdev) |
| { |
| struct regulator *sibling; |
| int current_uA = 0, output_uV, input_uV, err; |
| unsigned int mode; |
| |
| /* |
| * first check to see if we can set modes at all, otherwise just |
| * tell the consumer everything is OK. |
| */ |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) { |
| rdev_dbg(rdev, "DRMS operation not allowed\n"); |
| return 0; |
| } |
| |
| if (!rdev->desc->ops->get_optimum_mode && |
| !rdev->desc->ops->set_load) |
| return 0; |
| |
| if (!rdev->desc->ops->set_mode && |
| !rdev->desc->ops->set_load) |
| return -EINVAL; |
| |
| /* calc total requested load */ |
| list_for_each_entry(sibling, &rdev->consumer_list, list) { |
| if (sibling->enable_count) |
| current_uA += sibling->uA_load; |
| } |
| |
| current_uA += rdev->constraints->system_load; |
| |
| if (rdev->desc->ops->set_load) { |
| /* set the optimum mode for our new total regulator load */ |
| err = rdev->desc->ops->set_load(rdev, current_uA); |
| if (err < 0) |
| rdev_err(rdev, "failed to set load %d: %pe\n", |
| current_uA, ERR_PTR(err)); |
| } else { |
| /* |
| * Unfortunately in some cases the constraints->valid_ops has |
| * REGULATOR_CHANGE_DRMS but there are no valid modes listed. |
| * That's not really legit but we won't consider it a fatal |
| * error here. We'll treat it as if REGULATOR_CHANGE_DRMS |
| * wasn't set. |
| */ |
| if (!rdev->constraints->valid_modes_mask) { |
| rdev_dbg(rdev, "Can change modes; but no valid mode\n"); |
| return 0; |
| } |
| |
| /* get output voltage */ |
| output_uV = regulator_get_voltage_rdev(rdev); |
| |
| /* |
| * Don't return an error; if regulator driver cares about |
| * output_uV then it's up to the driver to validate. |
| */ |
| if (output_uV <= 0) |
| rdev_dbg(rdev, "invalid output voltage found\n"); |
| |
| /* get input voltage */ |
| input_uV = 0; |
| if (rdev->supply) |
| input_uV = regulator_get_voltage(rdev->supply); |
| if (input_uV <= 0) |
| input_uV = rdev->constraints->input_uV; |
| |
| /* |
| * Don't return an error; if regulator driver cares about |
| * input_uV then it's up to the driver to validate. |
| */ |
| if (input_uV <= 0) |
| rdev_dbg(rdev, "invalid input voltage found\n"); |
| |
| /* now get the optimum mode for our new total regulator load */ |
| mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV, |
| output_uV, current_uA); |
| |
| /* check the new mode is allowed */ |
| err = regulator_mode_constrain(rdev, &mode); |
| if (err < 0) { |
| rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n", |
| current_uA, input_uV, output_uV, ERR_PTR(err)); |
| return err; |
| } |
| |
| err = rdev->desc->ops->set_mode(rdev, mode); |
| if (err < 0) |
| rdev_err(rdev, "failed to set optimum mode %x: %pe\n", |
| mode, ERR_PTR(err)); |
| } |
| |
| return err; |
| } |
| |
| static int __suspend_set_state(struct regulator_dev *rdev, |
| const struct regulator_state *rstate) |
| { |
| int ret = 0; |
| |
| if (rstate->enabled == ENABLE_IN_SUSPEND && |
| rdev->desc->ops->set_suspend_enable) |
| ret = rdev->desc->ops->set_suspend_enable(rdev); |
| else if (rstate->enabled == DISABLE_IN_SUSPEND && |
| rdev->desc->ops->set_suspend_disable) |
| ret = rdev->desc->ops->set_suspend_disable(rdev); |
| else /* OK if set_suspend_enable or set_suspend_disable is NULL */ |
| ret = 0; |
| |
| if (ret < 0) { |
| rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) { |
| ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) { |
| ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int suspend_set_initial_state(struct regulator_dev *rdev) |
| { |
| const struct regulator_state *rstate; |
| |
| rstate = regulator_get_suspend_state_check(rdev, |
| rdev->constraints->initial_state); |
| if (!rstate) |
| return 0; |
| |
| return __suspend_set_state(rdev, rstate); |
| } |
| |
| #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) |
| static void print_constraints_debug(struct regulator_dev *rdev) |
| { |
| struct regulation_constraints *constraints = rdev->constraints; |
| char buf[160] = ""; |
| size_t len = sizeof(buf) - 1; |
| int count = 0; |
| int ret; |
| |
| if (constraints->min_uV && constraints->max_uV) { |
| if (constraints->min_uV == constraints->max_uV) |
| count += scnprintf(buf + count, len - count, "%d mV ", |
| constraints->min_uV / 1000); |
| else |
| count += scnprintf(buf + count, len - count, |
| "%d <--> %d mV ", |
| constraints->min_uV / 1000, |
| constraints->max_uV / 1000); |
| } |
| |
| if (!constraints->min_uV || |
| constraints->min_uV != constraints->max_uV) { |
| ret = regulator_get_voltage_rdev(rdev); |
| if (ret > 0) |
| count += scnprintf(buf + count, len - count, |
| "at %d mV ", ret / 1000); |
| } |
| |
| if (constraints->uV_offset) |
| count += scnprintf(buf + count, len - count, "%dmV offset ", |
| constraints->uV_offset / 1000); |
| |
| if (constraints->min_uA && constraints->max_uA) { |
| if (constraints->min_uA == constraints->max_uA) |
| count += scnprintf(buf + count, len - count, "%d mA ", |
| constraints->min_uA / 1000); |
| else |
| count += scnprintf(buf + count, len - count, |
| "%d <--> %d mA ", |
| constraints->min_uA / 1000, |
| constraints->max_uA / 1000); |
| } |
| |
| if (!constraints->min_uA || |
| constraints->min_uA != constraints->max_uA) { |
| ret = _regulator_get_current_limit(rdev); |
| if (ret > 0) |
| count += scnprintf(buf + count, len - count, |
| "at %d mA ", ret / 1000); |
| } |
| |
| if (constraints->valid_modes_mask & REGULATOR_MODE_FAST) |
| count += scnprintf(buf + count, len - count, "fast "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL) |
| count += scnprintf(buf + count, len - count, "normal "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE) |
| count += scnprintf(buf + count, len - count, "idle "); |
| if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY) |
| count += scnprintf(buf + count, len - count, "standby "); |
| |
| if (!count) |
| count = scnprintf(buf, len, "no parameters"); |
| else |
| --count; |
| |
| count += scnprintf(buf + count, len - count, ", %s", |
| _regulator_is_enabled(rdev) ? "enabled" : "disabled"); |
| |
| rdev_dbg(rdev, "%s\n", buf); |
| } |
| #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ |
| static inline void print_constraints_debug(struct regulator_dev *rdev) {} |
| #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */ |
| |
| static void print_constraints(struct regulator_dev *rdev) |
| { |
| struct regulation_constraints *constraints = rdev->constraints; |
| |
| print_constraints_debug(rdev); |
| |
| if ((constraints->min_uV != constraints->max_uV) && |
| !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) |
| rdev_warn(rdev, |
| "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n"); |
| } |
| |
| static int machine_constraints_voltage(struct regulator_dev *rdev, |
| struct regulation_constraints *constraints) |
| { |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int ret; |
| |
| /* do we need to apply the constraint voltage */ |
| if (rdev->constraints->apply_uV && |
| rdev->constraints->min_uV && rdev->constraints->max_uV) { |
| int target_min, target_max; |
| int current_uV = regulator_get_voltage_rdev(rdev); |
| |
| if (current_uV == -ENOTRECOVERABLE) { |
| /* This regulator can't be read and must be initialized */ |
| rdev_info(rdev, "Setting %d-%duV\n", |
| rdev->constraints->min_uV, |
| rdev->constraints->max_uV); |
| _regulator_do_set_voltage(rdev, |
| rdev->constraints->min_uV, |
| rdev->constraints->max_uV); |
| current_uV = regulator_get_voltage_rdev(rdev); |
| } |
| |
| if (current_uV < 0) { |
| if (current_uV != -EPROBE_DEFER) |
| rdev_err(rdev, |
| "failed to get the current voltage: %pe\n", |
| ERR_PTR(current_uV)); |
| return current_uV; |
| } |
| |
| /* |
| * If we're below the minimum voltage move up to the |
| * minimum voltage, if we're above the maximum voltage |
| * then move down to the maximum. |
| */ |
| target_min = current_uV; |
| target_max = current_uV; |
| |
| if (current_uV < rdev->constraints->min_uV) { |
| target_min = rdev->constraints->min_uV; |
| target_max = rdev->constraints->min_uV; |
| } |
| |
| if (current_uV > rdev->constraints->max_uV) { |
| target_min = rdev->constraints->max_uV; |
| target_max = rdev->constraints->max_uV; |
| } |
| |
| if (target_min != current_uV || target_max != current_uV) { |
| rdev_info(rdev, "Bringing %duV into %d-%duV\n", |
| current_uV, target_min, target_max); |
| ret = _regulator_do_set_voltage( |
| rdev, target_min, target_max); |
| if (ret < 0) { |
| rdev_err(rdev, |
| "failed to apply %d-%duV constraint: %pe\n", |
| target_min, target_max, ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| } |
| |
| /* constrain machine-level voltage specs to fit |
| * the actual range supported by this regulator. |
| */ |
| if (ops->list_voltage && rdev->desc->n_voltages) { |
| int count = rdev->desc->n_voltages; |
| int i; |
| int min_uV = INT_MAX; |
| int max_uV = INT_MIN; |
| int cmin = constraints->min_uV; |
| int cmax = constraints->max_uV; |
| |
| /* it's safe to autoconfigure fixed-voltage supplies |
| * and the constraints are used by list_voltage. |
| */ |
| if (count == 1 && !cmin) { |
| cmin = 1; |
| cmax = INT_MAX; |
| constraints->min_uV = cmin; |
| constraints->max_uV = cmax; |
| } |
| |
| /* voltage constraints are optional */ |
| if ((cmin == 0) && (cmax == 0)) |
| return 0; |
| |
| /* else require explicit machine-level constraints */ |
| if (cmin <= 0 || cmax <= 0 || cmax < cmin) { |
| rdev_err(rdev, "invalid voltage constraints\n"); |
| return -EINVAL; |
| } |
| |
| /* no need to loop voltages if range is continuous */ |
| if (rdev->desc->continuous_voltage_range) |
| return 0; |
| |
| /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */ |
| for (i = 0; i < count; i++) { |
| int value; |
| |
| value = ops->list_voltage(rdev, i); |
| if (value <= 0) |
| continue; |
| |
| /* maybe adjust [min_uV..max_uV] */ |
| if (value >= cmin && value < min_uV) |
| min_uV = value; |
| if (value <= cmax && value > max_uV) |
| max_uV = value; |
| } |
| |
| /* final: [min_uV..max_uV] valid iff constraints valid */ |
| if (max_uV < min_uV) { |
| rdev_err(rdev, |
| "unsupportable voltage constraints %u-%uuV\n", |
| min_uV, max_uV); |
| return -EINVAL; |
| } |
| |
| /* use regulator's subset of machine constraints */ |
| if (constraints->min_uV < min_uV) { |
| rdev_dbg(rdev, "override min_uV, %d -> %d\n", |
| constraints->min_uV, min_uV); |
| constraints->min_uV = min_uV; |
| } |
| if (constraints->max_uV > max_uV) { |
| rdev_dbg(rdev, "override max_uV, %d -> %d\n", |
| constraints->max_uV, max_uV); |
| constraints->max_uV = max_uV; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int machine_constraints_current(struct regulator_dev *rdev, |
| struct regulation_constraints *constraints) |
| { |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int ret; |
| |
| if (!constraints->min_uA && !constraints->max_uA) |
| return 0; |
| |
| if (constraints->min_uA > constraints->max_uA) { |
| rdev_err(rdev, "Invalid current constraints\n"); |
| return -EINVAL; |
| } |
| |
| if (!ops->set_current_limit || !ops->get_current_limit) { |
| rdev_warn(rdev, "Operation of current configuration missing\n"); |
| return 0; |
| } |
| |
| /* Set regulator current in constraints range */ |
| ret = ops->set_current_limit(rdev, constraints->min_uA, |
| constraints->max_uA); |
| if (ret < 0) { |
| rdev_err(rdev, "Failed to set current constraint, %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int _regulator_do_enable(struct regulator_dev *rdev); |
| |
| static int notif_set_limit(struct regulator_dev *rdev, |
| int (*set)(struct regulator_dev *, int, int, bool), |
| int limit, int severity) |
| { |
| bool enable; |
| |
| if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) { |
| enable = false; |
| limit = 0; |
| } else { |
| enable = true; |
| } |
| |
| if (limit == REGULATOR_NOTIF_LIMIT_ENABLE) |
| limit = 0; |
| |
| return set(rdev, limit, severity, enable); |
| } |
| |
| static int handle_notify_limits(struct regulator_dev *rdev, |
| int (*set)(struct regulator_dev *, int, int, bool), |
| struct notification_limit *limits) |
| { |
| int ret = 0; |
| |
| if (!set) |
| return -EOPNOTSUPP; |
| |
| if (limits->prot) |
| ret = notif_set_limit(rdev, set, limits->prot, |
| REGULATOR_SEVERITY_PROT); |
| if (ret) |
| return ret; |
| |
| if (limits->err) |
| ret = notif_set_limit(rdev, set, limits->err, |
| REGULATOR_SEVERITY_ERR); |
| if (ret) |
| return ret; |
| |
| if (limits->warn) |
| ret = notif_set_limit(rdev, set, limits->warn, |
| REGULATOR_SEVERITY_WARN); |
| |
| return ret; |
| } |
| /** |
| * set_machine_constraints - sets regulator constraints |
| * @rdev: regulator source |
| * |
| * Allows platform initialisation code to define and constrain |
| * regulator circuits e.g. valid voltage/current ranges, etc. NOTE: |
| * Constraints *must* be set by platform code in order for some |
| * regulator operations to proceed i.e. set_voltage, set_current_limit, |
| * set_mode. |
| */ |
| static int set_machine_constraints(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| const struct regulator_ops *ops = rdev->desc->ops; |
| |
| ret = machine_constraints_voltage(rdev, rdev->constraints); |
| if (ret != 0) |
| return ret; |
| |
| ret = machine_constraints_current(rdev, rdev->constraints); |
| if (ret != 0) |
| return ret; |
| |
| if (rdev->constraints->ilim_uA && ops->set_input_current_limit) { |
| ret = ops->set_input_current_limit(rdev, |
| rdev->constraints->ilim_uA); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| /* do we need to setup our suspend state */ |
| if (rdev->constraints->initial_state) { |
| ret = suspend_set_initial_state(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| if (rdev->constraints->initial_mode) { |
| if (!ops->set_mode) { |
| rdev_err(rdev, "no set_mode operation\n"); |
| return -EINVAL; |
| } |
| |
| ret = ops->set_mode(rdev, rdev->constraints->initial_mode); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } else if (rdev->constraints->system_load) { |
| /* |
| * We'll only apply the initial system load if an |
| * initial mode wasn't specified. |
| */ |
| drms_uA_update(rdev); |
| } |
| |
| if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable) |
| && ops->set_ramp_delay) { |
| ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| if (rdev->constraints->pull_down && ops->set_pull_down) { |
| ret = ops->set_pull_down(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| if (rdev->constraints->soft_start && ops->set_soft_start) { |
| ret = ops->set_soft_start(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| /* |
| * Existing logic does not warn if over_current_protection is given as |
| * a constraint but driver does not support that. I think we should |
| * warn about this type of issues as it is possible someone changes |
| * PMIC on board to another type - and the another PMIC's driver does |
| * not support setting protection. Board composer may happily believe |
| * the DT limits are respected - especially if the new PMIC HW also |
| * supports protection but the driver does not. I won't change the logic |
| * without hearing more experienced opinion on this though. |
| * |
| * If warning is seen as a good idea then we can merge handling the |
| * over-curret protection and detection and get rid of this special |
| * handling. |
| */ |
| if (rdev->constraints->over_current_protection |
| && ops->set_over_current_protection) { |
| int lim = rdev->constraints->over_curr_limits.prot; |
| |
| ret = ops->set_over_current_protection(rdev, lim, |
| REGULATOR_SEVERITY_PROT, |
| true); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set over current protection: %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| if (rdev->constraints->over_current_detection) |
| ret = handle_notify_limits(rdev, |
| ops->set_over_current_protection, |
| &rdev->constraints->over_curr_limits); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) { |
| rdev_err(rdev, "failed to set over current limits: %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| rdev_warn(rdev, |
| "IC does not support requested over-current limits\n"); |
| } |
| |
| if (rdev->constraints->over_voltage_detection) |
| ret = handle_notify_limits(rdev, |
| ops->set_over_voltage_protection, |
| &rdev->constraints->over_voltage_limits); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) { |
| rdev_err(rdev, "failed to set over voltage limits %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| rdev_warn(rdev, |
| "IC does not support requested over voltage limits\n"); |
| } |
| |
| if (rdev->constraints->under_voltage_detection) |
| ret = handle_notify_limits(rdev, |
| ops->set_under_voltage_protection, |
| &rdev->constraints->under_voltage_limits); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) { |
| rdev_err(rdev, "failed to set under voltage limits %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| rdev_warn(rdev, |
| "IC does not support requested under voltage limits\n"); |
| } |
| |
| if (rdev->constraints->over_temp_detection) |
| ret = handle_notify_limits(rdev, |
| ops->set_thermal_protection, |
| &rdev->constraints->temp_limits); |
| if (ret) { |
| if (ret != -EOPNOTSUPP) { |
| rdev_err(rdev, "failed to set temperature limits %pe\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| rdev_warn(rdev, |
| "IC does not support requested temperature limits\n"); |
| } |
| |
| if (rdev->constraints->active_discharge && ops->set_active_discharge) { |
| bool ad_state = (rdev->constraints->active_discharge == |
| REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false; |
| |
| ret = ops->set_active_discharge(rdev, ad_state); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| } |
| |
| /* |
| * If there is no mechanism for controlling the regulator then |
| * flag it as always_on so we don't end up duplicating checks |
| * for this so much. Note that we could control the state of |
| * a supply to control the output on a regulator that has no |
| * direct control. |
| */ |
| if (!rdev->ena_pin && !ops->enable) { |
| if (rdev->supply_name && !rdev->supply) |
| return -EPROBE_DEFER; |
| |
| if (rdev->supply) |
| rdev->constraints->always_on = |
| rdev->supply->rdev->constraints->always_on; |
| else |
| rdev->constraints->always_on = true; |
| } |
| |
| if (rdev->desc->off_on_delay) |
| rdev->last_off = ktime_get(); |
| |
| /* If the constraints say the regulator should be on at this point |
| * and we have control then make sure it is enabled. |
| */ |
| if (rdev->constraints->always_on || rdev->constraints->boot_on) { |
| /* If we want to enable this regulator, make sure that we know |
| * the supplying regulator. |
| */ |
| if (rdev->supply_name && !rdev->supply) |
| return -EPROBE_DEFER; |
| |
| if (rdev->supply) { |
| ret = regulator_enable(rdev->supply); |
| if (ret < 0) { |
| _regulator_put(rdev->supply); |
| rdev->supply = NULL; |
| return ret; |
| } |
| } |
| |
| ret = _regulator_do_enable(rdev); |
| if (ret < 0 && ret != -EINVAL) { |
| rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret)); |
| return ret; |
| } |
| |
| if (rdev->constraints->always_on) |
| rdev->use_count++; |
| } |
| |
| print_constraints(rdev); |
| return 0; |
| } |
| |
| /** |
| * set_supply - set regulator supply regulator |
| * @rdev: regulator name |
| * @supply_rdev: supply regulator name |
| * |
| * Called by platform initialisation code to set the supply regulator for this |
| * regulator. This ensures that a regulators supply will also be enabled by the |
| * core if it's child is enabled. |
| */ |
| static int set_supply(struct regulator_dev *rdev, |
| struct regulator_dev *supply_rdev) |
| { |
| int err; |
| |
| rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev)); |
| |
| if (!try_module_get(supply_rdev->owner)) |
| return -ENODEV; |
| |
| rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY"); |
| if (rdev->supply == NULL) { |
| err = -ENOMEM; |
| return err; |
| } |
| supply_rdev->open_count++; |
| |
| return 0; |
| } |
| |
| /** |
| * set_consumer_device_supply - Bind a regulator to a symbolic supply |
| * @rdev: regulator source |
| * @consumer_dev_name: dev_name() string for device supply applies to |
| * @supply: symbolic name for supply |
| * |
| * Allows platform initialisation code to map physical regulator |
| * sources to symbolic names for supplies for use by devices. Devices |
| * should use these symbolic names to request regulators, avoiding the |
| * need to provide board-specific regulator names as platform data. |
| */ |
| static int set_consumer_device_supply(struct regulator_dev *rdev, |
| const char *consumer_dev_name, |
| const char *supply) |
| { |
| struct regulator_map *node, *new_node; |
| int has_dev; |
| |
| if (supply == NULL) |
| return -EINVAL; |
| |
| if (consumer_dev_name != NULL) |
| has_dev = 1; |
| else |
| has_dev = 0; |
| |
| new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL); |
| if (new_node == NULL) |
| return -ENOMEM; |
| |
| new_node->regulator = rdev; |
| new_node->supply = supply; |
| |
| if (has_dev) { |
| new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL); |
| if (new_node->dev_name == NULL) { |
| kfree(new_node); |
| return -ENOMEM; |
| } |
| } |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(node, ®ulator_map_list, list) { |
| if (node->dev_name && consumer_dev_name) { |
| if (strcmp(node->dev_name, consumer_dev_name) != 0) |
| continue; |
| } else if (node->dev_name || consumer_dev_name) { |
| continue; |
| } |
| |
| if (strcmp(node->supply, supply) != 0) |
| continue; |
| |
| pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n", |
| consumer_dev_name, |
| dev_name(&node->regulator->dev), |
| node->regulator->desc->name, |
| supply, |
| dev_name(&rdev->dev), rdev_get_name(rdev)); |
| goto fail; |
| } |
| |
| list_add(&new_node->list, ®ulator_map_list); |
| mutex_unlock(®ulator_list_mutex); |
| |
| return 0; |
| |
| fail: |
| mutex_unlock(®ulator_list_mutex); |
| kfree(new_node->dev_name); |
| kfree(new_node); |
| return -EBUSY; |
| } |
| |
| static void unset_regulator_supplies(struct regulator_dev *rdev) |
| { |
| struct regulator_map *node, *n; |
| |
| list_for_each_entry_safe(node, n, ®ulator_map_list, list) { |
| if (rdev == node->regulator) { |
| list_del(&node->list); |
| kfree(node->dev_name); |
| kfree(node); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static ssize_t constraint_flags_read_file(struct file *file, |
| char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| const struct regulator *regulator = file->private_data; |
| const struct regulation_constraints *c = regulator->rdev->constraints; |
| char *buf; |
| ssize_t ret; |
| |
| if (!c) |
| return 0; |
| |
| buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| if (!buf) |
| return -ENOMEM; |
| |
| ret = snprintf(buf, PAGE_SIZE, |
| "always_on: %u\n" |
| "boot_on: %u\n" |
| "apply_uV: %u\n" |
| "ramp_disable: %u\n" |
| "soft_start: %u\n" |
| "pull_down: %u\n" |
| "over_current_protection: %u\n", |
| c->always_on, |
| c->boot_on, |
| c->apply_uV, |
| c->ramp_disable, |
| c->soft_start, |
| c->pull_down, |
| c->over_current_protection); |
| |
| ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret); |
| kfree(buf); |
| |
| return ret; |
| } |
| |
| #endif |
| |
| static const struct file_operations constraint_flags_fops = { |
| #ifdef CONFIG_DEBUG_FS |
| .open = simple_open, |
| .read = constraint_flags_read_file, |
| .llseek = default_llseek, |
| #endif |
| }; |
| |
| #define REG_STR_SIZE 64 |
| |
| static struct regulator *create_regulator(struct regulator_dev *rdev, |
| struct device *dev, |
| const char *supply_name) |
| { |
| struct regulator *regulator; |
| int err = 0; |
| |
| if (dev) { |
| char buf[REG_STR_SIZE]; |
| int size; |
| |
| size = snprintf(buf, REG_STR_SIZE, "%s-%s", |
| dev->kobj.name, supply_name); |
| if (size >= REG_STR_SIZE) |
| return NULL; |
| |
| supply_name = kstrdup(buf, GFP_KERNEL); |
| if (supply_name == NULL) |
| return NULL; |
| } else { |
| supply_name = kstrdup_const(supply_name, GFP_KERNEL); |
| if (supply_name == NULL) |
| return NULL; |
| } |
| |
| regulator = kzalloc(sizeof(*regulator), GFP_KERNEL); |
| if (regulator == NULL) { |
| kfree(supply_name); |
| return NULL; |
| } |
| |
| regulator->rdev = rdev; |
| regulator->supply_name = supply_name; |
| |
| regulator_lock(rdev); |
| list_add(®ulator->list, &rdev->consumer_list); |
| regulator_unlock(rdev); |
| |
| if (dev) { |
| regulator->dev = dev; |
| |
| /* Add a link to the device sysfs entry */ |
| err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj, |
| supply_name); |
| if (err) { |
| rdev_dbg(rdev, "could not add device link %s: %pe\n", |
| dev->kobj.name, ERR_PTR(err)); |
| /* non-fatal */ |
| } |
| } |
| |
| if (err != -EEXIST) |
| regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs); |
| if (!regulator->debugfs) { |
| rdev_dbg(rdev, "Failed to create debugfs directory\n"); |
| } else { |
| debugfs_create_u32("uA_load", 0444, regulator->debugfs, |
| ®ulator->uA_load); |
| debugfs_create_u32("min_uV", 0444, regulator->debugfs, |
| ®ulator->voltage[PM_SUSPEND_ON].min_uV); |
| debugfs_create_u32("max_uV", 0444, regulator->debugfs, |
| ®ulator->voltage[PM_SUSPEND_ON].max_uV); |
| debugfs_create_file("constraint_flags", 0444, |
| regulator->debugfs, regulator, |
| &constraint_flags_fops); |
| } |
| |
| /* |
| * Check now if the regulator is an always on regulator - if |
| * it is then we don't need to do nearly so much work for |
| * enable/disable calls. |
| */ |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) && |
| _regulator_is_enabled(rdev)) |
| regulator->always_on = true; |
| |
| return regulator; |
| } |
| |
| static int _regulator_get_enable_time(struct regulator_dev *rdev) |
| { |
| if (rdev->constraints && rdev->constraints->enable_time) |
| return rdev->constraints->enable_time; |
| if (rdev->desc->ops->enable_time) |
| return rdev->desc->ops->enable_time(rdev); |
| return rdev->desc->enable_time; |
| } |
| |
| static struct regulator_supply_alias *regulator_find_supply_alias( |
| struct device *dev, const char *supply) |
| { |
| struct regulator_supply_alias *map; |
| |
| list_for_each_entry(map, ®ulator_supply_alias_list, list) |
| if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0) |
| return map; |
| |
| return NULL; |
| } |
| |
| static void regulator_supply_alias(struct device **dev, const char **supply) |
| { |
| struct regulator_supply_alias *map; |
| |
| map = regulator_find_supply_alias(*dev, *supply); |
| if (map) { |
| dev_dbg(*dev, "Mapping supply %s to %s,%s\n", |
| *supply, map->alias_supply, |
| dev_name(map->alias_dev)); |
| *dev = map->alias_dev; |
| *supply = map->alias_supply; |
| } |
| } |
| |
| static int regulator_match(struct device *dev, const void *data) |
| { |
| struct regulator_dev *r = dev_to_rdev(dev); |
| |
| return strcmp(rdev_get_name(r), data) == 0; |
| } |
| |
| static struct regulator_dev *regulator_lookup_by_name(const char *name) |
| { |
| struct device *dev; |
| |
| dev = class_find_device(®ulator_class, NULL, name, regulator_match); |
| |
| return dev ? dev_to_rdev(dev) : NULL; |
| } |
| |
| /** |
| * regulator_dev_lookup - lookup a regulator device. |
| * @dev: device for regulator "consumer". |
| * @supply: Supply name or regulator ID. |
| * |
| * If successful, returns a struct regulator_dev that corresponds to the name |
| * @supply and with the embedded struct device refcount incremented by one. |
| * The refcount must be dropped by calling put_device(). |
| * On failure one of the following ERR-PTR-encoded values is returned: |
| * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed |
| * in the future. |
| */ |
| static struct regulator_dev *regulator_dev_lookup(struct device *dev, |
| const char *supply) |
| { |
| struct regulator_dev *r = NULL; |
| struct device_node *node; |
| struct regulator_map *map; |
| const char *devname = NULL; |
| |
| regulator_supply_alias(&dev, &supply); |
| |
| /* first do a dt based lookup */ |
| if (dev && dev->of_node) { |
| node = of_get_regulator(dev, supply); |
| if (node) { |
| r = of_find_regulator_by_node(node); |
| if (r) |
| return r; |
| |
| /* |
| * We have a node, but there is no device. |
| * assume it has not registered yet. |
| */ |
| return ERR_PTR(-EPROBE_DEFER); |
| } |
| } |
| |
| /* if not found, try doing it non-dt way */ |
| if (dev) |
| devname = dev_name(dev); |
| |
| mutex_lock(®ulator_list_mutex); |
| list_for_each_entry(map, ®ulator_map_list, list) { |
| /* If the mapping has a device set up it must match */ |
| if (map->dev_name && |
| (!devname || strcmp(map->dev_name, devname))) |
| continue; |
| |
| if (strcmp(map->supply, supply) == 0 && |
| get_device(&map->regulator->dev)) { |
| r = map->regulator; |
| break; |
| } |
| } |
| mutex_unlock(®ulator_list_mutex); |
| |
| if (r) |
| return r; |
| |
| r = regulator_lookup_by_name(supply); |
| if (r) |
| return r; |
| |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static int regulator_resolve_supply(struct regulator_dev *rdev) |
| { |
| struct regulator_dev *r; |
| struct device *dev = rdev->dev.parent; |
| int ret = 0; |
| |
| /* No supply to resolve? */ |
| if (!rdev->supply_name) |
| return 0; |
| |
| /* Supply already resolved? (fast-path without locking contention) */ |
| if (rdev->supply) |
| return 0; |
| |
| r = regulator_dev_lookup(dev, rdev->supply_name); |
| if (IS_ERR(r)) { |
| ret = PTR_ERR(r); |
| |
| /* Did the lookup explicitly defer for us? */ |
| if (ret == -EPROBE_DEFER) |
| goto out; |
| |
| if (have_full_constraints()) { |
| r = dummy_regulator_rdev; |
| get_device(&r->dev); |
| } else { |
| dev_err(dev, "Failed to resolve %s-supply for %s\n", |
| rdev->supply_name, rdev->desc->name); |
| ret = -EPROBE_DEFER; |
| goto out; |
| } |
| } |
| |
| if (r == rdev) { |
| dev_err(dev, "Supply for %s (%s) resolved to itself\n", |
| rdev->desc->name, rdev->supply_name); |
| if (!have_full_constraints()) { |
| ret = -EINVAL; |
| goto out; |
| } |
| r = dummy_regulator_rdev; |
| get_device(&r->dev); |
| } |
| |
| /* |
| * If the supply's parent device is not the same as the |
| * regulator's parent device, then ensure the parent device |
| * is bound before we resolve the supply, in case the parent |
| * device get probe deferred and unregisters the supply. |
| */ |
| if (r->dev.parent && r->dev.parent != rdev->dev.parent) { |
| if (!device_is_bound(r->dev.parent)) { |
| put_device(&r->dev); |
| ret = -EPROBE_DEFER; |
| goto out; |
| } |
| } |
| |
| /* Recursively resolve the supply of the supply */ |
| ret = regulator_resolve_supply(r); |
| if (ret < 0) { |
| put_device(&r->dev); |
| goto out; |
| } |
| |
| /* |
| * Recheck rdev->supply with rdev->mutex lock held to avoid a race |
| * between rdev->supply null check and setting rdev->supply in |
| * set_supply() from concurrent tasks. |
| */ |
| regulator_lock(rdev); |
| |
| /* Supply just resolved by a concurrent task? */ |
| if (rdev->supply) { |
| regulator_unlock(rdev); |
| put_device(&r->dev); |
| goto out; |
| } |
| |
| ret = set_supply(rdev, r); |
| if (ret < 0) { |
| regulator_unlock(rdev); |
| put_device(&r->dev); |
| goto out; |
| } |
| |
| regulator_unlock(rdev); |
| |
| /* |
| * In set_machine_constraints() we may have turned this regulator on |
| * but we couldn't propagate to the supply if it hadn't been resolved |
| * yet. Do it now. |
| */ |
| if (rdev->use_count) { |
| ret = regulator_enable(rdev->supply); |
| if (ret < 0) { |
| _regulator_put(rdev->supply); |
| rdev->supply = NULL; |
| goto out; |
| } |
| } |
| |
| out: |
| return ret; |
| } |
| |
| /* Internal regulator request function */ |
| struct regulator *_regulator_get(struct device *dev, const char *id, |
| enum regulator_get_type get_type) |
| { |
| struct regulator_dev *rdev; |
| struct regulator *regulator; |
| struct device_link *link; |
| int ret; |
| |
| if (get_type >= MAX_GET_TYPE) { |
| dev_err(dev, "invalid type %d in %s\n", get_type, __func__); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (id == NULL) { |
| pr_err("get() with no identifier\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| rdev = regulator_dev_lookup(dev, id); |
| if (IS_ERR(rdev)) { |
| ret = PTR_ERR(rdev); |
| |
| /* |
| * If regulator_dev_lookup() fails with error other |
| * than -ENODEV our job here is done, we simply return it. |
| */ |
| if (ret != -ENODEV) |
| return ERR_PTR(ret); |
| |
| if (!have_full_constraints()) { |
| dev_warn(dev, |
| "incomplete constraints, dummy supplies not allowed\n"); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| switch (get_type) { |
| case NORMAL_GET: |
| /* |
| * Assume that a regulator is physically present and |
| * enabled, even if it isn't hooked up, and just |
| * provide a dummy. |
| */ |
| dev_warn(dev, "supply %s not found, using dummy regulator\n", id); |
| rdev = dummy_regulator_rdev; |
| get_device(&rdev->dev); |
| break; |
| |
| case EXCLUSIVE_GET: |
| dev_warn(dev, |
| "dummy supplies not allowed for exclusive requests\n"); |
| fallthrough; |
| |
| default: |
| return ERR_PTR(-ENODEV); |
| } |
| } |
| |
| if (rdev->exclusive) { |
| regulator = ERR_PTR(-EPERM); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| if (get_type == EXCLUSIVE_GET && rdev->open_count) { |
| regulator = ERR_PTR(-EBUSY); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| mutex_lock(®ulator_list_mutex); |
| ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled); |
| mutex_unlock(®ulator_list_mutex); |
| |
| if (ret != 0) { |
| regulator = ERR_PTR(-EPROBE_DEFER); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| ret = regulator_resolve_supply(rdev); |
| if (ret < 0) { |
| regulator = ERR_PTR(ret); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| if (!try_module_get(rdev->owner)) { |
| regulator = ERR_PTR(-EPROBE_DEFER); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| regulator = create_regulator(rdev, dev, id); |
| if (regulator == NULL) { |
| regulator = ERR_PTR(-ENOMEM); |
| module_put(rdev->owner); |
| put_device(&rdev->dev); |
| return regulator; |
| } |
| |
| rdev->open_count++; |
| if (get_type == EXCLUSIVE_GET) { |
| rdev->exclusive = 1; |
| |
| ret = _regulator_is_enabled(rdev); |
| if (ret > 0) { |
| rdev->use_count = 1; |
| regulator->enable_count = 1; |
| } else { |
| rdev->use_count = 0; |
| regulator->enable_count = 0; |
| } |
| } |
| |
| link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS); |
| if (!IS_ERR_OR_NULL(link)) |
| regulator->device_link = true; |
| |
| return regulator; |
| } |
| |
| /** |
| * regulator_get - lookup and obtain a reference to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. |
| * |
| * Use of supply names configured via set_consumer_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, NORMAL_GET); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get); |
| |
| /** |
| * regulator_get_exclusive - obtain exclusive access to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. Other consumers will be |
| * unable to obtain this regulator while this reference is held and the |
| * use count for the regulator will be initialised to reflect the current |
| * state of the regulator. |
| * |
| * This is intended for use by consumers which cannot tolerate shared |
| * use of the regulator such as those which need to force the |
| * regulator off for correct operation of the hardware they are |
| * controlling. |
| * |
| * Use of supply names configured via set_consumer_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get_exclusive(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, EXCLUSIVE_GET); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_exclusive); |
| |
| /** |
| * regulator_get_optional - obtain optional access to a regulator. |
| * @dev: device for regulator "consumer" |
| * @id: Supply name or regulator ID. |
| * |
| * Returns a struct regulator corresponding to the regulator producer, |
| * or IS_ERR() condition containing errno. |
| * |
| * This is intended for use by consumers for devices which can have |
| * some supplies unconnected in normal use, such as some MMC devices. |
| * It can allow the regulator core to provide stub supplies for other |
| * supplies requested using normal regulator_get() calls without |
| * disrupting the operation of drivers that can handle absent |
| * supplies. |
| * |
| * Use of supply names configured via set_consumer_device_supply() is |
| * strongly encouraged. It is recommended that the supply name used |
| * should match the name used for the supply and/or the relevant |
| * device pins in the datasheet. |
| */ |
| struct regulator *regulator_get_optional(struct device *dev, const char *id) |
| { |
| return _regulator_get(dev, id, OPTIONAL_GET); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_optional); |
| |
| static void destroy_regulator(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| debugfs_remove_recursive(regulator->debugfs); |
| |
| if (regulator->dev) { |
| if (regulator->device_link) |
| device_link_remove(regulator->dev, &rdev->dev); |
| |
| /* remove any sysfs entries */ |
| sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name); |
| } |
| |
| regulator_lock(rdev); |
| list_del(®ulator->list); |
| |
| rdev->open_count--; |
| rdev->exclusive = 0; |
| regulator_unlock(rdev); |
| |
| kfree_const(regulator->supply_name); |
| kfree(regulator); |
| } |
| |
| /* regulator_list_mutex lock held by regulator_put() */ |
| static void _regulator_put(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev; |
| |
| if (IS_ERR_OR_NULL(regulator)) |
| return; |
| |
| lockdep_assert_held_once(®ulator_list_mutex); |
| |
| /* Docs say you must disable before calling regulator_put() */ |
| WARN_ON(regulator->enable_count); |
| |
| rdev = regulator->rdev; |
| |
| destroy_regulator(regulator); |
| |
| module_put(rdev->owner); |
| put_device(&rdev->dev); |
| } |
| |
| /** |
| * regulator_put - "free" the regulator source |
| * @regulator: regulator source |
| * |
| * Note: drivers must ensure that all regulator_enable calls made on this |
| * regulator source are balanced by regulator_disable calls prior to calling |
| * this function. |
| */ |
| void regulator_put(struct regulator *regulator) |
| { |
| mutex_lock(®ulator_list_mutex); |
| _regulator_put(regulator); |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_put); |
| |
| /** |
| * regulator_register_supply_alias - Provide device alias for supply lookup |
| * |
| * @dev: device that will be given as the regulator "consumer" |
| * @id: Supply name or regulator ID |
| * @alias_dev: device that should be used to lookup the supply |
| * @alias_id: Supply name or regulator ID that should be used to lookup the |
| * supply |
| * |
| * All lookups for id on dev will instead be conducted for alias_id on |
| * alias_dev. |
| */ |
| int regulator_register_supply_alias(struct device *dev, const char *id, |
| struct device *alias_dev, |
| const char *alias_id) |
| { |
| struct regulator_supply_alias *map; |
| |
| map = regulator_find_supply_alias(dev, id); |
| if (map) |
| return -EEXIST; |
| |
| map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL); |
| if (!map) |
| return -ENOMEM; |
| |
| map->src_dev = dev; |
| map->src_supply = id; |
| map->alias_dev = alias_dev; |
| map->alias_supply = alias_id; |
| |
| list_add(&map->list, ®ulator_supply_alias_list); |
| |
| pr_info("Adding alias for supply %s,%s -> %s,%s\n", |
| id, dev_name(dev), alias_id, dev_name(alias_dev)); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_register_supply_alias); |
| |
| /** |
| * regulator_unregister_supply_alias - Remove device alias |
| * |
| * @dev: device that will be given as the regulator "consumer" |
| * @id: Supply name or regulator ID |
| * |
| * Remove a lookup alias if one exists for id on dev. |
| */ |
| void regulator_unregister_supply_alias(struct device *dev, const char *id) |
| { |
| struct regulator_supply_alias *map; |
| |
| map = regulator_find_supply_alias(dev, id); |
| if (map) { |
| list_del(&map->list); |
| kfree(map); |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias); |
| |
| /** |
| * regulator_bulk_register_supply_alias - register multiple aliases |
| * |
| * @dev: device that will be given as the regulator "consumer" |
| * @id: List of supply names or regulator IDs |
| * @alias_dev: device that should be used to lookup the supply |
| * @alias_id: List of supply names or regulator IDs that should be used to |
| * lookup the supply |
| * @num_id: Number of aliases to register |
| * |
| * @return 0 on success, an errno on failure. |
| * |
| * This helper function allows drivers to register several supply |
| * aliases in one operation. If any of the aliases cannot be |
| * registered any aliases that were registered will be removed |
| * before returning to the caller. |
| */ |
| int regulator_bulk_register_supply_alias(struct device *dev, |
| const char *const *id, |
| struct device *alias_dev, |
| const char *const *alias_id, |
| int num_id) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_id; ++i) { |
| ret = regulator_register_supply_alias(dev, id[i], alias_dev, |
| alias_id[i]); |
| if (ret < 0) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| dev_err(dev, |
| "Failed to create supply alias %s,%s -> %s,%s\n", |
| id[i], dev_name(dev), alias_id[i], dev_name(alias_dev)); |
| |
| while (--i >= 0) |
| regulator_unregister_supply_alias(dev, id[i]); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias); |
| |
| /** |
| * regulator_bulk_unregister_supply_alias - unregister multiple aliases |
| * |
| * @dev: device that will be given as the regulator "consumer" |
| * @id: List of supply names or regulator IDs |
| * @num_id: Number of aliases to unregister |
| * |
| * This helper function allows drivers to unregister several supply |
| * aliases in one operation. |
| */ |
| void regulator_bulk_unregister_supply_alias(struct device *dev, |
| const char *const *id, |
| int num_id) |
| { |
| int i; |
| |
| for (i = 0; i < num_id; ++i) |
| regulator_unregister_supply_alias(dev, id[i]); |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias); |
| |
| |
| /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */ |
| static int regulator_ena_gpio_request(struct regulator_dev *rdev, |
| const struct regulator_config *config) |
| { |
| struct regulator_enable_gpio *pin, *new_pin; |
| struct gpio_desc *gpiod; |
| |
| gpiod = config->ena_gpiod; |
| new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL); |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| list_for_each_entry(pin, ®ulator_ena_gpio_list, list) { |
| if (pin->gpiod == gpiod) { |
| rdev_dbg(rdev, "GPIO is already used\n"); |
| goto update_ena_gpio_to_rdev; |
| } |
| } |
| |
| if (new_pin == NULL) { |
| mutex_unlock(®ulator_list_mutex); |
| return -ENOMEM; |
| } |
| |
| pin = new_pin; |
| new_pin = NULL; |
| |
| pin->gpiod = gpiod; |
| list_add(&pin->list, ®ulator_ena_gpio_list); |
| |
| update_ena_gpio_to_rdev: |
| pin->request_count++; |
| rdev->ena_pin = pin; |
| |
| mutex_unlock(®ulator_list_mutex); |
| kfree(new_pin); |
| |
| return 0; |
| } |
| |
| static void regulator_ena_gpio_free(struct regulator_dev *rdev) |
| { |
| struct regulator_enable_gpio *pin, *n; |
| |
| if (!rdev->ena_pin) |
| return; |
| |
| /* Free the GPIO only in case of no use */ |
| list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) { |
| if (pin != rdev->ena_pin) |
| continue; |
| |
| if (--pin->request_count) |
| break; |
| |
| gpiod_put(pin->gpiod); |
| list_del(&pin->list); |
| kfree(pin); |
| break; |
| } |
| |
| rdev->ena_pin = NULL; |
| } |
| |
| /** |
| * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control |
| * @rdev: regulator_dev structure |
| * @enable: enable GPIO at initial use? |
| * |
| * GPIO is enabled in case of initial use. (enable_count is 0) |
| * GPIO is disabled when it is not shared any more. (enable_count <= 1) |
| */ |
| static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable) |
| { |
| struct regulator_enable_gpio *pin = rdev->ena_pin; |
| |
| if (!pin) |
| return -EINVAL; |
| |
| if (enable) { |
| /* Enable GPIO at initial use */ |
| if (pin->enable_count == 0) |
| gpiod_set_value_cansleep(pin->gpiod, 1); |
| |
| pin->enable_count++; |
| } else { |
| if (pin->enable_count > 1) { |
| pin->enable_count--; |
| return 0; |
| } |
| |
| /* Disable GPIO if not used */ |
| if (pin->enable_count <= 1) { |
| gpiod_set_value_cansleep(pin->gpiod, 0); |
| pin->enable_count = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * _regulator_delay_helper - a delay helper function |
| * @delay: time to delay in microseconds |
| * |
| * Delay for the requested amount of time as per the guidelines in: |
| * |
| * Documentation/timers/timers-howto.rst |
| * |
| * The assumption here is that these regulator operations will never used in |
| * atomic context and therefore sleeping functions can be used. |
| */ |
| static void _regulator_delay_helper(unsigned int delay) |
| { |
| unsigned int ms = delay / 1000; |
| unsigned int us = delay % 1000; |
| |
| if (ms > 0) { |
| /* |
| * For small enough values, handle super-millisecond |
| * delays in the usleep_range() call below. |
| */ |
| if (ms < 20) |
| us += ms * 1000; |
| else |
| msleep(ms); |
| } |
| |
| /* |
| * Give the scheduler some room to coalesce with any other |
| * wakeup sources. For delays shorter than 10 us, don't even |
| * bother setting up high-resolution timers and just busy- |
| * loop. |
| */ |
| if (us >= 10) |
| usleep_range(us, us + 100); |
| else |
| udelay(us); |
| } |
| |
| /** |
| * _regulator_check_status_enabled |
| * |
| * A helper function to check if the regulator status can be interpreted |
| * as 'regulator is enabled'. |
| * @rdev: the regulator device to check |
| * |
| * Return: |
| * * 1 - if status shows regulator is in enabled state |
| * * 0 - if not enabled state |
| * * Error Value - as received from ops->get_status() |
| */ |
| static inline int _regulator_check_status_enabled(struct regulator_dev *rdev) |
| { |
| int ret = rdev->desc->ops->get_status(rdev); |
| |
| if (ret < 0) { |
| rdev_info(rdev, "get_status returned error: %d\n", ret); |
| return ret; |
| } |
| |
| switch (ret) { |
| case REGULATOR_STATUS_OFF: |
| case REGULATOR_STATUS_ERROR: |
| case REGULATOR_STATUS_UNDEFINED: |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| static int _regulator_do_enable(struct regulator_dev *rdev) |
| { |
| int ret, delay; |
| |
| /* Query before enabling in case configuration dependent. */ |
| ret = _regulator_get_enable_time(rdev); |
| if (ret >= 0) { |
| delay = ret; |
| } else { |
| rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret)); |
| delay = 0; |
| } |
| |
| trace_regulator_enable(rdev_get_name(rdev)); |
| |
| if (rdev->desc->off_on_delay && rdev->last_off) { |
| /* if needed, keep a distance of off_on_delay from last time |
| * this regulator was disabled. |
| */ |
| ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay); |
| s64 remaining = ktime_us_delta(end, ktime_get()); |
| |
| if (remaining > 0) |
| _regulator_delay_helper(remaining); |
| } |
| |
| if (rdev->ena_pin) { |
| if (!rdev->ena_gpio_state) { |
| ret = regulator_ena_gpio_ctrl(rdev, true); |
| if (ret < 0) |
| return ret; |
| rdev->ena_gpio_state = 1; |
| } |
| } else if (rdev->desc->ops->enable) { |
| ret = rdev->desc->ops->enable(rdev); |
| if (ret < 0) |
| return ret; |
| } else { |
| return -EINVAL; |
| } |
| |
| /* Allow the regulator to ramp; it would be useful to extend |
| * this for bulk operations so that the regulators can ramp |
| * together. |
| */ |
| trace_regulator_enable_delay(rdev_get_name(rdev)); |
| |
| /* If poll_enabled_time is set, poll upto the delay calculated |
| * above, delaying poll_enabled_time uS to check if the regulator |
| * actually got enabled. |
| * If the regulator isn't enabled after our delay helper has expired, |
| * return -ETIMEDOUT. |
| */ |
| if (rdev->desc->poll_enabled_time) { |
| int time_remaining = delay; |
| |
| while (time_remaining > 0) { |
| _regulator_delay_helper(rdev->desc->poll_enabled_time); |
| |
| if (rdev->desc->ops->get_status) { |
| ret = _regulator_check_status_enabled(rdev); |
| if (ret < 0) |
| return ret; |
| else if (ret) |
| break; |
| } else if (rdev->desc->ops->is_enabled(rdev)) |
| break; |
| |
| time_remaining -= rdev->desc->poll_enabled_time; |
| } |
| |
| if (time_remaining <= 0) { |
| rdev_err(rdev, "Enabled check timed out\n"); |
| return -ETIMEDOUT; |
| } |
| } else { |
| _regulator_delay_helper(delay); |
| } |
| |
| trace_regulator_enable_complete(rdev_get_name(rdev)); |
| |
| return 0; |
| } |
| |
| /** |
| * _regulator_handle_consumer_enable - handle that a consumer enabled |
| * @regulator: regulator source |
| * |
| * Some things on a regulator consumer (like the contribution towards total |
| * load on the regulator) only have an effect when the consumer wants the |
| * regulator enabled. Explained in example with two consumers of the same |
| * regulator: |
| * consumer A: set_load(100); => total load = 0 |
| * consumer A: regulator_enable(); => total load = 100 |
| * consumer B: set_load(1000); => total load = 100 |
| * consumer B: regulator_enable(); => total load = 1100 |
| * consumer A: regulator_disable(); => total_load = 1000 |
| * |
| * This function (together with _regulator_handle_consumer_disable) is |
| * responsible for keeping track of the refcount for a given regulator consumer |
| * and applying / unapplying these things. |
| * |
| * Returns 0 upon no error; -error upon error. |
| */ |
| static int _regulator_handle_consumer_enable(struct regulator *regulator) |
| { |
| int ret; |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| lockdep_assert_held_once(&rdev->mutex.base); |
| |
| regulator->enable_count++; |
| if (regulator->uA_load && regulator->enable_count == 1) { |
| ret = drms_uA_update(rdev); |
| if (ret) |
| regulator->enable_count--; |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * _regulator_handle_consumer_disable - handle that a consumer disabled |
| * @regulator: regulator source |
| * |
| * The opposite of _regulator_handle_consumer_enable(). |
| * |
| * Returns 0 upon no error; -error upon error. |
| */ |
| static int _regulator_handle_consumer_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| lockdep_assert_held_once(&rdev->mutex.base); |
| |
| if (!regulator->enable_count) { |
| rdev_err(rdev, "Underflow of regulator enable count\n"); |
| return -EINVAL; |
| } |
| |
| regulator->enable_count--; |
| if (regulator->uA_load && regulator->enable_count == 0) |
| return drms_uA_update(rdev); |
| |
| return 0; |
| } |
| |
| /* locks held by regulator_enable() */ |
| static int _regulator_enable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| lockdep_assert_held_once(&rdev->mutex.base); |
| |
| if (rdev->use_count == 0 && rdev->supply) { |
| ret = _regulator_enable(rdev->supply); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* balance only if there are regulators coupled */ |
| if (rdev->coupling_desc.n_coupled > 1) { |
| ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| if (ret < 0) |
| goto err_disable_supply; |
| } |
| |
| ret = _regulator_handle_consumer_enable(regulator); |
| if (ret < 0) |
| goto err_disable_supply; |
| |
| if (rdev->use_count == 0) { |
| /* |
| * The regulator may already be enabled if it's not switchable |
| * or was left on |
| */ |
| ret = _regulator_is_enabled(rdev); |
| if (ret == -EINVAL || ret == 0) { |
| if (!regulator_ops_is_valid(rdev, |
| REGULATOR_CHANGE_STATUS)) { |
| ret = -EPERM; |
| goto err_consumer_disable; |
| } |
| |
| ret = _regulator_do_enable(rdev); |
| if (ret < 0) |
| goto err_consumer_disable; |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE, |
| NULL); |
| } else if (ret < 0) { |
| rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret)); |
| goto err_consumer_disable; |
| } |
| /* Fallthrough on positive return values - already enabled */ |
| } |
| |
| rdev->use_count++; |
| |
| return 0; |
| |
| err_consumer_disable: |
| _regulator_handle_consumer_disable(regulator); |
| |
| err_disable_supply: |
| if (rdev->use_count == 0 && rdev->supply) |
| _regulator_disable(rdev->supply); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_enable - enable regulator output |
| * @regulator: regulator source |
| * |
| * Request that the regulator be enabled with the regulator output at |
| * the predefined voltage or current value. Calls to regulator_enable() |
| * must be balanced with calls to regulator_disable(). |
| * |
| * NOTE: the output value can be set by other drivers, boot loader or may be |
| * hardwired in the regulator. |
| */ |
| int regulator_enable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| regulator_lock_dependent(rdev, &ww_ctx); |
| ret = _regulator_enable(regulator); |
| regulator_unlock_dependent(rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_enable); |
| |
| static int _regulator_do_disable(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| trace_regulator_disable(rdev_get_name(rdev)); |
| |
| if (rdev->ena_pin) { |
| if (rdev->ena_gpio_state) { |
| ret = regulator_ena_gpio_ctrl(rdev, false); |
| if (ret < 0) |
| return ret; |
| rdev->ena_gpio_state = 0; |
| } |
| |
| } else if (rdev->desc->ops->disable) { |
| ret = rdev->desc->ops->disable(rdev); |
| if (ret != 0) |
| return ret; |
| } |
| |
| if (rdev->desc->off_on_delay) |
| rdev->last_off = ktime_get(); |
| |
| trace_regulator_disable_complete(rdev_get_name(rdev)); |
| |
| return 0; |
| } |
| |
| /* locks held by regulator_disable() */ |
| static int _regulator_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret = 0; |
| |
| lockdep_assert_held_once(&rdev->mutex.base); |
| |
| if (WARN(rdev->use_count <= 0, |
| "unbalanced disables for %s\n", rdev_get_name(rdev))) |
| return -EIO; |
| |
| /* are we the last user and permitted to disable ? */ |
| if (rdev->use_count == 1 && |
| (rdev->constraints && !rdev->constraints->always_on)) { |
| |
| /* we are last user */ |
| if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) { |
| ret = _notifier_call_chain(rdev, |
| REGULATOR_EVENT_PRE_DISABLE, |
| NULL); |
| if (ret & NOTIFY_STOP_MASK) |
| return -EINVAL; |
| |
| ret = _regulator_do_disable(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret)); |
| _notifier_call_chain(rdev, |
| REGULATOR_EVENT_ABORT_DISABLE, |
| NULL); |
| return ret; |
| } |
| _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE, |
| NULL); |
| } |
| |
| rdev->use_count = 0; |
| } else if (rdev->use_count > 1) { |
| rdev->use_count--; |
| } |
| |
| if (ret == 0) |
| ret = _regulator_handle_consumer_disable(regulator); |
| |
| if (ret == 0 && rdev->coupling_desc.n_coupled > 1) |
| ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| |
| if (ret == 0 && rdev->use_count == 0 && rdev->supply) |
| ret = _regulator_disable(rdev->supply); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_disable - disable regulator output |
| * @regulator: regulator source |
| * |
| * Disable the regulator output voltage or current. Calls to |
| * regulator_enable() must be balanced with calls to |
| * regulator_disable(). |
| * |
| * NOTE: this will only disable the regulator output if no other consumer |
| * devices have it enabled, the regulator device supports disabling and |
| * machine constraints permit this operation. |
| */ |
| int regulator_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| regulator_lock_dependent(rdev, &ww_ctx); |
| ret = _regulator_disable(regulator); |
| regulator_unlock_dependent(rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable); |
| |
| /* locks held by regulator_force_disable() */ |
| static int _regulator_force_disable(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| lockdep_assert_held_once(&rdev->mutex.base); |
| |
| ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | |
| REGULATOR_EVENT_PRE_DISABLE, NULL); |
| if (ret & NOTIFY_STOP_MASK) |
| return -EINVAL; |
| |
| ret = _regulator_do_disable(rdev); |
| if (ret < 0) { |
| rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret)); |
| _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | |
| REGULATOR_EVENT_ABORT_DISABLE, NULL); |
| return ret; |
| } |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE | |
| REGULATOR_EVENT_DISABLE, NULL); |
| |
| return 0; |
| } |
| |
| /** |
| * regulator_force_disable - force disable regulator output |
| * @regulator: regulator source |
| * |
| * Forcibly disable the regulator output voltage or current. |
| * NOTE: this *will* disable the regulator output even if other consumer |
| * devices have it enabled. This should be used for situations when device |
| * damage will likely occur if the regulator is not disabled (e.g. over temp). |
| */ |
| int regulator_force_disable(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| regulator_lock_dependent(rdev, &ww_ctx); |
| |
| ret = _regulator_force_disable(regulator->rdev); |
| |
| if (rdev->coupling_desc.n_coupled > 1) |
| regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| |
| if (regulator->uA_load) { |
| regulator->uA_load = 0; |
| ret = drms_uA_update(rdev); |
| } |
| |
| if (rdev->use_count != 0 && rdev->supply) |
| _regulator_disable(rdev->supply); |
| |
| regulator_unlock_dependent(rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_force_disable); |
| |
| static void regulator_disable_work(struct work_struct *work) |
| { |
| struct regulator_dev *rdev = container_of(work, struct regulator_dev, |
| disable_work.work); |
| struct ww_acquire_ctx ww_ctx; |
| int count, i, ret; |
| struct regulator *regulator; |
| int total_count = 0; |
| |
| regulator_lock_dependent(rdev, &ww_ctx); |
| |
| /* |
| * Workqueue functions queue the new work instance while the previous |
| * work instance is being processed. Cancel the queued work instance |
| * as the work instance under processing does the job of the queued |
| * work instance. |
| */ |
| cancel_delayed_work(&rdev->disable_work); |
| |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| count = regulator->deferred_disables; |
| |
| if (!count) |
| continue; |
| |
| total_count += count; |
| regulator->deferred_disables = 0; |
| |
| for (i = 0; i < count; i++) { |
| ret = _regulator_disable(regulator); |
| if (ret != 0) |
| rdev_err(rdev, "Deferred disable failed: %pe\n", |
| ERR_PTR(ret)); |
| } |
| } |
| WARN_ON(!total_count); |
| |
| if (rdev->coupling_desc.n_coupled > 1) |
| regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| |
| regulator_unlock_dependent(rdev, &ww_ctx); |
| } |
| |
| /** |
| * regulator_disable_deferred - disable regulator output with delay |
| * @regulator: regulator source |
| * @ms: milliseconds until the regulator is disabled |
| * |
| * Execute regulator_disable() on the regulator after a delay. This |
| * is intended for use with devices that require some time to quiesce. |
| * |
| * NOTE: this will only disable the regulator output if no other consumer |
| * devices have it enabled, the regulator device supports disabling and |
| * machine constraints permit this operation. |
| */ |
| int regulator_disable_deferred(struct regulator *regulator, int ms) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| if (!ms) |
| return regulator_disable(regulator); |
| |
| regulator_lock(rdev); |
| regulator->deferred_disables++; |
| mod_delayed_work(system_power_efficient_wq, &rdev->disable_work, |
| msecs_to_jiffies(ms)); |
| regulator_unlock(rdev); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_disable_deferred); |
| |
| static int _regulator_is_enabled(struct regulator_dev *rdev) |
| { |
| /* A GPIO control always takes precedence */ |
| if (rdev->ena_pin) |
| return rdev->ena_gpio_state; |
| |
| /* If we don't know then assume that the regulator is always on */ |
| if (!rdev->desc->ops->is_enabled) |
| return 1; |
| |
| return rdev->desc->ops->is_enabled(rdev); |
| } |
| |
| static int _regulator_list_voltage(struct regulator_dev *rdev, |
| unsigned selector, int lock) |
| { |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int ret; |
| |
| if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector) |
| return rdev->desc->fixed_uV; |
| |
| if (ops->list_voltage) { |
| if (selector >= rdev->desc->n_voltages) |
| return -EINVAL; |
| if (selector < rdev->desc->linear_min_sel) |
| return 0; |
| if (lock) |
| regulator_lock(rdev); |
| ret = ops->list_voltage(rdev, selector); |
| if (lock) |
| regulator_unlock(rdev); |
| } else if (rdev->is_switch && rdev->supply) { |
| ret = _regulator_list_voltage(rdev->supply->rdev, |
| selector, lock); |
| } else { |
| return -EINVAL; |
| } |
| |
| if (ret > 0) { |
| if (ret < rdev->constraints->min_uV) |
| ret = 0; |
| else if (ret > rdev->constraints->max_uV) |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_is_enabled - is the regulator output enabled |
| * @regulator: regulator source |
| * |
| * Returns positive if the regulator driver backing the source/client |
| * has requested that the device be enabled, zero if it hasn't, else a |
| * negative errno code. |
| * |
| * Note that the device backing this regulator handle can have multiple |
| * users, so it might be enabled even if regulator_enable() was never |
| * called for this particular source. |
| */ |
| int regulator_is_enabled(struct regulator *regulator) |
| { |
| int ret; |
| |
| if (regulator->always_on) |
| return 1; |
| |
| regulator_lock(regulator->rdev); |
| ret = _regulator_is_enabled(regulator->rdev); |
| regulator_unlock(regulator->rdev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_enabled); |
| |
| /** |
| * regulator_count_voltages - count regulator_list_voltage() selectors |
| * @regulator: regulator source |
| * |
| * Returns number of selectors, or negative errno. Selectors are |
| * numbered starting at zero, and typically correspond to bitfields |
| * in hardware registers. |
| */ |
| int regulator_count_voltages(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| if (rdev->desc->n_voltages) |
| return rdev->desc->n_voltages; |
| |
| if (!rdev->is_switch || !rdev->supply) |
| return -EINVAL; |
| |
| return regulator_count_voltages(rdev->supply); |
| } |
| EXPORT_SYMBOL_GPL(regulator_count_voltages); |
| |
| /** |
| * regulator_list_voltage - enumerate supported voltages |
| * @regulator: regulator source |
| * @selector: identify voltage to list |
| * Context: can sleep |
| * |
| * Returns a voltage that can be passed to @regulator_set_voltage(), |
| * zero if this selector code can't be used on this system, or a |
| * negative errno. |
| */ |
| int regulator_list_voltage(struct regulator *regulator, unsigned selector) |
| { |
| return _regulator_list_voltage(regulator->rdev, selector, 1); |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_voltage); |
| |
| /** |
| * regulator_get_regmap - get the regulator's register map |
| * @regulator: regulator source |
| * |
| * Returns the register map for the given regulator, or an ERR_PTR value |
| * if the regulator doesn't use regmap. |
| */ |
| struct regmap *regulator_get_regmap(struct regulator *regulator) |
| { |
| struct regmap *map = regulator->rdev->regmap; |
| |
| return map ? map : ERR_PTR(-EOPNOTSUPP); |
| } |
| |
| /** |
| * regulator_get_hardware_vsel_register - get the HW voltage selector register |
| * @regulator: regulator source |
| * @vsel_reg: voltage selector register, output parameter |
| * @vsel_mask: mask for voltage selector bitfield, output parameter |
| * |
| * Returns the hardware register offset and bitmask used for setting the |
| * regulator voltage. This might be useful when configuring voltage-scaling |
| * hardware or firmware that can make I2C requests behind the kernel's back, |
| * for example. |
| * |
| * On success, the output parameters @vsel_reg and @vsel_mask are filled in |
| * and 0 is returned, otherwise a negative errno is returned. |
| */ |
| int regulator_get_hardware_vsel_register(struct regulator *regulator, |
| unsigned *vsel_reg, |
| unsigned *vsel_mask) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| const struct regulator_ops *ops = rdev->desc->ops; |
| |
| if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) |
| return -EOPNOTSUPP; |
| |
| *vsel_reg = rdev->desc->vsel_reg; |
| *vsel_mask = rdev->desc->vsel_mask; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register); |
| |
| /** |
| * regulator_list_hardware_vsel - get the HW-specific register value for a selector |
| * @regulator: regulator source |
| * @selector: identify voltage to list |
| * |
| * Converts the selector to a hardware-specific voltage selector that can be |
| * directly written to the regulator registers. The address of the voltage |
| * register can be determined by calling @regulator_get_hardware_vsel_register. |
| * |
| * On error a negative errno is returned. |
| */ |
| int regulator_list_hardware_vsel(struct regulator *regulator, |
| unsigned selector) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| const struct regulator_ops *ops = rdev->desc->ops; |
| |
| if (selector >= rdev->desc->n_voltages) |
| return -EINVAL; |
| if (selector < rdev->desc->linear_min_sel) |
| return 0; |
| if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap) |
| return -EOPNOTSUPP; |
| |
| return selector; |
| } |
| EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel); |
| |
| /** |
| * regulator_get_linear_step - return the voltage step size between VSEL values |
| * @regulator: regulator source |
| * |
| * Returns the voltage step size between VSEL values for linear |
| * regulators, or return 0 if the regulator isn't a linear regulator. |
| */ |
| unsigned int regulator_get_linear_step(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| |
| return rdev->desc->uV_step; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_linear_step); |
| |
| /** |
| * regulator_is_supported_voltage - check if a voltage range can be supported |
| * |
| * @regulator: Regulator to check. |
| * @min_uV: Minimum required voltage in uV. |
| * @max_uV: Maximum required voltage in uV. |
| * |
| * Returns a boolean. |
| */ |
| int regulator_is_supported_voltage(struct regulator *regulator, |
| int min_uV, int max_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int i, voltages, ret; |
| |
| /* If we can't change voltage check the current voltage */ |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { |
| ret = regulator_get_voltage(regulator); |
| if (ret >= 0) |
| return min_uV <= ret && ret <= max_uV; |
| else |
| return ret; |
| } |
| |
| /* Any voltage within constrains range is fine? */ |
| if (rdev->desc->continuous_voltage_range) |
| return min_uV >= rdev->constraints->min_uV && |
| max_uV <= rdev->constraints->max_uV; |
| |
| ret = regulator_count_voltages(regulator); |
| if (ret < 0) |
| return 0; |
| voltages = ret; |
| |
| for (i = 0; i < voltages; i++) { |
| ret = regulator_list_voltage(regulator, i); |
| |
| if (ret >= min_uV && ret <= max_uV) |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(regulator_is_supported_voltage); |
| |
| static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV, |
| int max_uV) |
| { |
| const struct regulator_desc *desc = rdev->desc; |
| |
| if (desc->ops->map_voltage) |
| return desc->ops->map_voltage(rdev, min_uV, max_uV); |
| |
| if (desc->ops->list_voltage == regulator_list_voltage_linear) |
| return regulator_map_voltage_linear(rdev, min_uV, max_uV); |
| |
| if (desc->ops->list_voltage == regulator_list_voltage_linear_range) |
| return regulator_map_voltage_linear_range(rdev, min_uV, max_uV); |
| |
| if (desc->ops->list_voltage == |
| regulator_list_voltage_pickable_linear_range) |
| return regulator_map_voltage_pickable_linear_range(rdev, |
| min_uV, max_uV); |
| |
| return regulator_map_voltage_iterate(rdev, min_uV, max_uV); |
| } |
| |
| static int _regulator_call_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV, |
| unsigned *selector) |
| { |
| struct pre_voltage_change_data data; |
| int ret; |
| |
| data.old_uV = regulator_get_voltage_rdev(rdev); |
| data.min_uV = min_uV; |
| data.max_uV = max_uV; |
| ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, |
| &data); |
| if (ret & NOTIFY_STOP_MASK) |
| return -EINVAL; |
| |
| ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector); |
| if (ret >= 0) |
| return ret; |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, |
| (void *)data.old_uV); |
| |
| return ret; |
| } |
| |
| static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev, |
| int uV, unsigned selector) |
| { |
| struct pre_voltage_change_data data; |
| int ret; |
| |
| data.old_uV = regulator_get_voltage_rdev(rdev); |
| data.min_uV = uV; |
| data.max_uV = uV; |
| ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE, |
| &data); |
| if (ret & NOTIFY_STOP_MASK) |
| return -EINVAL; |
| |
| ret = rdev->desc->ops->set_voltage_sel(rdev, selector); |
| if (ret >= 0) |
| return ret; |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE, |
| (void *)data.old_uV); |
| |
| return ret; |
| } |
| |
| static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev, |
| int uV, int new_selector) |
| { |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int diff, old_sel, curr_sel, ret; |
| |
| /* Stepping is only needed if the regulator is enabled. */ |
| if (!_regulator_is_enabled(rdev)) |
| goto final_set; |
| |
| if (!ops->get_voltage_sel) |
| return -EINVAL; |
| |
| old_sel = ops->get_voltage_sel(rdev); |
| if (old_sel < 0) |
| return old_sel; |
| |
| diff = new_selector - old_sel; |
| if (diff == 0) |
| return 0; /* No change needed. */ |
| |
| if (diff > 0) { |
| /* Stepping up. */ |
| for (curr_sel = old_sel + rdev->desc->vsel_step; |
| curr_sel < new_selector; |
| curr_sel += rdev->desc->vsel_step) { |
| /* |
| * Call the callback directly instead of using |
| * _regulator_call_set_voltage_sel() as we don't |
| * want to notify anyone yet. Same in the branch |
| * below. |
| */ |
| ret = ops->set_voltage_sel(rdev, curr_sel); |
| if (ret) |
| goto try_revert; |
| } |
| } else { |
| /* Stepping down. */ |
| for (curr_sel = old_sel - rdev->desc->vsel_step; |
| curr_sel > new_selector; |
| curr_sel -= rdev->desc->vsel_step) { |
| ret = ops->set_voltage_sel(rdev, curr_sel); |
| if (ret) |
| goto try_revert; |
| } |
| } |
| |
| final_set: |
| /* The final selector will trigger the notifiers. */ |
| return _regulator_call_set_voltage_sel(rdev, uV, new_selector); |
| |
| try_revert: |
| /* |
| * At least try to return to the previous voltage if setting a new |
| * one failed. |
| */ |
| (void)ops->set_voltage_sel(rdev, old_sel); |
| return ret; |
| } |
| |
| static int _regulator_set_voltage_time(struct regulator_dev *rdev, |
| int old_uV, int new_uV) |
| { |
| unsigned int ramp_delay = 0; |
| |
| if (rdev->constraints->ramp_delay) |
| ramp_delay = rdev->constraints->ramp_delay; |
| else if (rdev->desc->ramp_delay) |
| ramp_delay = rdev->desc->ramp_delay; |
| else if (rdev->constraints->settling_time) |
| return rdev->constraints->settling_time; |
| else if (rdev->constraints->settling_time_up && |
| (new_uV > old_uV)) |
| return rdev->constraints->settling_time_up; |
| else if (rdev->constraints->settling_time_down && |
| (new_uV < old_uV)) |
| return rdev->constraints->settling_time_down; |
| |
| if (ramp_delay == 0) |
| return 0; |
| |
| return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay); |
| } |
| |
| static int _regulator_do_set_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV) |
| { |
| int ret; |
| int delay = 0; |
| int best_val = 0; |
| unsigned int selector; |
| int old_selector = -1; |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int old_uV = regulator_get_voltage_rdev(rdev); |
| |
| trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV); |
| |
| min_uV += rdev->constraints->uV_offset; |
| max_uV += rdev->constraints->uV_offset; |
| |
| /* |
| * If we can't obtain the old selector there is not enough |
| * info to call set_voltage_time_sel(). |
| */ |
| if (_regulator_is_enabled(rdev) && |
| ops->set_voltage_time_sel && ops->get_voltage_sel) { |
| old_selector = ops->get_voltage_sel(rdev); |
| if (old_selector < 0) |
| return old_selector; |
| } |
| |
| if (ops->set_voltage) { |
| ret = _regulator_call_set_voltage(rdev, min_uV, max_uV, |
| &selector); |
| |
| if (ret >= 0) { |
| if (ops->list_voltage) |
| best_val = ops->list_voltage(rdev, |
| selector); |
| else |
| best_val = regulator_get_voltage_rdev(rdev); |
| } |
| |
| } else if (ops->set_voltage_sel) { |
| ret = regulator_map_voltage(rdev, min_uV, max_uV); |
| if (ret >= 0) { |
| best_val = ops->list_voltage(rdev, ret); |
| if (min_uV <= best_val && max_uV >= best_val) { |
| selector = ret; |
| if (old_selector == selector) |
| ret = 0; |
| else if (rdev->desc->vsel_step) |
| ret = _regulator_set_voltage_sel_step( |
| rdev, best_val, selector); |
| else |
| ret = _regulator_call_set_voltage_sel( |
| rdev, best_val, selector); |
| } else { |
| ret = -EINVAL; |
| } |
| } |
| } else { |
| ret = -EINVAL; |
| } |
| |
| if (ret) |
| goto out; |
| |
| if (ops->set_voltage_time_sel) { |
| /* |
| * Call set_voltage_time_sel if successfully obtained |
| * old_selector |
| */ |
| if (old_selector >= 0 && old_selector != selector) |
| delay = ops->set_voltage_time_sel(rdev, old_selector, |
| selector); |
| } else { |
| if (old_uV != best_val) { |
| if (ops->set_voltage_time) |
| delay = ops->set_voltage_time(rdev, old_uV, |
| best_val); |
| else |
| delay = _regulator_set_voltage_time(rdev, |
| old_uV, |
| best_val); |
| } |
| } |
| |
| if (delay < 0) { |
| rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay)); |
| delay = 0; |
| } |
| |
| /* Insert any necessary delays */ |
| _regulator_delay_helper(delay); |
| |
| if (best_val >= 0) { |
| unsigned long data = best_val; |
| |
| _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, |
| (void *)data); |
| } |
| |
| out: |
| trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val); |
| |
| return ret; |
| } |
| |
| static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev, |
| int min_uV, int max_uV, suspend_state_t state) |
| { |
| struct regulator_state *rstate; |
| int uV, sel; |
| |
| rstate = regulator_get_suspend_state(rdev, state); |
| if (rstate == NULL) |
| return -EINVAL; |
| |
| if (min_uV < rstate->min_uV) |
| min_uV = rstate->min_uV; |
| if (max_uV > rstate->max_uV) |
| max_uV = rstate->max_uV; |
| |
| sel = regulator_map_voltage(rdev, min_uV, max_uV); |
| if (sel < 0) |
| return sel; |
| |
| uV = rdev->desc->ops->list_voltage(rdev, sel); |
| if (uV >= min_uV && uV <= max_uV) |
| rstate->uV = uV; |
| |
| return 0; |
| } |
| |
| static int regulator_set_voltage_unlocked(struct regulator *regulator, |
| int min_uV, int max_uV, |
| suspend_state_t state) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator_voltage *voltage = ®ulator->voltage[state]; |
| int ret = 0; |
| int old_min_uV, old_max_uV; |
| int current_uV; |
| |
| /* If we're setting the same range as last time the change |
| * should be a noop (some cpufreq implementations use the same |
| * voltage for multiple frequencies, for example). |
| */ |
| if (voltage->min_uV == min_uV && voltage->max_uV == max_uV) |
| goto out; |
| |
| /* If we're trying to set a range that overlaps the current voltage, |
| * return successfully even though the regulator does not support |
| * changing the voltage. |
| */ |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) { |
| current_uV = regulator_get_voltage_rdev(rdev); |
| if (min_uV <= current_uV && current_uV <= max_uV) { |
| voltage->min_uV = min_uV; |
| voltage->max_uV = max_uV; |
| goto out; |
| } |
| } |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_voltage && |
| !rdev->desc->ops->set_voltage_sel) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| |
| /* restore original values in case of error */ |
| old_min_uV = voltage->min_uV; |
| old_max_uV = voltage->max_uV; |
| voltage->min_uV = min_uV; |
| voltage->max_uV = max_uV; |
| |
| /* for not coupled regulators this will just set the voltage */ |
| ret = regulator_balance_voltage(rdev, state); |
| if (ret < 0) { |
| voltage->min_uV = old_min_uV; |
| voltage->max_uV = old_max_uV; |
| } |
| |
| out: |
| return ret; |
| } |
| |
| int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV, |
| int max_uV, suspend_state_t state) |
| { |
| int best_supply_uV = 0; |
| int supply_change_uV = 0; |
| int ret; |
| |
| if (rdev->supply && |
| regulator_ops_is_valid(rdev->supply->rdev, |
| REGULATOR_CHANGE_VOLTAGE) && |
| (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage || |
| rdev->desc->ops->get_voltage_sel))) { |
| int current_supply_uV; |
| int selector; |
| |
| selector = regulator_map_voltage(rdev, min_uV, max_uV); |
| if (selector < 0) { |
| ret = selector; |
| goto out; |
| } |
| |
| best_supply_uV = _regulator_list_voltage(rdev, selector, 0); |
| if (best_supply_uV < 0) { |
| ret = best_supply_uV; |
| goto out; |
| } |
| |
| best_supply_uV += rdev->desc->min_dropout_uV; |
| |
| current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev); |
| if (current_supply_uV < 0) { |
| ret = current_supply_uV; |
| goto out; |
| } |
| |
| supply_change_uV = best_supply_uV - current_supply_uV; |
| } |
| |
| if (supply_change_uV > 0) { |
| ret = regulator_set_voltage_unlocked(rdev->supply, |
| best_supply_uV, INT_MAX, state); |
| if (ret) { |
| dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n", |
| ERR_PTR(ret)); |
| goto out; |
| } |
| } |
| |
| if (state == PM_SUSPEND_ON) |
| ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
| else |
| ret = _regulator_do_set_suspend_voltage(rdev, min_uV, |
| max_uV, state); |
| if (ret < 0) |
| goto out; |
| |
| if (supply_change_uV < 0) { |
| ret = regulator_set_voltage_unlocked(rdev->supply, |
| best_supply_uV, INT_MAX, state); |
| if (ret) |
| dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n", |
| ERR_PTR(ret)); |
| /* No need to fail here */ |
| ret = 0; |
| } |
| |
| out: |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev); |
| |
| static int regulator_limit_voltage_step(struct regulator_dev *rdev, |
| int *current_uV, int *min_uV) |
| { |
| struct regulation_constraints *constraints = rdev->constraints; |
| |
| /* Limit voltage change only if necessary */ |
| if (!constraints->max_uV_step || !_regulator_is_enabled(rdev)) |
| return 1; |
| |
| if (*current_uV < 0) { |
| *current_uV = regulator_get_voltage_rdev(rdev); |
| |
| if (*current_uV < 0) |
| return *current_uV; |
| } |
| |
| if (abs(*current_uV - *min_uV) <= constraints->max_uV_step) |
| return 1; |
| |
| /* Clamp target voltage within the given step */ |
| if (*current_uV < *min_uV) |
| *min_uV = min(*current_uV + constraints->max_uV_step, |
| *min_uV); |
| else |
| *min_uV = max(*current_uV - constraints->max_uV_step, |
| *min_uV); |
| |
| return 0; |
| } |
| |
| static int regulator_get_optimal_voltage(struct regulator_dev *rdev, |
| int *current_uV, |
| int *min_uV, int *max_uV, |
| suspend_state_t state, |
| int n_coupled) |
| { |
| struct coupling_desc *c_desc = &rdev->coupling_desc; |
| struct regulator_dev **c_rdevs = c_desc->coupled_rdevs; |
| struct regulation_constraints *constraints = rdev->constraints; |
| int desired_min_uV = 0, desired_max_uV = INT_MAX; |
| int max_current_uV = 0, min_current_uV = INT_MAX; |
| int highest_min_uV = 0, target_uV, possible_uV; |
| int i, ret, max_spread; |
| bool done; |
| |
| *current_uV = -1; |
| |
| /* |
| * If there are no coupled regulators, simply set the voltage |
| * demanded by consumers. |
| */ |
| if (n_coupled == 1) { |
| /* |
| * If consumers don't provide any demands, set voltage |
| * to min_uV |
| */ |
| desired_min_uV = constraints->min_uV; |
| desired_max_uV = constraints->max_uV; |
| |
| ret = regulator_check_consumers(rdev, |
| &desired_min_uV, |
| &desired_max_uV, state); |
| if (ret < 0) |
| return ret; |
| |
| possible_uV = desired_min_uV; |
| done = true; |
| |
| goto finish; |
| } |
| |
| /* Find highest min desired voltage */ |
| for (i = 0; i < n_coupled; i++) { |
| int tmp_min = 0; |
| int tmp_max = INT_MAX; |
| |
| lockdep_assert_held_once(&c_rdevs[i]->mutex.base); |
| |
| ret = regulator_check_consumers(c_rdevs[i], |
| &tmp_min, |
| &tmp_max, state); |
| if (ret < 0) |
| return ret; |
| |
| ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max); |
| if (ret < 0) |
| return ret; |
| |
| highest_min_uV = max(highest_min_uV, tmp_min); |
| |
| if (i == 0) { |
| desired_min_uV = tmp_min; |
| desired_max_uV = tmp_max; |
| } |
| } |
| |
| max_spread = constraints->max_spread[0]; |
| |
| /* |
| * Let target_uV be equal to the desired one if possible. |
| * If not, set it to minimum voltage, allowed by other coupled |
| * regulators. |
| */ |
| target_uV = max(desired_min_uV, highest_min_uV - max_spread); |
| |
| /* |
| * Find min and max voltages, which currently aren't violating |
| * max_spread. |
| */ |
| for (i = 1; i < n_coupled; i++) { |
| int tmp_act; |
| |
| if (!_regulator_is_enabled(c_rdevs[i])) |
| continue; |
| |
| tmp_act = regulator_get_voltage_rdev(c_rdevs[i]); |
| if (tmp_act < 0) |
| return tmp_act; |
| |
| min_current_uV = min(tmp_act, min_current_uV); |
| max_current_uV = max(tmp_act, max_current_uV); |
| } |
| |
| /* There aren't any other regulators enabled */ |
| if (max_current_uV == 0) { |
| possible_uV = target_uV; |
| } else { |
| /* |
| * Correct target voltage, so as it currently isn't |
| * violating max_spread |
| */ |
| possible_uV = max(target_uV, max_current_uV - max_spread); |
| possible_uV = min(possible_uV, min_current_uV + max_spread); |
| } |
| |
| if (possible_uV > desired_max_uV) |
| return -EINVAL; |
| |
| done = (possible_uV == target_uV); |
| desired_min_uV = possible_uV; |
| |
| finish: |
| /* Apply max_uV_step constraint if necessary */ |
| if (state == PM_SUSPEND_ON) { |
| ret = regulator_limit_voltage_step(rdev, current_uV, |
| &desired_min_uV); |
| if (ret < 0) |
| return ret; |
| |
| if (ret == 0) |
| done = false; |
| } |
| |
| /* Set current_uV if wasn't done earlier in the code and if necessary */ |
| if (n_coupled > 1 && *current_uV == -1) { |
| |
| if (_regulator_is_enabled(rdev)) { |
| ret = regulator_get_voltage_rdev(rdev); |
| if (ret < 0) |
| return ret; |
| |
| *current_uV = ret; |
| } else { |
| *current_uV = desired_min_uV; |
| } |
| } |
| |
| *min_uV = desired_min_uV; |
| *max_uV = desired_max_uV; |
| |
| return done; |
| } |
| |
| int regulator_do_balance_voltage(struct regulator_dev *rdev, |
| suspend_state_t state, bool skip_coupled) |
| { |
| struct regulator_dev **c_rdevs; |
| struct regulator_dev *best_rdev; |
| struct coupling_desc *c_desc = &rdev->coupling_desc; |
| int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev; |
| unsigned int delta, best_delta; |
| unsigned long c_rdev_done = 0; |
| bool best_c_rdev_done; |
| |
| c_rdevs = c_desc->coupled_rdevs; |
| n_coupled = skip_coupled ? 1 : c_desc->n_coupled; |
| |
| /* |
| * Find the best possible voltage change on each loop. Leave the loop |
| * if there isn't any possible change. |
| */ |
| do { |
| best_c_rdev_done = false; |
| best_delta = 0; |
| best_min_uV = 0; |
| best_max_uV = 0; |
| best_c_rdev = 0; |
| best_rdev = NULL; |
| |
| /* |
| * Find highest difference between optimal voltage |
| * and current voltage. |
| */ |
| for (i = 0; i < n_coupled; i++) { |
| /* |
| * optimal_uV is the best voltage that can be set for |
| * i-th regulator at the moment without violating |
| * max_spread constraint in order to balance |
| * the coupled voltages. |
| */ |
| int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0; |
| |
| if (test_bit(i, &c_rdev_done)) |
| continue; |
| |
| ret = regulator_get_optimal_voltage(c_rdevs[i], |
| ¤t_uV, |
| &optimal_uV, |
| &optimal_max_uV, |
| state, n_coupled); |
| if (ret < 0) |
| goto out; |
| |
| delta = abs(optimal_uV - current_uV); |
| |
| if (delta && best_delta <= delta) { |
| best_c_rdev_done = ret; |
| best_delta = delta; |
| best_rdev = c_rdevs[i]; |
| best_min_uV = optimal_uV; |
| best_max_uV = optimal_max_uV; |
| best_c_rdev = i; |
| } |
| } |
| |
| /* Nothing to change, return successfully */ |
| if (!best_rdev) { |
| ret = 0; |
| goto out; |
| } |
| |
| ret = regulator_set_voltage_rdev(best_rdev, best_min_uV, |
| best_max_uV, state); |
| |
| if (ret < 0) |
| goto out; |
| |
| if (best_c_rdev_done) |
| set_bit(best_c_rdev, &c_rdev_done); |
| |
| } while (n_coupled > 1); |
| |
| out: |
| return ret; |
| } |
| |
| static int regulator_balance_voltage(struct regulator_dev *rdev, |
| suspend_state_t state) |
| { |
| struct coupling_desc *c_desc = &rdev->coupling_desc; |
| struct regulator_coupler *coupler = c_desc->coupler; |
| bool skip_coupled = false; |
| |
| /* |
| * If system is in a state other than PM_SUSPEND_ON, don't check |
| * other coupled regulators. |
| */ |
| if (state != PM_SUSPEND_ON) |
| skip_coupled = true; |
| |
| if (c_desc->n_resolved < c_desc->n_coupled) { |
| rdev_err(rdev, "Not all coupled regulators registered\n"); |
| return -EPERM; |
| } |
| |
| /* Invoke custom balancer for customized couplers */ |
| if (coupler && coupler->balance_voltage) |
| return coupler->balance_voltage(coupler, rdev, state); |
| |
| return regulator_do_balance_voltage(rdev, state, skip_coupled); |
| } |
| |
| /** |
| * regulator_set_voltage - set regulator output voltage |
| * @regulator: regulator source |
| * @min_uV: Minimum required voltage in uV |
| * @max_uV: Maximum acceptable voltage in uV |
| * |
| * Sets a voltage regulator to the desired output voltage. This can be set |
| * during any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the voltage will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new voltage when enabled. |
| * |
| * NOTE: If the regulator is shared between several devices then the lowest |
| * request voltage that meets the system constraints will be used. |
| * Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) |
| { |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| regulator_lock_dependent(regulator->rdev, &ww_ctx); |
| |
| ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV, |
| PM_SUSPEND_ON); |
| |
| regulator_unlock_dependent(regulator->rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage); |
| |
| static inline int regulator_suspend_toggle(struct regulator_dev *rdev, |
| suspend_state_t state, bool en) |
| { |
| struct regulator_state *rstate; |
| |
| rstate = regulator_get_suspend_state(rdev, state); |
| if (rstate == NULL) |
| return -EINVAL; |
| |
| if (!rstate->changeable) |
| return -EPERM; |
| |
| rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND; |
| |
| return 0; |
| } |
| |
| int regulator_suspend_enable(struct regulator_dev *rdev, |
| suspend_state_t state) |
| { |
| return regulator_suspend_toggle(rdev, state, true); |
| } |
| EXPORT_SYMBOL_GPL(regulator_suspend_enable); |
| |
| int regulator_suspend_disable(struct regulator_dev *rdev, |
| suspend_state_t state) |
| { |
| struct regulator *regulator; |
| struct regulator_voltage *voltage; |
| |
| /* |
| * if any consumer wants this regulator device keeping on in |
| * suspend states, don't set it as disabled. |
| */ |
| list_for_each_entry(regulator, &rdev->consumer_list, list) { |
| voltage = ®ulator->voltage[state]; |
| if (voltage->min_uV || voltage->max_uV) |
| return 0; |
| } |
| |
| return regulator_suspend_toggle(rdev, state, false); |
| } |
| EXPORT_SYMBOL_GPL(regulator_suspend_disable); |
| |
| static int _regulator_set_suspend_voltage(struct regulator *regulator, |
| int min_uV, int max_uV, |
| suspend_state_t state) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator_state *rstate; |
| |
| rstate = regulator_get_suspend_state(rdev, state); |
| if (rstate == NULL) |
| return -EINVAL; |
| |
| if (rstate->min_uV == rstate->max_uV) { |
| rdev_err(rdev, "The suspend voltage can't be changed!\n"); |
| return -EPERM; |
| } |
| |
| return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state); |
| } |
| |
| int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV, |
| int max_uV, suspend_state_t state) |
| { |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| /* PM_SUSPEND_ON is handled by regulator_set_voltage() */ |
| if (regulator_check_states(state) || state == PM_SUSPEND_ON) |
| return -EINVAL; |
| |
| regulator_lock_dependent(regulator->rdev, &ww_ctx); |
| |
| ret = _regulator_set_suspend_voltage(regulator, min_uV, |
| max_uV, state); |
| |
| regulator_unlock_dependent(regulator->rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage); |
| |
| /** |
| * regulator_set_voltage_time - get raise/fall time |
| * @regulator: regulator source |
| * @old_uV: starting voltage in microvolts |
| * @new_uV: target voltage in microvolts |
| * |
| * Provided with the starting and ending voltage, this function attempts to |
| * calculate the time in microseconds required to rise or fall to this new |
| * voltage. |
| */ |
| int regulator_set_voltage_time(struct regulator *regulator, |
| int old_uV, int new_uV) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| const struct regulator_ops *ops = rdev->desc->ops; |
| int old_sel = -1; |
| int new_sel = -1; |
| int voltage; |
| int i; |
| |
| if (ops->set_voltage_time) |
| return ops->set_voltage_time(rdev, old_uV, new_uV); |
| else if (!ops->set_voltage_time_sel) |
| return _regulator_set_voltage_time(rdev, old_uV, new_uV); |
| |
| /* Currently requires operations to do this */ |
| if (!ops->list_voltage || !rdev->desc->n_voltages) |
| return -EINVAL; |
| |
| for (i = 0; i < rdev->desc->n_voltages; i++) { |
| /* We only look for exact voltage matches here */ |
| if (i < rdev->desc->linear_min_sel) |
| continue; |
| |
| if (old_sel >= 0 && new_sel >= 0) |
| break; |
| |
| voltage = regulator_list_voltage(regulator, i); |
| if (voltage < 0) |
| return -EINVAL; |
| if (voltage == 0) |
| continue; |
| if (voltage == old_uV) |
| old_sel = i; |
| if (voltage == new_uV) |
| new_sel = i; |
| } |
| |
| if (old_sel < 0 || new_sel < 0) |
| return -EINVAL; |
| |
| return ops->set_voltage_time_sel(rdev, old_sel, new_sel); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_time); |
| |
| /** |
| * regulator_set_voltage_time_sel - get raise/fall time |
| * @rdev: regulator source device |
| * @old_selector: selector for starting voltage |
| * @new_selector: selector for target voltage |
| * |
| * Provided with the starting and target voltage selectors, this function |
| * returns time in microseconds required to rise or fall to this new voltage |
| * |
| * Drivers providing ramp_delay in regulation_constraints can use this as their |
| * set_voltage_time_sel() operation. |
| */ |
| int regulator_set_voltage_time_sel(struct regulator_dev *rdev, |
| unsigned int old_selector, |
| unsigned int new_selector) |
| { |
| int old_volt, new_volt; |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->list_voltage) |
| return -EINVAL; |
| |
| old_volt = rdev->desc->ops->list_voltage(rdev, old_selector); |
| new_volt = rdev->desc->ops->list_voltage(rdev, new_selector); |
| |
| if (rdev->desc->ops->set_voltage_time) |
| return rdev->desc->ops->set_voltage_time(rdev, old_volt, |
| new_volt); |
| else |
| return _regulator_set_voltage_time(rdev, old_volt, new_volt); |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel); |
| |
| int regulator_sync_voltage_rdev(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| regulator_lock(rdev); |
| |
| if (!rdev->desc->ops->set_voltage && |
| !rdev->desc->ops->set_voltage_sel) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* balance only, if regulator is coupled */ |
| if (rdev->coupling_desc.n_coupled > 1) |
| ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| else |
| ret = -EOPNOTSUPP; |
| |
| out: |
| regulator_unlock(rdev); |
| return ret; |
| } |
| |
| /** |
| * regulator_sync_voltage - re-apply last regulator output voltage |
| * @regulator: regulator source |
| * |
| * Re-apply the last configured voltage. This is intended to be used |
| * where some external control source the consumer is cooperating with |
| * has caused the configured voltage to change. |
| */ |
| int regulator_sync_voltage(struct regulator *regulator) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON]; |
| int ret, min_uV, max_uV; |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) |
| return 0; |
| |
| regulator_lock(rdev); |
| |
| if (!rdev->desc->ops->set_voltage && |
| !rdev->desc->ops->set_voltage_sel) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* This is only going to work if we've had a voltage configured. */ |
| if (!voltage->min_uV && !voltage->max_uV) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| min_uV = voltage->min_uV; |
| max_uV = voltage->max_uV; |
| |
| /* This should be a paranoia check... */ |
| ret = regulator_check_voltage(rdev, &min_uV, &max_uV); |
| if (ret < 0) |
| goto out; |
| |
| ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0); |
| if (ret < 0) |
| goto out; |
| |
| /* balance only, if regulator is coupled */ |
| if (rdev->coupling_desc.n_coupled > 1) |
| ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON); |
| else |
| ret = _regulator_do_set_voltage(rdev, min_uV, max_uV); |
| |
| out: |
| regulator_unlock(rdev); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_sync_voltage); |
| |
| int regulator_get_voltage_rdev(struct regulator_dev *rdev) |
| { |
| int sel, ret; |
| bool bypassed; |
| |
| if (rdev->desc->ops->get_bypass) { |
| ret = rdev->desc->ops->get_bypass(rdev, &bypassed); |
| if (ret < 0) |
| return ret; |
| if (bypassed) { |
| /* if bypassed the regulator must have a supply */ |
| if (!rdev->supply) { |
| rdev_err(rdev, |
| "bypassed regulator has no supply!\n"); |
| return -EPROBE_DEFER; |
| } |
| |
| return regulator_get_voltage_rdev(rdev->supply->rdev); |
| } |
| } |
| |
| if (rdev->desc->ops->get_voltage_sel) { |
| sel = rdev->desc->ops->get_voltage_sel(rdev); |
| if (sel < 0) |
| return sel; |
| ret = rdev->desc->ops->list_voltage(rdev, sel); |
| } else if (rdev->desc->ops->get_voltage) { |
| ret = rdev->desc->ops->get_voltage(rdev); |
| } else if (rdev->desc->ops->list_voltage) { |
| ret = rdev->desc->ops->list_voltage(rdev, 0); |
| } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) { |
| ret = rdev->desc->fixed_uV; |
| } else if (rdev->supply) { |
| ret = regulator_get_voltage_rdev(rdev->supply->rdev); |
| } else if (rdev->supply_name) { |
| return -EPROBE_DEFER; |
| } else { |
| return -EINVAL; |
| } |
| |
| if (ret < 0) |
| return ret; |
| return ret - rdev->constraints->uV_offset; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev); |
| |
| /** |
| * regulator_get_voltage - get regulator output voltage |
| * @regulator: regulator source |
| * |
| * This returns the current regulator voltage in uV. |
| * |
| * NOTE: If the regulator is disabled it will return the voltage value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_voltage(struct regulator *regulator) |
| { |
| struct ww_acquire_ctx ww_ctx; |
| int ret; |
| |
| regulator_lock_dependent(regulator->rdev, &ww_ctx); |
| ret = regulator_get_voltage_rdev(regulator->rdev); |
| regulator_unlock_dependent(regulator->rdev, &ww_ctx); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_voltage); |
| |
| /** |
| * regulator_set_current_limit - set regulator output current limit |
| * @regulator: regulator source |
| * @min_uA: Minimum supported current in uA |
| * @max_uA: Maximum supported current in uA |
| * |
| * Sets current sink to the desired output current. This can be set during |
| * any regulator state. IOW, regulator can be disabled or enabled. |
| * |
| * If the regulator is enabled then the current will change to the new value |
| * immediately otherwise if the regulator is disabled the regulator will |
| * output at the new current when enabled. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_current_limit(struct regulator *regulator, |
| int min_uA, int max_uA) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| |
| regulator_lock(rdev); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_current_limit) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* constraints check */ |
| ret = regulator_check_current_limit(rdev, &min_uA, &max_uA); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA); |
| out: |
| regulator_unlock(rdev); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_current_limit); |
| |
| static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev) |
| { |
| /* sanity check */ |
| if (!rdev->desc->ops->get_current_limit) |
| return -EINVAL; |
| |
| return rdev->desc->ops->get_current_limit(rdev); |
| } |
| |
| static int _regulator_get_current_limit(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| regulator_lock(rdev); |
| ret = _regulator_get_current_limit_unlocked(rdev); |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_get_current_limit - get regulator output current |
| * @regulator: regulator source |
| * |
| * This returns the current supplied by the specified current sink in uA. |
| * |
| * NOTE: If the regulator is disabled it will return the current value. This |
| * function should not be used to determine regulator state. |
| */ |
| int regulator_get_current_limit(struct regulator *regulator) |
| { |
| return _regulator_get_current_limit(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_current_limit); |
| |
| /** |
| * regulator_set_mode - set regulator operating mode |
| * @regulator: regulator source |
| * @mode: operating mode - one of the REGULATOR_MODE constants |
| * |
| * Set regulator operating mode to increase regulator efficiency or improve |
| * regulation performance. |
| * |
| * NOTE: Regulator system constraints must be set for this regulator before |
| * calling this function otherwise this call will fail. |
| */ |
| int regulator_set_mode(struct regulator *regulator, unsigned int mode) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int ret; |
| int regulator_curr_mode; |
| |
| regulator_lock(rdev); |
| |
| /* sanity check */ |
| if (!rdev->desc->ops->set_mode) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* return if the same mode is requested */ |
| if (rdev->desc->ops->get_mode) { |
| regulator_curr_mode = rdev->desc->ops->get_mode(rdev); |
| if (regulator_curr_mode == mode) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| /* constraints check */ |
| ret = regulator_mode_constrain(rdev, &mode); |
| if (ret < 0) |
| goto out; |
| |
| ret = rdev->desc->ops->set_mode(rdev, mode); |
| out: |
| regulator_unlock(rdev); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_mode); |
| |
| static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev) |
| { |
| /* sanity check */ |
| if (!rdev->desc->ops->get_mode) |
| return -EINVAL; |
| |
| return rdev->desc->ops->get_mode(rdev); |
| } |
| |
| static unsigned int _regulator_get_mode(struct regulator_dev *rdev) |
| { |
| int ret; |
| |
| regulator_lock(rdev); |
| ret = _regulator_get_mode_unlocked(rdev); |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_get_mode - get regulator operating mode |
| * @regulator: regulator source |
| * |
| * Get the current regulator operating mode. |
| */ |
| unsigned int regulator_get_mode(struct regulator *regulator) |
| { |
| return _regulator_get_mode(regulator->rdev); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_mode); |
| |
| static int rdev_get_cached_err_flags(struct regulator_dev *rdev) |
| { |
| int ret = 0; |
| |
| if (rdev->use_cached_err) { |
| spin_lock(&rdev->err_lock); |
| ret = rdev->cached_err; |
| spin_unlock(&rdev->err_lock); |
| } |
| return ret; |
| } |
| |
| static int _regulator_get_error_flags(struct regulator_dev *rdev, |
| unsigned int *flags) |
| { |
| int cached_flags, ret = 0; |
| |
| regulator_lock(rdev); |
| |
| cached_flags = rdev_get_cached_err_flags(rdev); |
| |
| if (rdev->desc->ops->get_error_flags) |
| ret = rdev->desc->ops->get_error_flags(rdev, flags); |
| else if (!rdev->use_cached_err) |
| ret = -EINVAL; |
| |
| *flags |= cached_flags; |
| |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| |
| /** |
| * regulator_get_error_flags - get regulator error information |
| * @regulator: regulator source |
| * @flags: pointer to store error flags |
| * |
| * Get the current regulator error information. |
| */ |
| int regulator_get_error_flags(struct regulator *regulator, |
| unsigned int *flags) |
| { |
| return _regulator_get_error_flags(regulator->rdev, flags); |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_error_flags); |
| |
| /** |
| * regulator_set_load - set regulator load |
| * @regulator: regulator source |
| * @uA_load: load current |
| * |
| * Notifies the regulator core of a new device load. This is then used by |
| * DRMS (if enabled by constraints) to set the most efficient regulator |
| * operating mode for the new regulator loading. |
| * |
| * Consumer devices notify their supply regulator of the maximum power |
| * they will require (can be taken from device datasheet in the power |
| * consumption tables) when they change operational status and hence power |
| * state. Examples of operational state changes that can affect power |
| * consumption are :- |
| * |
| * o Device is opened / closed. |
| * o Device I/O is about to begin or has just finished. |
| * o Device is idling in between work. |
| * |
| * This information is also exported via sysfs to userspace. |
| * |
| * DRMS will sum the total requested load on the regulator and change |
| * to the most efficient operating mode if platform constraints allow. |
| * |
| * NOTE: when a regulator consumer requests to have a regulator |
| * disabled then any load that consumer requested no longer counts |
| * toward the total requested load. If the regulator is re-enabled |
| * then the previously requested load will start counting again. |
| * |
| * If a regulator is an always-on regulator then an individual consumer's |
| * load will still be removed if that consumer is fully disabled. |
| * |
| * On error a negative errno is returned. |
| */ |
| int regulator_set_load(struct regulator *regulator, int uA_load) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| int old_uA_load; |
| int ret = 0; |
| |
| regulator_lock(rdev); |
| old_uA_load = regulator->uA_load; |
| regulator->uA_load = uA_load; |
| if (regulator->enable_count && old_uA_load != uA_load) { |
| ret = drms_uA_update(rdev); |
| if (ret < 0) |
| regulator->uA_load = old_uA_load; |
| } |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_load); |
| |
| /** |
| * regulator_allow_bypass - allow the regulator to go into bypass mode |
| * |
| * @regulator: Regulator to configure |
| * @enable: enable or disable bypass mode |
| * |
| * Allow the regulator to go into bypass mode if all other consumers |
| * for the regulator also enable bypass mode and the machine |
| * constraints allow this. Bypass mode means that the regulator is |
| * simply passing the input directly to the output with no regulation. |
| */ |
| int regulator_allow_bypass(struct regulator *regulator, bool enable) |
| { |
| struct regulator_dev *rdev = regulator->rdev; |
| const char *name = rdev_get_name(rdev); |
| int ret = 0; |
| |
| if (!rdev->desc->ops->set_bypass) |
| return 0; |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS)) |
| return 0; |
| |
| regulator_lock(rdev); |
| |
| if (enable && !regulator->bypass) { |
| rdev->bypass_count++; |
| |
| if (rdev->bypass_count == rdev->open_count) { |
| trace_regulator_bypass_enable(name); |
| |
| ret = rdev->desc->ops->set_bypass(rdev, enable); |
| if (ret != 0) |
| rdev->bypass_count--; |
| else |
| trace_regulator_bypass_enable_complete(name); |
| } |
| |
| } else if (!enable && regulator->bypass) { |
| rdev->bypass_count--; |
| |
| if (rdev->bypass_count != rdev->open_count) { |
| trace_regulator_bypass_disable(name); |
| |
| ret = rdev->desc->ops->set_bypass(rdev, enable); |
| if (ret != 0) |
| rdev->bypass_count++; |
| else |
| trace_regulator_bypass_disable_complete(name); |
| } |
| } |
| |
| if (ret == 0) |
| regulator->bypass = enable; |
| |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_allow_bypass); |
| |
| /** |
| * regulator_register_notifier - register regulator event notifier |
| * @regulator: regulator source |
| * @nb: notifier block |
| * |
| * Register notifier block to receive regulator events. |
| */ |
| int regulator_register_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_register(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_register_notifier); |
| |
| /** |
| * regulator_unregister_notifier - unregister regulator event notifier |
| * @regulator: regulator source |
| * @nb: notifier block |
| * |
| * Unregister regulator event notifier block. |
| */ |
| int regulator_unregister_notifier(struct regulator *regulator, |
| struct notifier_block *nb) |
| { |
| return blocking_notifier_chain_unregister(®ulator->rdev->notifier, |
| nb); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister_notifier); |
| |
| /* notify regulator consumers and downstream regulator consumers. |
| * Note mutex must be held by caller. |
| */ |
| static int _notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| /* call rdev chain first */ |
| return blocking_notifier_call_chain(&rdev->notifier, event, data); |
| } |
| |
| /** |
| * regulator_bulk_get - get multiple regulator consumers |
| * |
| * @dev: Device to supply |
| * @num_consumers: Number of consumers to register |
| * @consumers: Configuration of consumers; clients are stored here. |
| * |
| * @return 0 on success, an errno on failure. |
| * |
| * This helper function allows drivers to get several regulator |
| * consumers in one operation. If any of the regulators cannot be |
| * acquired then any regulators that were allocated will be freed |
| * before returning to the caller. |
| */ |
| int regulator_bulk_get(struct device *dev, int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < num_consumers; i++) |
| consumers[i].consumer = NULL; |
| |
| for (i = 0; i < num_consumers; i++) { |
| consumers[i].consumer = regulator_get(dev, |
| consumers[i].supply); |
| if (IS_ERR(consumers[i].consumer)) { |
| ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer), |
| "Failed to get supply '%s'", |
| consumers[i].supply); |
| consumers[i].consumer = NULL; |
| goto err; |
| } |
| |
| if (consumers[i].init_load_uA > 0) { |
| ret = regulator_set_load(consumers[i].consumer, |
| consumers[i].init_load_uA); |
| if (ret) { |
| i++; |
| goto err; |
| } |
| } |
| } |
| |
| return 0; |
| |
| err: |
| while (--i >= 0) |
| regulator_put(consumers[i].consumer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_get); |
| |
| static void regulator_bulk_enable_async(void *data, async_cookie_t cookie) |
| { |
| struct regulator_bulk_data *bulk = data; |
| |
| bulk->ret = regulator_enable(bulk->consumer); |
| } |
| |
| /** |
| * regulator_bulk_enable - enable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to enable multiple regulator |
| * clients in a single API call. If any consumers cannot be enabled |
| * then any others that were enabled will be disabled again prior to |
| * return. |
| */ |
| int regulator_bulk_enable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| ASYNC_DOMAIN_EXCLUSIVE(async_domain); |
| int i; |
| int ret = 0; |
| |
| for (i = 0; i < num_consumers; i++) { |
| async_schedule_domain(regulator_bulk_enable_async, |
| &consumers[i], &async_domain); |
| } |
| |
| async_synchronize_full_domain(&async_domain); |
| |
| /* If any consumer failed we need to unwind any that succeeded */ |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].ret != 0) { |
| ret = consumers[i].ret; |
| goto err; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| for (i = 0; i < num_consumers; i++) { |
| if (consumers[i].ret < 0) |
| pr_err("Failed to enable %s: %pe\n", consumers[i].supply, |
| ERR_PTR(consumers[i].ret)); |
| else |
| regulator_disable(consumers[i].consumer); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_enable); |
| |
| /** |
| * regulator_bulk_disable - disable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to disable multiple regulator |
| * clients in a single API call. If any consumers cannot be disabled |
| * then any others that were disabled will be enabled again prior to |
| * return. |
| */ |
| int regulator_bulk_disable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret, r; |
| |
| for (i = num_consumers - 1; i >= 0; --i) { |
| ret = regulator_disable(consumers[i].consumer); |
| if (ret != 0) |
| goto err; |
| } |
| |
| return 0; |
| |
| err: |
| pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret)); |
| for (++i; i < num_consumers; ++i) { |
| r = regulator_enable(consumers[i].consumer); |
| if (r != 0) |
| pr_err("Failed to re-enable %s: %pe\n", |
| consumers[i].supply, ERR_PTR(r)); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_disable); |
| |
| /** |
| * regulator_bulk_force_disable - force disable multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * @return 0 on success, an errno on failure |
| * |
| * This convenience API allows consumers to forcibly disable multiple regulator |
| * clients in a single API call. |
| * NOTE: This should be used for situations when device damage will |
| * likely occur if the regulators are not disabled (e.g. over temp). |
| * Although regulator_force_disable function call for some consumers can |
| * return error numbers, the function is called for all consumers. |
| */ |
| int regulator_bulk_force_disable(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| int ret = 0; |
| |
| for (i = 0; i < num_consumers; i++) { |
| consumers[i].ret = |
| regulator_force_disable(consumers[i].consumer); |
| |
| /* Store first error for reporting */ |
| if (consumers[i].ret && !ret) |
| ret = consumers[i].ret; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_force_disable); |
| |
| /** |
| * regulator_bulk_free - free multiple regulator consumers |
| * |
| * @num_consumers: Number of consumers |
| * @consumers: Consumer data; clients are stored here. |
| * |
| * This convenience API allows consumers to free multiple regulator |
| * clients in a single API call. |
| */ |
| void regulator_bulk_free(int num_consumers, |
| struct regulator_bulk_data *consumers) |
| { |
| int i; |
| |
| for (i = 0; i < num_consumers; i++) { |
| regulator_put(consumers[i].consumer); |
| consumers[i].consumer = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_bulk_free); |
| |
| /** |
| * regulator_notifier_call_chain - call regulator event notifier |
| * @rdev: regulator source |
| * @event: notifier block |
| * @data: callback-specific data. |
| * |
| * Called by regulator drivers to notify clients a regulator event has |
| * occurred. |
| */ |
| int regulator_notifier_call_chain(struct regulator_dev *rdev, |
| unsigned long event, void *data) |
| { |
| _notifier_call_chain(rdev, event, data); |
| return NOTIFY_DONE; |
| |
| } |
| EXPORT_SYMBOL_GPL(regulator_notifier_call_chain); |
| |
| /** |
| * regulator_mode_to_status - convert a regulator mode into a status |
| * |
| * @mode: Mode to convert |
| * |
| * Convert a regulator mode into a status. |
| */ |
| int regulator_mode_to_status(unsigned int mode) |
| { |
| switch (mode) { |
| case REGULATOR_MODE_FAST: |
| return REGULATOR_STATUS_FAST; |
| case REGULATOR_MODE_NORMAL: |
| return REGULATOR_STATUS_NORMAL; |
| case REGULATOR_MODE_IDLE: |
| return REGULATOR_STATUS_IDLE; |
| case REGULATOR_MODE_STANDBY: |
| return REGULATOR_STATUS_STANDBY; |
| default: |
| return REGULATOR_STATUS_UNDEFINED; |
| } |
| } |
| EXPORT_SYMBOL_GPL(regulator_mode_to_status); |
| |
| static struct attribute *regulator_dev_attrs[] = { |
| &dev_attr_name.attr, |
| &dev_attr_num_users.attr, |
| &dev_attr_type.attr, |
| &dev_attr_microvolts.attr, |
| &dev_attr_microamps.attr, |
| &dev_attr_opmode.attr, |
| &dev_attr_state.attr, |
| &dev_attr_status.attr, |
| &dev_attr_bypass.attr, |
| &dev_attr_requested_microamps.attr, |
| &dev_attr_min_microvolts.attr, |
| &dev_attr_max_microvolts.attr, |
| &dev_attr_min_microamps.attr, |
| &dev_attr_max_microamps.attr, |
| &dev_attr_under_voltage.attr, |
| &dev_attr_over_current.attr, |
| &dev_attr_regulation_out.attr, |
| &dev_attr_fail.attr, |
| &dev_attr_over_temp.attr, |
| &dev_attr_under_voltage_warn.attr, |
| &dev_attr_over_current_warn.attr, |
| &dev_attr_over_voltage_warn.attr, |
| &dev_attr_over_temp_warn.attr, |
| &dev_attr_suspend_standby_state.attr, |
| &dev_attr_suspend_mem_state.attr, |
| &dev_attr_suspend_disk_state.attr, |
| &dev_attr_suspend_standby_microvolts.attr, |
| &dev_attr_suspend_mem_microvolts.attr, |
| &dev_attr_suspend_disk_microvolts.attr, |
| &dev_attr_suspend_standby_mode.attr, |
| &dev_attr_suspend_mem_mode.attr, |
| &dev_attr_suspend_disk_mode.attr, |
| NULL |
| }; |
| |
| /* |
| * To avoid cluttering sysfs (and memory) with useless state, only |
| * create attributes that can be meaningfully displayed. |
| */ |
| static umode_t regulator_attr_is_visible(struct kobject *kobj, |
| struct attribute *attr, int idx) |
| { |
| struct device *dev = kobj_to_dev(kobj); |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| const struct regulator_ops *ops = rdev->desc->ops; |
| umode_t mode = attr->mode; |
| |
| /* these three are always present */ |
| if (attr == &dev_attr_name.attr || |
| attr == &dev_attr_num_users.attr || |
| attr == &dev_attr_type.attr) |
| return mode; |
| |
| /* some attributes need specific methods to be displayed */ |
| if (attr == &dev_attr_microvolts.attr) { |
| if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) || |
| (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) || |
| (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) || |
| (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1)) |
| return mode; |
| return 0; |
| } |
| |
| if (attr == &dev_attr_microamps.attr) |
| return ops->get_current_limit ? mode : 0; |
| |
| if (attr == &dev_attr_opmode.attr) |
| return ops->get_mode ? mode : 0; |
| |
| if (attr == &dev_attr_state.attr) |
| return (rdev->ena_pin || ops->is_enabled) ? mode : 0; |
| |
| if (attr == &dev_attr_status.attr) |
| return ops->get_status ? mode : 0; |
| |
| if (attr == &dev_attr_bypass.attr) |
| return ops->get_bypass ? mode : 0; |
| |
| if (attr == &dev_attr_under_voltage.attr || |
| attr == &dev_attr_over_current.attr || |
| attr == &dev_attr_regulation_out.attr || |
| attr == &dev_attr_fail.attr || |
| attr == &dev_attr_over_temp.attr || |
| attr == &dev_attr_under_voltage_warn.attr || |
| attr == &dev_attr_over_current_warn.attr || |
| attr == &dev_attr_over_voltage_warn.attr || |
| attr == &dev_attr_over_temp_warn.attr) |
| return ops->get_error_flags ? mode : 0; |
| |
| /* constraints need specific supporting methods */ |
| if (attr == &dev_attr_min_microvolts.attr || |
| attr == &dev_attr_max_microvolts.attr) |
| return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0; |
| |
| if (attr == &dev_attr_min_microamps.attr || |
| attr == &dev_attr_max_microamps.attr) |
| return ops->set_current_limit ? mode : 0; |
| |
| if (attr == &dev_attr_suspend_standby_state.attr || |
| attr == &dev_attr_suspend_mem_state.attr || |
| attr == &dev_attr_suspend_disk_state.attr) |
| return mode; |
| |
| if (attr == &dev_attr_suspend_standby_microvolts.attr || |
| attr == &dev_attr_suspend_mem_microvolts.attr || |
| attr == &dev_attr_suspend_disk_microvolts.attr) |
| return ops->set_suspend_voltage ? mode : 0; |
| |
| if (attr == &dev_attr_suspend_standby_mode.attr || |
| attr == &dev_attr_suspend_mem_mode.attr || |
| attr == &dev_attr_suspend_disk_mode.attr) |
| return ops->set_suspend_mode ? mode : 0; |
| |
| return mode; |
| } |
| |
| static const struct attribute_group regulator_dev_group = { |
| .attrs = regulator_dev_attrs, |
| .is_visible = regulator_attr_is_visible, |
| }; |
| |
| static const struct attribute_group *regulator_dev_groups[] = { |
| ®ulator_dev_group, |
| NULL |
| }; |
| |
| static void regulator_dev_release(struct device *dev) |
| { |
| struct regulator_dev *rdev = dev_get_drvdata(dev); |
| |
| kfree(rdev->constraints); |
| of_node_put(rdev->dev.of_node); |
| kfree(rdev); |
| } |
| |
| static void rdev_init_debugfs(struct regulator_dev *rdev) |
| { |
| struct device *parent = rdev->dev.parent; |
| const char *rname = rdev_get_name(rdev); |
| char name[NAME_MAX]; |
| |
| /* Avoid duplicate debugfs directory names */ |
| if (parent && rname == rdev->desc->name) { |
| snprintf(name, sizeof(name), "%s-%s", dev_name(parent), |
| rname); |
| rname = name; |
| } |
| |
| rdev->debugfs = debugfs_create_dir(rname, debugfs_root); |
| if (!rdev->debugfs) { |
| rdev_warn(rdev, "Failed to create debugfs directory\n"); |
| return; |
| } |
| |
| debugfs_create_u32("use_count", 0444, rdev->debugfs, |
| &rdev->use_count); |
| debugfs_create_u32("open_count", 0444, rdev->debugfs, |
| &rdev->open_count); |
| debugfs_create_u32("bypass_count", 0444, rdev->debugfs, |
| &rdev->bypass_count); |
| } |
| |
| static int regulator_register_resolve_supply(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| |
| if (regulator_resolve_supply(rdev)) |
| rdev_dbg(rdev, "unable to resolve supply\n"); |
| |
| return 0; |
| } |
| |
| int regulator_coupler_register(struct regulator_coupler *coupler) |
| { |
| mutex_lock(®ulator_list_mutex); |
| list_add_tail(&coupler->list, ®ulator_coupler_list); |
| mutex_unlock(®ulator_list_mutex); |
| |
| return 0; |
| } |
| |
| static struct regulator_coupler * |
| regulator_find_coupler(struct regulator_dev *rdev) |
| { |
| struct regulator_coupler *coupler; |
| int err; |
| |
| /* |
| * Note that regulators are appended to the list and the generic |
| * coupler is registered first, hence it will be attached at last |
| * if nobody cared. |
| */ |
| list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) { |
| err = coupler->attach_regulator(coupler, rdev); |
| if (!err) { |
| if (!coupler->balance_voltage && |
| rdev->coupling_desc.n_coupled > 2) |
| goto err_unsupported; |
| |
| return coupler; |
| } |
| |
| if (err < 0) |
| return ERR_PTR(err); |
| |
| if (err == 1) |
| continue; |
| |
| break; |
| } |
| |
| return ERR_PTR(-EINVAL); |
| |
| err_unsupported: |
| if (coupler->detach_regulator) |
| coupler->detach_regulator(coupler, rdev); |
| |
| rdev_err(rdev, |
| "Voltage balancing for multiple regulator couples is unimplemented\n"); |
| |
| return ERR_PTR(-EPERM); |
| } |
| |
| static void regulator_resolve_coupling(struct regulator_dev *rdev) |
| { |
| struct regulator_coupler *coupler = rdev->coupling_desc.coupler; |
| struct coupling_desc *c_desc = &rdev->coupling_desc; |
| int n_coupled = c_desc->n_coupled; |
| struct regulator_dev *c_rdev; |
| int i; |
| |
| for (i = 1; i < n_coupled; i++) { |
| /* already resolved */ |
| if (c_desc->coupled_rdevs[i]) |
| continue; |
| |
| c_rdev = of_parse_coupled_regulator(rdev, i - 1); |
| |
| if (!c_rdev) |
| continue; |
| |
| if (c_rdev->coupling_desc.coupler != coupler) { |
| rdev_err(rdev, "coupler mismatch with %s\n", |
| rdev_get_name(c_rdev)); |
| return; |
| } |
| |
| c_desc->coupled_rdevs[i] = c_rdev; |
| c_desc->n_resolved++; |
| |
| regulator_resolve_coupling(c_rdev); |
| } |
| } |
| |
| static void regulator_remove_coupling(struct regulator_dev *rdev) |
| { |
| struct regulator_coupler *coupler = rdev->coupling_desc.coupler; |
| struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc; |
| struct regulator_dev *__c_rdev, *c_rdev; |
| unsigned int __n_coupled, n_coupled; |
| int i, k; |
| int err; |
| |
| n_coupled = c_desc->n_coupled; |
| |
| for (i = 1; i < n_coupled; i++) { |
| c_rdev = c_desc->coupled_rdevs[i]; |
| |
| if (!c_rdev) |
| continue; |
| |
| regulator_lock(c_rdev); |
| |
| __c_desc = &c_rdev->coupling_desc; |
| __n_coupled = __c_desc->n_coupled; |
| |
| for (k = 1; k < __n_coupled; k++) { |
| __c_rdev = __c_desc->coupled_rdevs[k]; |
| |
| if (__c_rdev == rdev) { |
| __c_desc->coupled_rdevs[k] = NULL; |
| __c_desc->n_resolved--; |
| break; |
| } |
| } |
| |
| regulator_unlock(c_rdev); |
| |
| c_desc->coupled_rdevs[i] = NULL; |
| c_desc->n_resolved--; |
| } |
| |
| if (coupler && coupler->detach_regulator) { |
| err = coupler->detach_regulator(coupler, rdev); |
| if (err) |
| rdev_err(rdev, "failed to detach from coupler: %pe\n", |
| ERR_PTR(err)); |
| } |
| |
| kfree(rdev->coupling_desc.coupled_rdevs); |
| rdev->coupling_desc.coupled_rdevs = NULL; |
| } |
| |
| static int regulator_init_coupling(struct regulator_dev *rdev) |
| { |
| struct regulator_dev **coupled; |
| int err, n_phandles; |
| |
| if (!IS_ENABLED(CONFIG_OF)) |
| n_phandles = 0; |
| else |
| n_phandles = of_get_n_coupled(rdev); |
| |
| coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL); |
| if (!coupled) |
| return -ENOMEM; |
| |
| rdev->coupling_desc.coupled_rdevs = coupled; |
| |
| /* |
| * Every regulator should always have coupling descriptor filled with |
| * at least pointer to itself. |
| */ |
| rdev->coupling_desc.coupled_rdevs[0] = rdev; |
| rdev->coupling_desc.n_coupled = n_phandles + 1; |
| rdev->coupling_desc.n_resolved++; |
| |
| /* regulator isn't coupled */ |
| if (n_phandles == 0) |
| return 0; |
| |
| if (!of_check_coupling_data(rdev)) |
| return -EPERM; |
| |
| mutex_lock(®ulator_list_mutex); |
| rdev->coupling_desc.coupler = regulator_find_coupler(rdev); |
| mutex_unlock(®ulator_list_mutex); |
| |
| if (IS_ERR(rdev->coupling_desc.coupler)) { |
| err = PTR_ERR(rdev->coupling_desc.coupler); |
| rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err)); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int generic_coupler_attach(struct regulator_coupler *coupler, |
| struct regulator_dev *rdev) |
| { |
| if (rdev->coupling_desc.n_coupled > 2) { |
| rdev_err(rdev, |
| "Voltage balancing for multiple regulator couples is unimplemented\n"); |
| return -EPERM; |
| } |
| |
| if (!rdev->constraints->always_on) { |
| rdev_err(rdev, |
| "Coupling of a non always-on regulator is unimplemented\n"); |
| return -ENOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| static struct regulator_coupler generic_regulator_coupler = { |
| .attach_regulator = generic_coupler_attach, |
| }; |
| |
| /** |
| * regulator_register - register regulator |
| * @regulator_desc: regulator to register |
| * @cfg: runtime configuration for regulator |
| * |
| * Called by regulator drivers to register a regulator. |
| * Returns a valid pointer to struct regulator_dev on success |
| * or an ERR_PTR() on error. |
| */ |
| struct regulator_dev * |
| regulator_register(const struct regulator_desc *regulator_desc, |
| const struct regulator_config *cfg) |
| { |
| const struct regulator_init_data *init_data; |
| struct regulator_config *config = NULL; |
| static atomic_t regulator_no = ATOMIC_INIT(-1); |
| struct regulator_dev *rdev; |
| bool dangling_cfg_gpiod = false; |
| bool dangling_of_gpiod = false; |
| struct device *dev; |
| int ret, i; |
| bool resolved_early = false; |
| |
| if (cfg == NULL) |
| return ERR_PTR(-EINVAL); |
| if (cfg->ena_gpiod) |
| dangling_cfg_gpiod = true; |
| if (regulator_desc == NULL) { |
| ret = -EINVAL; |
| goto rinse; |
| } |
| |
| dev = cfg->dev; |
| WARN_ON(!dev); |
| |
| if (regulator_desc->name == NULL || regulator_desc->ops == NULL) { |
| ret = -EINVAL; |
| goto rinse; |
| } |
| |
| if (regulator_desc->type != REGULATOR_VOLTAGE && |
| regulator_desc->type != REGULATOR_CURRENT) { |
| ret = -EINVAL; |
| goto rinse; |
| } |
| |
| /* Only one of each should be implemented */ |
| WARN_ON(regulator_desc->ops->get_voltage && |
| regulator_desc->ops->get_voltage_sel); |
| WARN_ON(regulator_desc->ops->set_voltage && |
| regulator_desc->ops->set_voltage_sel); |
| |
| /* If we're using selectors we must implement list_voltage. */ |
| if (regulator_desc->ops->get_voltage_sel && |
| !regulator_desc->ops->list_voltage) { |
| ret = -EINVAL; |
| goto rinse; |
| } |
| if (regulator_desc->ops->set_voltage_sel && |
| !regulator_desc->ops->list_voltage) { |
| ret = -EINVAL; |
| goto rinse; |
| } |
| |
| rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL); |
| if (rdev == NULL) { |
| ret = -ENOMEM; |
| goto rinse; |
| } |
| device_initialize(&rdev->dev); |
| spin_lock_init(&rdev->err_lock); |
| |
| /* |
| * Duplicate the config so the driver could override it after |
| * parsing init data. |
| */ |
| config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL); |
| if (config == NULL) { |
| ret = -ENOMEM; |
| goto clean; |
| } |
| |
| init_data = regulator_of_get_init_data(dev, regulator_desc, config, |
| &rdev->dev.of_node); |
| |
| /* |
| * Sometimes not all resources are probed already so we need to take |
| * that into account. This happens most the time if the ena_gpiod comes |
| * from a gpio extender or something else. |
| */ |
| if (PTR_ERR(init_data) == -EPROBE_DEFER) { |
| ret = -EPROBE_DEFER; |
| goto clean; |
| } |
| |
| /* |
| * We need to keep track of any GPIO descriptor coming from the |
| * device tree until we have handled it over to the core. If the |
| * config that was passed in to this function DOES NOT contain |
| * a descriptor, and the config after this call DOES contain |
| * a descriptor, we definitely got one from parsing the device |
| * tree. |
| */ |
| if (!cfg->ena_gpiod && config->ena_gpiod) |
| dangling_of_gpiod = true; |
| if (!init_data) { |
| init_data = config->init_data; |
| rdev->dev.of_node = of_node_get(config->of_node); |
| } |
| |
| ww_mutex_init(&rdev->mutex, ®ulator_ww_class); |
| rdev->reg_data = config->driver_data; |
| rdev->owner = regulator_desc->owner; |
| rdev->desc = regulator_desc; |
| if (config->regmap) |
| rdev->regmap = config->regmap; |
| else if (dev_get_regmap(dev, NULL)) |
| rdev->regmap = dev_get_regmap(dev, NULL); |
| else if (dev->parent) |
| rdev->regmap = dev_get_regmap(dev->parent, NULL); |
| INIT_LIST_HEAD(&rdev->consumer_list); |
| INIT_LIST_HEAD(&rdev->list); |
| BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier); |
| INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work); |
| |
| if (init_data && init_data->supply_regulator) |
| rdev->supply_name = init_data->supply_regulator; |
| else if (regulator_desc->supply_name) |
| rdev->supply_name = regulator_desc->supply_name; |
| |
| /* register with sysfs */ |
| rdev->dev.class = ®ulator_class; |
| rdev->dev.parent = dev; |
| dev_set_name(&rdev->dev, "regulator.%lu", |
| (unsigned long) atomic_inc_return(®ulator_no)); |
| dev_set_drvdata(&rdev->dev, rdev); |
| |
| /* set regulator constraints */ |
| if (init_data) |
| rdev->constraints = kmemdup(&init_data->constraints, |
| sizeof(*rdev->constraints), |
| GFP_KERNEL); |
| else |
| rdev->constraints = kzalloc(sizeof(*rdev->constraints), |
| GFP_KERNEL); |
| if (!rdev->constraints) { |
| ret = -ENOMEM; |
| goto wash; |
| } |
| |
| if ((rdev->supply_name && !rdev->supply) && |
| (rdev->constraints->always_on || |
| rdev->constraints->boot_on)) { |
| ret = regulator_resolve_supply(rdev); |
| if (ret) |
| rdev_dbg(rdev, "unable to resolve supply early: %pe\n", |
| ERR_PTR(ret)); |
| |
| resolved_early = true; |
| } |
| |
| /* perform any regulator specific init */ |
| if (init_data && init_data->regulator_init) { |
| ret = init_data->regulator_init(rdev->reg_data); |
| if (ret < 0) |
| goto wash; |
| } |
| |
| if (config->ena_gpiod) { |
| ret = regulator_ena_gpio_request(rdev, config); |
| if (ret != 0) { |
| rdev_err(rdev, "Failed to request enable GPIO: %pe\n", |
| ERR_PTR(ret)); |
| goto wash; |
| } |
| /* The regulator core took over the GPIO descriptor */ |
| dangling_cfg_gpiod = false; |
| dangling_of_gpiod = false; |
| } |
| |
| ret = set_machine_constraints(rdev); |
| if (ret == -EPROBE_DEFER && !resolved_early) { |
| /* Regulator might be in bypass mode and so needs its supply |
| * to set the constraints |
| */ |
| /* FIXME: this currently triggers a chicken-and-egg problem |
| * when creating -SUPPLY symlink in sysfs to a regulator |
| * that is just being created |
| */ |
| rdev_dbg(rdev, "will resolve supply early: %s\n", |
| rdev->supply_name); |
| ret = regulator_resolve_supply(rdev); |
| if (!ret) |
| ret = set_machine_constraints(rdev); |
| else |
| rdev_dbg(rdev, "unable to resolve supply early: %pe\n", |
| ERR_PTR(ret)); |
| } |
| if (ret < 0) |
| goto wash; |
| |
| ret = regulator_init_coupling(rdev); |
| if (ret < 0) |
| goto wash; |
| |
| /* add consumers devices */ |
| if (init_data) { |
| for (i = 0; i < init_data->num_consumer_supplies; i++) { |
| ret = set_consumer_device_supply(rdev, |
| init_data->consumer_supplies[i].dev_name, |
| init_data->consumer_supplies[i].supply); |
| if (ret < 0) { |
| dev_err(dev, "Failed to set supply %s\n", |
| init_data->consumer_supplies[i].supply); |
| goto unset_supplies; |
| } |
| } |
| } |
| |
| if (!rdev->desc->ops->get_voltage && |
| !rdev->desc->ops->list_voltage && |
| !rdev->desc->fixed_uV) |
| rdev->is_switch = true; |
| |
| ret = device_add(&rdev->dev); |
| if (ret != 0) |
| goto unset_supplies; |
| |
| rdev_init_debugfs(rdev); |
| |
| /* try to resolve regulators coupling since a new one was registered */ |
| mutex_lock(®ulator_list_mutex); |
| regulator_resolve_coupling(rdev); |
| mutex_unlock(®ulator_list_mutex); |
| |
| /* try to resolve regulators supply since a new one was registered */ |
| class_for_each_device(®ulator_class, NULL, NULL, |
| regulator_register_resolve_supply); |
| kfree(config); |
| return rdev; |
| |
| unset_supplies: |
| mutex_lock(®ulator_list_mutex); |
| unset_regulator_supplies(rdev); |
| regulator_remove_coupling(rdev); |
| mutex_unlock(®ulator_list_mutex); |
| wash: |
| kfree(rdev->coupling_desc.coupled_rdevs); |
| mutex_lock(®ulator_list_mutex); |
| regulator_ena_gpio_free(rdev); |
| mutex_unlock(®ulator_list_mutex); |
| clean: |
| if (dangling_of_gpiod) |
| gpiod_put(config->ena_gpiod); |
| kfree(config); |
| put_device(&rdev->dev); |
| rinse: |
| if (dangling_cfg_gpiod) |
| gpiod_put(cfg->ena_gpiod); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL_GPL(regulator_register); |
| |
| /** |
| * regulator_unregister - unregister regulator |
| * @rdev: regulator to unregister |
| * |
| * Called by regulator drivers to unregister a regulator. |
| */ |
| void regulator_unregister(struct regulator_dev *rdev) |
| { |
| if (rdev == NULL) |
| return; |
| |
| if (rdev->supply) { |
| while (rdev->use_count--) |
| regulator_disable(rdev->supply); |
| regulator_put(rdev->supply); |
| } |
| |
| flush_work(&rdev->disable_work.work); |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| debugfs_remove_recursive(rdev->debugfs); |
| WARN_ON(rdev->open_count); |
| regulator_remove_coupling(rdev); |
| unset_regulator_supplies(rdev); |
| list_del(&rdev->list); |
| regulator_ena_gpio_free(rdev); |
| device_unregister(&rdev->dev); |
| |
| mutex_unlock(®ulator_list_mutex); |
| } |
| EXPORT_SYMBOL_GPL(regulator_unregister); |
| |
| #ifdef CONFIG_SUSPEND |
| /** |
| * regulator_suspend - prepare regulators for system wide suspend |
| * @dev: ``&struct device`` pointer that is passed to _regulator_suspend() |
| * |
| * Configure each regulator with it's suspend operating parameters for state. |
| */ |
| static int regulator_suspend(struct device *dev) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| suspend_state_t state = pm_suspend_target_state; |
| int ret; |
| const struct regulator_state *rstate; |
| |
| rstate = regulator_get_suspend_state_check(rdev, state); |
| if (!rstate) |
| return 0; |
| |
| regulator_lock(rdev); |
| ret = __suspend_set_state(rdev, rstate); |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| |
| static int regulator_resume(struct device *dev) |
| { |
| suspend_state_t state = pm_suspend_target_state; |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct regulator_state *rstate; |
| int ret = 0; |
| |
| rstate = regulator_get_suspend_state(rdev, state); |
| if (rstate == NULL) |
| return 0; |
| |
| /* Avoid grabbing the lock if we don't need to */ |
| if (!rdev->desc->ops->resume) |
| return 0; |
| |
| regulator_lock(rdev); |
| |
| if (rstate->enabled == ENABLE_IN_SUSPEND || |
| rstate->enabled == DISABLE_IN_SUSPEND) |
| ret = rdev->desc->ops->resume(rdev); |
| |
| regulator_unlock(rdev); |
| |
| return ret; |
| } |
| #else /* !CONFIG_SUSPEND */ |
| |
| #define regulator_suspend NULL |
| #define regulator_resume NULL |
| |
| #endif /* !CONFIG_SUSPEND */ |
| |
| #ifdef CONFIG_PM |
| static const struct dev_pm_ops __maybe_unused regulator_pm_ops = { |
| .suspend = regulator_suspend, |
| .resume = regulator_resume, |
| }; |
| #endif |
| |
| struct class regulator_class = { |
| .name = "regulator", |
| .dev_release = regulator_dev_release, |
| .dev_groups = regulator_dev_groups, |
| #ifdef CONFIG_PM |
| .pm = ®ulator_pm_ops, |
| #endif |
| }; |
| /** |
| * regulator_has_full_constraints - the system has fully specified constraints |
| * |
| * Calling this function will cause the regulator API to disable all |
| * regulators which have a zero use count and don't have an always_on |
| * constraint in a late_initcall. |
| * |
| * The intention is that this will become the default behaviour in a |
| * future kernel release so users are encouraged to use this facility |
| * now. |
| */ |
| void regulator_has_full_constraints(void) |
| { |
| has_full_constraints = 1; |
| } |
| EXPORT_SYMBOL_GPL(regulator_has_full_constraints); |
| |
| /** |
| * rdev_get_drvdata - get rdev regulator driver data |
| * @rdev: regulator |
| * |
| * Get rdev regulator driver private data. This call can be used in the |
| * regulator driver context. |
| */ |
| void *rdev_get_drvdata(struct regulator_dev *rdev) |
| { |
| return rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_drvdata); |
| |
| /** |
| * regulator_get_drvdata - get regulator driver data |
| * @regulator: regulator |
| * |
| * Get regulator driver private data. This call can be used in the consumer |
| * driver context when non API regulator specific functions need to be called. |
| */ |
| void *regulator_get_drvdata(struct regulator *regulator) |
| { |
| return regulator->rdev->reg_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_drvdata); |
| |
| /** |
| * regulator_set_drvdata - set regulator driver data |
| * @regulator: regulator |
| * @data: data |
| */ |
| void regulator_set_drvdata(struct regulator *regulator, void *data) |
| { |
| regulator->rdev->reg_data = data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_set_drvdata); |
| |
| /** |
| * rdev_get_id - get regulator ID |
| * @rdev: regulator |
| */ |
| int rdev_get_id(struct regulator_dev *rdev) |
| { |
| return rdev->desc->id; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_id); |
| |
| struct device *rdev_get_dev(struct regulator_dev *rdev) |
| { |
| return &rdev->dev; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_dev); |
| |
| struct regmap *rdev_get_regmap(struct regulator_dev *rdev) |
| { |
| return rdev->regmap; |
| } |
| EXPORT_SYMBOL_GPL(rdev_get_regmap); |
| |
| void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data) |
| { |
| return reg_init_data->driver_data; |
| } |
| EXPORT_SYMBOL_GPL(regulator_get_init_drvdata); |
| |
| #ifdef CONFIG_DEBUG_FS |
| static int supply_map_show(struct seq_file *sf, void *data) |
| { |
| struct regulator_map *map; |
| |
| list_for_each_entry(map, ®ulator_map_list, list) { |
| seq_printf(sf, "%s -> %s.%s\n", |
| rdev_get_name(map->regulator), map->dev_name, |
| map->supply); |
| } |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(supply_map); |
| |
| struct summary_data { |
| struct seq_file *s; |
| struct regulator_dev *parent; |
| int level; |
| }; |
| |
| static void regulator_summary_show_subtree(struct seq_file *s, |
| struct regulator_dev *rdev, |
| int level); |
| |
| static int regulator_summary_show_children(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct summary_data *summary_data = data; |
| |
| if (rdev->supply && rdev->supply->rdev == summary_data->parent) |
| regulator_summary_show_subtree(summary_data->s, rdev, |
| summary_data->level + 1); |
| |
| return 0; |
| } |
| |
| static void regulator_summary_show_subtree(struct seq_file *s, |
| struct regulator_dev *rdev, |
| int level) |
| { |
| struct regulation_constraints *c; |
| struct regulator *consumer; |
| struct summary_data summary_data; |
| unsigned int opmode; |
| |
| if (!rdev) |
| return; |
| |
| opmode = _regulator_get_mode_unlocked(rdev); |
| seq_printf(s, "%*s%-*s %3d %4d %6d %7s ", |
| level * 3 + 1, "", |
| 30 - level * 3, rdev_get_name(rdev), |
| rdev->use_count, rdev->open_count, rdev->bypass_count, |
| regulator_opmode_to_str(opmode)); |
| |
| seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000); |
| seq_printf(s, "%5dmA ", |
| _regulator_get_current_limit_unlocked(rdev) / 1000); |
| |
| c = rdev->constraints; |
| if (c) { |
| switch (rdev->desc->type) { |
| case REGULATOR_VOLTAGE: |
| seq_printf(s, "%5dmV %5dmV ", |
| c->min_uV / 1000, c->max_uV / 1000); |
| break; |
| case REGULATOR_CURRENT: |
| seq_printf(s, "%5dmA %5dmA ", |
| c->min_uA / 1000, c->max_uA / 1000); |
| break; |
| } |
| } |
| |
| seq_puts(s, "\n"); |
| |
| list_for_each_entry(consumer, &rdev->consumer_list, list) { |
| if (consumer->dev && consumer->dev->class == ®ulator_class) |
| continue; |
| |
| seq_printf(s, "%*s%-*s ", |
| (level + 1) * 3 + 1, "", |
| 30 - (level + 1) * 3, |
| consumer->supply_name ? consumer->supply_name : |
| consumer->dev ? dev_name(consumer->dev) : "deviceless"); |
| |
| switch (rdev->desc->type) { |
| case REGULATOR_VOLTAGE: |
| seq_printf(s, "%3d %33dmA%c%5dmV %5dmV", |
| consumer->enable_count, |
| consumer->uA_load / 1000, |
| consumer->uA_load && !consumer->enable_count ? |
| '*' : ' ', |
| consumer->voltage[PM_SUSPEND_ON].min_uV / 1000, |
| consumer->voltage[PM_SUSPEND_ON].max_uV / 1000); |
| break; |
| case REGULATOR_CURRENT: |
| break; |
| } |
| |
| seq_puts(s, "\n"); |
| } |
| |
| summary_data.s = s; |
| summary_data.level = level; |
| summary_data.parent = rdev; |
| |
| class_for_each_device(®ulator_class, NULL, &summary_data, |
| regulator_summary_show_children); |
| } |
| |
| struct summary_lock_data { |
| struct ww_acquire_ctx *ww_ctx; |
| struct regulator_dev **new_contended_rdev; |
| struct regulator_dev **old_contended_rdev; |
| }; |
| |
| static int regulator_summary_lock_one(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct summary_lock_data *lock_data = data; |
| int ret = 0; |
| |
| if (rdev != *lock_data->old_contended_rdev) { |
| ret = regulator_lock_nested(rdev, lock_data->ww_ctx); |
| |
| if (ret == -EDEADLK) |
| *lock_data->new_contended_rdev = rdev; |
| else |
| WARN_ON_ONCE(ret); |
| } else { |
| *lock_data->old_contended_rdev = NULL; |
| } |
| |
| return ret; |
| } |
| |
| static int regulator_summary_unlock_one(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct summary_lock_data *lock_data = data; |
| |
| if (lock_data) { |
| if (rdev == *lock_data->new_contended_rdev) |
| return -EDEADLK; |
| } |
| |
| regulator_unlock(rdev); |
| |
| return 0; |
| } |
| |
| static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx, |
| struct regulator_dev **new_contended_rdev, |
| struct regulator_dev **old_contended_rdev) |
| { |
| struct summary_lock_data lock_data; |
| int ret; |
| |
| lock_data.ww_ctx = ww_ctx; |
| lock_data.new_contended_rdev = new_contended_rdev; |
| lock_data.old_contended_rdev = old_contended_rdev; |
| |
| ret = class_for_each_device(®ulator_class, NULL, &lock_data, |
| regulator_summary_lock_one); |
| if (ret) |
| class_for_each_device(®ulator_class, NULL, &lock_data, |
| regulator_summary_unlock_one); |
| |
| return ret; |
| } |
| |
| static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx) |
| { |
| struct regulator_dev *new_contended_rdev = NULL; |
| struct regulator_dev *old_contended_rdev = NULL; |
| int err; |
| |
| mutex_lock(®ulator_list_mutex); |
| |
| ww_acquire_init(ww_ctx, ®ulator_ww_class); |
| |
| do { |
| if (new_contended_rdev) { |
| ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx); |
| old_contended_rdev = new_contended_rdev; |
| old_contended_rdev->ref_cnt++; |
| } |
| |
| err = regulator_summary_lock_all(ww_ctx, |
| &new_contended_rdev, |
| &old_contended_rdev); |
| |
| if (old_contended_rdev) |
| regulator_unlock(old_contended_rdev); |
| |
| } while (err == -EDEADLK); |
| |
| ww_acquire_done(ww_ctx); |
| } |
| |
| static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx) |
| { |
| class_for_each_device(®ulator_class, NULL, NULL, |
| regulator_summary_unlock_one); |
| ww_acquire_fini(ww_ctx); |
| |
| mutex_unlock(®ulator_list_mutex); |
| } |
| |
| static int regulator_summary_show_roots(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct seq_file *s = data; |
| |
| if (!rdev->supply) |
| regulator_summary_show_subtree(s, rdev, 0); |
| |
| return 0; |
| } |
| |
| static int regulator_summary_show(struct seq_file *s, void *data) |
| { |
| struct ww_acquire_ctx ww_ctx; |
| |
| seq_puts(s, " regulator use open bypass opmode voltage current min max\n"); |
| seq_puts(s, "---------------------------------------------------------------------------------------\n"); |
| |
| regulator_summary_lock(&ww_ctx); |
| |
| class_for_each_device(®ulator_class, NULL, s, |
| regulator_summary_show_roots); |
| |
| regulator_summary_unlock(&ww_ctx); |
| |
| return 0; |
| } |
| DEFINE_SHOW_ATTRIBUTE(regulator_summary); |
| #endif /* CONFIG_DEBUG_FS */ |
| |
| static int __init regulator_init(void) |
| { |
| int ret; |
| |
| ret = class_register(®ulator_class); |
| |
| debugfs_root = debugfs_create_dir("regulator", NULL); |
| if (!debugfs_root) |
| pr_warn("regulator: Failed to create debugfs directory\n"); |
| |
| #ifdef CONFIG_DEBUG_FS |
| debugfs_create_file("supply_map", 0444, debugfs_root, NULL, |
| &supply_map_fops); |
| |
| debugfs_create_file("regulator_summary", 0444, debugfs_root, |
| NULL, ®ulator_summary_fops); |
| #endif |
| regulator_dummy_init(); |
| |
| regulator_coupler_register(&generic_regulator_coupler); |
| |
| return ret; |
| } |
| |
| /* init early to allow our consumers to complete system booting */ |
| core_initcall(regulator_init); |
| |
| static int regulator_late_cleanup(struct device *dev, void *data) |
| { |
| struct regulator_dev *rdev = dev_to_rdev(dev); |
| struct regulation_constraints *c = rdev->constraints; |
| int ret; |
| |
| if (c && c->always_on) |
| return 0; |
| |
| if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) |
| return 0; |
| |
| regulator_lock(rdev); |
| |
| if (rdev->use_count) |
| goto unlock; |
| |
| /* If reading the status failed, assume that it's off. */ |
| if (_regulator_is_enabled(rdev) <= 0) |
| goto unlock; |
| |
| if (have_full_constraints()) { |
| /* We log since this may kill the system if it goes |
| * wrong. |
| */ |
| rdev_info(rdev, "disabling\n"); |
| ret = _regulator_do_disable(rdev); |
| if (ret != 0) |
| rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret)); |
| } else { |
| /* The intention is that in future we will |
| * assume that full constraints are provided |
| * so warn even if we aren't going to do |
| * anything here. |
| */ |
| rdev_warn(rdev, "incomplete constraints, leaving on\n"); |
| } |
| |
| unlock: |
| regulator_unlock(rdev); |
| |
| return 0; |
| } |
| |
| static void regulator_init_complete_work_function(struct work_struct *work) |
| { |
| /* |
| * Regulators may had failed to resolve their input supplies |
| * when were registered, either because the input supply was |
| * not registered yet or because its parent device was not |
| * bound yet. So attempt to resolve the input supplies for |
| * pending regulators before trying to disable unused ones. |
| */ |
| class_for_each_device(®ulator_class, NULL, NULL, |
| regulator_register_resolve_supply); |
| |
| /* If we have a full configuration then disable any regulators |
| * we have permission to change the status for and which are |
| * not in use or always_on. This is effectively the default |
| * for DT and ACPI as they have full constraints. |
| */ |
| class_for_each_device(®ulator_class, NULL, NULL, |
| regulator_late_cleanup); |
| } |
| |
| static DECLARE_DELAYED_WORK(regulator_init_complete_work, |
| regulator_init_complete_work_function); |
| |
| static int __init regulator_init_complete(void) |
| { |
| /* |
| * Since DT doesn't provide an idiomatic mechanism for |
| * enabling full constraints and since it's much more natural |
| * with DT to provide them just assume that a DT enabled |
| * system has full constraints. |
| */ |
| if (of_have_populated_dt()) |
| has_full_constraints = true; |
| |
| /* |
| * We punt completion for an arbitrary amount of time since |
| * systems like distros will load many drivers from userspace |
| * so consumers might not always be ready yet, this is |
| * particularly an issue with laptops where this might bounce |
| * the display off then on. Ideally we'd get a notification |
| * from userspace when this happens but we don't so just wait |
| * a bit and hope we waited long enough. It'd be better if |
| * we'd only do this on systems that need it, and a kernel |
| * command line option might be useful. |
| */ |
| schedule_delayed_work(®ulator_init_complete_work, |
| msecs_to_jiffies(30000)); |
| |
| return 0; |
| } |
| late_initcall_sync(regulator_init_complete); |