blob: e116c77677309eb752ce9effd26a867bfa13a870 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Derived from arch/arm/kvm/guest.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/bits.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/nospec.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <kvm/arm_psci.h>
#include <asm/cputype.h>
#include <linux/uaccess.h>
#include <asm/fpsimd.h>
#include <asm/kvm.h>
#include <asm/kvm_emulate.h>
#include <asm/sigcontext.h>
#include "trace.h"
const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
KVM_GENERIC_VM_STATS()
};
const struct kvm_stats_header kvm_vm_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vm_stats_desc),
};
const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
KVM_GENERIC_VCPU_STATS(),
STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
STATS_DESC_COUNTER(VCPU, mmio_exit_user),
STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
STATS_DESC_COUNTER(VCPU, signal_exits),
STATS_DESC_COUNTER(VCPU, exits)
};
const struct kvm_stats_header kvm_vcpu_stats_header = {
.name_size = KVM_STATS_NAME_SIZE,
.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
.id_offset = sizeof(struct kvm_stats_header),
.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
sizeof(kvm_vcpu_stats_desc),
};
static bool core_reg_offset_is_vreg(u64 off)
{
return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
}
static u64 core_reg_offset_from_id(u64 id)
{
return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}
static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
{
int size;
switch (off) {
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
KVM_REG_ARM_CORE_REG(regs.regs[30]):
case KVM_REG_ARM_CORE_REG(regs.sp):
case KVM_REG_ARM_CORE_REG(regs.pc):
case KVM_REG_ARM_CORE_REG(regs.pstate):
case KVM_REG_ARM_CORE_REG(sp_el1):
case KVM_REG_ARM_CORE_REG(elr_el1):
case KVM_REG_ARM_CORE_REG(spsr[0]) ...
KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
size = sizeof(__u64);
break;
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
size = sizeof(__uint128_t);
break;
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
size = sizeof(__u32);
break;
default:
return -EINVAL;
}
if (!IS_ALIGNED(off, size / sizeof(__u32)))
return -EINVAL;
/*
* The KVM_REG_ARM64_SVE regs must be used instead of
* KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
* SVE-enabled vcpus:
*/
if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
return -EINVAL;
return size;
}
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
u64 off = core_reg_offset_from_id(reg->id);
int size = core_reg_size_from_offset(vcpu, off);
if (size < 0)
return NULL;
if (KVM_REG_SIZE(reg->id) != size)
return NULL;
switch (off) {
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
KVM_REG_ARM_CORE_REG(regs.regs[30]):
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
off /= 2;
return &vcpu->arch.ctxt.regs.regs[off];
case KVM_REG_ARM_CORE_REG(regs.sp):
return &vcpu->arch.ctxt.regs.sp;
case KVM_REG_ARM_CORE_REG(regs.pc):
return &vcpu->arch.ctxt.regs.pc;
case KVM_REG_ARM_CORE_REG(regs.pstate):
return &vcpu->arch.ctxt.regs.pstate;
case KVM_REG_ARM_CORE_REG(sp_el1):
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
case KVM_REG_ARM_CORE_REG(elr_el1):
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
return &vcpu->arch.ctxt.spsr_abt;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
return &vcpu->arch.ctxt.spsr_und;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
return &vcpu->arch.ctxt.spsr_irq;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
return &vcpu->arch.ctxt.spsr_fiq;
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
off /= 4;
return &vcpu->arch.ctxt.fp_regs.vregs[off];
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
return &vcpu->arch.ctxt.fp_regs.fpsr;
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
return &vcpu->arch.ctxt.fp_regs.fpcr;
default:
return NULL;
}
}
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
/*
* Because the kvm_regs structure is a mix of 32, 64 and
* 128bit fields, we index it as if it was a 32bit
* array. Hence below, nr_regs is the number of entries, and
* off the index in the "array".
*/
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
void *addr;
u32 off;
/* Our ID is an index into the kvm_regs struct. */
off = core_reg_offset_from_id(reg->id);
if (off >= nr_regs ||
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
return -ENOENT;
addr = core_reg_addr(vcpu, reg);
if (!addr)
return -EINVAL;
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
return -EFAULT;
return 0;
}
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
__uint128_t tmp;
void *valp = &tmp, *addr;
u64 off;
int err = 0;
/* Our ID is an index into the kvm_regs struct. */
off = core_reg_offset_from_id(reg->id);
if (off >= nr_regs ||
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
return -ENOENT;
addr = core_reg_addr(vcpu, reg);
if (!addr)
return -EINVAL;
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
return -EINVAL;
if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
err = -EFAULT;
goto out;
}
if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
switch (mode) {
case PSR_AA32_MODE_USR:
if (!system_supports_32bit_el0())
return -EINVAL;
break;
case PSR_AA32_MODE_FIQ:
case PSR_AA32_MODE_IRQ:
case PSR_AA32_MODE_SVC:
case PSR_AA32_MODE_ABT:
case PSR_AA32_MODE_UND:
if (!vcpu_el1_is_32bit(vcpu))
return -EINVAL;
break;
case PSR_MODE_EL0t:
case PSR_MODE_EL1t:
case PSR_MODE_EL1h:
if (vcpu_el1_is_32bit(vcpu))
return -EINVAL;
break;
default:
err = -EINVAL;
goto out;
}
}
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
int i, nr_reg;
switch (*vcpu_cpsr(vcpu)) {
/*
* Either we are dealing with user mode, and only the
* first 15 registers (+ PC) must be narrowed to 32bit.
* AArch32 r0-r14 conveniently map to AArch64 x0-x14.
*/
case PSR_AA32_MODE_USR:
case PSR_AA32_MODE_SYS:
nr_reg = 15;
break;
/*
* Otherwide, this is a priviledged mode, and *all* the
* registers must be narrowed to 32bit.
*/
default:
nr_reg = 31;
break;
}
for (i = 0; i < nr_reg; i++)
vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
}
out:
return err;
}
#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
unsigned int max_vq, vq;
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
if (!vcpu_has_sve(vcpu))
return -ENOENT;
if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
return -EINVAL;
memset(vqs, 0, sizeof(vqs));
max_vq = vcpu_sve_max_vq(vcpu);
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
if (sve_vq_available(vq))
vqs[vq_word(vq)] |= vq_mask(vq);
if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
return -EFAULT;
return 0;
}
static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
unsigned int max_vq, vq;
u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
if (!vcpu_has_sve(vcpu))
return -ENOENT;
if (kvm_arm_vcpu_sve_finalized(vcpu))
return -EPERM; /* too late! */
if (WARN_ON(vcpu->arch.sve_state))
return -EINVAL;
if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
return -EFAULT;
max_vq = 0;
for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
if (vq_present(vqs, vq))
max_vq = vq;
if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
return -EINVAL;
/*
* Vector lengths supported by the host can't currently be
* hidden from the guest individually: instead we can only set a
* maximum via ZCR_EL2.LEN. So, make sure the available vector
* lengths match the set requested exactly up to the requested
* maximum:
*/
for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
if (vq_present(vqs, vq) != sve_vq_available(vq))
return -EINVAL;
/* Can't run with no vector lengths at all: */
if (max_vq < SVE_VQ_MIN)
return -EINVAL;
/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
return 0;
}
#define SVE_REG_SLICE_SHIFT 0
#define SVE_REG_SLICE_BITS 5
#define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
#define SVE_REG_ID_BITS 5
#define SVE_REG_SLICE_MASK \
GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
SVE_REG_SLICE_SHIFT)
#define SVE_REG_ID_MASK \
GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
/*
* Number of register slices required to cover each whole SVE register.
* NOTE: Only the first slice every exists, for now.
* If you are tempted to modify this, you must also rework sve_reg_to_region()
* to match:
*/
#define vcpu_sve_slices(vcpu) 1
/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
struct sve_state_reg_region {
unsigned int koffset; /* offset into sve_state in kernel memory */
unsigned int klen; /* length in kernel memory */
unsigned int upad; /* extra trailing padding in user memory */
};
/*
* Validate SVE register ID and get sanitised bounds for user/kernel SVE
* register copy
*/
static int sve_reg_to_region(struct sve_state_reg_region *region,
struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
{
/* reg ID ranges for Z- registers */
const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
SVE_NUM_SLICES - 1);
/* reg ID ranges for P- registers and FFR (which are contiguous) */
const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
unsigned int vq;
unsigned int reg_num;
unsigned int reqoffset, reqlen; /* User-requested offset and length */
unsigned int maxlen; /* Maximum permitted length */
size_t sve_state_size;
const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
SVE_NUM_SLICES - 1);
/* Verify that the P-regs and FFR really do have contiguous IDs: */
BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
/* Verify that we match the UAPI header: */
BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
return -ENOENT;
vq = vcpu_sve_max_vq(vcpu);
reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
SVE_SIG_REGS_OFFSET;
reqlen = KVM_SVE_ZREG_SIZE;
maxlen = SVE_SIG_ZREG_SIZE(vq);
} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
return -ENOENT;
vq = vcpu_sve_max_vq(vcpu);
reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
SVE_SIG_REGS_OFFSET;
reqlen = KVM_SVE_PREG_SIZE;
maxlen = SVE_SIG_PREG_SIZE(vq);
} else {
return -EINVAL;
}
sve_state_size = vcpu_sve_state_size(vcpu);
if (WARN_ON(!sve_state_size))
return -EINVAL;
region->koffset = array_index_nospec(reqoffset, sve_state_size);
region->klen = min(maxlen, reqlen);
region->upad = reqlen - region->klen;
return 0;
}
static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
int ret;
struct sve_state_reg_region region;
char __user *uptr = (char __user *)reg->addr;
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
if (reg->id == KVM_REG_ARM64_SVE_VLS)
return get_sve_vls(vcpu, reg);
/* Try to interpret reg ID as an architectural SVE register... */
ret = sve_reg_to_region(&region, vcpu, reg);
if (ret)
return ret;
if (!kvm_arm_vcpu_sve_finalized(vcpu))
return -EPERM;
if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
region.klen) ||
clear_user(uptr + region.klen, region.upad))
return -EFAULT;
return 0;
}
static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
int ret;
struct sve_state_reg_region region;
const char __user *uptr = (const char __user *)reg->addr;
/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
if (reg->id == KVM_REG_ARM64_SVE_VLS)
return set_sve_vls(vcpu, reg);
/* Try to interpret reg ID as an architectural SVE register... */
ret = sve_reg_to_region(&region, vcpu, reg);
if (ret)
return ret;
if (!kvm_arm_vcpu_sve_finalized(vcpu))
return -EPERM;
if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
region.klen))
return -EFAULT;
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
return -EINVAL;
}
static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
u64 __user *uindices)
{
unsigned int i;
int n = 0;
for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
int size = core_reg_size_from_offset(vcpu, i);
if (size < 0)
continue;
switch (size) {
case sizeof(__u32):
reg |= KVM_REG_SIZE_U32;
break;
case sizeof(__u64):
reg |= KVM_REG_SIZE_U64;
break;
case sizeof(__uint128_t):
reg |= KVM_REG_SIZE_U128;
break;
default:
WARN_ON(1);
continue;
}
if (uindices) {
if (put_user(reg, uindices))
return -EFAULT;
uindices++;
}
n++;
}
return n;
}
static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
{
return copy_core_reg_indices(vcpu, NULL);
}
/**
* ARM64 versions of the TIMER registers, always available on arm64
*/
#define NUM_TIMER_REGS 3
static bool is_timer_reg(u64 index)
{
switch (index) {
case KVM_REG_ARM_TIMER_CTL:
case KVM_REG_ARM_TIMER_CNT:
case KVM_REG_ARM_TIMER_CVAL:
return true;
}
return false;
}
static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
return -EFAULT;
uindices++;
if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
return -EFAULT;
uindices++;
if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
return -EFAULT;
return 0;
}
static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
void __user *uaddr = (void __user *)(long)reg->addr;
u64 val;
int ret;
ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
if (ret != 0)
return -EFAULT;
return kvm_arm_timer_set_reg(vcpu, reg->id, val);
}
static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
void __user *uaddr = (void __user *)(long)reg->addr;
u64 val;
val = kvm_arm_timer_get_reg(vcpu, reg->id);
return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
}
static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
{
const unsigned int slices = vcpu_sve_slices(vcpu);
if (!vcpu_has_sve(vcpu))
return 0;
/* Policed by KVM_GET_REG_LIST: */
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
+ 1; /* KVM_REG_ARM64_SVE_VLS */
}
static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
u64 __user *uindices)
{
const unsigned int slices = vcpu_sve_slices(vcpu);
u64 reg;
unsigned int i, n;
int num_regs = 0;
if (!vcpu_has_sve(vcpu))
return 0;
/* Policed by KVM_GET_REG_LIST: */
WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
/*
* Enumerate this first, so that userspace can save/restore in
* the order reported by KVM_GET_REG_LIST:
*/
reg = KVM_REG_ARM64_SVE_VLS;
if (put_user(reg, uindices++))
return -EFAULT;
++num_regs;
for (i = 0; i < slices; i++) {
for (n = 0; n < SVE_NUM_ZREGS; n++) {
reg = KVM_REG_ARM64_SVE_ZREG(n, i);
if (put_user(reg, uindices++))
return -EFAULT;
num_regs++;
}
for (n = 0; n < SVE_NUM_PREGS; n++) {
reg = KVM_REG_ARM64_SVE_PREG(n, i);
if (put_user(reg, uindices++))
return -EFAULT;
num_regs++;
}
reg = KVM_REG_ARM64_SVE_FFR(i);
if (put_user(reg, uindices++))
return -EFAULT;
num_regs++;
}
return num_regs;
}
/**
* kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
*
* This is for all registers.
*/
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
{
unsigned long res = 0;
res += num_core_regs(vcpu);
res += num_sve_regs(vcpu);
res += kvm_arm_num_sys_reg_descs(vcpu);
res += kvm_arm_get_fw_num_regs(vcpu);
res += NUM_TIMER_REGS;
return res;
}
/**
* kvm_arm_copy_reg_indices - get indices of all registers.
*
* We do core registers right here, then we append system regs.
*/
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
int ret;
ret = copy_core_reg_indices(vcpu, uindices);
if (ret < 0)
return ret;
uindices += ret;
ret = copy_sve_reg_indices(vcpu, uindices);
if (ret < 0)
return ret;
uindices += ret;
ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
if (ret < 0)
return ret;
uindices += kvm_arm_get_fw_num_regs(vcpu);
ret = copy_timer_indices(vcpu, uindices);
if (ret < 0)
return ret;
uindices += NUM_TIMER_REGS;
return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
}
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
/* We currently use nothing arch-specific in upper 32 bits */
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
return -EINVAL;
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
}
if (is_timer_reg(reg->id))
return get_timer_reg(vcpu, reg);
return kvm_arm_sys_reg_get_reg(vcpu, reg);
}
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
/* We currently use nothing arch-specific in upper 32 bits */
if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
return -EINVAL;
switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
}
if (is_timer_reg(reg->id))
return set_timer_reg(vcpu, reg);
return kvm_arm_sys_reg_set_reg(vcpu, reg);
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return -EINVAL;
}
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
if (events->exception.serror_pending && events->exception.serror_has_esr)
events->exception.serror_esr = vcpu_get_vsesr(vcpu);
/*
* We never return a pending ext_dabt here because we deliver it to
* the virtual CPU directly when setting the event and it's no longer
* 'pending' at this point.
*/
return 0;
}
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
bool serror_pending = events->exception.serror_pending;
bool has_esr = events->exception.serror_has_esr;
bool ext_dabt_pending = events->exception.ext_dabt_pending;
if (serror_pending && has_esr) {
if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
return -EINVAL;
if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
kvm_set_sei_esr(vcpu, events->exception.serror_esr);
else
return -EINVAL;
} else if (serror_pending) {
kvm_inject_vabt(vcpu);
}
if (ext_dabt_pending)
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
return 0;
}
u32 __attribute_const__ kvm_target_cpu(void)
{
unsigned long implementor = read_cpuid_implementor();
unsigned long part_number = read_cpuid_part_number();
switch (implementor) {
case ARM_CPU_IMP_ARM:
switch (part_number) {
case ARM_CPU_PART_AEM_V8:
return KVM_ARM_TARGET_AEM_V8;
case ARM_CPU_PART_FOUNDATION:
return KVM_ARM_TARGET_FOUNDATION_V8;
case ARM_CPU_PART_CORTEX_A53:
return KVM_ARM_TARGET_CORTEX_A53;
case ARM_CPU_PART_CORTEX_A57:
return KVM_ARM_TARGET_CORTEX_A57;
}
break;
case ARM_CPU_IMP_APM:
switch (part_number) {
case APM_CPU_PART_POTENZA:
return KVM_ARM_TARGET_XGENE_POTENZA;
}
break;
}
/* Return a default generic target */
return KVM_ARM_TARGET_GENERIC_V8;
}
void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
{
u32 target = kvm_target_cpu();
memset(init, 0, sizeof(*init));
/*
* For now, we don't return any features.
* In future, we might use features to return target
* specific features available for the preferred
* target type.
*/
init->target = (__u32)target;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -EINVAL;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return -EINVAL;
}
/**
* kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
* @kvm: pointer to the KVM struct
* @kvm_guest_debug: the ioctl data buffer
*
* This sets up and enables the VM for guest debugging. Userspace
* passes in a control flag to enable different debug types and
* potentially other architecture specific information in the rest of
* the structure.
*/
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
int ret = 0;
trace_kvm_set_guest_debug(vcpu, dbg->control);
if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
ret = -EINVAL;
goto out;
}
if (dbg->control & KVM_GUESTDBG_ENABLE) {
vcpu->guest_debug = dbg->control;
/* Hardware assisted Break and Watch points */
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
vcpu->arch.external_debug_state = dbg->arch;
}
} else {
/* If not enabled clear all flags */
vcpu->guest_debug = 0;
}
out:
return ret;
}
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_ARM_VCPU_PMU_V3_CTRL:
ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_TIMER_CTRL:
ret = kvm_arm_timer_set_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_PVTIME_CTRL:
ret = kvm_arm_pvtime_set_attr(vcpu, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_ARM_VCPU_PMU_V3_CTRL:
ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_TIMER_CTRL:
ret = kvm_arm_timer_get_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_PVTIME_CTRL:
ret = kvm_arm_pvtime_get_attr(vcpu, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr)
{
int ret;
switch (attr->group) {
case KVM_ARM_VCPU_PMU_V3_CTRL:
ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_TIMER_CTRL:
ret = kvm_arm_timer_has_attr(vcpu, attr);
break;
case KVM_ARM_VCPU_PVTIME_CTRL:
ret = kvm_arm_pvtime_has_attr(vcpu, attr);
break;
default:
ret = -ENXIO;
break;
}
return ret;
}
long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
struct kvm_arm_copy_mte_tags *copy_tags)
{
gpa_t guest_ipa = copy_tags->guest_ipa;
size_t length = copy_tags->length;
void __user *tags = copy_tags->addr;
gpa_t gfn;
bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
int ret = 0;
if (!kvm_has_mte(kvm))
return -EINVAL;
if (copy_tags->reserved[0] || copy_tags->reserved[1])
return -EINVAL;
if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
return -EINVAL;
if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
return -EINVAL;
gfn = gpa_to_gfn(guest_ipa);
mutex_lock(&kvm->slots_lock);
while (length > 0) {
kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
void *maddr;
unsigned long num_tags;
struct page *page;
if (is_error_noslot_pfn(pfn)) {
ret = -EFAULT;
goto out;
}
page = pfn_to_online_page(pfn);
if (!page) {
/* Reject ZONE_DEVICE memory */
ret = -EFAULT;
goto out;
}
maddr = page_address(page);
if (!write) {
if (test_bit(PG_mte_tagged, &page->flags))
num_tags = mte_copy_tags_to_user(tags, maddr,
MTE_GRANULES_PER_PAGE);
else
/* No tags in memory, so write zeros */
num_tags = MTE_GRANULES_PER_PAGE -
clear_user(tags, MTE_GRANULES_PER_PAGE);
kvm_release_pfn_clean(pfn);
} else {
num_tags = mte_copy_tags_from_user(maddr, tags,
MTE_GRANULES_PER_PAGE);
/*
* Set the flag after checking the write
* completed fully
*/
if (num_tags == MTE_GRANULES_PER_PAGE)
set_bit(PG_mte_tagged, &page->flags);
kvm_release_pfn_dirty(pfn);
}
if (num_tags != MTE_GRANULES_PER_PAGE) {
ret = -EFAULT;
goto out;
}
gfn++;
tags += num_tags;
length -= PAGE_SIZE;
}
out:
mutex_unlock(&kvm->slots_lock);
/* If some data has been copied report the number of bytes copied */
if (length != copy_tags->length)
return copy_tags->length - length;
return ret;
}