| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * |
| * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved. |
| * |
| */ |
| |
| #include <linux/fiemap.h> |
| #include <linux/fs.h> |
| #include <linux/vmalloc.h> |
| |
| #include "debug.h" |
| #include "ntfs.h" |
| #include "ntfs_fs.h" |
| #ifdef CONFIG_NTFS3_LZX_XPRESS |
| #include "lib/lib.h" |
| #endif |
| |
| static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree, |
| CLST ino, struct rb_node *ins) |
| { |
| struct rb_node **p = &tree->rb_node; |
| struct rb_node *pr = NULL; |
| |
| while (*p) { |
| struct mft_inode *mi; |
| |
| pr = *p; |
| mi = rb_entry(pr, struct mft_inode, node); |
| if (mi->rno > ino) |
| p = &pr->rb_left; |
| else if (mi->rno < ino) |
| p = &pr->rb_right; |
| else |
| return mi; |
| } |
| |
| if (!ins) |
| return NULL; |
| |
| rb_link_node(ins, pr, p); |
| rb_insert_color(ins, tree); |
| return rb_entry(ins, struct mft_inode, node); |
| } |
| |
| /* |
| * ni_find_mi - Find mft_inode by record number. |
| */ |
| static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno) |
| { |
| return ni_ins_mi(ni, &ni->mi_tree, rno, NULL); |
| } |
| |
| /* |
| * ni_add_mi - Add new mft_inode into ntfs_inode. |
| */ |
| static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi) |
| { |
| ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node); |
| } |
| |
| /* |
| * ni_remove_mi - Remove mft_inode from ntfs_inode. |
| */ |
| void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi) |
| { |
| rb_erase(&mi->node, &ni->mi_tree); |
| } |
| |
| /* |
| * ni_std - Return: Pointer into std_info from primary record. |
| */ |
| struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni) |
| { |
| const struct ATTRIB *attr; |
| |
| attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); |
| return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) |
| : NULL; |
| } |
| |
| /* |
| * ni_std5 |
| * |
| * Return: Pointer into std_info from primary record. |
| */ |
| struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni) |
| { |
| const struct ATTRIB *attr; |
| |
| attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL); |
| |
| return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) |
| : NULL; |
| } |
| |
| /* |
| * ni_clear - Clear resources allocated by ntfs_inode. |
| */ |
| void ni_clear(struct ntfs_inode *ni) |
| { |
| struct rb_node *node; |
| |
| if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec)) |
| ni_delete_all(ni); |
| |
| al_destroy(ni); |
| |
| for (node = rb_first(&ni->mi_tree); node;) { |
| struct rb_node *next = rb_next(node); |
| struct mft_inode *mi = rb_entry(node, struct mft_inode, node); |
| |
| rb_erase(node, &ni->mi_tree); |
| mi_put(mi); |
| node = next; |
| } |
| |
| /* Bad inode always has mode == S_IFREG. */ |
| if (ni->ni_flags & NI_FLAG_DIR) |
| indx_clear(&ni->dir); |
| else { |
| run_close(&ni->file.run); |
| #ifdef CONFIG_NTFS3_LZX_XPRESS |
| if (ni->file.offs_page) { |
| /* On-demand allocated page for offsets. */ |
| put_page(ni->file.offs_page); |
| ni->file.offs_page = NULL; |
| } |
| #endif |
| } |
| |
| mi_clear(&ni->mi); |
| } |
| |
| /* |
| * ni_load_mi_ex - Find mft_inode by record number. |
| */ |
| int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) |
| { |
| int err; |
| struct mft_inode *r; |
| |
| r = ni_find_mi(ni, rno); |
| if (r) |
| goto out; |
| |
| err = mi_get(ni->mi.sbi, rno, &r); |
| if (err) |
| return err; |
| |
| ni_add_mi(ni, r); |
| |
| out: |
| if (mi) |
| *mi = r; |
| return 0; |
| } |
| |
| /* |
| * ni_load_mi - Load mft_inode corresponded list_entry. |
| */ |
| int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le, |
| struct mft_inode **mi) |
| { |
| CLST rno; |
| |
| if (!le) { |
| *mi = &ni->mi; |
| return 0; |
| } |
| |
| rno = ino_get(&le->ref); |
| if (rno == ni->mi.rno) { |
| *mi = &ni->mi; |
| return 0; |
| } |
| return ni_load_mi_ex(ni, rno, mi); |
| } |
| |
| /* |
| * ni_find_attr |
| * |
| * Return: Attribute and record this attribute belongs to. |
| */ |
| struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr, |
| struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type, |
| const __le16 *name, u8 name_len, const CLST *vcn, |
| struct mft_inode **mi) |
| { |
| struct ATTR_LIST_ENTRY *le; |
| struct mft_inode *m; |
| |
| if (!ni->attr_list.size || |
| (!name_len && (type == ATTR_LIST || type == ATTR_STD))) { |
| if (le_o) |
| *le_o = NULL; |
| if (mi) |
| *mi = &ni->mi; |
| |
| /* Look for required attribute in primary record. */ |
| return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL); |
| } |
| |
| /* First look for list entry of required type. */ |
| le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn); |
| if (!le) |
| return NULL; |
| |
| if (le_o) |
| *le_o = le; |
| |
| /* Load record that contains this attribute. */ |
| if (ni_load_mi(ni, le, &m)) |
| return NULL; |
| |
| /* Look for required attribute. */ |
| attr = mi_find_attr(m, NULL, type, name, name_len, &le->id); |
| |
| if (!attr) |
| goto out; |
| |
| if (!attr->non_res) { |
| if (vcn && *vcn) |
| goto out; |
| } else if (!vcn) { |
| if (attr->nres.svcn) |
| goto out; |
| } else if (le64_to_cpu(attr->nres.svcn) > *vcn || |
| *vcn > le64_to_cpu(attr->nres.evcn)) { |
| goto out; |
| } |
| |
| if (mi) |
| *mi = m; |
| return attr; |
| |
| out: |
| ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR); |
| return NULL; |
| } |
| |
| /* |
| * ni_enum_attr_ex - Enumerates attributes in ntfs_inode. |
| */ |
| struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr, |
| struct ATTR_LIST_ENTRY **le, |
| struct mft_inode **mi) |
| { |
| struct mft_inode *mi2; |
| struct ATTR_LIST_ENTRY *le2; |
| |
| /* Do we have an attribute list? */ |
| if (!ni->attr_list.size) { |
| *le = NULL; |
| if (mi) |
| *mi = &ni->mi; |
| /* Enum attributes in primary record. */ |
| return mi_enum_attr(&ni->mi, attr); |
| } |
| |
| /* Get next list entry. */ |
| le2 = *le = al_enumerate(ni, attr ? *le : NULL); |
| if (!le2) |
| return NULL; |
| |
| /* Load record that contains the required attribute. */ |
| if (ni_load_mi(ni, le2, &mi2)) |
| return NULL; |
| |
| if (mi) |
| *mi = mi2; |
| |
| /* Find attribute in loaded record. */ |
| return rec_find_attr_le(mi2, le2); |
| } |
| |
| /* |
| * ni_load_attr - Load attribute that contains given VCN. |
| */ |
| struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, |
| const __le16 *name, u8 name_len, CLST vcn, |
| struct mft_inode **pmi) |
| { |
| struct ATTR_LIST_ENTRY *le; |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| struct ATTR_LIST_ENTRY *next; |
| |
| if (!ni->attr_list.size) { |
| if (pmi) |
| *pmi = &ni->mi; |
| return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL); |
| } |
| |
| le = al_find_ex(ni, NULL, type, name, name_len, NULL); |
| if (!le) |
| return NULL; |
| |
| /* |
| * Unfortunately ATTR_LIST_ENTRY contains only start VCN. |
| * So to find the ATTRIB segment that contains 'vcn' we should |
| * enumerate some entries. |
| */ |
| if (vcn) { |
| for (;; le = next) { |
| next = al_find_ex(ni, le, type, name, name_len, NULL); |
| if (!next || le64_to_cpu(next->vcn) > vcn) |
| break; |
| } |
| } |
| |
| if (ni_load_mi(ni, le, &mi)) |
| return NULL; |
| |
| if (pmi) |
| *pmi = mi; |
| |
| attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id); |
| if (!attr) |
| return NULL; |
| |
| if (!attr->non_res) |
| return attr; |
| |
| if (le64_to_cpu(attr->nres.svcn) <= vcn && |
| vcn <= le64_to_cpu(attr->nres.evcn)) |
| return attr; |
| |
| return NULL; |
| } |
| |
| /* |
| * ni_load_all_mi - Load all subrecords. |
| */ |
| int ni_load_all_mi(struct ntfs_inode *ni) |
| { |
| int err; |
| struct ATTR_LIST_ENTRY *le; |
| |
| if (!ni->attr_list.size) |
| return 0; |
| |
| le = NULL; |
| |
| while ((le = al_enumerate(ni, le))) { |
| CLST rno = ino_get(&le->ref); |
| |
| if (rno == ni->mi.rno) |
| continue; |
| |
| err = ni_load_mi_ex(ni, rno, NULL); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * ni_add_subrecord - Allocate + format + attach a new subrecord. |
| */ |
| bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi) |
| { |
| struct mft_inode *m; |
| |
| m = kzalloc(sizeof(struct mft_inode), GFP_NOFS); |
| if (!m) |
| return false; |
| |
| if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) { |
| mi_put(m); |
| return false; |
| } |
| |
| mi_get_ref(&ni->mi, &m->mrec->parent_ref); |
| |
| ni_add_mi(ni, m); |
| *mi = m; |
| return true; |
| } |
| |
| /* |
| * ni_remove_attr - Remove all attributes for the given type/name/id. |
| */ |
| int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, |
| const __le16 *name, size_t name_len, bool base_only, |
| const __le16 *id) |
| { |
| int err; |
| struct ATTRIB *attr; |
| struct ATTR_LIST_ENTRY *le; |
| struct mft_inode *mi; |
| u32 type_in; |
| int diff; |
| |
| if (base_only || type == ATTR_LIST || !ni->attr_list.size) { |
| attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id); |
| if (!attr) |
| return -ENOENT; |
| |
| mi_remove_attr(ni, &ni->mi, attr); |
| return 0; |
| } |
| |
| type_in = le32_to_cpu(type); |
| le = NULL; |
| |
| for (;;) { |
| le = al_enumerate(ni, le); |
| if (!le) |
| return 0; |
| |
| next_le2: |
| diff = le32_to_cpu(le->type) - type_in; |
| if (diff < 0) |
| continue; |
| |
| if (diff > 0) |
| return 0; |
| |
| if (le->name_len != name_len) |
| continue; |
| |
| if (name_len && |
| memcmp(le_name(le), name, name_len * sizeof(short))) |
| continue; |
| |
| if (id && le->id != *id) |
| continue; |
| err = ni_load_mi(ni, le, &mi); |
| if (err) |
| return err; |
| |
| al_remove_le(ni, le); |
| |
| attr = mi_find_attr(mi, NULL, type, name, name_len, id); |
| if (!attr) |
| return -ENOENT; |
| |
| mi_remove_attr(ni, mi, attr); |
| |
| if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size) |
| return 0; |
| goto next_le2; |
| } |
| } |
| |
| /* |
| * ni_ins_new_attr - Insert the attribute into record. |
| * |
| * Return: Not full constructed attribute or NULL if not possible to create. |
| */ |
| static struct ATTRIB * |
| ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi, |
| struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type, |
| const __le16 *name, u8 name_len, u32 asize, u16 name_off, |
| CLST svcn, struct ATTR_LIST_ENTRY **ins_le) |
| { |
| int err; |
| struct ATTRIB *attr; |
| bool le_added = false; |
| struct MFT_REF ref; |
| |
| mi_get_ref(mi, &ref); |
| |
| if (type != ATTR_LIST && !le && ni->attr_list.size) { |
| err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1), |
| &ref, &le); |
| if (err) { |
| /* No memory or no space. */ |
| return NULL; |
| } |
| le_added = true; |
| |
| /* |
| * al_add_le -> attr_set_size (list) -> ni_expand_list |
| * which moves some attributes out of primary record |
| * this means that name may point into moved memory |
| * reinit 'name' from le. |
| */ |
| name = le->name; |
| } |
| |
| attr = mi_insert_attr(mi, type, name, name_len, asize, name_off); |
| if (!attr) { |
| if (le_added) |
| al_remove_le(ni, le); |
| return NULL; |
| } |
| |
| if (type == ATTR_LIST) { |
| /* Attr list is not in list entry array. */ |
| goto out; |
| } |
| |
| if (!le) |
| goto out; |
| |
| /* Update ATTRIB Id and record reference. */ |
| le->id = attr->id; |
| ni->attr_list.dirty = true; |
| le->ref = ref; |
| |
| out: |
| if (ins_le) |
| *ins_le = le; |
| return attr; |
| } |
| |
| /* |
| * ni_repack |
| * |
| * Random write access to sparsed or compressed file may result to |
| * not optimized packed runs. |
| * Here is the place to optimize it. |
| */ |
| static int ni_repack(struct ntfs_inode *ni) |
| { |
| int err = 0; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct mft_inode *mi, *mi_p = NULL; |
| struct ATTRIB *attr = NULL, *attr_p; |
| struct ATTR_LIST_ENTRY *le = NULL, *le_p; |
| CLST alloc = 0; |
| u8 cluster_bits = sbi->cluster_bits; |
| CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn; |
| u32 roff, rs = sbi->record_size; |
| struct runs_tree run; |
| |
| run_init(&run); |
| |
| while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) { |
| if (!attr->non_res) |
| continue; |
| |
| svcn = le64_to_cpu(attr->nres.svcn); |
| if (svcn != le64_to_cpu(le->vcn)) { |
| err = -EINVAL; |
| break; |
| } |
| |
| if (!svcn) { |
| alloc = le64_to_cpu(attr->nres.alloc_size) >> |
| cluster_bits; |
| mi_p = NULL; |
| } else if (svcn != evcn + 1) { |
| err = -EINVAL; |
| break; |
| } |
| |
| evcn = le64_to_cpu(attr->nres.evcn); |
| |
| if (svcn > evcn + 1) { |
| err = -EINVAL; |
| break; |
| } |
| |
| if (!mi_p) { |
| /* Do not try if not enogh free space. */ |
| if (le32_to_cpu(mi->mrec->used) + 8 >= rs) |
| continue; |
| |
| /* Do not try if last attribute segment. */ |
| if (evcn + 1 == alloc) |
| continue; |
| run_close(&run); |
| } |
| |
| roff = le16_to_cpu(attr->nres.run_off); |
| err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn, |
| Add2Ptr(attr, roff), |
| le32_to_cpu(attr->size) - roff); |
| if (err < 0) |
| break; |
| |
| if (!mi_p) { |
| mi_p = mi; |
| attr_p = attr; |
| svcn_p = svcn; |
| evcn_p = evcn; |
| le_p = le; |
| err = 0; |
| continue; |
| } |
| |
| /* |
| * Run contains data from two records: mi_p and mi |
| * Try to pack in one. |
| */ |
| err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p); |
| if (err) |
| break; |
| |
| next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1; |
| |
| if (next_svcn >= evcn + 1) { |
| /* We can remove this attribute segment. */ |
| al_remove_le(ni, le); |
| mi_remove_attr(NULL, mi, attr); |
| le = le_p; |
| continue; |
| } |
| |
| attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn); |
| mi->dirty = true; |
| ni->attr_list.dirty = true; |
| |
| if (evcn + 1 == alloc) { |
| err = mi_pack_runs(mi, attr, &run, |
| evcn + 1 - next_svcn); |
| if (err) |
| break; |
| mi_p = NULL; |
| } else { |
| mi_p = mi; |
| attr_p = attr; |
| svcn_p = next_svcn; |
| evcn_p = evcn; |
| le_p = le; |
| run_truncate_head(&run, next_svcn); |
| } |
| } |
| |
| if (err) { |
| ntfs_inode_warn(&ni->vfs_inode, "repack problem"); |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| |
| /* Pack loaded but not packed runs. */ |
| if (mi_p) |
| mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p); |
| } |
| |
| run_close(&run); |
| return err; |
| } |
| |
| /* |
| * ni_try_remove_attr_list |
| * |
| * Can we remove attribute list? |
| * Check the case when primary record contains enough space for all attributes. |
| */ |
| static int ni_try_remove_attr_list(struct ntfs_inode *ni) |
| { |
| int err = 0; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct ATTRIB *attr, *attr_list, *attr_ins; |
| struct ATTR_LIST_ENTRY *le; |
| struct mft_inode *mi; |
| u32 asize, free; |
| struct MFT_REF ref; |
| __le16 id; |
| |
| if (!ni->attr_list.dirty) |
| return 0; |
| |
| err = ni_repack(ni); |
| if (err) |
| return err; |
| |
| attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL); |
| if (!attr_list) |
| return 0; |
| |
| asize = le32_to_cpu(attr_list->size); |
| |
| /* Free space in primary record without attribute list. */ |
| free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize; |
| mi_get_ref(&ni->mi, &ref); |
| |
| le = NULL; |
| while ((le = al_enumerate(ni, le))) { |
| if (!memcmp(&le->ref, &ref, sizeof(ref))) |
| continue; |
| |
| if (le->vcn) |
| return 0; |
| |
| mi = ni_find_mi(ni, ino_get(&le->ref)); |
| if (!mi) |
| return 0; |
| |
| attr = mi_find_attr(mi, NULL, le->type, le_name(le), |
| le->name_len, &le->id); |
| if (!attr) |
| return 0; |
| |
| asize = le32_to_cpu(attr->size); |
| if (asize > free) |
| return 0; |
| |
| free -= asize; |
| } |
| |
| /* It seems that attribute list can be removed from primary record. */ |
| mi_remove_attr(NULL, &ni->mi, attr_list); |
| |
| /* |
| * Repeat the cycle above and move all attributes to primary record. |
| * It should be success! |
| */ |
| le = NULL; |
| while ((le = al_enumerate(ni, le))) { |
| if (!memcmp(&le->ref, &ref, sizeof(ref))) |
| continue; |
| |
| mi = ni_find_mi(ni, ino_get(&le->ref)); |
| if (!mi) { |
| /* Should never happened, 'cause already checked. */ |
| goto bad; |
| } |
| |
| attr = mi_find_attr(mi, NULL, le->type, le_name(le), |
| le->name_len, &le->id); |
| if (!attr) { |
| /* Should never happened, 'cause already checked. */ |
| goto bad; |
| } |
| asize = le32_to_cpu(attr->size); |
| |
| /* Insert into primary record. */ |
| attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le), |
| le->name_len, asize, |
| le16_to_cpu(attr->name_off)); |
| if (!attr_ins) { |
| /* |
| * Internal error. |
| * Either no space in primary record (already checked). |
| * Either tried to insert another |
| * non indexed attribute (logic error). |
| */ |
| goto bad; |
| } |
| |
| /* Copy all except id. */ |
| id = attr_ins->id; |
| memcpy(attr_ins, attr, asize); |
| attr_ins->id = id; |
| |
| /* Remove from original record. */ |
| mi_remove_attr(NULL, mi, attr); |
| } |
| |
| run_deallocate(sbi, &ni->attr_list.run, true); |
| run_close(&ni->attr_list.run); |
| ni->attr_list.size = 0; |
| kfree(ni->attr_list.le); |
| ni->attr_list.le = NULL; |
| ni->attr_list.dirty = false; |
| |
| return 0; |
| bad: |
| ntfs_inode_err(&ni->vfs_inode, "Internal error"); |
| make_bad_inode(&ni->vfs_inode); |
| return -EINVAL; |
| } |
| |
| /* |
| * ni_create_attr_list - Generates an attribute list for this primary record. |
| */ |
| int ni_create_attr_list(struct ntfs_inode *ni) |
| { |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| int err; |
| u32 lsize; |
| struct ATTRIB *attr; |
| struct ATTRIB *arr_move[7]; |
| struct ATTR_LIST_ENTRY *le, *le_b[7]; |
| struct MFT_REC *rec; |
| bool is_mft; |
| CLST rno = 0; |
| struct mft_inode *mi; |
| u32 free_b, nb, to_free, rs; |
| u16 sz; |
| |
| is_mft = ni->mi.rno == MFT_REC_MFT; |
| rec = ni->mi.mrec; |
| rs = sbi->record_size; |
| |
| /* |
| * Skip estimating exact memory requirement. |
| * Looks like one record_size is always enough. |
| */ |
| le = kmalloc(al_aligned(rs), GFP_NOFS); |
| if (!le) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| mi_get_ref(&ni->mi, &le->ref); |
| ni->attr_list.le = le; |
| |
| attr = NULL; |
| nb = 0; |
| free_b = 0; |
| attr = NULL; |
| |
| for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) { |
| sz = le_size(attr->name_len); |
| le->type = attr->type; |
| le->size = cpu_to_le16(sz); |
| le->name_len = attr->name_len; |
| le->name_off = offsetof(struct ATTR_LIST_ENTRY, name); |
| le->vcn = 0; |
| if (le != ni->attr_list.le) |
| le->ref = ni->attr_list.le->ref; |
| le->id = attr->id; |
| |
| if (attr->name_len) |
| memcpy(le->name, attr_name(attr), |
| sizeof(short) * attr->name_len); |
| else if (attr->type == ATTR_STD) |
| continue; |
| else if (attr->type == ATTR_LIST) |
| continue; |
| else if (is_mft && attr->type == ATTR_DATA) |
| continue; |
| |
| if (!nb || nb < ARRAY_SIZE(arr_move)) { |
| le_b[nb] = le; |
| arr_move[nb++] = attr; |
| free_b += le32_to_cpu(attr->size); |
| } |
| } |
| |
| lsize = PtrOffset(ni->attr_list.le, le); |
| ni->attr_list.size = lsize; |
| |
| to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT; |
| if (to_free <= rs) { |
| to_free = 0; |
| } else { |
| to_free -= rs; |
| |
| if (to_free > free_b) { |
| err = -EINVAL; |
| goto out1; |
| } |
| } |
| |
| /* Allocate child MFT. */ |
| err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi); |
| if (err) |
| goto out1; |
| |
| /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */ |
| while (to_free > 0) { |
| struct ATTRIB *b = arr_move[--nb]; |
| u32 asize = le32_to_cpu(b->size); |
| u16 name_off = le16_to_cpu(b->name_off); |
| |
| attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off), |
| b->name_len, asize, name_off); |
| WARN_ON(!attr); |
| |
| mi_get_ref(mi, &le_b[nb]->ref); |
| le_b[nb]->id = attr->id; |
| |
| /* Copy all except id. */ |
| memcpy(attr, b, asize); |
| attr->id = le_b[nb]->id; |
| |
| /* Remove from primary record. */ |
| WARN_ON(!mi_remove_attr(NULL, &ni->mi, b)); |
| |
| if (to_free <= asize) |
| break; |
| to_free -= asize; |
| WARN_ON(!nb); |
| } |
| |
| attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0, |
| lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT); |
| WARN_ON(!attr); |
| |
| attr->non_res = 0; |
| attr->flags = 0; |
| attr->res.data_size = cpu_to_le32(lsize); |
| attr->res.data_off = SIZEOF_RESIDENT_LE; |
| attr->res.flags = 0; |
| attr->res.res = 0; |
| |
| memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize); |
| |
| ni->attr_list.dirty = false; |
| |
| mark_inode_dirty(&ni->vfs_inode); |
| goto out; |
| |
| out1: |
| kfree(ni->attr_list.le); |
| ni->attr_list.le = NULL; |
| ni->attr_list.size = 0; |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * ni_ins_attr_ext - Add an external attribute to the ntfs_inode. |
| */ |
| static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le, |
| enum ATTR_TYPE type, const __le16 *name, u8 name_len, |
| u32 asize, CLST svcn, u16 name_off, bool force_ext, |
| struct ATTRIB **ins_attr, struct mft_inode **ins_mi, |
| struct ATTR_LIST_ENTRY **ins_le) |
| { |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| CLST rno; |
| u64 vbo; |
| struct rb_node *node; |
| int err; |
| bool is_mft, is_mft_data; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| |
| is_mft = ni->mi.rno == MFT_REC_MFT; |
| is_mft_data = is_mft && type == ATTR_DATA && !name_len; |
| |
| if (asize > sbi->max_bytes_per_attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Standard information and attr_list cannot be made external. |
| * The Log File cannot have any external attributes. |
| */ |
| if (type == ATTR_STD || type == ATTR_LIST || |
| ni->mi.rno == MFT_REC_LOG) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Create attribute list if it is not already existed. */ |
| if (!ni->attr_list.size) { |
| err = ni_create_attr_list(ni); |
| if (err) |
| goto out; |
| } |
| |
| vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0; |
| |
| if (force_ext) |
| goto insert_ext; |
| |
| /* Load all subrecords into memory. */ |
| err = ni_load_all_mi(ni); |
| if (err) |
| goto out; |
| |
| /* Check each of loaded subrecord. */ |
| for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { |
| mi = rb_entry(node, struct mft_inode, node); |
| |
| if (is_mft_data && |
| (mi_enum_attr(mi, NULL) || |
| vbo <= ((u64)mi->rno << sbi->record_bits))) { |
| /* We can't accept this record 'cause MFT's bootstrapping. */ |
| continue; |
| } |
| if (is_mft && |
| mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) { |
| /* |
| * This child record already has a ATTR_DATA. |
| * So it can't accept any other records. |
| */ |
| continue; |
| } |
| |
| if ((type != ATTR_NAME || name_len) && |
| mi_find_attr(mi, NULL, type, name, name_len, NULL)) { |
| /* Only indexed attributes can share same record. */ |
| continue; |
| } |
| |
| /* |
| * Do not try to insert this attribute |
| * if there is no room in record. |
| */ |
| if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size) |
| continue; |
| |
| /* Try to insert attribute into this subrecord. */ |
| attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, |
| name_off, svcn, ins_le); |
| if (!attr) |
| continue; |
| |
| if (ins_attr) |
| *ins_attr = attr; |
| if (ins_mi) |
| *ins_mi = mi; |
| return 0; |
| } |
| |
| insert_ext: |
| /* We have to allocate a new child subrecord. */ |
| err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi); |
| if (err) |
| goto out; |
| |
| if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) { |
| err = -EINVAL; |
| goto out1; |
| } |
| |
| attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize, |
| name_off, svcn, ins_le); |
| if (!attr) |
| goto out2; |
| |
| if (ins_attr) |
| *ins_attr = attr; |
| if (ins_mi) |
| *ins_mi = mi; |
| |
| return 0; |
| |
| out2: |
| ni_remove_mi(ni, mi); |
| mi_put(mi); |
| err = -EINVAL; |
| |
| out1: |
| ntfs_mark_rec_free(sbi, rno); |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * ni_insert_attr - Insert an attribute into the file. |
| * |
| * If the primary record has room, it will just insert the attribute. |
| * If not, it may make the attribute external. |
| * For $MFT::Data it may make room for the attribute by |
| * making other attributes external. |
| * |
| * NOTE: |
| * The ATTR_LIST and ATTR_STD cannot be made external. |
| * This function does not fill new attribute full. |
| * It only fills 'size'/'type'/'id'/'name_len' fields. |
| */ |
| static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type, |
| const __le16 *name, u8 name_len, u32 asize, |
| u16 name_off, CLST svcn, struct ATTRIB **ins_attr, |
| struct mft_inode **ins_mi, |
| struct ATTR_LIST_ENTRY **ins_le) |
| { |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| int err; |
| struct ATTRIB *attr, *eattr; |
| struct MFT_REC *rec; |
| bool is_mft; |
| struct ATTR_LIST_ENTRY *le; |
| u32 list_reserve, max_free, free, used, t32; |
| __le16 id; |
| u16 t16; |
| |
| is_mft = ni->mi.rno == MFT_REC_MFT; |
| rec = ni->mi.mrec; |
| |
| list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32)); |
| used = le32_to_cpu(rec->used); |
| free = sbi->record_size - used; |
| |
| if (is_mft && type != ATTR_LIST) { |
| /* Reserve space for the ATTRIB list. */ |
| if (free < list_reserve) |
| free = 0; |
| else |
| free -= list_reserve; |
| } |
| |
| if (asize <= free) { |
| attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, |
| asize, name_off, svcn, ins_le); |
| if (attr) { |
| if (ins_attr) |
| *ins_attr = attr; |
| if (ins_mi) |
| *ins_mi = &ni->mi; |
| err = 0; |
| goto out; |
| } |
| } |
| |
| if (!is_mft || type != ATTR_DATA || svcn) { |
| /* This ATTRIB will be external. */ |
| err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize, |
| svcn, name_off, false, ins_attr, ins_mi, |
| ins_le); |
| goto out; |
| } |
| |
| /* |
| * Here we have: "is_mft && type == ATTR_DATA && !svcn" |
| * |
| * The first chunk of the $MFT::Data ATTRIB must be the base record. |
| * Evict as many other attributes as possible. |
| */ |
| max_free = free; |
| |
| /* Estimate the result of moving all possible attributes away. */ |
| attr = NULL; |
| |
| while ((attr = mi_enum_attr(&ni->mi, attr))) { |
| if (attr->type == ATTR_STD) |
| continue; |
| if (attr->type == ATTR_LIST) |
| continue; |
| max_free += le32_to_cpu(attr->size); |
| } |
| |
| if (max_free < asize + list_reserve) { |
| /* Impossible to insert this attribute into primary record. */ |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Start real attribute moving. */ |
| attr = NULL; |
| |
| for (;;) { |
| attr = mi_enum_attr(&ni->mi, attr); |
| if (!attr) { |
| /* We should never be here 'cause we have already check this case. */ |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Skip attributes that MUST be primary record. */ |
| if (attr->type == ATTR_STD || attr->type == ATTR_LIST) |
| continue; |
| |
| le = NULL; |
| if (ni->attr_list.size) { |
| le = al_find_le(ni, NULL, attr); |
| if (!le) { |
| /* Really this is a serious bug. */ |
| err = -EINVAL; |
| goto out; |
| } |
| } |
| |
| t32 = le32_to_cpu(attr->size); |
| t16 = le16_to_cpu(attr->name_off); |
| err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16), |
| attr->name_len, t32, attr_svcn(attr), t16, |
| false, &eattr, NULL, NULL); |
| if (err) |
| return err; |
| |
| id = eattr->id; |
| memcpy(eattr, attr, t32); |
| eattr->id = id; |
| |
| /* Remove from primary record. */ |
| mi_remove_attr(NULL, &ni->mi, attr); |
| |
| /* attr now points to next attribute. */ |
| if (attr->type == ATTR_END) |
| goto out; |
| } |
| while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used)) |
| ; |
| |
| attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize, |
| name_off, svcn, ins_le); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (ins_attr) |
| *ins_attr = attr; |
| if (ins_mi) |
| *ins_mi = &ni->mi; |
| |
| out: |
| return err; |
| } |
| |
| /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */ |
| static int ni_expand_mft_list(struct ntfs_inode *ni) |
| { |
| int err = 0; |
| struct runs_tree *run = &ni->file.run; |
| u32 asize, run_size, done = 0; |
| struct ATTRIB *attr; |
| struct rb_node *node; |
| CLST mft_min, mft_new, svcn, evcn, plen; |
| struct mft_inode *mi, *mi_min, *mi_new; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| |
| /* Find the nearest MFT. */ |
| mft_min = 0; |
| mft_new = 0; |
| mi_min = NULL; |
| |
| for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { |
| mi = rb_entry(node, struct mft_inode, node); |
| |
| attr = mi_enum_attr(mi, NULL); |
| |
| if (!attr) { |
| mft_min = mi->rno; |
| mi_min = mi; |
| break; |
| } |
| } |
| |
| if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) { |
| mft_new = 0; |
| /* Really this is not critical. */ |
| } else if (mft_min > mft_new) { |
| mft_min = mft_new; |
| mi_min = mi_new; |
| } else { |
| ntfs_mark_rec_free(sbi, mft_new); |
| mft_new = 0; |
| ni_remove_mi(ni, mi_new); |
| } |
| |
| attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| asize = le32_to_cpu(attr->size); |
| |
| evcn = le64_to_cpu(attr->nres.evcn); |
| svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits); |
| if (evcn + 1 >= svcn) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn]. |
| * |
| * Update first part of ATTR_DATA in 'primary MFT. |
| */ |
| err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), |
| asize - SIZEOF_NONRESIDENT, &plen); |
| if (err < 0) |
| goto out; |
| |
| run_size = ALIGN(err, 8); |
| err = 0; |
| |
| if (plen < svcn) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| attr->nres.evcn = cpu_to_le64(svcn - 1); |
| attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT); |
| /* 'done' - How many bytes of primary MFT becomes free. */ |
| done = asize - run_size - SIZEOF_NONRESIDENT; |
| le32_sub_cpu(&ni->mi.mrec->used, done); |
| |
| /* Estimate the size of second part: run_buf=NULL. */ |
| err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size, |
| &plen); |
| if (err < 0) |
| goto out; |
| |
| run_size = ALIGN(err, 8); |
| err = 0; |
| |
| if (plen < evcn + 1 - svcn) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * This function may implicitly call expand attr_list. |
| * Insert second part of ATTR_DATA in 'mi_min'. |
| */ |
| attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0, |
| SIZEOF_NONRESIDENT + run_size, |
| SIZEOF_NONRESIDENT, svcn, NULL); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| attr->non_res = 1; |
| attr->name_off = SIZEOF_NONRESIDENT_LE; |
| attr->flags = 0; |
| |
| run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT), |
| run_size, &plen); |
| |
| attr->nres.svcn = cpu_to_le64(svcn); |
| attr->nres.evcn = cpu_to_le64(evcn); |
| attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT); |
| |
| out: |
| if (mft_new) { |
| ntfs_mark_rec_free(sbi, mft_new); |
| ni_remove_mi(ni, mi_new); |
| } |
| |
| return !err && !done ? -EOPNOTSUPP : err; |
| } |
| |
| /* |
| * ni_expand_list - Move all possible attributes out of primary record. |
| */ |
| int ni_expand_list(struct ntfs_inode *ni) |
| { |
| int err = 0; |
| u32 asize, done = 0; |
| struct ATTRIB *attr, *ins_attr; |
| struct ATTR_LIST_ENTRY *le; |
| bool is_mft = ni->mi.rno == MFT_REC_MFT; |
| struct MFT_REF ref; |
| |
| mi_get_ref(&ni->mi, &ref); |
| le = NULL; |
| |
| while ((le = al_enumerate(ni, le))) { |
| if (le->type == ATTR_STD) |
| continue; |
| |
| if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF))) |
| continue; |
| |
| if (is_mft && le->type == ATTR_DATA) |
| continue; |
| |
| /* Find attribute in primary record. */ |
| attr = rec_find_attr_le(&ni->mi, le); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| asize = le32_to_cpu(attr->size); |
| |
| /* Always insert into new record to avoid collisions (deep recursive). */ |
| err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr), |
| attr->name_len, asize, attr_svcn(attr), |
| le16_to_cpu(attr->name_off), true, |
| &ins_attr, NULL, NULL); |
| |
| if (err) |
| goto out; |
| |
| memcpy(ins_attr, attr, asize); |
| ins_attr->id = le->id; |
| /* Remove from primary record. */ |
| mi_remove_attr(NULL, &ni->mi, attr); |
| |
| done += asize; |
| goto out; |
| } |
| |
| if (!is_mft) { |
| err = -EFBIG; /* Attr list is too big(?) */ |
| goto out; |
| } |
| |
| /* Split MFT data as much as possible. */ |
| err = ni_expand_mft_list(ni); |
| if (err) |
| goto out; |
| |
| out: |
| return !err && !done ? -EOPNOTSUPP : err; |
| } |
| |
| /* |
| * ni_insert_nonresident - Insert new nonresident attribute. |
| */ |
| int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type, |
| const __le16 *name, u8 name_len, |
| const struct runs_tree *run, CLST svcn, CLST len, |
| __le16 flags, struct ATTRIB **new_attr, |
| struct mft_inode **mi) |
| { |
| int err; |
| CLST plen; |
| struct ATTRIB *attr; |
| bool is_ext = |
| (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn; |
| u32 name_size = ALIGN(name_len * sizeof(short), 8); |
| u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT; |
| u32 run_off = name_off + name_size; |
| u32 run_size, asize; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| |
| err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off, |
| &plen); |
| if (err < 0) |
| goto out; |
| |
| run_size = ALIGN(err, 8); |
| |
| if (plen < len) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| asize = run_off + run_size; |
| |
| if (asize > sbi->max_bytes_per_attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn, |
| &attr, mi, NULL); |
| |
| if (err) |
| goto out; |
| |
| attr->non_res = 1; |
| attr->name_off = cpu_to_le16(name_off); |
| attr->flags = flags; |
| |
| run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen); |
| |
| attr->nres.svcn = cpu_to_le64(svcn); |
| attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1); |
| |
| err = 0; |
| if (new_attr) |
| *new_attr = attr; |
| |
| *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off); |
| |
| attr->nres.alloc_size = |
| svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits); |
| attr->nres.data_size = attr->nres.alloc_size; |
| attr->nres.valid_size = attr->nres.alloc_size; |
| |
| if (is_ext) { |
| if (flags & ATTR_FLAG_COMPRESSED) |
| attr->nres.c_unit = COMPRESSION_UNIT; |
| attr->nres.total_size = attr->nres.alloc_size; |
| } |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * ni_insert_resident - Inserts new resident attribute. |
| */ |
| int ni_insert_resident(struct ntfs_inode *ni, u32 data_size, |
| enum ATTR_TYPE type, const __le16 *name, u8 name_len, |
| struct ATTRIB **new_attr, struct mft_inode **mi, |
| struct ATTR_LIST_ENTRY **le) |
| { |
| int err; |
| u32 name_size = ALIGN(name_len * sizeof(short), 8); |
| u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8); |
| struct ATTRIB *attr; |
| |
| err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT, |
| 0, &attr, mi, le); |
| if (err) |
| return err; |
| |
| attr->non_res = 0; |
| attr->flags = 0; |
| |
| attr->res.data_size = cpu_to_le32(data_size); |
| attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size); |
| if (type == ATTR_NAME) { |
| attr->res.flags = RESIDENT_FLAG_INDEXED; |
| |
| /* is_attr_indexed(attr)) == true */ |
| le16_add_cpu(&ni->mi.mrec->hard_links, 1); |
| ni->mi.dirty = true; |
| } |
| attr->res.res = 0; |
| |
| if (new_attr) |
| *new_attr = attr; |
| |
| return 0; |
| } |
| |
| /* |
| * ni_remove_attr_le - Remove attribute from record. |
| */ |
| void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr, |
| struct mft_inode *mi, struct ATTR_LIST_ENTRY *le) |
| { |
| mi_remove_attr(ni, mi, attr); |
| |
| if (le) |
| al_remove_le(ni, le); |
| } |
| |
| /* |
| * ni_delete_all - Remove all attributes and frees allocates space. |
| * |
| * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links). |
| */ |
| int ni_delete_all(struct ntfs_inode *ni) |
| { |
| int err; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| struct ATTRIB *attr = NULL; |
| struct rb_node *node; |
| u16 roff; |
| u32 asize; |
| CLST svcn, evcn; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| bool nt3 = is_ntfs3(sbi); |
| struct MFT_REF ref; |
| |
| while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { |
| if (!nt3 || attr->name_len) { |
| ; |
| } else if (attr->type == ATTR_REPARSE) { |
| mi_get_ref(&ni->mi, &ref); |
| ntfs_remove_reparse(sbi, 0, &ref); |
| } else if (attr->type == ATTR_ID && !attr->non_res && |
| le32_to_cpu(attr->res.data_size) >= |
| sizeof(struct GUID)) { |
| ntfs_objid_remove(sbi, resident_data(attr)); |
| } |
| |
| if (!attr->non_res) |
| continue; |
| |
| svcn = le64_to_cpu(attr->nres.svcn); |
| evcn = le64_to_cpu(attr->nres.evcn); |
| |
| if (evcn + 1 <= svcn) |
| continue; |
| |
| asize = le32_to_cpu(attr->size); |
| roff = le16_to_cpu(attr->nres.run_off); |
| |
| /* run==1 means unpack and deallocate. */ |
| run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, |
| Add2Ptr(attr, roff), asize - roff); |
| } |
| |
| if (ni->attr_list.size) { |
| run_deallocate(ni->mi.sbi, &ni->attr_list.run, true); |
| al_destroy(ni); |
| } |
| |
| /* Free all subrecords. */ |
| for (node = rb_first(&ni->mi_tree); node;) { |
| struct rb_node *next = rb_next(node); |
| struct mft_inode *mi = rb_entry(node, struct mft_inode, node); |
| |
| clear_rec_inuse(mi->mrec); |
| mi->dirty = true; |
| mi_write(mi, 0); |
| |
| ntfs_mark_rec_free(sbi, mi->rno); |
| ni_remove_mi(ni, mi); |
| mi_put(mi); |
| node = next; |
| } |
| |
| /* Free base record. */ |
| clear_rec_inuse(ni->mi.mrec); |
| ni->mi.dirty = true; |
| err = mi_write(&ni->mi, 0); |
| |
| ntfs_mark_rec_free(sbi, ni->mi.rno); |
| |
| return err; |
| } |
| |
| /* ni_fname_name |
| * |
| * Return: File name attribute by its value. |
| */ |
| struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni, |
| const struct cpu_str *uni, |
| const struct MFT_REF *home_dir, |
| struct mft_inode **mi, |
| struct ATTR_LIST_ENTRY **le) |
| { |
| struct ATTRIB *attr = NULL; |
| struct ATTR_FILE_NAME *fname; |
| |
| *le = NULL; |
| |
| /* Enumerate all names. */ |
| next: |
| attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); |
| if (!attr) |
| return NULL; |
| |
| fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); |
| if (!fname) |
| goto next; |
| |
| if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir))) |
| goto next; |
| |
| if (!uni) |
| goto next; |
| |
| if (uni->len != fname->name_len) |
| goto next; |
| |
| if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL, |
| false)) |
| goto next; |
| |
| return fname; |
| } |
| |
| /* |
| * ni_fname_type |
| * |
| * Return: File name attribute with given type. |
| */ |
| struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type, |
| struct mft_inode **mi, |
| struct ATTR_LIST_ENTRY **le) |
| { |
| struct ATTRIB *attr = NULL; |
| struct ATTR_FILE_NAME *fname; |
| |
| *le = NULL; |
| |
| if (name_type == FILE_NAME_POSIX) |
| return NULL; |
| |
| /* Enumerate all names. */ |
| for (;;) { |
| attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi); |
| if (!attr) |
| return NULL; |
| |
| fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); |
| if (fname && name_type == fname->type) |
| return fname; |
| } |
| } |
| |
| /* |
| * ni_new_attr_flags |
| * |
| * Process compressed/sparsed in special way. |
| * NOTE: You need to set ni->std_fa = new_fa |
| * after this function to keep internal structures in consistency. |
| */ |
| int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa) |
| { |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| __le16 new_aflags; |
| u32 new_asize; |
| |
| attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); |
| if (!attr) |
| return -EINVAL; |
| |
| new_aflags = attr->flags; |
| |
| if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE) |
| new_aflags |= ATTR_FLAG_SPARSED; |
| else |
| new_aflags &= ~ATTR_FLAG_SPARSED; |
| |
| if (new_fa & FILE_ATTRIBUTE_COMPRESSED) |
| new_aflags |= ATTR_FLAG_COMPRESSED; |
| else |
| new_aflags &= ~ATTR_FLAG_COMPRESSED; |
| |
| if (new_aflags == attr->flags) |
| return 0; |
| |
| if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) == |
| (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) { |
| ntfs_inode_warn(&ni->vfs_inode, |
| "file can't be sparsed and compressed"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!attr->non_res) |
| goto out; |
| |
| if (attr->nres.data_size) { |
| ntfs_inode_warn( |
| &ni->vfs_inode, |
| "one can change sparsed/compressed only for empty files"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* Resize nonresident empty attribute in-place only. */ |
| new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) |
| ? (SIZEOF_NONRESIDENT_EX + 8) |
| : (SIZEOF_NONRESIDENT + 8); |
| |
| if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size))) |
| return -EOPNOTSUPP; |
| |
| if (new_aflags & ATTR_FLAG_SPARSED) { |
| attr->name_off = SIZEOF_NONRESIDENT_EX_LE; |
| /* Windows uses 16 clusters per frame but supports one cluster per frame too. */ |
| attr->nres.c_unit = 0; |
| ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; |
| } else if (new_aflags & ATTR_FLAG_COMPRESSED) { |
| attr->name_off = SIZEOF_NONRESIDENT_EX_LE; |
| /* The only allowed: 16 clusters per frame. */ |
| attr->nres.c_unit = NTFS_LZNT_CUNIT; |
| ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr; |
| } else { |
| attr->name_off = SIZEOF_NONRESIDENT_LE; |
| /* Normal files. */ |
| attr->nres.c_unit = 0; |
| ni->vfs_inode.i_mapping->a_ops = &ntfs_aops; |
| } |
| attr->nres.run_off = attr->name_off; |
| out: |
| attr->flags = new_aflags; |
| mi->dirty = true; |
| |
| return 0; |
| } |
| |
| /* |
| * ni_parse_reparse |
| * |
| * buffer - memory for reparse buffer header |
| */ |
| enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr, |
| struct REPARSE_DATA_BUFFER *buffer) |
| { |
| const struct REPARSE_DATA_BUFFER *rp = NULL; |
| u8 bits; |
| u16 len; |
| typeof(rp->CompressReparseBuffer) *cmpr; |
| |
| /* Try to estimate reparse point. */ |
| if (!attr->non_res) { |
| rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER)); |
| } else if (le64_to_cpu(attr->nres.data_size) >= |
| sizeof(struct REPARSE_DATA_BUFFER)) { |
| struct runs_tree run; |
| |
| run_init(&run); |
| |
| if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) && |
| !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer, |
| sizeof(struct REPARSE_DATA_BUFFER), |
| NULL)) { |
| rp = buffer; |
| } |
| |
| run_close(&run); |
| } |
| |
| if (!rp) |
| return REPARSE_NONE; |
| |
| len = le16_to_cpu(rp->ReparseDataLength); |
| switch (rp->ReparseTag) { |
| case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK): |
| break; /* Symbolic link. */ |
| case IO_REPARSE_TAG_MOUNT_POINT: |
| break; /* Mount points and junctions. */ |
| case IO_REPARSE_TAG_SYMLINK: |
| break; |
| case IO_REPARSE_TAG_COMPRESS: |
| /* |
| * WOF - Windows Overlay Filter - Used to compress files with |
| * LZX/Xpress. |
| * |
| * Unlike native NTFS file compression, the Windows |
| * Overlay Filter supports only read operations. This means |
| * that it doesn't need to sector-align each compressed chunk, |
| * so the compressed data can be packed more tightly together. |
| * If you open the file for writing, the WOF just decompresses |
| * the entire file, turning it back into a plain file. |
| * |
| * Ntfs3 driver decompresses the entire file only on write or |
| * change size requests. |
| */ |
| |
| cmpr = &rp->CompressReparseBuffer; |
| if (len < sizeof(*cmpr) || |
| cmpr->WofVersion != WOF_CURRENT_VERSION || |
| cmpr->WofProvider != WOF_PROVIDER_SYSTEM || |
| cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) { |
| return REPARSE_NONE; |
| } |
| |
| switch (cmpr->CompressionFormat) { |
| case WOF_COMPRESSION_XPRESS4K: |
| bits = 0xc; // 4k |
| break; |
| case WOF_COMPRESSION_XPRESS8K: |
| bits = 0xd; // 8k |
| break; |
| case WOF_COMPRESSION_XPRESS16K: |
| bits = 0xe; // 16k |
| break; |
| case WOF_COMPRESSION_LZX32K: |
| bits = 0xf; // 32k |
| break; |
| default: |
| bits = 0x10; // 64k |
| break; |
| } |
| ni_set_ext_compress_bits(ni, bits); |
| return REPARSE_COMPRESSED; |
| |
| case IO_REPARSE_TAG_DEDUP: |
| ni->ni_flags |= NI_FLAG_DEDUPLICATED; |
| return REPARSE_DEDUPLICATED; |
| |
| default: |
| if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE) |
| break; |
| |
| return REPARSE_NONE; |
| } |
| |
| if (buffer != rp) |
| memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER)); |
| |
| /* Looks like normal symlink. */ |
| return REPARSE_LINK; |
| } |
| |
| /* |
| * ni_fiemap - Helper for file_fiemap(). |
| * |
| * Assumed ni_lock. |
| * TODO: Less aggressive locks. |
| */ |
| int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo, |
| __u64 vbo, __u64 len) |
| { |
| int err = 0; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| u8 cluster_bits = sbi->cluster_bits; |
| struct runs_tree *run; |
| struct rw_semaphore *run_lock; |
| struct ATTRIB *attr; |
| CLST vcn = vbo >> cluster_bits; |
| CLST lcn, clen; |
| u64 valid = ni->i_valid; |
| u64 lbo, bytes; |
| u64 end, alloc_size; |
| size_t idx = -1; |
| u32 flags; |
| bool ok; |
| |
| if (S_ISDIR(ni->vfs_inode.i_mode)) { |
| run = &ni->dir.alloc_run; |
| attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME, |
| ARRAY_SIZE(I30_NAME), NULL, NULL); |
| run_lock = &ni->dir.run_lock; |
| } else { |
| run = &ni->file.run; |
| attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, |
| NULL); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| if (is_attr_compressed(attr)) { |
| /* Unfortunately cp -r incorrectly treats compressed clusters. */ |
| err = -EOPNOTSUPP; |
| ntfs_inode_warn( |
| &ni->vfs_inode, |
| "fiemap is not supported for compressed file (cp -r)"); |
| goto out; |
| } |
| run_lock = &ni->file.run_lock; |
| } |
| |
| if (!attr || !attr->non_res) { |
| err = fiemap_fill_next_extent( |
| fieinfo, 0, 0, |
| attr ? le32_to_cpu(attr->res.data_size) : 0, |
| FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST | |
| FIEMAP_EXTENT_MERGED); |
| goto out; |
| } |
| |
| end = vbo + len; |
| alloc_size = le64_to_cpu(attr->nres.alloc_size); |
| if (end > alloc_size) |
| end = alloc_size; |
| |
| down_read(run_lock); |
| |
| while (vbo < end) { |
| if (idx == -1) { |
| ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); |
| } else { |
| CLST vcn_next = vcn; |
| |
| ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && |
| vcn == vcn_next; |
| if (!ok) |
| vcn = vcn_next; |
| } |
| |
| if (!ok) { |
| up_read(run_lock); |
| down_write(run_lock); |
| |
| err = attr_load_runs_vcn(ni, attr->type, |
| attr_name(attr), |
| attr->name_len, run, vcn); |
| |
| up_write(run_lock); |
| down_read(run_lock); |
| |
| if (err) |
| break; |
| |
| ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx); |
| |
| if (!ok) { |
| err = -EINVAL; |
| break; |
| } |
| } |
| |
| if (!clen) { |
| err = -EINVAL; // ? |
| break; |
| } |
| |
| if (lcn == SPARSE_LCN) { |
| vcn += clen; |
| vbo = (u64)vcn << cluster_bits; |
| continue; |
| } |
| |
| flags = FIEMAP_EXTENT_MERGED; |
| if (S_ISDIR(ni->vfs_inode.i_mode)) { |
| ; |
| } else if (is_attr_compressed(attr)) { |
| CLST clst_data; |
| |
| err = attr_is_frame_compressed( |
| ni, attr, vcn >> attr->nres.c_unit, &clst_data); |
| if (err) |
| break; |
| if (clst_data < NTFS_LZNT_CLUSTERS) |
| flags |= FIEMAP_EXTENT_ENCODED; |
| } else if (is_attr_encrypted(attr)) { |
| flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; |
| } |
| |
| vbo = (u64)vcn << cluster_bits; |
| bytes = (u64)clen << cluster_bits; |
| lbo = (u64)lcn << cluster_bits; |
| |
| vcn += clen; |
| |
| if (vbo + bytes >= end) { |
| bytes = end - vbo; |
| flags |= FIEMAP_EXTENT_LAST; |
| } |
| |
| if (vbo + bytes <= valid) { |
| ; |
| } else if (vbo >= valid) { |
| flags |= FIEMAP_EXTENT_UNWRITTEN; |
| } else { |
| /* vbo < valid && valid < vbo + bytes */ |
| u64 dlen = valid - vbo; |
| |
| err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen, |
| flags); |
| if (err < 0) |
| break; |
| if (err == 1) { |
| err = 0; |
| break; |
| } |
| |
| vbo = valid; |
| bytes -= dlen; |
| if (!bytes) |
| continue; |
| |
| lbo += dlen; |
| flags |= FIEMAP_EXTENT_UNWRITTEN; |
| } |
| |
| err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags); |
| if (err < 0) |
| break; |
| if (err == 1) { |
| err = 0; |
| break; |
| } |
| |
| vbo += bytes; |
| } |
| |
| up_read(run_lock); |
| |
| out: |
| return err; |
| } |
| |
| /* |
| * ni_readpage_cmpr |
| * |
| * When decompressing, we typically obtain more than one page per reference. |
| * We inject the additional pages into the page cache. |
| */ |
| int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct address_space *mapping = page->mapping; |
| pgoff_t index = page->index; |
| u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT; |
| struct page **pages = NULL; /* Array of at most 16 pages. stack? */ |
| u8 frame_bits; |
| CLST frame; |
| u32 i, idx, frame_size, pages_per_frame; |
| gfp_t gfp_mask; |
| struct page *pg; |
| |
| if (vbo >= ni->vfs_inode.i_size) { |
| SetPageUptodate(page); |
| err = 0; |
| goto out; |
| } |
| |
| if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { |
| /* Xpress or LZX. */ |
| frame_bits = ni_ext_compress_bits(ni); |
| } else { |
| /* LZNT compression. */ |
| frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; |
| } |
| frame_size = 1u << frame_bits; |
| frame = vbo >> frame_bits; |
| frame_vbo = (u64)frame << frame_bits; |
| idx = (vbo - frame_vbo) >> PAGE_SHIFT; |
| |
| pages_per_frame = frame_size >> PAGE_SHIFT; |
| pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); |
| if (!pages) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| pages[idx] = page; |
| index = frame_vbo >> PAGE_SHIFT; |
| gfp_mask = mapping_gfp_mask(mapping); |
| |
| for (i = 0; i < pages_per_frame; i++, index++) { |
| if (i == idx) |
| continue; |
| |
| pg = find_or_create_page(mapping, index, gfp_mask); |
| if (!pg) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| pages[i] = pg; |
| } |
| |
| err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame); |
| |
| out1: |
| if (err) |
| SetPageError(page); |
| |
| for (i = 0; i < pages_per_frame; i++) { |
| pg = pages[i]; |
| if (i == idx) |
| continue; |
| unlock_page(pg); |
| put_page(pg); |
| } |
| |
| out: |
| /* At this point, err contains 0 or -EIO depending on the "critical" page. */ |
| kfree(pages); |
| unlock_page(page); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_NTFS3_LZX_XPRESS |
| /* |
| * ni_decompress_file - Decompress LZX/Xpress compressed file. |
| * |
| * Remove ATTR_DATA::WofCompressedData. |
| * Remove ATTR_REPARSE. |
| */ |
| int ni_decompress_file(struct ntfs_inode *ni) |
| { |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct inode *inode = &ni->vfs_inode; |
| loff_t i_size = inode->i_size; |
| struct address_space *mapping = inode->i_mapping; |
| gfp_t gfp_mask = mapping_gfp_mask(mapping); |
| struct page **pages = NULL; |
| struct ATTR_LIST_ENTRY *le; |
| struct ATTRIB *attr; |
| CLST vcn, cend, lcn, clen, end; |
| pgoff_t index; |
| u64 vbo; |
| u8 frame_bits; |
| u32 i, frame_size, pages_per_frame, bytes; |
| struct mft_inode *mi; |
| int err; |
| |
| /* Clusters for decompressed data. */ |
| cend = bytes_to_cluster(sbi, i_size); |
| |
| if (!i_size) |
| goto remove_wof; |
| |
| /* Check in advance. */ |
| if (cend > wnd_zeroes(&sbi->used.bitmap)) { |
| err = -ENOSPC; |
| goto out; |
| } |
| |
| frame_bits = ni_ext_compress_bits(ni); |
| frame_size = 1u << frame_bits; |
| pages_per_frame = frame_size >> PAGE_SHIFT; |
| pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); |
| if (!pages) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Step 1: Decompress data and copy to new allocated clusters. |
| */ |
| index = 0; |
| for (vbo = 0; vbo < i_size; vbo += bytes) { |
| u32 nr_pages; |
| bool new; |
| |
| if (vbo + frame_size > i_size) { |
| bytes = i_size - vbo; |
| nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| } else { |
| nr_pages = pages_per_frame; |
| bytes = frame_size; |
| } |
| |
| end = bytes_to_cluster(sbi, vbo + bytes); |
| |
| for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) { |
| err = attr_data_get_block(ni, vcn, cend - vcn, &lcn, |
| &clen, &new); |
| if (err) |
| goto out; |
| } |
| |
| for (i = 0; i < pages_per_frame; i++, index++) { |
| struct page *pg; |
| |
| pg = find_or_create_page(mapping, index, gfp_mask); |
| if (!pg) { |
| while (i--) { |
| unlock_page(pages[i]); |
| put_page(pages[i]); |
| } |
| err = -ENOMEM; |
| goto out; |
| } |
| pages[i] = pg; |
| } |
| |
| err = ni_read_frame(ni, vbo, pages, pages_per_frame); |
| |
| if (!err) { |
| down_read(&ni->file.run_lock); |
| err = ntfs_bio_pages(sbi, &ni->file.run, pages, |
| nr_pages, vbo, bytes, |
| REQ_OP_WRITE); |
| up_read(&ni->file.run_lock); |
| } |
| |
| for (i = 0; i < pages_per_frame; i++) { |
| unlock_page(pages[i]); |
| put_page(pages[i]); |
| } |
| |
| if (err) |
| goto out; |
| |
| cond_resched(); |
| } |
| |
| remove_wof: |
| /* |
| * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData |
| * and ATTR_REPARSE. |
| */ |
| attr = NULL; |
| le = NULL; |
| while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) { |
| CLST svcn, evcn; |
| u32 asize, roff; |
| |
| if (attr->type == ATTR_REPARSE) { |
| struct MFT_REF ref; |
| |
| mi_get_ref(&ni->mi, &ref); |
| ntfs_remove_reparse(sbi, 0, &ref); |
| } |
| |
| if (!attr->non_res) |
| continue; |
| |
| if (attr->type != ATTR_REPARSE && |
| (attr->type != ATTR_DATA || |
| attr->name_len != ARRAY_SIZE(WOF_NAME) || |
| memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME)))) |
| continue; |
| |
| svcn = le64_to_cpu(attr->nres.svcn); |
| evcn = le64_to_cpu(attr->nres.evcn); |
| |
| if (evcn + 1 <= svcn) |
| continue; |
| |
| asize = le32_to_cpu(attr->size); |
| roff = le16_to_cpu(attr->nres.run_off); |
| |
| /*run==1 Means unpack and deallocate. */ |
| run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn, |
| Add2Ptr(attr, roff), asize - roff); |
| } |
| |
| /* |
| * Step 3: Remove attribute ATTR_DATA::WofCompressedData. |
| */ |
| err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME), |
| false, NULL); |
| if (err) |
| goto out; |
| |
| /* |
| * Step 4: Remove ATTR_REPARSE. |
| */ |
| err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL); |
| if (err) |
| goto out; |
| |
| /* |
| * Step 5: Remove sparse flag from data attribute. |
| */ |
| attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi); |
| if (!attr) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (attr->non_res && is_attr_sparsed(attr)) { |
| /* Sparsed attribute header is 8 bytes bigger than normal. */ |
| struct MFT_REC *rec = mi->mrec; |
| u32 used = le32_to_cpu(rec->used); |
| u32 asize = le32_to_cpu(attr->size); |
| u16 roff = le16_to_cpu(attr->nres.run_off); |
| char *rbuf = Add2Ptr(attr, roff); |
| |
| memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf)); |
| attr->size = cpu_to_le32(asize - 8); |
| attr->flags &= ~ATTR_FLAG_SPARSED; |
| attr->nres.run_off = cpu_to_le16(roff - 8); |
| attr->nres.c_unit = 0; |
| rec->used = cpu_to_le32(used - 8); |
| mi->dirty = true; |
| ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE | |
| FILE_ATTRIBUTE_REPARSE_POINT); |
| |
| mark_inode_dirty(inode); |
| } |
| |
| /* Clear cached flag. */ |
| ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK; |
| if (ni->file.offs_page) { |
| put_page(ni->file.offs_page); |
| ni->file.offs_page = NULL; |
| } |
| mapping->a_ops = &ntfs_aops; |
| |
| out: |
| kfree(pages); |
| if (err) { |
| make_bad_inode(inode); |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * decompress_lzx_xpress - External compression LZX/Xpress. |
| */ |
| static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr, |
| size_t cmpr_size, void *unc, size_t unc_size, |
| u32 frame_size) |
| { |
| int err; |
| void *ctx; |
| |
| if (cmpr_size == unc_size) { |
| /* Frame not compressed. */ |
| memcpy(unc, cmpr, unc_size); |
| return 0; |
| } |
| |
| err = 0; |
| if (frame_size == 0x8000) { |
| mutex_lock(&sbi->compress.mtx_lzx); |
| /* LZX: Frame compressed. */ |
| ctx = sbi->compress.lzx; |
| if (!ctx) { |
| /* Lazy initialize LZX decompress context. */ |
| ctx = lzx_allocate_decompressor(); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| |
| sbi->compress.lzx = ctx; |
| } |
| |
| if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { |
| /* Treat all errors as "invalid argument". */ |
| err = -EINVAL; |
| } |
| out1: |
| mutex_unlock(&sbi->compress.mtx_lzx); |
| } else { |
| /* XPRESS: Frame compressed. */ |
| mutex_lock(&sbi->compress.mtx_xpress); |
| ctx = sbi->compress.xpress; |
| if (!ctx) { |
| /* Lazy initialize Xpress decompress context. */ |
| ctx = xpress_allocate_decompressor(); |
| if (!ctx) { |
| err = -ENOMEM; |
| goto out2; |
| } |
| |
| sbi->compress.xpress = ctx; |
| } |
| |
| if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) { |
| /* Treat all errors as "invalid argument". */ |
| err = -EINVAL; |
| } |
| out2: |
| mutex_unlock(&sbi->compress.mtx_xpress); |
| } |
| return err; |
| } |
| #endif |
| |
| /* |
| * ni_read_frame |
| * |
| * Pages - Array of locked pages. |
| */ |
| int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages, |
| u32 pages_per_frame) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| u8 cluster_bits = sbi->cluster_bits; |
| char *frame_ondisk = NULL; |
| char *frame_mem = NULL; |
| struct page **pages_disk = NULL; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| struct runs_tree *run = &ni->file.run; |
| u64 valid_size = ni->i_valid; |
| u64 vbo_disk; |
| size_t unc_size; |
| u32 frame_size, i, npages_disk, ondisk_size; |
| struct page *pg; |
| struct ATTRIB *attr; |
| CLST frame, clst_data; |
| |
| /* |
| * To simplify decompress algorithm do vmap for source |
| * and target pages. |
| */ |
| for (i = 0; i < pages_per_frame; i++) |
| kmap(pages[i]); |
| |
| frame_size = pages_per_frame << PAGE_SHIFT; |
| frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL); |
| if (!frame_mem) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL); |
| if (!attr) { |
| err = -ENOENT; |
| goto out1; |
| } |
| |
| if (!attr->non_res) { |
| u32 data_size = le32_to_cpu(attr->res.data_size); |
| |
| memset(frame_mem, 0, frame_size); |
| if (frame_vbo < data_size) { |
| ondisk_size = data_size - frame_vbo; |
| memcpy(frame_mem, resident_data(attr) + frame_vbo, |
| min(ondisk_size, frame_size)); |
| } |
| err = 0; |
| goto out1; |
| } |
| |
| if (frame_vbo >= valid_size) { |
| memset(frame_mem, 0, frame_size); |
| err = 0; |
| goto out1; |
| } |
| |
| if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) { |
| #ifndef CONFIG_NTFS3_LZX_XPRESS |
| err = -EOPNOTSUPP; |
| goto out1; |
| #else |
| u32 frame_bits = ni_ext_compress_bits(ni); |
| u64 frame64 = frame_vbo >> frame_bits; |
| u64 frames, vbo_data; |
| |
| if (frame_size != (1u << frame_bits)) { |
| err = -EINVAL; |
| goto out1; |
| } |
| switch (frame_size) { |
| case 0x1000: |
| case 0x2000: |
| case 0x4000: |
| case 0x8000: |
| break; |
| default: |
| /* Unknown compression. */ |
| err = -EOPNOTSUPP; |
| goto out1; |
| } |
| |
| attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME, |
| ARRAY_SIZE(WOF_NAME), NULL, NULL); |
| if (!attr) { |
| ntfs_inode_err( |
| &ni->vfs_inode, |
| "external compressed file should contains data attribute \"WofCompressedData\""); |
| err = -EINVAL; |
| goto out1; |
| } |
| |
| if (!attr->non_res) { |
| run = NULL; |
| } else { |
| run = run_alloc(); |
| if (!run) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| } |
| |
| frames = (ni->vfs_inode.i_size - 1) >> frame_bits; |
| |
| err = attr_wof_frame_info(ni, attr, run, frame64, frames, |
| frame_bits, &ondisk_size, &vbo_data); |
| if (err) |
| goto out2; |
| |
| if (frame64 == frames) { |
| unc_size = 1 + ((ni->vfs_inode.i_size - 1) & |
| (frame_size - 1)); |
| ondisk_size = attr_size(attr) - vbo_data; |
| } else { |
| unc_size = frame_size; |
| } |
| |
| if (ondisk_size > frame_size) { |
| err = -EINVAL; |
| goto out2; |
| } |
| |
| if (!attr->non_res) { |
| if (vbo_data + ondisk_size > |
| le32_to_cpu(attr->res.data_size)) { |
| err = -EINVAL; |
| goto out1; |
| } |
| |
| err = decompress_lzx_xpress( |
| sbi, Add2Ptr(resident_data(attr), vbo_data), |
| ondisk_size, frame_mem, unc_size, frame_size); |
| goto out1; |
| } |
| vbo_disk = vbo_data; |
| /* Load all runs to read [vbo_disk-vbo_to). */ |
| err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME, |
| ARRAY_SIZE(WOF_NAME), run, vbo_disk, |
| vbo_data + ondisk_size); |
| if (err) |
| goto out2; |
| npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) + |
| PAGE_SIZE - 1) >> |
| PAGE_SHIFT; |
| #endif |
| } else if (is_attr_compressed(attr)) { |
| /* LZNT compression. */ |
| if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { |
| err = -EOPNOTSUPP; |
| goto out1; |
| } |
| |
| if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { |
| err = -EOPNOTSUPP; |
| goto out1; |
| } |
| |
| down_write(&ni->file.run_lock); |
| run_truncate_around(run, le64_to_cpu(attr->nres.svcn)); |
| frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT); |
| err = attr_is_frame_compressed(ni, attr, frame, &clst_data); |
| up_write(&ni->file.run_lock); |
| if (err) |
| goto out1; |
| |
| if (!clst_data) { |
| memset(frame_mem, 0, frame_size); |
| goto out1; |
| } |
| |
| frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; |
| ondisk_size = clst_data << cluster_bits; |
| |
| if (clst_data >= NTFS_LZNT_CLUSTERS) { |
| /* Frame is not compressed. */ |
| down_read(&ni->file.run_lock); |
| err = ntfs_bio_pages(sbi, run, pages, pages_per_frame, |
| frame_vbo, ondisk_size, |
| REQ_OP_READ); |
| up_read(&ni->file.run_lock); |
| goto out1; |
| } |
| vbo_disk = frame_vbo; |
| npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| } else { |
| __builtin_unreachable(); |
| err = -EINVAL; |
| goto out1; |
| } |
| |
| pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS); |
| if (!pages_disk) { |
| err = -ENOMEM; |
| goto out2; |
| } |
| |
| for (i = 0; i < npages_disk; i++) { |
| pg = alloc_page(GFP_KERNEL); |
| if (!pg) { |
| err = -ENOMEM; |
| goto out3; |
| } |
| pages_disk[i] = pg; |
| lock_page(pg); |
| kmap(pg); |
| } |
| |
| /* Read 'ondisk_size' bytes from disk. */ |
| down_read(&ni->file.run_lock); |
| err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk, |
| ondisk_size, REQ_OP_READ); |
| up_read(&ni->file.run_lock); |
| if (err) |
| goto out3; |
| |
| /* |
| * To simplify decompress algorithm do vmap for source and target pages. |
| */ |
| frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO); |
| if (!frame_ondisk) { |
| err = -ENOMEM; |
| goto out3; |
| } |
| |
| /* Decompress: Frame_ondisk -> frame_mem. */ |
| #ifdef CONFIG_NTFS3_LZX_XPRESS |
| if (run != &ni->file.run) { |
| /* LZX or XPRESS */ |
| err = decompress_lzx_xpress( |
| sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)), |
| ondisk_size, frame_mem, unc_size, frame_size); |
| } else |
| #endif |
| { |
| /* LZNT - Native NTFS compression. */ |
| unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem, |
| frame_size); |
| if ((ssize_t)unc_size < 0) |
| err = unc_size; |
| else if (!unc_size || unc_size > frame_size) |
| err = -EINVAL; |
| } |
| if (!err && valid_size < frame_vbo + frame_size) { |
| size_t ok = valid_size - frame_vbo; |
| |
| memset(frame_mem + ok, 0, frame_size - ok); |
| } |
| |
| vunmap(frame_ondisk); |
| |
| out3: |
| for (i = 0; i < npages_disk; i++) { |
| pg = pages_disk[i]; |
| if (pg) { |
| kunmap(pg); |
| unlock_page(pg); |
| put_page(pg); |
| } |
| } |
| kfree(pages_disk); |
| |
| out2: |
| #ifdef CONFIG_NTFS3_LZX_XPRESS |
| if (run != &ni->file.run) |
| run_free(run); |
| #endif |
| out1: |
| vunmap(frame_mem); |
| out: |
| for (i = 0; i < pages_per_frame; i++) { |
| pg = pages[i]; |
| kunmap(pg); |
| ClearPageError(pg); |
| SetPageUptodate(pg); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * ni_write_frame |
| * |
| * Pages - Array of locked pages. |
| */ |
| int ni_write_frame(struct ntfs_inode *ni, struct page **pages, |
| u32 pages_per_frame) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits; |
| u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT; |
| u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT; |
| CLST frame = frame_vbo >> frame_bits; |
| char *frame_ondisk = NULL; |
| struct page **pages_disk = NULL; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| char *frame_mem; |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| u32 i; |
| struct page *pg; |
| size_t compr_size, ondisk_size; |
| struct lznt *lznt; |
| |
| attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi); |
| if (!attr) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| if (WARN_ON(!is_attr_compressed(attr))) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| if (!attr->non_res) { |
| down_write(&ni->file.run_lock); |
| err = attr_make_nonresident(ni, attr, le, mi, |
| le32_to_cpu(attr->res.data_size), |
| &ni->file.run, &attr, pages[0]); |
| up_write(&ni->file.run_lock); |
| if (err) |
| goto out; |
| } |
| |
| if (attr->nres.c_unit != NTFS_LZNT_CUNIT) { |
| err = -EOPNOTSUPP; |
| goto out; |
| } |
| |
| pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS); |
| if (!pages_disk) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < pages_per_frame; i++) { |
| pg = alloc_page(GFP_KERNEL); |
| if (!pg) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| pages_disk[i] = pg; |
| lock_page(pg); |
| kmap(pg); |
| } |
| |
| /* To simplify compress algorithm do vmap for source and target pages. */ |
| frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL); |
| if (!frame_ondisk) { |
| err = -ENOMEM; |
| goto out1; |
| } |
| |
| for (i = 0; i < pages_per_frame; i++) |
| kmap(pages[i]); |
| |
| /* Map in-memory frame for read-only. */ |
| frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO); |
| if (!frame_mem) { |
| err = -ENOMEM; |
| goto out2; |
| } |
| |
| mutex_lock(&sbi->compress.mtx_lznt); |
| lznt = NULL; |
| if (!sbi->compress.lznt) { |
| /* |
| * LZNT implements two levels of compression: |
| * 0 - Standard compression |
| * 1 - Best compression, requires a lot of cpu |
| * use mount option? |
| */ |
| lznt = get_lznt_ctx(0); |
| if (!lznt) { |
| mutex_unlock(&sbi->compress.mtx_lznt); |
| err = -ENOMEM; |
| goto out3; |
| } |
| |
| sbi->compress.lznt = lznt; |
| lznt = NULL; |
| } |
| |
| /* Compress: frame_mem -> frame_ondisk */ |
| compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk, |
| frame_size, sbi->compress.lznt); |
| mutex_unlock(&sbi->compress.mtx_lznt); |
| kfree(lznt); |
| |
| if (compr_size + sbi->cluster_size > frame_size) { |
| /* Frame is not compressed. */ |
| compr_size = frame_size; |
| ondisk_size = frame_size; |
| } else if (compr_size) { |
| /* Frame is compressed. */ |
| ondisk_size = ntfs_up_cluster(sbi, compr_size); |
| memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size); |
| } else { |
| /* Frame is sparsed. */ |
| ondisk_size = 0; |
| } |
| |
| down_write(&ni->file.run_lock); |
| run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn)); |
| err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid); |
| up_write(&ni->file.run_lock); |
| if (err) |
| goto out2; |
| |
| if (!ondisk_size) |
| goto out2; |
| |
| down_read(&ni->file.run_lock); |
| err = ntfs_bio_pages(sbi, &ni->file.run, |
| ondisk_size < frame_size ? pages_disk : pages, |
| pages_per_frame, frame_vbo, ondisk_size, |
| REQ_OP_WRITE); |
| up_read(&ni->file.run_lock); |
| |
| out3: |
| vunmap(frame_mem); |
| |
| out2: |
| for (i = 0; i < pages_per_frame; i++) |
| kunmap(pages[i]); |
| |
| vunmap(frame_ondisk); |
| out1: |
| for (i = 0; i < pages_per_frame; i++) { |
| pg = pages_disk[i]; |
| if (pg) { |
| kunmap(pg); |
| unlock_page(pg); |
| put_page(pg); |
| } |
| } |
| kfree(pages_disk); |
| out: |
| return err; |
| } |
| |
| /* |
| * ni_remove_name - Removes name 'de' from MFT and from directory. |
| * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs. |
| */ |
| int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, |
| struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step) |
| { |
| int err; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); |
| struct ATTR_FILE_NAME *fname; |
| struct ATTR_LIST_ENTRY *le; |
| struct mft_inode *mi; |
| u16 de_key_size = le16_to_cpu(de->key_size); |
| u8 name_type; |
| |
| *undo_step = 0; |
| |
| /* Find name in record. */ |
| mi_get_ref(&dir_ni->mi, &de_name->home); |
| |
| fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len, |
| &de_name->home, &mi, &le); |
| if (!fname) |
| return -ENOENT; |
| |
| memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO)); |
| name_type = paired_name(fname->type); |
| |
| /* Mark ntfs as dirty. It will be cleared at umount. */ |
| ntfs_set_state(sbi, NTFS_DIRTY_DIRTY); |
| |
| /* Step 1: Remove name from directory. */ |
| err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi); |
| if (err) |
| return err; |
| |
| /* Step 2: Remove name from MFT. */ |
| ni_remove_attr_le(ni, attr_from_name(fname), mi, le); |
| |
| *undo_step = 2; |
| |
| /* Get paired name. */ |
| fname = ni_fname_type(ni, name_type, &mi, &le); |
| if (fname) { |
| u16 de2_key_size = fname_full_size(fname); |
| |
| *de2 = Add2Ptr(de, 1024); |
| (*de2)->key_size = cpu_to_le16(de2_key_size); |
| |
| memcpy(*de2 + 1, fname, de2_key_size); |
| |
| /* Step 3: Remove paired name from directory. */ |
| err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, |
| de2_key_size, sbi); |
| if (err) |
| return err; |
| |
| /* Step 4: Remove paired name from MFT. */ |
| ni_remove_attr_le(ni, attr_from_name(fname), mi, le); |
| |
| *undo_step = 4; |
| } |
| return 0; |
| } |
| |
| /* |
| * ni_remove_name_undo - Paired function for ni_remove_name. |
| * |
| * Return: True if ok |
| */ |
| bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, |
| struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step) |
| { |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct ATTRIB *attr; |
| u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0; |
| |
| switch (undo_step) { |
| case 4: |
| if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, |
| &attr, NULL, NULL)) { |
| return false; |
| } |
| memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size); |
| |
| mi_get_ref(&ni->mi, &de2->ref); |
| de2->size = cpu_to_le16(ALIGN(de_key_size, 8) + |
| sizeof(struct NTFS_DE)); |
| de2->flags = 0; |
| de2->res = 0; |
| |
| if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, |
| 1)) { |
| return false; |
| } |
| fallthrough; |
| |
| case 2: |
| de_key_size = le16_to_cpu(de->key_size); |
| |
| if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, |
| &attr, NULL, NULL)) { |
| return false; |
| } |
| |
| memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size); |
| mi_get_ref(&ni->mi, &de->ref); |
| |
| if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * ni_add_name - Add new name in MFT and in directory. |
| */ |
| int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni, |
| struct NTFS_DE *de) |
| { |
| int err; |
| struct ATTRIB *attr; |
| struct ATTR_LIST_ENTRY *le; |
| struct mft_inode *mi; |
| struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1); |
| u16 de_key_size = le16_to_cpu(de->key_size); |
| |
| mi_get_ref(&ni->mi, &de->ref); |
| mi_get_ref(&dir_ni->mi, &de_name->home); |
| |
| /* Insert new name in MFT. */ |
| err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr, |
| &mi, &le); |
| if (err) |
| return err; |
| |
| memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size); |
| |
| /* Insert new name in directory. */ |
| err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0); |
| if (err) |
| ni_remove_attr_le(ni, attr, mi, le); |
| |
| return err; |
| } |
| |
| /* |
| * ni_rename - Remove one name and insert new name. |
| */ |
| int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni, |
| struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de, |
| bool *is_bad) |
| { |
| int err; |
| struct NTFS_DE *de2 = NULL; |
| int undo = 0; |
| |
| /* |
| * There are two possible ways to rename: |
| * 1) Add new name and remove old name. |
| * 2) Remove old name and add new name. |
| * |
| * In most cases (not all!) adding new name in MFT and in directory can |
| * allocate additional cluster(s). |
| * Second way may result to bad inode if we can't add new name |
| * and then can't restore (add) old name. |
| */ |
| |
| /* |
| * Way 1 - Add new + remove old. |
| */ |
| err = ni_add_name(new_dir_ni, ni, new_de); |
| if (!err) { |
| err = ni_remove_name(dir_ni, ni, de, &de2, &undo); |
| if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo)) |
| *is_bad = true; |
| } |
| |
| /* |
| * Way 2 - Remove old + add new. |
| */ |
| /* |
| * err = ni_remove_name(dir_ni, ni, de, &de2, &undo); |
| * if (!err) { |
| * err = ni_add_name(new_dir_ni, ni, new_de); |
| * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo)) |
| * *is_bad = true; |
| * } |
| */ |
| |
| return err; |
| } |
| |
| /* |
| * ni_is_dirty - Return: True if 'ni' requires ni_write_inode. |
| */ |
| bool ni_is_dirty(struct inode *inode) |
| { |
| struct ntfs_inode *ni = ntfs_i(inode); |
| struct rb_node *node; |
| |
| if (ni->mi.dirty || ni->attr_list.dirty || |
| (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) |
| return true; |
| |
| for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) { |
| if (rb_entry(node, struct mft_inode, node)->dirty) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * ni_update_parent |
| * |
| * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories. |
| */ |
| static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup, |
| int sync) |
| { |
| struct ATTRIB *attr; |
| struct mft_inode *mi; |
| struct ATTR_LIST_ENTRY *le = NULL; |
| struct ntfs_sb_info *sbi = ni->mi.sbi; |
| struct super_block *sb = sbi->sb; |
| bool re_dirty = false; |
| |
| if (ni->mi.mrec->flags & RECORD_FLAG_DIR) { |
| dup->fa |= FILE_ATTRIBUTE_DIRECTORY; |
| attr = NULL; |
| dup->alloc_size = 0; |
| dup->data_size = 0; |
| } else { |
| dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY; |
| |
| attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, |
| &mi); |
| if (!attr) { |
| dup->alloc_size = dup->data_size = 0; |
| } else if (!attr->non_res) { |
| u32 data_size = le32_to_cpu(attr->res.data_size); |
| |
| dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8)); |
| dup->data_size = cpu_to_le64(data_size); |
| } else { |
| u64 new_valid = ni->i_valid; |
| u64 data_size = le64_to_cpu(attr->nres.data_size); |
| __le64 valid_le; |
| |
| dup->alloc_size = is_attr_ext(attr) |
| ? attr->nres.total_size |
| : attr->nres.alloc_size; |
| dup->data_size = attr->nres.data_size; |
| |
| if (new_valid > data_size) |
| new_valid = data_size; |
| |
| valid_le = cpu_to_le64(new_valid); |
| if (valid_le != attr->nres.valid_size) { |
| attr->nres.valid_size = valid_le; |
| mi->dirty = true; |
| } |
| } |
| } |
| |
| /* TODO: Fill reparse info. */ |
| dup->reparse = 0; |
| dup->ea_size = 0; |
| |
| if (ni->ni_flags & NI_FLAG_EA) { |
| attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL, |
| NULL); |
| if (attr) { |
| const struct EA_INFO *info; |
| |
| info = resident_data_ex(attr, sizeof(struct EA_INFO)); |
| /* If ATTR_EA_INFO exists 'info' can't be NULL. */ |
| if (info) |
| dup->ea_size = info->size_pack; |
| } |
| } |
| |
| attr = NULL; |
| le = NULL; |
| |
| while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL, |
| &mi))) { |
| struct inode *dir; |
| struct ATTR_FILE_NAME *fname; |
| |
| fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME); |
| if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup))) |
| continue; |
| |
| /* ntfs_iget5 may sleep. */ |
| dir = ntfs_iget5(sb, &fname->home, NULL); |
| if (IS_ERR(dir)) { |
| ntfs_inode_warn( |
| &ni->vfs_inode, |
| "failed to open parent directory r=%lx to update", |
| (long)ino_get(&fname->home)); |
| continue; |
| } |
| |
| if (!is_bad_inode(dir)) { |
| struct ntfs_inode *dir_ni = ntfs_i(dir); |
| |
| if (!ni_trylock(dir_ni)) { |
| re_dirty = true; |
| } else { |
| indx_update_dup(dir_ni, sbi, fname, dup, sync); |
| ni_unlock(dir_ni); |
| memcpy(&fname->dup, dup, sizeof(fname->dup)); |
| mi->dirty = true; |
| } |
| } |
| iput(dir); |
| } |
| |
| return re_dirty; |
| } |
| |
| /* |
| * ni_write_inode - Write MFT base record and all subrecords to disk. |
| */ |
| int ni_write_inode(struct inode *inode, int sync, const char *hint) |
| { |
| int err = 0, err2; |
| struct ntfs_inode *ni = ntfs_i(inode); |
| struct super_block *sb = inode->i_sb; |
| struct ntfs_sb_info *sbi = sb->s_fs_info; |
| bool re_dirty = false; |
| struct ATTR_STD_INFO *std; |
| struct rb_node *node, *next; |
| struct NTFS_DUP_INFO dup; |
| |
| if (is_bad_inode(inode) || sb_rdonly(sb)) |
| return 0; |
| |
| if (!ni_trylock(ni)) { |
| /* 'ni' is under modification, skip for now. */ |
| mark_inode_dirty_sync(inode); |
| return 0; |
| } |
| |
| if (is_rec_inuse(ni->mi.mrec) && |
| !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) { |
| bool modified = false; |
| |
| /* Update times in standard attribute. */ |
| std = ni_std(ni); |
| if (!std) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| /* Update the access times if they have changed. */ |
| dup.m_time = kernel2nt(&inode->i_mtime); |
| if (std->m_time != dup.m_time) { |
| std->m_time = dup.m_time; |
| modified = true; |
| } |
| |
| dup.c_time = kernel2nt(&inode->i_ctime); |
| if (std->c_time != dup.c_time) { |
| std->c_time = dup.c_time; |
| modified = true; |
| } |
| |
| dup.a_time = kernel2nt(&inode->i_atime); |
| if (std->a_time != dup.a_time) { |
| std->a_time = dup.a_time; |
| modified = true; |
| } |
| |
| dup.fa = ni->std_fa; |
| if (std->fa != dup.fa) { |
| std->fa = dup.fa; |
| modified = true; |
| } |
| |
| if (modified) |
| ni->mi.dirty = true; |
| |
| if (!ntfs_is_meta_file(sbi, inode->i_ino) && |
| (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT)) |
| /* Avoid __wait_on_freeing_inode(inode). */ |
| && (sb->s_flags & SB_ACTIVE)) { |
| dup.cr_time = std->cr_time; |
| /* Not critical if this function fail. */ |
| re_dirty = ni_update_parent(ni, &dup, sync); |
| |
| if (re_dirty) |
| ni->ni_flags |= NI_FLAG_UPDATE_PARENT; |
| else |
| ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT; |
| } |
| |
| /* Update attribute list. */ |
| if (ni->attr_list.size && ni->attr_list.dirty) { |
| if (inode->i_ino != MFT_REC_MFT || sync) { |
| err = ni_try_remove_attr_list(ni); |
| if (err) |
| goto out; |
| } |
| |
| err = al_update(ni, sync); |
| if (err) |
| goto out; |
| } |
| } |
| |
| for (node = rb_first(&ni->mi_tree); node; node = next) { |
| struct mft_inode *mi = rb_entry(node, struct mft_inode, node); |
| bool is_empty; |
| |
| next = rb_next(node); |
| |
| if (!mi->dirty) |
| continue; |
| |
| is_empty = !mi_enum_attr(mi, NULL); |
| |
| if (is_empty) |
| clear_rec_inuse(mi->mrec); |
| |
| err2 = mi_write(mi, sync); |
| if (!err && err2) |
| err = err2; |
| |
| if (is_empty) { |
| ntfs_mark_rec_free(sbi, mi->rno); |
| rb_erase(node, &ni->mi_tree); |
| mi_put(mi); |
| } |
| } |
| |
| if (ni->mi.dirty) { |
| err2 = mi_write(&ni->mi, sync); |
| if (!err && err2) |
| err = err2; |
| } |
| out: |
| ni_unlock(ni); |
| |
| if (err) { |
| ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err); |
| ntfs_set_state(sbi, NTFS_DIRTY_ERROR); |
| return err; |
| } |
| |
| if (re_dirty) |
| mark_inode_dirty_sync(inode); |
| |
| return 0; |
| } |