blob: 6a8fe0da7670b712e28dc80ce844c3d1ac2eb2c6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// Renesas R-Car SRU/SCU/SSIU/SSI support
//
// Copyright (C) 2013 Renesas Solutions Corp.
// Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
//
// Based on fsi.c
// Kuninori Morimoto <morimoto.kuninori@renesas.com>
/*
* Renesas R-Car sound device structure
*
* Gen1
*
* SRU : Sound Routing Unit
* - SRC : Sampling Rate Converter
* - CMD
* - CTU : Channel Count Conversion Unit
* - MIX : Mixer
* - DVC : Digital Volume and Mute Function
* - SSI : Serial Sound Interface
*
* Gen2
*
* SCU : Sampling Rate Converter Unit
* - SRC : Sampling Rate Converter
* - CMD
* - CTU : Channel Count Conversion Unit
* - MIX : Mixer
* - DVC : Digital Volume and Mute Function
* SSIU : Serial Sound Interface Unit
* - SSI : Serial Sound Interface
*/
/*
* driver data Image
*
* rsnd_priv
* |
* | ** this depends on Gen1/Gen2
* |
* +- gen
* |
* | ** these depend on data path
* | ** gen and platform data control it
* |
* +- rdai[0]
* | | sru ssiu ssi
* | +- playback -> [mod] -> [mod] -> [mod] -> ...
* | |
* | | sru ssiu ssi
* | +- capture -> [mod] -> [mod] -> [mod] -> ...
* |
* +- rdai[1]
* | | sru ssiu ssi
* | +- playback -> [mod] -> [mod] -> [mod] -> ...
* | |
* | | sru ssiu ssi
* | +- capture -> [mod] -> [mod] -> [mod] -> ...
* ...
* |
* | ** these control ssi
* |
* +- ssi
* | |
* | +- ssi[0]
* | +- ssi[1]
* | +- ssi[2]
* | ...
* |
* | ** these control src
* |
* +- src
* |
* +- src[0]
* +- src[1]
* +- src[2]
* ...
*
*
* for_each_rsnd_dai(xx, priv, xx)
* rdai[0] => rdai[1] => rdai[2] => ...
*
* for_each_rsnd_mod(xx, rdai, xx)
* [mod] => [mod] => [mod] => ...
*
* rsnd_dai_call(xxx, fn )
* [mod]->fn() -> [mod]->fn() -> [mod]->fn()...
*
*/
#include <linux/pm_runtime.h>
#include "rsnd.h"
#define RSND_RATES SNDRV_PCM_RATE_8000_192000
#define RSND_FMTS (SNDRV_PCM_FMTBIT_S8 |\
SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S24_LE)
static const struct of_device_id rsnd_of_match[] = {
{ .compatible = "renesas,rcar_sound-gen1", .data = (void *)RSND_GEN1 },
{ .compatible = "renesas,rcar_sound-gen2", .data = (void *)RSND_GEN2 },
{ .compatible = "renesas,rcar_sound-gen3", .data = (void *)RSND_GEN3 },
/* Special Handling */
{ .compatible = "renesas,rcar_sound-r8a77990", .data = (void *)(RSND_GEN3 | RSND_SOC_E) },
{},
};
MODULE_DEVICE_TABLE(of, rsnd_of_match);
/*
* rsnd_mod functions
*/
void rsnd_mod_make_sure(struct rsnd_mod *mod, enum rsnd_mod_type type)
{
if (mod->type != type) {
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct device *dev = rsnd_priv_to_dev(priv);
dev_warn(dev, "%s is not your expected module\n",
rsnd_mod_name(mod));
}
}
struct dma_chan *rsnd_mod_dma_req(struct rsnd_dai_stream *io,
struct rsnd_mod *mod)
{
if (!mod || !mod->ops || !mod->ops->dma_req)
return NULL;
return mod->ops->dma_req(io, mod);
}
#define MOD_NAME_NUM 5
#define MOD_NAME_SIZE 16
char *rsnd_mod_name(struct rsnd_mod *mod)
{
static char names[MOD_NAME_NUM][MOD_NAME_SIZE];
static int num;
char *name = names[num];
num++;
if (num >= MOD_NAME_NUM)
num = 0;
/*
* Let's use same char to avoid pointlessness memory
* Thus, rsnd_mod_name() should be used immediately
* Don't keep pointer
*/
if ((mod)->ops->id_sub) {
snprintf(name, MOD_NAME_SIZE, "%s[%d%d]",
mod->ops->name,
rsnd_mod_id(mod),
rsnd_mod_id_sub(mod));
} else {
snprintf(name, MOD_NAME_SIZE, "%s[%d]",
mod->ops->name,
rsnd_mod_id(mod));
}
return name;
}
u32 *rsnd_mod_get_status(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
enum rsnd_mod_type type)
{
return &mod->status;
}
int rsnd_mod_id_raw(struct rsnd_mod *mod)
{
return mod->id;
}
int rsnd_mod_id(struct rsnd_mod *mod)
{
if ((mod)->ops->id)
return (mod)->ops->id(mod);
return rsnd_mod_id_raw(mod);
}
int rsnd_mod_id_sub(struct rsnd_mod *mod)
{
if ((mod)->ops->id_sub)
return (mod)->ops->id_sub(mod);
return 0;
}
int rsnd_mod_init(struct rsnd_priv *priv,
struct rsnd_mod *mod,
struct rsnd_mod_ops *ops,
struct clk *clk,
enum rsnd_mod_type type,
int id)
{
int ret = clk_prepare(clk);
if (ret)
return ret;
mod->id = id;
mod->ops = ops;
mod->type = type;
mod->clk = clk;
mod->priv = priv;
return 0;
}
void rsnd_mod_quit(struct rsnd_mod *mod)
{
clk_unprepare(mod->clk);
mod->clk = NULL;
}
void rsnd_mod_interrupt(struct rsnd_mod *mod,
void (*callback)(struct rsnd_mod *mod,
struct rsnd_dai_stream *io))
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct rsnd_dai *rdai;
int i;
for_each_rsnd_dai(rdai, priv, i) {
struct rsnd_dai_stream *io = &rdai->playback;
if (mod == io->mod[mod->type])
callback(mod, io);
io = &rdai->capture;
if (mod == io->mod[mod->type])
callback(mod, io);
}
}
int rsnd_io_is_working(struct rsnd_dai_stream *io)
{
/* see rsnd_dai_stream_init/quit() */
if (io->substream)
return snd_pcm_running(io->substream);
return 0;
}
int rsnd_runtime_channel_original_with_params(struct rsnd_dai_stream *io,
struct snd_pcm_hw_params *params)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
/*
* params will be added when refine
* see
* __rsnd_soc_hw_rule_rate()
* __rsnd_soc_hw_rule_channels()
*/
if (params)
return params_channels(params);
else if (runtime)
return runtime->channels;
return 0;
}
int rsnd_runtime_channel_after_ctu_with_params(struct rsnd_dai_stream *io,
struct snd_pcm_hw_params *params)
{
int chan = rsnd_runtime_channel_original_with_params(io, params);
struct rsnd_mod *ctu_mod = rsnd_io_to_mod_ctu(io);
if (ctu_mod) {
u32 converted_chan = rsnd_io_converted_chan(io);
/*
* !! Note !!
*
* converted_chan will be used for CTU,
* or TDM Split mode.
* User shouldn't use CTU with TDM Split mode.
*/
if (rsnd_runtime_is_tdm_split(io)) {
struct device *dev = rsnd_priv_to_dev(rsnd_io_to_priv(io));
dev_err(dev, "CTU and TDM Split should be used\n");
}
if (converted_chan)
return converted_chan;
}
return chan;
}
int rsnd_channel_normalization(int chan)
{
if (WARN_ON((chan > 8) || (chan < 0)))
return 0;
/* TDM Extend Mode needs 8ch */
if (chan == 6)
chan = 8;
return chan;
}
int rsnd_runtime_channel_for_ssi_with_params(struct rsnd_dai_stream *io,
struct snd_pcm_hw_params *params)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
int chan = rsnd_io_is_play(io) ?
rsnd_runtime_channel_after_ctu_with_params(io, params) :
rsnd_runtime_channel_original_with_params(io, params);
/* Use Multi SSI */
if (rsnd_runtime_is_multi_ssi(io))
chan /= rsnd_rdai_ssi_lane_get(rdai);
return rsnd_channel_normalization(chan);
}
int rsnd_runtime_is_multi_ssi(struct rsnd_dai_stream *io)
{
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
int lane = rsnd_rdai_ssi_lane_get(rdai);
int chan = rsnd_io_is_play(io) ?
rsnd_runtime_channel_after_ctu(io) :
rsnd_runtime_channel_original(io);
return (chan > 2) && (lane > 1);
}
int rsnd_runtime_is_tdm(struct rsnd_dai_stream *io)
{
return rsnd_runtime_channel_for_ssi(io) >= 6;
}
int rsnd_runtime_is_tdm_split(struct rsnd_dai_stream *io)
{
return !!rsnd_flags_has(io, RSND_STREAM_TDM_SPLIT);
}
/*
* ADINR function
*/
u32 rsnd_get_adinr_bit(struct rsnd_mod *mod, struct rsnd_dai_stream *io)
{
struct rsnd_priv *priv = rsnd_mod_to_priv(mod);
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct device *dev = rsnd_priv_to_dev(priv);
switch (snd_pcm_format_width(runtime->format)) {
case 8:
return 16 << 16;
case 16:
return 8 << 16;
case 24:
return 0 << 16;
}
dev_warn(dev, "not supported sample bits\n");
return 0;
}
/*
* DALIGN function
*/
u32 rsnd_get_dalign(struct rsnd_mod *mod, struct rsnd_dai_stream *io)
{
static const u32 dalign_values[8] = {
0x76543210, 0x00000032, 0x00007654, 0x00000076,
0xfedcba98, 0x000000ba, 0x0000fedc, 0x000000fe,
};
int id = 0;
struct rsnd_mod *ssiu = rsnd_io_to_mod_ssiu(io);
struct rsnd_mod *target;
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
u32 dalign;
/*
* *Hardware* L/R and *Software* L/R are inverted for 16bit data.
* 31..16 15...0
* HW: [L ch] [R ch]
* SW: [R ch] [L ch]
* We need to care about inversion timing to control
* Playback/Capture correctly.
* The point is [DVC] needs *Hardware* L/R, [MEM] needs *Software* L/R
*
* sL/R : software L/R
* hL/R : hardware L/R
* (*) : conversion timing
*
* Playback
* sL/R (*) hL/R hL/R hL/R hL/R hL/R
* [MEM] -> [SRC] -> [DVC] -> [CMD] -> [SSIU] -> [SSI] -> codec
*
* Capture
* hL/R hL/R hL/R hL/R hL/R (*) sL/R
* codec -> [SSI] -> [SSIU] -> [SRC] -> [DVC] -> [CMD] -> [MEM]
*/
if (rsnd_io_is_play(io)) {
struct rsnd_mod *src = rsnd_io_to_mod_src(io);
target = src ? src : ssiu;
} else {
struct rsnd_mod *cmd = rsnd_io_to_mod_cmd(io);
target = cmd ? cmd : ssiu;
}
if (mod == ssiu)
id = rsnd_mod_id_sub(mod);
dalign = dalign_values[id];
if (mod == target && snd_pcm_format_width(runtime->format) == 16) {
/* Target mod needs inverted DALIGN when 16bit */
dalign = (dalign & 0xf0f0f0f0) >> 4 |
(dalign & 0x0f0f0f0f) << 4;
}
return dalign;
}
u32 rsnd_get_busif_shift(struct rsnd_dai_stream *io, struct rsnd_mod *mod)
{
static const enum rsnd_mod_type playback_mods[] = {
RSND_MOD_SRC,
RSND_MOD_CMD,
RSND_MOD_SSIU,
};
static const enum rsnd_mod_type capture_mods[] = {
RSND_MOD_CMD,
RSND_MOD_SRC,
RSND_MOD_SSIU,
};
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_mod *tmod = NULL;
const enum rsnd_mod_type *mods =
rsnd_io_is_play(io) ?
playback_mods : capture_mods;
int i;
/*
* This is needed for 24bit data
* We need to shift 8bit
*
* Linux 24bit data is located as 0x00******
* HW 24bit data is located as 0x******00
*
*/
if (snd_pcm_format_width(runtime->format) != 24)
return 0;
for (i = 0; i < ARRAY_SIZE(playback_mods); i++) {
tmod = rsnd_io_to_mod(io, mods[i]);
if (tmod)
break;
}
if (tmod != mod)
return 0;
if (rsnd_io_is_play(io))
return (0 << 20) | /* shift to Left */
(8 << 16); /* 8bit */
else
return (1 << 20) | /* shift to Right */
(8 << 16); /* 8bit */
}
/*
* rsnd_dai functions
*/
struct rsnd_mod *rsnd_mod_next(int *iterator,
struct rsnd_dai_stream *io,
enum rsnd_mod_type *array,
int array_size)
{
int max = array ? array_size : RSND_MOD_MAX;
for (; *iterator < max; (*iterator)++) {
enum rsnd_mod_type type = (array) ? array[*iterator] : *iterator;
struct rsnd_mod *mod = rsnd_io_to_mod(io, type);
if (mod)
return mod;
}
return NULL;
}
static enum rsnd_mod_type rsnd_mod_sequence[][RSND_MOD_MAX] = {
{
/* CAPTURE */
RSND_MOD_AUDMAPP,
RSND_MOD_AUDMA,
RSND_MOD_DVC,
RSND_MOD_MIX,
RSND_MOD_CTU,
RSND_MOD_CMD,
RSND_MOD_SRC,
RSND_MOD_SSIU,
RSND_MOD_SSIM3,
RSND_MOD_SSIM2,
RSND_MOD_SSIM1,
RSND_MOD_SSIP,
RSND_MOD_SSI,
}, {
/* PLAYBACK */
RSND_MOD_AUDMAPP,
RSND_MOD_AUDMA,
RSND_MOD_SSIM3,
RSND_MOD_SSIM2,
RSND_MOD_SSIM1,
RSND_MOD_SSIP,
RSND_MOD_SSI,
RSND_MOD_SSIU,
RSND_MOD_DVC,
RSND_MOD_MIX,
RSND_MOD_CTU,
RSND_MOD_CMD,
RSND_MOD_SRC,
},
};
static int rsnd_status_update(struct rsnd_dai_stream *io,
struct rsnd_mod *mod, enum rsnd_mod_type type,
int shift, int add, int timing)
{
u32 *status = mod->ops->get_status(mod, io, type);
u32 mask = 0xF << shift;
u8 val = (*status >> shift) & 0xF;
u8 next_val = (val + add) & 0xF;
int func_call = (val == timing);
/* no status update */
if (add == 0 || shift == 28)
return 1;
if (next_val == 0xF) /* underflow case */
func_call = -1;
else
*status = (*status & ~mask) + (next_val << shift);
return func_call;
}
#define rsnd_dai_call(fn, io, param...) \
({ \
struct device *dev = rsnd_priv_to_dev(rsnd_io_to_priv(io)); \
struct rsnd_mod *mod; \
int is_play = rsnd_io_is_play(io); \
int ret = 0, i; \
enum rsnd_mod_type *types = rsnd_mod_sequence[is_play]; \
for_each_rsnd_mod_arrays(i, mod, io, types, RSND_MOD_MAX) { \
int tmp = 0; \
int func_call = rsnd_status_update(io, mod, types[i], \
__rsnd_mod_shift_##fn, \
__rsnd_mod_add_##fn, \
__rsnd_mod_call_##fn); \
if (func_call > 0 && (mod)->ops->fn) \
tmp = (mod)->ops->fn(mod, io, param); \
if (unlikely(func_call < 0) || \
unlikely(tmp && (tmp != -EPROBE_DEFER))) \
dev_err(dev, "%s : %s error (%d, %d)\n", \
rsnd_mod_name(mod), #fn, tmp, func_call);\
ret |= tmp; \
} \
ret; \
})
int rsnd_dai_connect(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
enum rsnd_mod_type type)
{
struct rsnd_priv *priv;
struct device *dev;
if (!mod)
return -EIO;
if (io->mod[type] == mod)
return 0;
if (io->mod[type])
return -EINVAL;
priv = rsnd_mod_to_priv(mod);
dev = rsnd_priv_to_dev(priv);
io->mod[type] = mod;
dev_dbg(dev, "%s is connected to io (%s)\n",
rsnd_mod_name(mod),
rsnd_io_is_play(io) ? "Playback" : "Capture");
return 0;
}
static void rsnd_dai_disconnect(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
enum rsnd_mod_type type)
{
io->mod[type] = NULL;
}
int rsnd_rdai_channels_ctrl(struct rsnd_dai *rdai,
int max_channels)
{
if (max_channels > 0)
rdai->max_channels = max_channels;
return rdai->max_channels;
}
int rsnd_rdai_ssi_lane_ctrl(struct rsnd_dai *rdai,
int ssi_lane)
{
if (ssi_lane > 0)
rdai->ssi_lane = ssi_lane;
return rdai->ssi_lane;
}
int rsnd_rdai_width_ctrl(struct rsnd_dai *rdai, int width)
{
if (width > 0)
rdai->chan_width = width;
return rdai->chan_width;
}
struct rsnd_dai *rsnd_rdai_get(struct rsnd_priv *priv, int id)
{
if ((id < 0) || (id >= rsnd_rdai_nr(priv)))
return NULL;
return priv->rdai + id;
}
static struct snd_soc_dai_driver
*rsnd_daidrv_get(struct rsnd_priv *priv, int id)
{
if ((id < 0) || (id >= rsnd_rdai_nr(priv)))
return NULL;
return priv->daidrv + id;
}
#define rsnd_dai_to_priv(dai) snd_soc_dai_get_drvdata(dai)
static struct rsnd_dai *rsnd_dai_to_rdai(struct snd_soc_dai *dai)
{
struct rsnd_priv *priv = rsnd_dai_to_priv(dai);
return rsnd_rdai_get(priv, dai->id);
}
/*
* rsnd_soc_dai functions
*/
void rsnd_dai_period_elapsed(struct rsnd_dai_stream *io)
{
struct snd_pcm_substream *substream = io->substream;
/*
* this function should be called...
*
* - if rsnd_dai_pointer_update() returns true
* - without spin lock
*/
snd_pcm_period_elapsed(substream);
}
static void rsnd_dai_stream_init(struct rsnd_dai_stream *io,
struct snd_pcm_substream *substream)
{
io->substream = substream;
}
static void rsnd_dai_stream_quit(struct rsnd_dai_stream *io)
{
io->substream = NULL;
}
static
struct snd_soc_dai *rsnd_substream_to_dai(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
return asoc_rtd_to_cpu(rtd, 0);
}
static
struct rsnd_dai_stream *rsnd_rdai_to_io(struct rsnd_dai *rdai,
struct snd_pcm_substream *substream)
{
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
return &rdai->playback;
else
return &rdai->capture;
}
static int rsnd_soc_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct rsnd_priv *priv = rsnd_dai_to_priv(dai);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
int ret;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
ret = rsnd_dai_call(init, io, priv);
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_dai_call(start, io, priv);
if (ret < 0)
goto dai_trigger_end;
ret = rsnd_dai_call(irq, io, priv, 1);
if (ret < 0)
goto dai_trigger_end;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
ret = rsnd_dai_call(irq, io, priv, 0);
ret |= rsnd_dai_call(stop, io, priv);
ret |= rsnd_dai_call(quit, io, priv);
break;
default:
ret = -EINVAL;
}
dai_trigger_end:
spin_unlock_irqrestore(&priv->lock, flags);
return ret;
}
static int rsnd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
/* set clock master for audio interface */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
rdai->clk_master = 0;
break;
case SND_SOC_DAIFMT_CBC_CFC:
rdai->clk_master = 1; /* cpu is master */
break;
default:
return -EINVAL;
}
/* set format */
rdai->bit_clk_inv = 0;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
rdai->sys_delay = 0;
rdai->data_alignment = 0;
rdai->frm_clk_inv = 0;
break;
case SND_SOC_DAIFMT_LEFT_J:
case SND_SOC_DAIFMT_DSP_B:
rdai->sys_delay = 1;
rdai->data_alignment = 0;
rdai->frm_clk_inv = 1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
rdai->sys_delay = 1;
rdai->data_alignment = 1;
rdai->frm_clk_inv = 1;
break;
case SND_SOC_DAIFMT_DSP_A:
rdai->sys_delay = 0;
rdai->data_alignment = 0;
rdai->frm_clk_inv = 1;
break;
}
/* set clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_IF:
rdai->frm_clk_inv = !rdai->frm_clk_inv;
break;
case SND_SOC_DAIFMT_IB_NF:
rdai->bit_clk_inv = !rdai->bit_clk_inv;
break;
case SND_SOC_DAIFMT_IB_IF:
rdai->bit_clk_inv = !rdai->bit_clk_inv;
rdai->frm_clk_inv = !rdai->frm_clk_inv;
break;
case SND_SOC_DAIFMT_NB_NF:
default:
break;
}
return 0;
}
static int rsnd_soc_set_dai_tdm_slot(struct snd_soc_dai *dai,
u32 tx_mask, u32 rx_mask,
int slots, int slot_width)
{
struct rsnd_priv *priv = rsnd_dai_to_priv(dai);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct device *dev = rsnd_priv_to_dev(priv);
switch (slot_width) {
case 16:
case 24:
case 32:
break;
default:
/* use default */
slot_width = 32;
}
switch (slots) {
case 2:
/* TDM Split Mode */
case 6:
case 8:
/* TDM Extend Mode */
rsnd_rdai_channels_set(rdai, slots);
rsnd_rdai_ssi_lane_set(rdai, 1);
rsnd_rdai_width_set(rdai, slot_width);
break;
default:
dev_err(dev, "unsupported TDM slots (%d)\n", slots);
return -EINVAL;
}
return 0;
}
static unsigned int rsnd_soc_hw_channels_list[] = {
2, 6, 8,
};
static unsigned int rsnd_soc_hw_rate_list[] = {
8000,
11025,
16000,
22050,
32000,
44100,
48000,
64000,
88200,
96000,
176400,
192000,
};
static int rsnd_soc_hw_rule(struct rsnd_dai *rdai,
unsigned int *list, int list_num,
struct snd_interval *baseline, struct snd_interval *iv)
{
struct snd_interval p;
unsigned int rate;
int i;
snd_interval_any(&p);
p.min = UINT_MAX;
p.max = 0;
for (i = 0; i < list_num; i++) {
if (!snd_interval_test(iv, list[i]))
continue;
rate = rsnd_ssi_clk_query(rdai,
baseline->min, list[i], NULL);
if (rate > 0) {
p.min = min(p.min, list[i]);
p.max = max(p.max, list[i]);
}
rate = rsnd_ssi_clk_query(rdai,
baseline->max, list[i], NULL);
if (rate > 0) {
p.min = min(p.min, list[i]);
p.max = max(p.max, list[i]);
}
}
return snd_interval_refine(iv, &p);
}
static int rsnd_soc_hw_rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *ic_ = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval *ir = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval ic;
struct rsnd_dai_stream *io = rule->private;
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
/*
* possible sampling rate limitation is same as
* 2ch if it supports multi ssi
* and same as 8ch if TDM 6ch (see rsnd_ssi_config_init())
*/
ic = *ic_;
ic.min =
ic.max = rsnd_runtime_channel_for_ssi_with_params(io, params);
return rsnd_soc_hw_rule(rdai, rsnd_soc_hw_rate_list,
ARRAY_SIZE(rsnd_soc_hw_rate_list),
&ic, ir);
}
static int rsnd_soc_hw_rule_channels(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *ic_ = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
struct snd_interval *ir = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
struct snd_interval ic;
struct rsnd_dai_stream *io = rule->private;
struct rsnd_dai *rdai = rsnd_io_to_rdai(io);
/*
* possible sampling rate limitation is same as
* 2ch if it supports multi ssi
* and same as 8ch if TDM 6ch (see rsnd_ssi_config_init())
*/
ic = *ic_;
ic.min =
ic.max = rsnd_runtime_channel_for_ssi_with_params(io, params);
return rsnd_soc_hw_rule(rdai, rsnd_soc_hw_channels_list,
ARRAY_SIZE(rsnd_soc_hw_channels_list),
ir, &ic);
}
static const struct snd_pcm_hardware rsnd_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.buffer_bytes_max = 64 * 1024,
.period_bytes_min = 32,
.period_bytes_max = 8192,
.periods_min = 1,
.periods_max = 32,
.fifo_size = 256,
};
static int rsnd_soc_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
struct snd_pcm_hw_constraint_list *constraint = &rdai->constraint;
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int max_channels = rsnd_rdai_channels_get(rdai);
int i;
rsnd_dai_stream_init(io, substream);
/*
* Channel Limitation
* It depends on Platform design
*/
constraint->list = rsnd_soc_hw_channels_list;
constraint->count = 0;
constraint->mask = 0;
for (i = 0; i < ARRAY_SIZE(rsnd_soc_hw_channels_list); i++) {
if (rsnd_soc_hw_channels_list[i] > max_channels)
break;
constraint->count = i + 1;
}
snd_soc_set_runtime_hwparams(substream, &rsnd_pcm_hardware);
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, constraint);
snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
/*
* Sampling Rate / Channel Limitation
* It depends on Clock Master Mode
*/
if (rsnd_rdai_is_clk_master(rdai)) {
int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
rsnd_soc_hw_rule_rate,
is_play ? &rdai->playback : &rdai->capture,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
rsnd_soc_hw_rule_channels,
is_play ? &rdai->playback : &rdai->capture,
SNDRV_PCM_HW_PARAM_RATE, -1);
}
return 0;
}
static void rsnd_soc_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
/*
* call rsnd_dai_call without spinlock
*/
rsnd_dai_call(cleanup, io, priv);
rsnd_dai_stream_quit(io);
}
static int rsnd_soc_dai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct rsnd_priv *priv = rsnd_dai_to_priv(dai);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
return rsnd_dai_call(prepare, io, priv);
}
static u64 rsnd_soc_dai_formats[] = {
/*
* 1st Priority
*
* Well tested formats.
* Select below from Sound Card, not auto
* SND_SOC_DAIFMT_CBC_CFC
* SND_SOC_DAIFMT_CBP_CFP
*/
SND_SOC_POSSIBLE_DAIFMT_I2S |
SND_SOC_POSSIBLE_DAIFMT_RIGHT_J |
SND_SOC_POSSIBLE_DAIFMT_LEFT_J |
SND_SOC_POSSIBLE_DAIFMT_NB_NF |
SND_SOC_POSSIBLE_DAIFMT_NB_IF |
SND_SOC_POSSIBLE_DAIFMT_IB_NF |
SND_SOC_POSSIBLE_DAIFMT_IB_IF,
/*
* 2nd Priority
*
* Supported, but not well tested
*/
SND_SOC_POSSIBLE_DAIFMT_DSP_A |
SND_SOC_POSSIBLE_DAIFMT_DSP_B,
};
static const struct snd_soc_dai_ops rsnd_soc_dai_ops = {
.startup = rsnd_soc_dai_startup,
.shutdown = rsnd_soc_dai_shutdown,
.trigger = rsnd_soc_dai_trigger,
.set_fmt = rsnd_soc_dai_set_fmt,
.set_tdm_slot = rsnd_soc_set_dai_tdm_slot,
.prepare = rsnd_soc_dai_prepare,
.auto_selectable_formats = rsnd_soc_dai_formats,
.num_auto_selectable_formats = ARRAY_SIZE(rsnd_soc_dai_formats),
};
static void rsnd_parse_tdm_split_mode(struct rsnd_priv *priv,
struct rsnd_dai_stream *io,
struct device_node *dai_np)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct device_node *ssiu_np = rsnd_ssiu_of_node(priv);
struct device_node *np;
int is_play = rsnd_io_is_play(io);
int i;
if (!ssiu_np)
return;
/*
* This driver assumes that it is TDM Split mode
* if it includes ssiu node
*/
for (i = 0;; i++) {
struct device_node *node = is_play ?
of_parse_phandle(dai_np, "playback", i) :
of_parse_phandle(dai_np, "capture", i);
if (!node)
break;
for_each_child_of_node(ssiu_np, np) {
if (np == node) {
rsnd_flags_set(io, RSND_STREAM_TDM_SPLIT);
dev_dbg(dev, "%s is part of TDM Split\n", io->name);
}
}
of_node_put(node);
}
of_node_put(ssiu_np);
}
static void rsnd_parse_connect_simple(struct rsnd_priv *priv,
struct rsnd_dai_stream *io,
struct device_node *dai_np)
{
if (!rsnd_io_to_mod_ssi(io))
return;
rsnd_parse_tdm_split_mode(priv, io, dai_np);
}
static void rsnd_parse_connect_graph(struct rsnd_priv *priv,
struct rsnd_dai_stream *io,
struct device_node *endpoint)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct device_node *remote_node;
if (!rsnd_io_to_mod_ssi(io))
return;
remote_node = of_graph_get_remote_port_parent(endpoint);
/* HDMI0 */
if (strstr(remote_node->full_name, "hdmi@fead0000")) {
rsnd_flags_set(io, RSND_STREAM_HDMI0);
dev_dbg(dev, "%s connected to HDMI0\n", io->name);
}
/* HDMI1 */
if (strstr(remote_node->full_name, "hdmi@feae0000")) {
rsnd_flags_set(io, RSND_STREAM_HDMI1);
dev_dbg(dev, "%s connected to HDMI1\n", io->name);
}
rsnd_parse_tdm_split_mode(priv, io, endpoint);
of_node_put(remote_node);
}
void rsnd_parse_connect_common(struct rsnd_dai *rdai, char *name,
struct rsnd_mod* (*mod_get)(struct rsnd_priv *priv, int id),
struct device_node *node,
struct device_node *playback,
struct device_node *capture)
{
struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai);
struct device_node *np;
int i;
if (!node)
return;
i = 0;
for_each_child_of_node(node, np) {
struct rsnd_mod *mod;
i = rsnd_node_fixed_index(np, name, i);
mod = mod_get(priv, i);
if (np == playback)
rsnd_dai_connect(mod, &rdai->playback, mod->type);
if (np == capture)
rsnd_dai_connect(mod, &rdai->capture, mod->type);
i++;
}
of_node_put(node);
}
int rsnd_node_fixed_index(struct device_node *node, char *name, int idx)
{
char node_name[16];
/*
* rsnd is assuming each device nodes are sequential numbering,
* but some of them are not.
* This function adjusts index for it.
*
* ex)
* Normal case, special case
* ssi-0
* ssi-1
* ssi-2
* ssi-3 ssi-3
* ssi-4 ssi-4
* ...
*
* assume Max 64 node
*/
for (; idx < 64; idx++) {
snprintf(node_name, sizeof(node_name), "%s-%d", name, idx);
if (strncmp(node_name, of_node_full_name(node), sizeof(node_name)) == 0)
return idx;
}
return -EINVAL;
}
int rsnd_node_count(struct rsnd_priv *priv, struct device_node *node, char *name)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct device_node *np;
int i;
i = 0;
for_each_child_of_node(node, np) {
i = rsnd_node_fixed_index(np, name, i);
if (i < 0) {
dev_err(dev, "strange node numbering (%s)",
of_node_full_name(node));
of_node_put(np);
return 0;
}
i++;
}
return i;
}
static struct device_node *rsnd_dai_of_node(struct rsnd_priv *priv,
int *is_graph)
{
struct device *dev = rsnd_priv_to_dev(priv);
struct device_node *np = dev->of_node;
struct device_node *dai_node;
struct device_node *ret;
*is_graph = 0;
/*
* parse both previous dai (= rcar_sound,dai), and
* graph dai (= ports/port)
*/
dai_node = of_get_child_by_name(np, RSND_NODE_DAI);
if (dai_node) {
ret = dai_node;
goto of_node_compatible;
}
ret = np;
dai_node = of_graph_get_next_endpoint(np, NULL);
if (dai_node)
goto of_node_graph;
return NULL;
of_node_graph:
*is_graph = 1;
of_node_compatible:
of_node_put(dai_node);
return ret;
}
#define PREALLOC_BUFFER (32 * 1024)
#define PREALLOC_BUFFER_MAX (32 * 1024)
static int rsnd_preallocate_pages(struct snd_soc_pcm_runtime *rtd,
struct rsnd_dai_stream *io,
int stream)
{
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
struct snd_pcm_substream *substream;
/*
* use Audio-DMAC dev if we can use IPMMU
* see
* rsnd_dmaen_attach()
*/
if (io->dmac_dev)
dev = io->dmac_dev;
for (substream = rtd->pcm->streams[stream].substream;
substream;
substream = substream->next) {
snd_pcm_set_managed_buffer(substream,
SNDRV_DMA_TYPE_DEV,
dev,
PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}
return 0;
}
static int rsnd_pcm_new(struct snd_soc_pcm_runtime *rtd,
struct snd_soc_dai *dai)
{
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
int ret;
ret = rsnd_dai_call(pcm_new, &rdai->playback, rtd);
if (ret)
return ret;
ret = rsnd_dai_call(pcm_new, &rdai->capture, rtd);
if (ret)
return ret;
ret = rsnd_preallocate_pages(rtd, &rdai->playback,
SNDRV_PCM_STREAM_PLAYBACK);
if (ret)
return ret;
ret = rsnd_preallocate_pages(rtd, &rdai->capture,
SNDRV_PCM_STREAM_CAPTURE);
if (ret)
return ret;
return 0;
}
static void __rsnd_dai_probe(struct rsnd_priv *priv,
struct device_node *dai_np,
int dai_i)
{
struct rsnd_dai_stream *io_playback;
struct rsnd_dai_stream *io_capture;
struct snd_soc_dai_driver *drv;
struct rsnd_dai *rdai;
struct device *dev = rsnd_priv_to_dev(priv);
int io_i;
rdai = rsnd_rdai_get(priv, dai_i);
drv = rsnd_daidrv_get(priv, dai_i);
io_playback = &rdai->playback;
io_capture = &rdai->capture;
snprintf(rdai->name, RSND_DAI_NAME_SIZE, "rsnd-dai.%d", dai_i);
rdai->priv = priv;
drv->name = rdai->name;
drv->ops = &rsnd_soc_dai_ops;
drv->pcm_new = rsnd_pcm_new;
snprintf(io_playback->name, RSND_DAI_NAME_SIZE,
"DAI%d Playback", dai_i);
drv->playback.rates = RSND_RATES;
drv->playback.formats = RSND_FMTS;
drv->playback.channels_min = 2;
drv->playback.channels_max = 8;
drv->playback.stream_name = io_playback->name;
snprintf(io_capture->name, RSND_DAI_NAME_SIZE,
"DAI%d Capture", dai_i);
drv->capture.rates = RSND_RATES;
drv->capture.formats = RSND_FMTS;
drv->capture.channels_min = 2;
drv->capture.channels_max = 8;
drv->capture.stream_name = io_capture->name;
io_playback->rdai = rdai;
io_capture->rdai = rdai;
rsnd_rdai_channels_set(rdai, 2); /* default 2ch */
rsnd_rdai_ssi_lane_set(rdai, 1); /* default 1lane */
rsnd_rdai_width_set(rdai, 32); /* default 32bit width */
for (io_i = 0;; io_i++) {
struct device_node *playback = of_parse_phandle(dai_np, "playback", io_i);
struct device_node *capture = of_parse_phandle(dai_np, "capture", io_i);
if (!playback && !capture)
break;
rsnd_parse_connect_ssi(rdai, playback, capture);
rsnd_parse_connect_ssiu(rdai, playback, capture);
rsnd_parse_connect_src(rdai, playback, capture);
rsnd_parse_connect_ctu(rdai, playback, capture);
rsnd_parse_connect_mix(rdai, playback, capture);
rsnd_parse_connect_dvc(rdai, playback, capture);
of_node_put(playback);
of_node_put(capture);
}
if (rsnd_ssi_is_pin_sharing(io_capture) ||
rsnd_ssi_is_pin_sharing(io_playback)) {
/* should have symmetric_rate if pin sharing */
drv->symmetric_rate = 1;
}
dev_dbg(dev, "%s (%s/%s)\n", rdai->name,
rsnd_io_to_mod_ssi(io_playback) ? "play" : " -- ",
rsnd_io_to_mod_ssi(io_capture) ? "capture" : " -- ");
}
static int rsnd_dai_probe(struct rsnd_priv *priv)
{
struct device_node *dai_node;
struct device_node *dai_np;
struct snd_soc_dai_driver *rdrv;
struct device *dev = rsnd_priv_to_dev(priv);
struct rsnd_dai *rdai;
int nr;
int is_graph;
int dai_i;
dai_node = rsnd_dai_of_node(priv, &is_graph);
if (is_graph)
nr = of_graph_get_endpoint_count(dai_node);
else
nr = of_get_child_count(dai_node);
if (!nr)
return -EINVAL;
rdrv = devm_kcalloc(dev, nr, sizeof(*rdrv), GFP_KERNEL);
rdai = devm_kcalloc(dev, nr, sizeof(*rdai), GFP_KERNEL);
if (!rdrv || !rdai)
return -ENOMEM;
priv->rdai_nr = nr;
priv->daidrv = rdrv;
priv->rdai = rdai;
/*
* parse all dai
*/
dai_i = 0;
if (is_graph) {
for_each_endpoint_of_node(dai_node, dai_np) {
__rsnd_dai_probe(priv, dai_np, dai_i);
if (rsnd_is_gen3(priv)) {
rdai = rsnd_rdai_get(priv, dai_i);
rsnd_parse_connect_graph(priv, &rdai->playback, dai_np);
rsnd_parse_connect_graph(priv, &rdai->capture, dai_np);
}
dai_i++;
}
} else {
for_each_child_of_node(dai_node, dai_np) {
__rsnd_dai_probe(priv, dai_np, dai_i);
if (rsnd_is_gen3(priv)) {
rdai = rsnd_rdai_get(priv, dai_i);
rsnd_parse_connect_simple(priv, &rdai->playback, dai_np);
rsnd_parse_connect_simple(priv, &rdai->capture, dai_np);
}
dai_i++;
}
}
return 0;
}
/*
* pcm ops
*/
static int rsnd_hw_update(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_soc_dai *dai = rsnd_substream_to_dai(substream);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
struct rsnd_priv *priv = rsnd_io_to_priv(io);
unsigned long flags;
int ret;
spin_lock_irqsave(&priv->lock, flags);
if (hw_params)
ret = rsnd_dai_call(hw_params, io, substream, hw_params);
else
ret = rsnd_dai_call(hw_free, io, substream);
spin_unlock_irqrestore(&priv->lock, flags);
return ret;
}
static int rsnd_hw_params(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_soc_dai *dai = rsnd_substream_to_dai(substream);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
struct snd_soc_pcm_runtime *fe = asoc_substream_to_rtd(substream);
/*
* rsnd assumes that it might be used under DPCM if user want to use
* channel / rate convert. Then, rsnd should be FE.
* And then, this function will be called *after* BE settings.
* this means, each BE already has fixuped hw_params.
* see
* dpcm_fe_dai_hw_params()
* dpcm_be_dai_hw_params()
*/
io->converted_rate = 0;
io->converted_chan = 0;
if (fe->dai_link->dynamic) {
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
struct snd_soc_dpcm *dpcm;
int stream = substream->stream;
for_each_dpcm_be(fe, stream, dpcm) {
struct snd_pcm_hw_params *be_params = &dpcm->hw_params;
if (params_channels(hw_params) != params_channels(be_params))
io->converted_chan = params_channels(be_params);
if (params_rate(hw_params) != params_rate(be_params))
io->converted_rate = params_rate(be_params);
}
if (io->converted_chan)
dev_dbg(dev, "convert channels = %d\n", io->converted_chan);
if (io->converted_rate) {
/*
* SRC supports convert rates from params_rate(hw_params)/k_down
* to params_rate(hw_params)*k_up, where k_up is always 6, and
* k_down depends on number of channels and SRC unit.
* So all SRC units can upsample audio up to 6 times regardless
* its number of channels. And all SRC units can downsample
* 2 channel audio up to 6 times too.
*/
int k_up = 6;
int k_down = 6;
int channel;
struct rsnd_mod *src_mod = rsnd_io_to_mod_src(io);
dev_dbg(dev, "convert rate = %d\n", io->converted_rate);
channel = io->converted_chan ? io->converted_chan :
params_channels(hw_params);
switch (rsnd_mod_id(src_mod)) {
/*
* SRC0 can downsample 4, 6 and 8 channel audio up to 4 times.
* SRC1, SRC3 and SRC4 can downsample 4 channel audio
* up to 4 times.
* SRC1, SRC3 and SRC4 can downsample 6 and 8 channel audio
* no more than twice.
*/
case 1:
case 3:
case 4:
if (channel > 4) {
k_down = 2;
break;
}
fallthrough;
case 0:
if (channel > 2)
k_down = 4;
break;
/* Other SRC units do not support more than 2 channels */
default:
if (channel > 2)
return -EINVAL;
}
if (params_rate(hw_params) > io->converted_rate * k_down) {
hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->min =
io->converted_rate * k_down;
hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->max =
io->converted_rate * k_down;
hw_params->cmask |= SNDRV_PCM_HW_PARAM_RATE;
} else if (params_rate(hw_params) * k_up < io->converted_rate) {
hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->min =
(io->converted_rate + k_up - 1) / k_up;
hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->max =
(io->converted_rate + k_up - 1) / k_up;
hw_params->cmask |= SNDRV_PCM_HW_PARAM_RATE;
}
/*
* TBD: Max SRC input and output rates also depend on number
* of channels and SRC unit:
* SRC1, SRC3 and SRC4 do not support more than 128kHz
* for 6 channel and 96kHz for 8 channel audio.
* Perhaps this function should return EINVAL if the input or
* the output rate exceeds the limitation.
*/
}
}
return rsnd_hw_update(substream, hw_params);
}
static int rsnd_hw_free(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
return rsnd_hw_update(substream, NULL);
}
static snd_pcm_uframes_t rsnd_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_dai *dai = rsnd_substream_to_dai(substream);
struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai);
struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream);
snd_pcm_uframes_t pointer = 0;
rsnd_dai_call(pointer, io, &pointer);
return pointer;
}
/*
* snd_kcontrol
*/
static int rsnd_kctrl_info(struct snd_kcontrol *kctrl,
struct snd_ctl_elem_info *uinfo)
{
struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl);
if (cfg->texts) {
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = cfg->size;
uinfo->value.enumerated.items = cfg->max;
if (uinfo->value.enumerated.item >= cfg->max)
uinfo->value.enumerated.item = cfg->max - 1;
strscpy(uinfo->value.enumerated.name,
cfg->texts[uinfo->value.enumerated.item],
sizeof(uinfo->value.enumerated.name));
} else {
uinfo->count = cfg->size;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = cfg->max;
uinfo->type = (cfg->max == 1) ?
SNDRV_CTL_ELEM_TYPE_BOOLEAN :
SNDRV_CTL_ELEM_TYPE_INTEGER;
}
return 0;
}
static int rsnd_kctrl_get(struct snd_kcontrol *kctrl,
struct snd_ctl_elem_value *uc)
{
struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl);
int i;
for (i = 0; i < cfg->size; i++)
if (cfg->texts)
uc->value.enumerated.item[i] = cfg->val[i];
else
uc->value.integer.value[i] = cfg->val[i];
return 0;
}
static int rsnd_kctrl_put(struct snd_kcontrol *kctrl,
struct snd_ctl_elem_value *uc)
{
struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl);
int i, change = 0;
if (!cfg->accept(cfg->io))
return 0;
for (i = 0; i < cfg->size; i++) {
if (cfg->texts) {
change |= (uc->value.enumerated.item[i] != cfg->val[i]);
cfg->val[i] = uc->value.enumerated.item[i];
} else {
change |= (uc->value.integer.value[i] != cfg->val[i]);
cfg->val[i] = uc->value.integer.value[i];
}
}
if (change && cfg->update)
cfg->update(cfg->io, cfg->mod);
return change;
}
int rsnd_kctrl_accept_anytime(struct rsnd_dai_stream *io)
{
return 1;
}
int rsnd_kctrl_accept_runtime(struct rsnd_dai_stream *io)
{
struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io);
struct rsnd_priv *priv = rsnd_io_to_priv(io);
struct device *dev = rsnd_priv_to_dev(priv);
if (!runtime) {
dev_warn(dev, "Can't update kctrl when idle\n");
return 0;
}
return 1;
}
struct rsnd_kctrl_cfg *rsnd_kctrl_init_m(struct rsnd_kctrl_cfg_m *cfg)
{
cfg->cfg.val = cfg->val;
return &cfg->cfg;
}
struct rsnd_kctrl_cfg *rsnd_kctrl_init_s(struct rsnd_kctrl_cfg_s *cfg)
{
cfg->cfg.val = &cfg->val;
return &cfg->cfg;
}
const char * const volume_ramp_rate[] = {
"128 dB/1 step", /* 00000 */
"64 dB/1 step", /* 00001 */
"32 dB/1 step", /* 00010 */
"16 dB/1 step", /* 00011 */
"8 dB/1 step", /* 00100 */
"4 dB/1 step", /* 00101 */
"2 dB/1 step", /* 00110 */
"1 dB/1 step", /* 00111 */
"0.5 dB/1 step", /* 01000 */
"0.25 dB/1 step", /* 01001 */
"0.125 dB/1 step", /* 01010 = VOLUME_RAMP_MAX_MIX */
"0.125 dB/2 steps", /* 01011 */
"0.125 dB/4 steps", /* 01100 */
"0.125 dB/8 steps", /* 01101 */
"0.125 dB/16 steps", /* 01110 */
"0.125 dB/32 steps", /* 01111 */
"0.125 dB/64 steps", /* 10000 */
"0.125 dB/128 steps", /* 10001 */
"0.125 dB/256 steps", /* 10010 */
"0.125 dB/512 steps", /* 10011 */
"0.125 dB/1024 steps", /* 10100 */
"0.125 dB/2048 steps", /* 10101 */
"0.125 dB/4096 steps", /* 10110 */
"0.125 dB/8192 steps", /* 10111 = VOLUME_RAMP_MAX_DVC */
};
int rsnd_kctrl_new(struct rsnd_mod *mod,
struct rsnd_dai_stream *io,
struct snd_soc_pcm_runtime *rtd,
const unsigned char *name,
int (*accept)(struct rsnd_dai_stream *io),
void (*update)(struct rsnd_dai_stream *io,
struct rsnd_mod *mod),
struct rsnd_kctrl_cfg *cfg,
const char * const *texts,
int size,
u32 max)
{
struct snd_card *card = rtd->card->snd_card;
struct snd_kcontrol *kctrl;
struct snd_kcontrol_new knew = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = name,
.info = rsnd_kctrl_info,
.index = rtd->num,
.get = rsnd_kctrl_get,
.put = rsnd_kctrl_put,
};
int ret;
/*
* 1) Avoid duplicate register for DVC with MIX case
* 2) Allow duplicate register for MIX
* 3) re-register if card was rebinded
*/
list_for_each_entry(kctrl, &card->controls, list) {
struct rsnd_kctrl_cfg *c = kctrl->private_data;
if (c == cfg)
return 0;
}
if (size > RSND_MAX_CHANNELS)
return -EINVAL;
kctrl = snd_ctl_new1(&knew, cfg);
if (!kctrl)
return -ENOMEM;
ret = snd_ctl_add(card, kctrl);
if (ret < 0)
return ret;
cfg->texts = texts;
cfg->max = max;
cfg->size = size;
cfg->accept = accept;
cfg->update = update;
cfg->card = card;
cfg->kctrl = kctrl;
cfg->io = io;
cfg->mod = mod;
return 0;
}
/*
* snd_soc_component
*/
static const struct snd_soc_component_driver rsnd_soc_component = {
.name = "rsnd",
.probe = rsnd_debugfs_probe,
.hw_params = rsnd_hw_params,
.hw_free = rsnd_hw_free,
.pointer = rsnd_pointer,
};
static int rsnd_rdai_continuance_probe(struct rsnd_priv *priv,
struct rsnd_dai_stream *io)
{
int ret;
ret = rsnd_dai_call(probe, io, priv);
if (ret == -EAGAIN) {
struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io);
struct rsnd_mod *mod;
int i;
/*
* Fallback to PIO mode
*/
/*
* call "remove" for SSI/SRC/DVC
* SSI will be switch to PIO mode if it was DMA mode
* see
* rsnd_dma_init()
* rsnd_ssi_fallback()
*/
rsnd_dai_call(remove, io, priv);
/*
* remove all mod from io
* and, re connect ssi
*/
for_each_rsnd_mod(i, mod, io)
rsnd_dai_disconnect(mod, io, i);
rsnd_dai_connect(ssi_mod, io, RSND_MOD_SSI);
/*
* fallback
*/
rsnd_dai_call(fallback, io, priv);
/*
* retry to "probe".
* DAI has SSI which is PIO mode only now.
*/
ret = rsnd_dai_call(probe, io, priv);
}
return ret;
}
/*
* rsnd probe
*/
static int rsnd_probe(struct platform_device *pdev)
{
struct rsnd_priv *priv;
struct device *dev = &pdev->dev;
struct rsnd_dai *rdai;
int (*probe_func[])(struct rsnd_priv *priv) = {
rsnd_gen_probe,
rsnd_dma_probe,
rsnd_ssi_probe,
rsnd_ssiu_probe,
rsnd_src_probe,
rsnd_ctu_probe,
rsnd_mix_probe,
rsnd_dvc_probe,
rsnd_cmd_probe,
rsnd_adg_probe,
rsnd_dai_probe,
};
int ret, i;
/*
* init priv data
*/
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENODEV;
priv->pdev = pdev;
priv->flags = (unsigned long)of_device_get_match_data(dev);
spin_lock_init(&priv->lock);
/*
* init each module
*/
for (i = 0; i < ARRAY_SIZE(probe_func); i++) {
ret = probe_func[i](priv);
if (ret)
return ret;
}
for_each_rsnd_dai(rdai, priv, i) {
ret = rsnd_rdai_continuance_probe(priv, &rdai->playback);
if (ret)
goto exit_snd_probe;
ret = rsnd_rdai_continuance_probe(priv, &rdai->capture);
if (ret)
goto exit_snd_probe;
}
dev_set_drvdata(dev, priv);
/*
* asoc register
*/
ret = devm_snd_soc_register_component(dev, &rsnd_soc_component,
priv->daidrv, rsnd_rdai_nr(priv));
if (ret < 0) {
dev_err(dev, "cannot snd dai register\n");
goto exit_snd_probe;
}
pm_runtime_enable(dev);
dev_info(dev, "probed\n");
return ret;
exit_snd_probe:
for_each_rsnd_dai(rdai, priv, i) {
rsnd_dai_call(remove, &rdai->playback, priv);
rsnd_dai_call(remove, &rdai->capture, priv);
}
/*
* adg is very special mod which can't use rsnd_dai_call(remove),
* and it registers ADG clock on probe.
* It should be unregister if probe failed.
* Mainly it is assuming -EPROBE_DEFER case
*/
rsnd_adg_remove(priv);
return ret;
}
static int rsnd_remove(struct platform_device *pdev)
{
struct rsnd_priv *priv = dev_get_drvdata(&pdev->dev);
struct rsnd_dai *rdai;
void (*remove_func[])(struct rsnd_priv *priv) = {
rsnd_ssi_remove,
rsnd_ssiu_remove,
rsnd_src_remove,
rsnd_ctu_remove,
rsnd_mix_remove,
rsnd_dvc_remove,
rsnd_cmd_remove,
rsnd_adg_remove,
};
int ret = 0, i;
pm_runtime_disable(&pdev->dev);
for_each_rsnd_dai(rdai, priv, i) {
ret |= rsnd_dai_call(remove, &rdai->playback, priv);
ret |= rsnd_dai_call(remove, &rdai->capture, priv);
}
for (i = 0; i < ARRAY_SIZE(remove_func); i++)
remove_func[i](priv);
return ret;
}
static int __maybe_unused rsnd_suspend(struct device *dev)
{
struct rsnd_priv *priv = dev_get_drvdata(dev);
rsnd_adg_clk_disable(priv);
return 0;
}
static int __maybe_unused rsnd_resume(struct device *dev)
{
struct rsnd_priv *priv = dev_get_drvdata(dev);
rsnd_adg_clk_enable(priv);
return 0;
}
static const struct dev_pm_ops rsnd_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rsnd_suspend, rsnd_resume)
};
static struct platform_driver rsnd_driver = {
.driver = {
.name = "rcar_sound",
.pm = &rsnd_pm_ops,
.of_match_table = rsnd_of_match,
},
.probe = rsnd_probe,
.remove = rsnd_remove,
};
module_platform_driver(rsnd_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas R-Car audio driver");
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
MODULE_ALIAS("platform:rcar-pcm-audio");