|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Data Access Monitor | 
|  | * | 
|  | * Author: SeongJae Park <sj@kernel.org> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "damon: " fmt | 
|  |  | 
|  | #include <linux/damon.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/damon.h> | 
|  |  | 
|  | #ifdef CONFIG_DAMON_KUNIT_TEST | 
|  | #undef DAMON_MIN_REGION | 
|  | #define DAMON_MIN_REGION 1 | 
|  | #endif | 
|  |  | 
|  | static DEFINE_MUTEX(damon_lock); | 
|  | static int nr_running_ctxs; | 
|  | static bool running_exclusive_ctxs; | 
|  |  | 
|  | static DEFINE_MUTEX(damon_ops_lock); | 
|  | static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; | 
|  |  | 
|  | static struct kmem_cache *damon_region_cache __ro_after_init; | 
|  |  | 
|  | /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ | 
|  | static bool __damon_is_registered_ops(enum damon_ops_id id) | 
|  | { | 
|  | struct damon_operations empty_ops = {}; | 
|  |  | 
|  | if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_is_registered_ops() - Check if a given damon_operations is registered. | 
|  | * @id:	Id of the damon_operations to check if registered. | 
|  | * | 
|  | * Return: true if the ops is set, false otherwise. | 
|  | */ | 
|  | bool damon_is_registered_ops(enum damon_ops_id id) | 
|  | { | 
|  | bool registered; | 
|  |  | 
|  | if (id >= NR_DAMON_OPS) | 
|  | return false; | 
|  | mutex_lock(&damon_ops_lock); | 
|  | registered = __damon_is_registered_ops(id); | 
|  | mutex_unlock(&damon_ops_lock); | 
|  | return registered; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_register_ops() - Register a monitoring operations set to DAMON. | 
|  | * @ops:	monitoring operations set to register. | 
|  | * | 
|  | * This function registers a monitoring operations set of valid &struct | 
|  | * damon_operations->id so that others can find and use them later. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_register_ops(struct damon_operations *ops) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (ops->id >= NR_DAMON_OPS) | 
|  | return -EINVAL; | 
|  | mutex_lock(&damon_ops_lock); | 
|  | /* Fail for already registered ops */ | 
|  | if (__damon_is_registered_ops(ops->id)) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | damon_registered_ops[ops->id] = *ops; | 
|  | out: | 
|  | mutex_unlock(&damon_ops_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_select_ops() - Select a monitoring operations to use with the context. | 
|  | * @ctx:	monitoring context to use the operations. | 
|  | * @id:		id of the registered monitoring operations to select. | 
|  | * | 
|  | * This function finds registered monitoring operations set of @id and make | 
|  | * @ctx to use it. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (id >= NR_DAMON_OPS) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&damon_ops_lock); | 
|  | if (!__damon_is_registered_ops(id)) | 
|  | err = -EINVAL; | 
|  | else | 
|  | ctx->ops = damon_registered_ops[id]; | 
|  | mutex_unlock(&damon_ops_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct a damon_region struct | 
|  | * | 
|  | * Returns the pointer to the new struct if success, or NULL otherwise | 
|  | */ | 
|  | struct damon_region *damon_new_region(unsigned long start, unsigned long end) | 
|  | { | 
|  | struct damon_region *region; | 
|  |  | 
|  | region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); | 
|  | if (!region) | 
|  | return NULL; | 
|  |  | 
|  | region->ar.start = start; | 
|  | region->ar.end = end; | 
|  | region->nr_accesses = 0; | 
|  | region->nr_accesses_bp = 0; | 
|  | INIT_LIST_HEAD(®ion->list); | 
|  |  | 
|  | region->age = 0; | 
|  | region->last_nr_accesses = 0; | 
|  |  | 
|  | return region; | 
|  | } | 
|  |  | 
|  | void damon_add_region(struct damon_region *r, struct damon_target *t) | 
|  | { | 
|  | list_add_tail(&r->list, &t->regions_list); | 
|  | t->nr_regions++; | 
|  | } | 
|  |  | 
|  | static void damon_del_region(struct damon_region *r, struct damon_target *t) | 
|  | { | 
|  | list_del(&r->list); | 
|  | t->nr_regions--; | 
|  | } | 
|  |  | 
|  | static void damon_free_region(struct damon_region *r) | 
|  | { | 
|  | kmem_cache_free(damon_region_cache, r); | 
|  | } | 
|  |  | 
|  | void damon_destroy_region(struct damon_region *r, struct damon_target *t) | 
|  | { | 
|  | damon_del_region(r, t); | 
|  | damon_free_region(r); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether a region is intersecting an address range | 
|  | * | 
|  | * Returns true if it is. | 
|  | */ | 
|  | static bool damon_intersect(struct damon_region *r, | 
|  | struct damon_addr_range *re) | 
|  | { | 
|  | return !(r->ar.end <= re->start || re->end <= r->ar.start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill holes in regions with new regions. | 
|  | */ | 
|  | static int damon_fill_regions_holes(struct damon_region *first, | 
|  | struct damon_region *last, struct damon_target *t) | 
|  | { | 
|  | struct damon_region *r = first; | 
|  |  | 
|  | damon_for_each_region_from(r, t) { | 
|  | struct damon_region *next, *newr; | 
|  |  | 
|  | if (r == last) | 
|  | break; | 
|  | next = damon_next_region(r); | 
|  | if (r->ar.end != next->ar.start) { | 
|  | newr = damon_new_region(r->ar.end, next->ar.start); | 
|  | if (!newr) | 
|  | return -ENOMEM; | 
|  | damon_insert_region(newr, r, next, t); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * damon_set_regions() - Set regions of a target for given address ranges. | 
|  | * @t:		the given target. | 
|  | * @ranges:	array of new monitoring target ranges. | 
|  | * @nr_ranges:	length of @ranges. | 
|  | * | 
|  | * This function adds new regions to, or modify existing regions of a | 
|  | * monitoring target to fit in specific ranges. | 
|  | * | 
|  | * Return: 0 if success, or negative error code otherwise. | 
|  | */ | 
|  | int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, | 
|  | unsigned int nr_ranges) | 
|  | { | 
|  | struct damon_region *r, *next; | 
|  | unsigned int i; | 
|  | int err; | 
|  |  | 
|  | /* Remove regions which are not in the new ranges */ | 
|  | damon_for_each_region_safe(r, next, t) { | 
|  | for (i = 0; i < nr_ranges; i++) { | 
|  | if (damon_intersect(r, &ranges[i])) | 
|  | break; | 
|  | } | 
|  | if (i == nr_ranges) | 
|  | damon_destroy_region(r, t); | 
|  | } | 
|  |  | 
|  | r = damon_first_region(t); | 
|  | /* Add new regions or resize existing regions to fit in the ranges */ | 
|  | for (i = 0; i < nr_ranges; i++) { | 
|  | struct damon_region *first = NULL, *last, *newr; | 
|  | struct damon_addr_range *range; | 
|  |  | 
|  | range = &ranges[i]; | 
|  | /* Get the first/last regions intersecting with the range */ | 
|  | damon_for_each_region_from(r, t) { | 
|  | if (damon_intersect(r, range)) { | 
|  | if (!first) | 
|  | first = r; | 
|  | last = r; | 
|  | } | 
|  | if (r->ar.start >= range->end) | 
|  | break; | 
|  | } | 
|  | if (!first) { | 
|  | /* no region intersects with this range */ | 
|  | newr = damon_new_region( | 
|  | ALIGN_DOWN(range->start, | 
|  | DAMON_MIN_REGION), | 
|  | ALIGN(range->end, DAMON_MIN_REGION)); | 
|  | if (!newr) | 
|  | return -ENOMEM; | 
|  | damon_insert_region(newr, damon_prev_region(r), r, t); | 
|  | } else { | 
|  | /* resize intersecting regions to fit in this range */ | 
|  | first->ar.start = ALIGN_DOWN(range->start, | 
|  | DAMON_MIN_REGION); | 
|  | last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); | 
|  |  | 
|  | /* fill possible holes in the range */ | 
|  | err = damon_fill_regions_holes(first, last, t); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct damos_filter *damos_new_filter(enum damos_filter_type type, | 
|  | bool matching) | 
|  | { | 
|  | struct damos_filter *filter; | 
|  |  | 
|  | filter = kmalloc(sizeof(*filter), GFP_KERNEL); | 
|  | if (!filter) | 
|  | return NULL; | 
|  | filter->type = type; | 
|  | filter->matching = matching; | 
|  | INIT_LIST_HEAD(&filter->list); | 
|  | return filter; | 
|  | } | 
|  |  | 
|  | void damos_add_filter(struct damos *s, struct damos_filter *f) | 
|  | { | 
|  | list_add_tail(&f->list, &s->filters); | 
|  | } | 
|  |  | 
|  | static void damos_del_filter(struct damos_filter *f) | 
|  | { | 
|  | list_del(&f->list); | 
|  | } | 
|  |  | 
|  | static void damos_free_filter(struct damos_filter *f) | 
|  | { | 
|  | kfree(f); | 
|  | } | 
|  |  | 
|  | void damos_destroy_filter(struct damos_filter *f) | 
|  | { | 
|  | damos_del_filter(f); | 
|  | damos_free_filter(f); | 
|  | } | 
|  |  | 
|  | /* initialize private fields of damos_quota and return the pointer */ | 
|  | static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota) | 
|  | { | 
|  | quota->total_charged_sz = 0; | 
|  | quota->total_charged_ns = 0; | 
|  | quota->esz = 0; | 
|  | quota->charged_sz = 0; | 
|  | quota->charged_from = 0; | 
|  | quota->charge_target_from = NULL; | 
|  | quota->charge_addr_from = 0; | 
|  | return quota; | 
|  | } | 
|  |  | 
|  | struct damos *damon_new_scheme(struct damos_access_pattern *pattern, | 
|  | enum damos_action action, | 
|  | unsigned long apply_interval_us, | 
|  | struct damos_quota *quota, | 
|  | struct damos_watermarks *wmarks) | 
|  | { | 
|  | struct damos *scheme; | 
|  |  | 
|  | scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); | 
|  | if (!scheme) | 
|  | return NULL; | 
|  | scheme->pattern = *pattern; | 
|  | scheme->action = action; | 
|  | scheme->apply_interval_us = apply_interval_us; | 
|  | /* | 
|  | * next_apply_sis will be set when kdamond starts.  While kdamond is | 
|  | * running, it will also updated when it is added to the DAMON context, | 
|  | * or damon_attrs are updated. | 
|  | */ | 
|  | scheme->next_apply_sis = 0; | 
|  | INIT_LIST_HEAD(&scheme->filters); | 
|  | scheme->stat = (struct damos_stat){}; | 
|  | INIT_LIST_HEAD(&scheme->list); | 
|  |  | 
|  | scheme->quota = *(damos_quota_init_priv(quota)); | 
|  |  | 
|  | scheme->wmarks = *wmarks; | 
|  | scheme->wmarks.activated = true; | 
|  |  | 
|  | return scheme; | 
|  | } | 
|  |  | 
|  | static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx) | 
|  | { | 
|  | unsigned long sample_interval = ctx->attrs.sample_interval ? | 
|  | ctx->attrs.sample_interval : 1; | 
|  | unsigned long apply_interval = s->apply_interval_us ? | 
|  | s->apply_interval_us : ctx->attrs.aggr_interval; | 
|  |  | 
|  | s->next_apply_sis = ctx->passed_sample_intervals + | 
|  | apply_interval / sample_interval; | 
|  | } | 
|  |  | 
|  | void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) | 
|  | { | 
|  | list_add_tail(&s->list, &ctx->schemes); | 
|  | damos_set_next_apply_sis(s, ctx); | 
|  | } | 
|  |  | 
|  | static void damon_del_scheme(struct damos *s) | 
|  | { | 
|  | list_del(&s->list); | 
|  | } | 
|  |  | 
|  | static void damon_free_scheme(struct damos *s) | 
|  | { | 
|  | kfree(s); | 
|  | } | 
|  |  | 
|  | void damon_destroy_scheme(struct damos *s) | 
|  | { | 
|  | struct damos_filter *f, *next; | 
|  |  | 
|  | damos_for_each_filter_safe(f, next, s) | 
|  | damos_destroy_filter(f); | 
|  | damon_del_scheme(s); | 
|  | damon_free_scheme(s); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct a damon_target struct | 
|  | * | 
|  | * Returns the pointer to the new struct if success, or NULL otherwise | 
|  | */ | 
|  | struct damon_target *damon_new_target(void) | 
|  | { | 
|  | struct damon_target *t; | 
|  |  | 
|  | t = kmalloc(sizeof(*t), GFP_KERNEL); | 
|  | if (!t) | 
|  | return NULL; | 
|  |  | 
|  | t->pid = NULL; | 
|  | t->nr_regions = 0; | 
|  | INIT_LIST_HEAD(&t->regions_list); | 
|  | INIT_LIST_HEAD(&t->list); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) | 
|  | { | 
|  | list_add_tail(&t->list, &ctx->adaptive_targets); | 
|  | } | 
|  |  | 
|  | bool damon_targets_empty(struct damon_ctx *ctx) | 
|  | { | 
|  | return list_empty(&ctx->adaptive_targets); | 
|  | } | 
|  |  | 
|  | static void damon_del_target(struct damon_target *t) | 
|  | { | 
|  | list_del(&t->list); | 
|  | } | 
|  |  | 
|  | void damon_free_target(struct damon_target *t) | 
|  | { | 
|  | struct damon_region *r, *next; | 
|  |  | 
|  | damon_for_each_region_safe(r, next, t) | 
|  | damon_free_region(r); | 
|  | kfree(t); | 
|  | } | 
|  |  | 
|  | void damon_destroy_target(struct damon_target *t) | 
|  | { | 
|  | damon_del_target(t); | 
|  | damon_free_target(t); | 
|  | } | 
|  |  | 
|  | unsigned int damon_nr_regions(struct damon_target *t) | 
|  | { | 
|  | return t->nr_regions; | 
|  | } | 
|  |  | 
|  | struct damon_ctx *damon_new_ctx(void) | 
|  | { | 
|  | struct damon_ctx *ctx; | 
|  |  | 
|  | ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return NULL; | 
|  |  | 
|  | init_completion(&ctx->kdamond_started); | 
|  |  | 
|  | ctx->attrs.sample_interval = 5 * 1000; | 
|  | ctx->attrs.aggr_interval = 100 * 1000; | 
|  | ctx->attrs.ops_update_interval = 60 * 1000 * 1000; | 
|  |  | 
|  | ctx->passed_sample_intervals = 0; | 
|  | /* These will be set from kdamond_init_intervals_sis() */ | 
|  | ctx->next_aggregation_sis = 0; | 
|  | ctx->next_ops_update_sis = 0; | 
|  |  | 
|  | mutex_init(&ctx->kdamond_lock); | 
|  |  | 
|  | ctx->attrs.min_nr_regions = 10; | 
|  | ctx->attrs.max_nr_regions = 1000; | 
|  |  | 
|  | INIT_LIST_HEAD(&ctx->adaptive_targets); | 
|  | INIT_LIST_HEAD(&ctx->schemes); | 
|  |  | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void damon_destroy_targets(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damon_target *t, *next_t; | 
|  |  | 
|  | if (ctx->ops.cleanup) { | 
|  | ctx->ops.cleanup(ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | damon_for_each_target_safe(t, next_t, ctx) | 
|  | damon_destroy_target(t); | 
|  | } | 
|  |  | 
|  | void damon_destroy_ctx(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damos *s, *next_s; | 
|  |  | 
|  | damon_destroy_targets(ctx); | 
|  |  | 
|  | damon_for_each_scheme_safe(s, next_s, ctx) | 
|  | damon_destroy_scheme(s); | 
|  |  | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | static unsigned int damon_age_for_new_attrs(unsigned int age, | 
|  | struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) | 
|  | { | 
|  | return age * old_attrs->aggr_interval / new_attrs->aggr_interval; | 
|  | } | 
|  |  | 
|  | /* convert access ratio in bp (per 10,000) to nr_accesses */ | 
|  | static unsigned int damon_accesses_bp_to_nr_accesses( | 
|  | unsigned int accesses_bp, struct damon_attrs *attrs) | 
|  | { | 
|  | return accesses_bp * damon_max_nr_accesses(attrs) / 10000; | 
|  | } | 
|  |  | 
|  | /* convert nr_accesses to access ratio in bp (per 10,000) */ | 
|  | static unsigned int damon_nr_accesses_to_accesses_bp( | 
|  | unsigned int nr_accesses, struct damon_attrs *attrs) | 
|  | { | 
|  | return nr_accesses * 10000 / damon_max_nr_accesses(attrs); | 
|  | } | 
|  |  | 
|  | static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses, | 
|  | struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) | 
|  | { | 
|  | return damon_accesses_bp_to_nr_accesses( | 
|  | damon_nr_accesses_to_accesses_bp( | 
|  | nr_accesses, old_attrs), | 
|  | new_attrs); | 
|  | } | 
|  |  | 
|  | static void damon_update_monitoring_result(struct damon_region *r, | 
|  | struct damon_attrs *old_attrs, struct damon_attrs *new_attrs) | 
|  | { | 
|  | r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses, | 
|  | old_attrs, new_attrs); | 
|  | r->nr_accesses_bp = r->nr_accesses * 10000; | 
|  | r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * region->nr_accesses is the number of sampling intervals in the last | 
|  | * aggregation interval that access to the region has found, and region->age is | 
|  | * the number of aggregation intervals that its access pattern has maintained. | 
|  | * For the reason, the real meaning of the two fields depend on current | 
|  | * sampling interval and aggregation interval.  This function updates | 
|  | * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs. | 
|  | */ | 
|  | static void damon_update_monitoring_results(struct damon_ctx *ctx, | 
|  | struct damon_attrs *new_attrs) | 
|  | { | 
|  | struct damon_attrs *old_attrs = &ctx->attrs; | 
|  | struct damon_target *t; | 
|  | struct damon_region *r; | 
|  |  | 
|  | /* if any interval is zero, simply forgive conversion */ | 
|  | if (!old_attrs->sample_interval || !old_attrs->aggr_interval || | 
|  | !new_attrs->sample_interval || | 
|  | !new_attrs->aggr_interval) | 
|  | return; | 
|  |  | 
|  | damon_for_each_target(t, ctx) | 
|  | damon_for_each_region(r, t) | 
|  | damon_update_monitoring_result( | 
|  | r, old_attrs, new_attrs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_set_attrs() - Set attributes for the monitoring. | 
|  | * @ctx:		monitoring context | 
|  | * @attrs:		monitoring attributes | 
|  | * | 
|  | * This function should be called while the kdamond is not running, or an | 
|  | * access check results aggregation is not ongoing (e.g., from | 
|  | * &struct damon_callback->after_aggregation or | 
|  | * &struct damon_callback->after_wmarks_check callbacks). | 
|  | * | 
|  | * Every time interval is in micro-seconds. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) | 
|  | { | 
|  | unsigned long sample_interval = attrs->sample_interval ? | 
|  | attrs->sample_interval : 1; | 
|  | struct damos *s; | 
|  |  | 
|  | if (attrs->min_nr_regions < 3) | 
|  | return -EINVAL; | 
|  | if (attrs->min_nr_regions > attrs->max_nr_regions) | 
|  | return -EINVAL; | 
|  | if (attrs->sample_interval > attrs->aggr_interval) | 
|  | return -EINVAL; | 
|  |  | 
|  | ctx->next_aggregation_sis = ctx->passed_sample_intervals + | 
|  | attrs->aggr_interval / sample_interval; | 
|  | ctx->next_ops_update_sis = ctx->passed_sample_intervals + | 
|  | attrs->ops_update_interval / sample_interval; | 
|  |  | 
|  | damon_update_monitoring_results(ctx, attrs); | 
|  | ctx->attrs = *attrs; | 
|  |  | 
|  | damon_for_each_scheme(s, ctx) | 
|  | damos_set_next_apply_sis(s, ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_set_schemes() - Set data access monitoring based operation schemes. | 
|  | * @ctx:	monitoring context | 
|  | * @schemes:	array of the schemes | 
|  | * @nr_schemes:	number of entries in @schemes | 
|  | * | 
|  | * This function should not be called while the kdamond of the context is | 
|  | * running. | 
|  | */ | 
|  | void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, | 
|  | ssize_t nr_schemes) | 
|  | { | 
|  | struct damos *s, *next; | 
|  | ssize_t i; | 
|  |  | 
|  | damon_for_each_scheme_safe(s, next, ctx) | 
|  | damon_destroy_scheme(s); | 
|  | for (i = 0; i < nr_schemes; i++) | 
|  | damon_add_scheme(ctx, schemes[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_nr_running_ctxs() - Return number of currently running contexts. | 
|  | */ | 
|  | int damon_nr_running_ctxs(void) | 
|  | { | 
|  | int nr_ctxs; | 
|  |  | 
|  | mutex_lock(&damon_lock); | 
|  | nr_ctxs = nr_running_ctxs; | 
|  | mutex_unlock(&damon_lock); | 
|  |  | 
|  | return nr_ctxs; | 
|  | } | 
|  |  | 
|  | /* Returns the size upper limit for each monitoring region */ | 
|  | static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damon_target *t; | 
|  | struct damon_region *r; | 
|  | unsigned long sz = 0; | 
|  |  | 
|  | damon_for_each_target(t, ctx) { | 
|  | damon_for_each_region(r, t) | 
|  | sz += damon_sz_region(r); | 
|  | } | 
|  |  | 
|  | if (ctx->attrs.min_nr_regions) | 
|  | sz /= ctx->attrs.min_nr_regions; | 
|  | if (sz < DAMON_MIN_REGION) | 
|  | sz = DAMON_MIN_REGION; | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static int kdamond_fn(void *data); | 
|  |  | 
|  | /* | 
|  | * __damon_start() - Starts monitoring with given context. | 
|  | * @ctx:	monitoring context | 
|  | * | 
|  | * This function should be called while damon_lock is hold. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int __damon_start(struct damon_ctx *ctx) | 
|  | { | 
|  | int err = -EBUSY; | 
|  |  | 
|  | mutex_lock(&ctx->kdamond_lock); | 
|  | if (!ctx->kdamond) { | 
|  | err = 0; | 
|  | reinit_completion(&ctx->kdamond_started); | 
|  | ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", | 
|  | nr_running_ctxs); | 
|  | if (IS_ERR(ctx->kdamond)) { | 
|  | err = PTR_ERR(ctx->kdamond); | 
|  | ctx->kdamond = NULL; | 
|  | } else { | 
|  | wait_for_completion(&ctx->kdamond_started); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&ctx->kdamond_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_start() - Starts the monitorings for a given group of contexts. | 
|  | * @ctxs:	an array of the pointers for contexts to start monitoring | 
|  | * @nr_ctxs:	size of @ctxs | 
|  | * @exclusive:	exclusiveness of this contexts group | 
|  | * | 
|  | * This function starts a group of monitoring threads for a group of monitoring | 
|  | * contexts.  One thread per each context is created and run in parallel.  The | 
|  | * caller should handle synchronization between the threads by itself.  If | 
|  | * @exclusive is true and a group of threads that created by other | 
|  | * 'damon_start()' call is currently running, this function does nothing but | 
|  | * returns -EBUSY. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) | 
|  | { | 
|  | int i; | 
|  | int err = 0; | 
|  |  | 
|  | mutex_lock(&damon_lock); | 
|  | if ((exclusive && nr_running_ctxs) || | 
|  | (!exclusive && running_exclusive_ctxs)) { | 
|  | mutex_unlock(&damon_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_ctxs; i++) { | 
|  | err = __damon_start(ctxs[i]); | 
|  | if (err) | 
|  | break; | 
|  | nr_running_ctxs++; | 
|  | } | 
|  | if (exclusive && nr_running_ctxs) | 
|  | running_exclusive_ctxs = true; | 
|  | mutex_unlock(&damon_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __damon_stop() - Stops monitoring of a given context. | 
|  | * @ctx:	monitoring context | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | static int __damon_stop(struct damon_ctx *ctx) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | mutex_lock(&ctx->kdamond_lock); | 
|  | tsk = ctx->kdamond; | 
|  | if (tsk) { | 
|  | get_task_struct(tsk); | 
|  | mutex_unlock(&ctx->kdamond_lock); | 
|  | kthread_stop_put(tsk); | 
|  | return 0; | 
|  | } | 
|  | mutex_unlock(&ctx->kdamond_lock); | 
|  |  | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_stop() - Stops the monitorings for a given group of contexts. | 
|  | * @ctxs:	an array of the pointers for contexts to stop monitoring | 
|  | * @nr_ctxs:	size of @ctxs | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < nr_ctxs; i++) { | 
|  | /* nr_running_ctxs is decremented in kdamond_fn */ | 
|  | err = __damon_stop(ctxs[i]); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the aggregated monitoring results ('nr_accesses' of each region). | 
|  | */ | 
|  | static void kdamond_reset_aggregated(struct damon_ctx *c) | 
|  | { | 
|  | struct damon_target *t; | 
|  | unsigned int ti = 0;	/* target's index */ | 
|  |  | 
|  | damon_for_each_target(t, c) { | 
|  | struct damon_region *r; | 
|  |  | 
|  | damon_for_each_region(r, t) { | 
|  | trace_damon_aggregated(ti, r, damon_nr_regions(t)); | 
|  | r->last_nr_accesses = r->nr_accesses; | 
|  | r->nr_accesses = 0; | 
|  | } | 
|  | ti++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void damon_split_region_at(struct damon_target *t, | 
|  | struct damon_region *r, unsigned long sz_r); | 
|  |  | 
|  | static bool __damos_valid_target(struct damon_region *r, struct damos *s) | 
|  | { | 
|  | unsigned long sz; | 
|  | unsigned int nr_accesses = r->nr_accesses_bp / 10000; | 
|  |  | 
|  | sz = damon_sz_region(r); | 
|  | return s->pattern.min_sz_region <= sz && | 
|  | sz <= s->pattern.max_sz_region && | 
|  | s->pattern.min_nr_accesses <= nr_accesses && | 
|  | nr_accesses <= s->pattern.max_nr_accesses && | 
|  | s->pattern.min_age_region <= r->age && | 
|  | r->age <= s->pattern.max_age_region; | 
|  | } | 
|  |  | 
|  | static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, | 
|  | struct damon_region *r, struct damos *s) | 
|  | { | 
|  | bool ret = __damos_valid_target(r, s); | 
|  |  | 
|  | if (!ret || !s->quota.esz || !c->ops.get_scheme_score) | 
|  | return ret; | 
|  |  | 
|  | return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * damos_skip_charged_region() - Check if the given region or starting part of | 
|  | * it is already charged for the DAMOS quota. | 
|  | * @t:	The target of the region. | 
|  | * @rp:	The pointer to the region. | 
|  | * @s:	The scheme to be applied. | 
|  | * | 
|  | * If a quota of a scheme has exceeded in a quota charge window, the scheme's | 
|  | * action would applied to only a part of the target access pattern fulfilling | 
|  | * regions.  To avoid applying the scheme action to only already applied | 
|  | * regions, DAMON skips applying the scheme action to the regions that charged | 
|  | * in the previous charge window. | 
|  | * | 
|  | * This function checks if a given region should be skipped or not for the | 
|  | * reason.  If only the starting part of the region has previously charged, | 
|  | * this function splits the region into two so that the second one covers the | 
|  | * area that not charged in the previous charge widnow and saves the second | 
|  | * region in *rp and returns false, so that the caller can apply DAMON action | 
|  | * to the second one. | 
|  | * | 
|  | * Return: true if the region should be entirely skipped, false otherwise. | 
|  | */ | 
|  | static bool damos_skip_charged_region(struct damon_target *t, | 
|  | struct damon_region **rp, struct damos *s) | 
|  | { | 
|  | struct damon_region *r = *rp; | 
|  | struct damos_quota *quota = &s->quota; | 
|  | unsigned long sz_to_skip; | 
|  |  | 
|  | /* Skip previously charged regions */ | 
|  | if (quota->charge_target_from) { | 
|  | if (t != quota->charge_target_from) | 
|  | return true; | 
|  | if (r == damon_last_region(t)) { | 
|  | quota->charge_target_from = NULL; | 
|  | quota->charge_addr_from = 0; | 
|  | return true; | 
|  | } | 
|  | if (quota->charge_addr_from && | 
|  | r->ar.end <= quota->charge_addr_from) | 
|  | return true; | 
|  |  | 
|  | if (quota->charge_addr_from && r->ar.start < | 
|  | quota->charge_addr_from) { | 
|  | sz_to_skip = ALIGN_DOWN(quota->charge_addr_from - | 
|  | r->ar.start, DAMON_MIN_REGION); | 
|  | if (!sz_to_skip) { | 
|  | if (damon_sz_region(r) <= DAMON_MIN_REGION) | 
|  | return true; | 
|  | sz_to_skip = DAMON_MIN_REGION; | 
|  | } | 
|  | damon_split_region_at(t, r, sz_to_skip); | 
|  | r = damon_next_region(r); | 
|  | *rp = r; | 
|  | } | 
|  | quota->charge_target_from = NULL; | 
|  | quota->charge_addr_from = 0; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void damos_update_stat(struct damos *s, | 
|  | unsigned long sz_tried, unsigned long sz_applied) | 
|  | { | 
|  | s->stat.nr_tried++; | 
|  | s->stat.sz_tried += sz_tried; | 
|  | if (sz_applied) | 
|  | s->stat.nr_applied++; | 
|  | s->stat.sz_applied += sz_applied; | 
|  | } | 
|  |  | 
|  | static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, | 
|  | struct damon_region *r, struct damos_filter *filter) | 
|  | { | 
|  | bool matched = false; | 
|  | struct damon_target *ti; | 
|  | int target_idx = 0; | 
|  | unsigned long start, end; | 
|  |  | 
|  | switch (filter->type) { | 
|  | case DAMOS_FILTER_TYPE_TARGET: | 
|  | damon_for_each_target(ti, ctx) { | 
|  | if (ti == t) | 
|  | break; | 
|  | target_idx++; | 
|  | } | 
|  | matched = target_idx == filter->target_idx; | 
|  | break; | 
|  | case DAMOS_FILTER_TYPE_ADDR: | 
|  | start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION); | 
|  | end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION); | 
|  |  | 
|  | /* inside the range */ | 
|  | if (start <= r->ar.start && r->ar.end <= end) { | 
|  | matched = true; | 
|  | break; | 
|  | } | 
|  | /* outside of the range */ | 
|  | if (r->ar.end <= start || end <= r->ar.start) { | 
|  | matched = false; | 
|  | break; | 
|  | } | 
|  | /* start before the range and overlap */ | 
|  | if (r->ar.start < start) { | 
|  | damon_split_region_at(t, r, start - r->ar.start); | 
|  | matched = false; | 
|  | break; | 
|  | } | 
|  | /* start inside the range */ | 
|  | damon_split_region_at(t, r, end - r->ar.start); | 
|  | matched = true; | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return matched == filter->matching; | 
|  | } | 
|  |  | 
|  | static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t, | 
|  | struct damon_region *r, struct damos *s) | 
|  | { | 
|  | struct damos_filter *filter; | 
|  |  | 
|  | damos_for_each_filter(filter, s) { | 
|  | if (__damos_filter_out(ctx, t, r, filter)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t, | 
|  | struct damon_region *r, struct damos *s) | 
|  | { | 
|  | struct damos_quota *quota = &s->quota; | 
|  | unsigned long sz = damon_sz_region(r); | 
|  | struct timespec64 begin, end; | 
|  | unsigned long sz_applied = 0; | 
|  | int err = 0; | 
|  | /* | 
|  | * We plan to support multiple context per kdamond, as DAMON sysfs | 
|  | * implies with 'nr_contexts' file.  Nevertheless, only single context | 
|  | * per kdamond is supported for now.  So, we can simply use '0' context | 
|  | * index here. | 
|  | */ | 
|  | unsigned int cidx = 0; | 
|  | struct damos *siter;		/* schemes iterator */ | 
|  | unsigned int sidx = 0; | 
|  | struct damon_target *titer;	/* targets iterator */ | 
|  | unsigned int tidx = 0; | 
|  | bool do_trace = false; | 
|  |  | 
|  | /* get indices for trace_damos_before_apply() */ | 
|  | if (trace_damos_before_apply_enabled()) { | 
|  | damon_for_each_scheme(siter, c) { | 
|  | if (siter == s) | 
|  | break; | 
|  | sidx++; | 
|  | } | 
|  | damon_for_each_target(titer, c) { | 
|  | if (titer == t) | 
|  | break; | 
|  | tidx++; | 
|  | } | 
|  | do_trace = true; | 
|  | } | 
|  |  | 
|  | if (c->ops.apply_scheme) { | 
|  | if (quota->esz && quota->charged_sz + sz > quota->esz) { | 
|  | sz = ALIGN_DOWN(quota->esz - quota->charged_sz, | 
|  | DAMON_MIN_REGION); | 
|  | if (!sz) | 
|  | goto update_stat; | 
|  | damon_split_region_at(t, r, sz); | 
|  | } | 
|  | if (damos_filter_out(c, t, r, s)) | 
|  | return; | 
|  | ktime_get_coarse_ts64(&begin); | 
|  | if (c->callback.before_damos_apply) | 
|  | err = c->callback.before_damos_apply(c, t, r, s); | 
|  | if (!err) { | 
|  | trace_damos_before_apply(cidx, sidx, tidx, r, | 
|  | damon_nr_regions(t), do_trace); | 
|  | sz_applied = c->ops.apply_scheme(c, t, r, s); | 
|  | } | 
|  | ktime_get_coarse_ts64(&end); | 
|  | quota->total_charged_ns += timespec64_to_ns(&end) - | 
|  | timespec64_to_ns(&begin); | 
|  | quota->charged_sz += sz; | 
|  | if (quota->esz && quota->charged_sz >= quota->esz) { | 
|  | quota->charge_target_from = t; | 
|  | quota->charge_addr_from = r->ar.end + 1; | 
|  | } | 
|  | } | 
|  | if (s->action != DAMOS_STAT) | 
|  | r->age = 0; | 
|  |  | 
|  | update_stat: | 
|  | damos_update_stat(s, sz, sz_applied); | 
|  | } | 
|  |  | 
|  | static void damon_do_apply_schemes(struct damon_ctx *c, | 
|  | struct damon_target *t, | 
|  | struct damon_region *r) | 
|  | { | 
|  | struct damos *s; | 
|  |  | 
|  | damon_for_each_scheme(s, c) { | 
|  | struct damos_quota *quota = &s->quota; | 
|  |  | 
|  | if (c->passed_sample_intervals != s->next_apply_sis) | 
|  | continue; | 
|  |  | 
|  | if (!s->wmarks.activated) | 
|  | continue; | 
|  |  | 
|  | /* Check the quota */ | 
|  | if (quota->esz && quota->charged_sz >= quota->esz) | 
|  | continue; | 
|  |  | 
|  | if (damos_skip_charged_region(t, &r, s)) | 
|  | continue; | 
|  |  | 
|  | if (!damos_valid_target(c, t, r, s)) | 
|  | continue; | 
|  |  | 
|  | damos_apply_scheme(c, t, r, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * damon_feed_loop_next_input() - get next input to achieve a target score. | 
|  | * @last_input	The last input. | 
|  | * @score	Current score that made with @last_input. | 
|  | * | 
|  | * Calculate next input to achieve the target score, based on the last input | 
|  | * and current score.  Assuming the input and the score are positively | 
|  | * proportional, calculate how much compensation should be added to or | 
|  | * subtracted from the last input as a proportion of the last input.  Avoid | 
|  | * next input always being zero by setting it non-zero always.  In short form | 
|  | * (assuming support of float and signed calculations), the algorithm is as | 
|  | * below. | 
|  | * | 
|  | * next_input = max(last_input * ((goal - current) / goal + 1), 1) | 
|  | * | 
|  | * For simple implementation, we assume the target score is always 10,000.  The | 
|  | * caller should adjust @score for this. | 
|  | * | 
|  | * Returns next input that assumed to achieve the target score. | 
|  | */ | 
|  | static unsigned long damon_feed_loop_next_input(unsigned long last_input, | 
|  | unsigned long score) | 
|  | { | 
|  | const unsigned long goal = 10000; | 
|  | unsigned long score_goal_diff = max(goal, score) - min(goal, score); | 
|  | unsigned long score_goal_diff_bp = score_goal_diff * 10000 / goal; | 
|  | unsigned long compensation = last_input * score_goal_diff_bp / 10000; | 
|  | /* Set minimum input as 10000 to avoid compensation be zero */ | 
|  | const unsigned long min_input = 10000; | 
|  |  | 
|  | if (goal > score) | 
|  | return last_input + compensation; | 
|  | if (last_input > compensation + min_input) | 
|  | return last_input - compensation; | 
|  | return min_input; | 
|  | } | 
|  |  | 
|  | /* Shouldn't be called if quota->ms, quota->sz, and quota->get_score unset */ | 
|  | static void damos_set_effective_quota(struct damos_quota *quota) | 
|  | { | 
|  | unsigned long throughput; | 
|  | unsigned long esz; | 
|  |  | 
|  | if (!quota->ms && !quota->get_score) { | 
|  | quota->esz = quota->sz; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (quota->get_score) { | 
|  | quota->esz_bp = damon_feed_loop_next_input( | 
|  | max(quota->esz_bp, 10000UL), | 
|  | quota->get_score(quota->get_score_arg)); | 
|  | esz = quota->esz_bp / 10000; | 
|  | } | 
|  |  | 
|  | if (quota->ms) { | 
|  | if (quota->total_charged_ns) | 
|  | throughput = quota->total_charged_sz * 1000000 / | 
|  | quota->total_charged_ns; | 
|  | else | 
|  | throughput = PAGE_SIZE * 1024; | 
|  | if (quota->get_score) | 
|  | esz = min(throughput * quota->ms, esz); | 
|  | else | 
|  | esz = throughput * quota->ms; | 
|  | } | 
|  |  | 
|  | if (quota->sz && quota->sz < esz) | 
|  | esz = quota->sz; | 
|  |  | 
|  | quota->esz = esz; | 
|  | } | 
|  |  | 
|  | static void damos_adjust_quota(struct damon_ctx *c, struct damos *s) | 
|  | { | 
|  | struct damos_quota *quota = &s->quota; | 
|  | struct damon_target *t; | 
|  | struct damon_region *r; | 
|  | unsigned long cumulated_sz; | 
|  | unsigned int score, max_score = 0; | 
|  |  | 
|  | if (!quota->ms && !quota->sz && !quota->get_score) | 
|  | return; | 
|  |  | 
|  | /* New charge window starts */ | 
|  | if (time_after_eq(jiffies, quota->charged_from + | 
|  | msecs_to_jiffies(quota->reset_interval))) { | 
|  | if (quota->esz && quota->charged_sz >= quota->esz) | 
|  | s->stat.qt_exceeds++; | 
|  | quota->total_charged_sz += quota->charged_sz; | 
|  | quota->charged_from = jiffies; | 
|  | quota->charged_sz = 0; | 
|  | damos_set_effective_quota(quota); | 
|  | } | 
|  |  | 
|  | if (!c->ops.get_scheme_score) | 
|  | return; | 
|  |  | 
|  | /* Fill up the score histogram */ | 
|  | memset(quota->histogram, 0, sizeof(quota->histogram)); | 
|  | damon_for_each_target(t, c) { | 
|  | damon_for_each_region(r, t) { | 
|  | if (!__damos_valid_target(r, s)) | 
|  | continue; | 
|  | score = c->ops.get_scheme_score(c, t, r, s); | 
|  | quota->histogram[score] += damon_sz_region(r); | 
|  | if (score > max_score) | 
|  | max_score = score; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set the min score limit */ | 
|  | for (cumulated_sz = 0, score = max_score; ; score--) { | 
|  | cumulated_sz += quota->histogram[score]; | 
|  | if (cumulated_sz >= quota->esz || !score) | 
|  | break; | 
|  | } | 
|  | quota->min_score = score; | 
|  | } | 
|  |  | 
|  | static void kdamond_apply_schemes(struct damon_ctx *c) | 
|  | { | 
|  | struct damon_target *t; | 
|  | struct damon_region *r, *next_r; | 
|  | struct damos *s; | 
|  | unsigned long sample_interval = c->attrs.sample_interval ? | 
|  | c->attrs.sample_interval : 1; | 
|  | bool has_schemes_to_apply = false; | 
|  |  | 
|  | damon_for_each_scheme(s, c) { | 
|  | if (c->passed_sample_intervals != s->next_apply_sis) | 
|  | continue; | 
|  |  | 
|  | if (!s->wmarks.activated) | 
|  | continue; | 
|  |  | 
|  | has_schemes_to_apply = true; | 
|  |  | 
|  | damos_adjust_quota(c, s); | 
|  | } | 
|  |  | 
|  | if (!has_schemes_to_apply) | 
|  | return; | 
|  |  | 
|  | damon_for_each_target(t, c) { | 
|  | damon_for_each_region_safe(r, next_r, t) | 
|  | damon_do_apply_schemes(c, t, r); | 
|  | } | 
|  |  | 
|  | damon_for_each_scheme(s, c) { | 
|  | if (c->passed_sample_intervals != s->next_apply_sis) | 
|  | continue; | 
|  | s->next_apply_sis += | 
|  | (s->apply_interval_us ? s->apply_interval_us : | 
|  | c->attrs.aggr_interval) / sample_interval; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merge two adjacent regions into one region | 
|  | */ | 
|  | static void damon_merge_two_regions(struct damon_target *t, | 
|  | struct damon_region *l, struct damon_region *r) | 
|  | { | 
|  | unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); | 
|  |  | 
|  | l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / | 
|  | (sz_l + sz_r); | 
|  | l->nr_accesses_bp = l->nr_accesses * 10000; | 
|  | l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); | 
|  | l->ar.end = r->ar.end; | 
|  | damon_destroy_region(r, t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merge adjacent regions having similar access frequencies | 
|  | * | 
|  | * t		target affected by this merge operation | 
|  | * thres	'->nr_accesses' diff threshold for the merge | 
|  | * sz_limit	size upper limit of each region | 
|  | */ | 
|  | static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, | 
|  | unsigned long sz_limit) | 
|  | { | 
|  | struct damon_region *r, *prev = NULL, *next; | 
|  |  | 
|  | damon_for_each_region_safe(r, next, t) { | 
|  | if (abs(r->nr_accesses - r->last_nr_accesses) > thres) | 
|  | r->age = 0; | 
|  | else | 
|  | r->age++; | 
|  |  | 
|  | if (prev && prev->ar.end == r->ar.start && | 
|  | abs(prev->nr_accesses - r->nr_accesses) <= thres && | 
|  | damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) | 
|  | damon_merge_two_regions(t, prev, r); | 
|  | else | 
|  | prev = r; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Merge adjacent regions having similar access frequencies | 
|  | * | 
|  | * threshold	'->nr_accesses' diff threshold for the merge | 
|  | * sz_limit	size upper limit of each region | 
|  | * | 
|  | * This function merges monitoring target regions which are adjacent and their | 
|  | * access frequencies are similar.  This is for minimizing the monitoring | 
|  | * overhead under the dynamically changeable access pattern.  If a merge was | 
|  | * unnecessarily made, later 'kdamond_split_regions()' will revert it. | 
|  | */ | 
|  | static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, | 
|  | unsigned long sz_limit) | 
|  | { | 
|  | struct damon_target *t; | 
|  |  | 
|  | damon_for_each_target(t, c) | 
|  | damon_merge_regions_of(t, threshold, sz_limit); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split a region in two | 
|  | * | 
|  | * r		the region to be split | 
|  | * sz_r		size of the first sub-region that will be made | 
|  | */ | 
|  | static void damon_split_region_at(struct damon_target *t, | 
|  | struct damon_region *r, unsigned long sz_r) | 
|  | { | 
|  | struct damon_region *new; | 
|  |  | 
|  | new = damon_new_region(r->ar.start + sz_r, r->ar.end); | 
|  | if (!new) | 
|  | return; | 
|  |  | 
|  | r->ar.end = new->ar.start; | 
|  |  | 
|  | new->age = r->age; | 
|  | new->last_nr_accesses = r->last_nr_accesses; | 
|  | new->nr_accesses_bp = r->nr_accesses_bp; | 
|  | new->nr_accesses = r->nr_accesses; | 
|  |  | 
|  | damon_insert_region(new, r, damon_next_region(r), t); | 
|  | } | 
|  |  | 
|  | /* Split every region in the given target into 'nr_subs' regions */ | 
|  | static void damon_split_regions_of(struct damon_target *t, int nr_subs) | 
|  | { | 
|  | struct damon_region *r, *next; | 
|  | unsigned long sz_region, sz_sub = 0; | 
|  | int i; | 
|  |  | 
|  | damon_for_each_region_safe(r, next, t) { | 
|  | sz_region = damon_sz_region(r); | 
|  |  | 
|  | for (i = 0; i < nr_subs - 1 && | 
|  | sz_region > 2 * DAMON_MIN_REGION; i++) { | 
|  | /* | 
|  | * Randomly select size of left sub-region to be at | 
|  | * least 10 percent and at most 90% of original region | 
|  | */ | 
|  | sz_sub = ALIGN_DOWN(damon_rand(1, 10) * | 
|  | sz_region / 10, DAMON_MIN_REGION); | 
|  | /* Do not allow blank region */ | 
|  | if (sz_sub == 0 || sz_sub >= sz_region) | 
|  | continue; | 
|  |  | 
|  | damon_split_region_at(t, r, sz_sub); | 
|  | sz_region = sz_sub; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split every target region into randomly-sized small regions | 
|  | * | 
|  | * This function splits every target region into random-sized small regions if | 
|  | * current total number of the regions is equal or smaller than half of the | 
|  | * user-specified maximum number of regions.  This is for maximizing the | 
|  | * monitoring accuracy under the dynamically changeable access patterns.  If a | 
|  | * split was unnecessarily made, later 'kdamond_merge_regions()' will revert | 
|  | * it. | 
|  | */ | 
|  | static void kdamond_split_regions(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damon_target *t; | 
|  | unsigned int nr_regions = 0; | 
|  | static unsigned int last_nr_regions; | 
|  | int nr_subregions = 2; | 
|  |  | 
|  | damon_for_each_target(t, ctx) | 
|  | nr_regions += damon_nr_regions(t); | 
|  |  | 
|  | if (nr_regions > ctx->attrs.max_nr_regions / 2) | 
|  | return; | 
|  |  | 
|  | /* Maybe the middle of the region has different access frequency */ | 
|  | if (last_nr_regions == nr_regions && | 
|  | nr_regions < ctx->attrs.max_nr_regions / 3) | 
|  | nr_subregions = 3; | 
|  |  | 
|  | damon_for_each_target(t, ctx) | 
|  | damon_split_regions_of(t, nr_subregions); | 
|  |  | 
|  | last_nr_regions = nr_regions; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether current monitoring should be stopped | 
|  | * | 
|  | * The monitoring is stopped when either the user requested to stop, or all | 
|  | * monitoring targets are invalid. | 
|  | * | 
|  | * Returns true if need to stop current monitoring. | 
|  | */ | 
|  | static bool kdamond_need_stop(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damon_target *t; | 
|  |  | 
|  | if (kthread_should_stop()) | 
|  | return true; | 
|  |  | 
|  | if (!ctx->ops.target_valid) | 
|  | return false; | 
|  |  | 
|  | damon_for_each_target(t, ctx) { | 
|  | if (ctx->ops.target_valid(t)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric) | 
|  | { | 
|  | switch (metric) { | 
|  | case DAMOS_WMARK_FREE_MEM_RATE: | 
|  | return global_zone_page_state(NR_FREE_PAGES) * 1000 / | 
|  | totalram_pages(); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns zero if the scheme is active.  Else, returns time to wait for next | 
|  | * watermark check in micro-seconds. | 
|  | */ | 
|  | static unsigned long damos_wmark_wait_us(struct damos *scheme) | 
|  | { | 
|  | unsigned long metric; | 
|  |  | 
|  | if (scheme->wmarks.metric == DAMOS_WMARK_NONE) | 
|  | return 0; | 
|  |  | 
|  | metric = damos_wmark_metric_value(scheme->wmarks.metric); | 
|  | /* higher than high watermark or lower than low watermark */ | 
|  | if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { | 
|  | if (scheme->wmarks.activated) | 
|  | pr_debug("deactivate a scheme (%d) for %s wmark\n", | 
|  | scheme->action, | 
|  | metric > scheme->wmarks.high ? | 
|  | "high" : "low"); | 
|  | scheme->wmarks.activated = false; | 
|  | return scheme->wmarks.interval; | 
|  | } | 
|  |  | 
|  | /* inactive and higher than middle watermark */ | 
|  | if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && | 
|  | !scheme->wmarks.activated) | 
|  | return scheme->wmarks.interval; | 
|  |  | 
|  | if (!scheme->wmarks.activated) | 
|  | pr_debug("activate a scheme (%d)\n", scheme->action); | 
|  | scheme->wmarks.activated = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kdamond_usleep(unsigned long usecs) | 
|  | { | 
|  | /* See Documentation/timers/timers-howto.rst for the thresholds */ | 
|  | if (usecs > 20 * USEC_PER_MSEC) | 
|  | schedule_timeout_idle(usecs_to_jiffies(usecs)); | 
|  | else | 
|  | usleep_idle_range(usecs, usecs + 1); | 
|  | } | 
|  |  | 
|  | /* Returns negative error code if it's not activated but should return */ | 
|  | static int kdamond_wait_activation(struct damon_ctx *ctx) | 
|  | { | 
|  | struct damos *s; | 
|  | unsigned long wait_time; | 
|  | unsigned long min_wait_time = 0; | 
|  | bool init_wait_time = false; | 
|  |  | 
|  | while (!kdamond_need_stop(ctx)) { | 
|  | damon_for_each_scheme(s, ctx) { | 
|  | wait_time = damos_wmark_wait_us(s); | 
|  | if (!init_wait_time || wait_time < min_wait_time) { | 
|  | init_wait_time = true; | 
|  | min_wait_time = wait_time; | 
|  | } | 
|  | } | 
|  | if (!min_wait_time) | 
|  | return 0; | 
|  |  | 
|  | kdamond_usleep(min_wait_time); | 
|  |  | 
|  | if (ctx->callback.after_wmarks_check && | 
|  | ctx->callback.after_wmarks_check(ctx)) | 
|  | break; | 
|  | } | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static void kdamond_init_intervals_sis(struct damon_ctx *ctx) | 
|  | { | 
|  | unsigned long sample_interval = ctx->attrs.sample_interval ? | 
|  | ctx->attrs.sample_interval : 1; | 
|  | unsigned long apply_interval; | 
|  | struct damos *scheme; | 
|  |  | 
|  | ctx->passed_sample_intervals = 0; | 
|  | ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval; | 
|  | ctx->next_ops_update_sis = ctx->attrs.ops_update_interval / | 
|  | sample_interval; | 
|  |  | 
|  | damon_for_each_scheme(scheme, ctx) { | 
|  | apply_interval = scheme->apply_interval_us ? | 
|  | scheme->apply_interval_us : ctx->attrs.aggr_interval; | 
|  | scheme->next_apply_sis = apply_interval / sample_interval; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The monitoring daemon that runs as a kernel thread | 
|  | */ | 
|  | static int kdamond_fn(void *data) | 
|  | { | 
|  | struct damon_ctx *ctx = data; | 
|  | struct damon_target *t; | 
|  | struct damon_region *r, *next; | 
|  | unsigned int max_nr_accesses = 0; | 
|  | unsigned long sz_limit = 0; | 
|  |  | 
|  | pr_debug("kdamond (%d) starts\n", current->pid); | 
|  |  | 
|  | complete(&ctx->kdamond_started); | 
|  | kdamond_init_intervals_sis(ctx); | 
|  |  | 
|  | if (ctx->ops.init) | 
|  | ctx->ops.init(ctx); | 
|  | if (ctx->callback.before_start && ctx->callback.before_start(ctx)) | 
|  | goto done; | 
|  |  | 
|  | sz_limit = damon_region_sz_limit(ctx); | 
|  |  | 
|  | while (!kdamond_need_stop(ctx)) { | 
|  | /* | 
|  | * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could | 
|  | * be changed from after_wmarks_check() or after_aggregation() | 
|  | * callbacks.  Read the values here, and use those for this | 
|  | * iteration.  That is, damon_set_attrs() updated new values | 
|  | * are respected from next iteration. | 
|  | */ | 
|  | unsigned long next_aggregation_sis = ctx->next_aggregation_sis; | 
|  | unsigned long next_ops_update_sis = ctx->next_ops_update_sis; | 
|  | unsigned long sample_interval = ctx->attrs.sample_interval; | 
|  |  | 
|  | if (kdamond_wait_activation(ctx)) | 
|  | break; | 
|  |  | 
|  | if (ctx->ops.prepare_access_checks) | 
|  | ctx->ops.prepare_access_checks(ctx); | 
|  | if (ctx->callback.after_sampling && | 
|  | ctx->callback.after_sampling(ctx)) | 
|  | break; | 
|  |  | 
|  | kdamond_usleep(sample_interval); | 
|  | ctx->passed_sample_intervals++; | 
|  |  | 
|  | if (ctx->ops.check_accesses) | 
|  | max_nr_accesses = ctx->ops.check_accesses(ctx); | 
|  |  | 
|  | if (ctx->passed_sample_intervals == next_aggregation_sis) { | 
|  | kdamond_merge_regions(ctx, | 
|  | max_nr_accesses / 10, | 
|  | sz_limit); | 
|  | if (ctx->callback.after_aggregation && | 
|  | ctx->callback.after_aggregation(ctx)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do kdamond_apply_schemes() after kdamond_merge_regions() if | 
|  | * possible, to reduce overhead | 
|  | */ | 
|  | if (!list_empty(&ctx->schemes)) | 
|  | kdamond_apply_schemes(ctx); | 
|  |  | 
|  | sample_interval = ctx->attrs.sample_interval ? | 
|  | ctx->attrs.sample_interval : 1; | 
|  | if (ctx->passed_sample_intervals == next_aggregation_sis) { | 
|  | ctx->next_aggregation_sis = next_aggregation_sis + | 
|  | ctx->attrs.aggr_interval / sample_interval; | 
|  |  | 
|  | kdamond_reset_aggregated(ctx); | 
|  | kdamond_split_regions(ctx); | 
|  | if (ctx->ops.reset_aggregated) | 
|  | ctx->ops.reset_aggregated(ctx); | 
|  | } | 
|  |  | 
|  | if (ctx->passed_sample_intervals == next_ops_update_sis) { | 
|  | ctx->next_ops_update_sis = next_ops_update_sis + | 
|  | ctx->attrs.ops_update_interval / | 
|  | sample_interval; | 
|  | if (ctx->ops.update) | 
|  | ctx->ops.update(ctx); | 
|  | sz_limit = damon_region_sz_limit(ctx); | 
|  | } | 
|  | } | 
|  | done: | 
|  | damon_for_each_target(t, ctx) { | 
|  | damon_for_each_region_safe(r, next, t) | 
|  | damon_destroy_region(r, t); | 
|  | } | 
|  |  | 
|  | if (ctx->callback.before_terminate) | 
|  | ctx->callback.before_terminate(ctx); | 
|  | if (ctx->ops.cleanup) | 
|  | ctx->ops.cleanup(ctx); | 
|  |  | 
|  | pr_debug("kdamond (%d) finishes\n", current->pid); | 
|  | mutex_lock(&ctx->kdamond_lock); | 
|  | ctx->kdamond = NULL; | 
|  | mutex_unlock(&ctx->kdamond_lock); | 
|  |  | 
|  | mutex_lock(&damon_lock); | 
|  | nr_running_ctxs--; | 
|  | if (!nr_running_ctxs && running_exclusive_ctxs) | 
|  | running_exclusive_ctxs = false; | 
|  | mutex_unlock(&damon_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * struct damon_system_ram_region - System RAM resource address region of | 
|  | *				    [@start, @end). | 
|  | * @start:	Start address of the region (inclusive). | 
|  | * @end:	End address of the region (exclusive). | 
|  | */ | 
|  | struct damon_system_ram_region { | 
|  | unsigned long start; | 
|  | unsigned long end; | 
|  | }; | 
|  |  | 
|  | static int walk_system_ram(struct resource *res, void *arg) | 
|  | { | 
|  | struct damon_system_ram_region *a = arg; | 
|  |  | 
|  | if (a->end - a->start < resource_size(res)) { | 
|  | a->start = res->start; | 
|  | a->end = res->end; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find biggest 'System RAM' resource and store its start and end address in | 
|  | * @start and @end, respectively.  If no System RAM is found, returns false. | 
|  | */ | 
|  | static bool damon_find_biggest_system_ram(unsigned long *start, | 
|  | unsigned long *end) | 
|  |  | 
|  | { | 
|  | struct damon_system_ram_region arg = {}; | 
|  |  | 
|  | walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); | 
|  | if (arg.end <= arg.start) | 
|  | return false; | 
|  |  | 
|  | *start = arg.start; | 
|  | *end = arg.end; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_set_region_biggest_system_ram_default() - Set the region of the given | 
|  | * monitoring target as requested, or biggest 'System RAM'. | 
|  | * @t:		The monitoring target to set the region. | 
|  | * @start:	The pointer to the start address of the region. | 
|  | * @end:	The pointer to the end address of the region. | 
|  | * | 
|  | * This function sets the region of @t as requested by @start and @end.  If the | 
|  | * values of @start and @end are zero, however, this function finds the biggest | 
|  | * 'System RAM' resource and sets the region to cover the resource.  In the | 
|  | * latter case, this function saves the start and end addresses of the resource | 
|  | * in @start and @end, respectively. | 
|  | * | 
|  | * Return: 0 on success, negative error code otherwise. | 
|  | */ | 
|  | int damon_set_region_biggest_system_ram_default(struct damon_target *t, | 
|  | unsigned long *start, unsigned long *end) | 
|  | { | 
|  | struct damon_addr_range addr_range; | 
|  |  | 
|  | if (*start > *end) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!*start && !*end && | 
|  | !damon_find_biggest_system_ram(start, end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr_range.start = *start; | 
|  | addr_range.end = *end; | 
|  | return damon_set_regions(t, &addr_range, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * damon_moving_sum() - Calculate an inferred moving sum value. | 
|  | * @mvsum:	Inferred sum of the last @len_window values. | 
|  | * @nomvsum:	Non-moving sum of the last discrete @len_window window values. | 
|  | * @len_window:	The number of last values to take care of. | 
|  | * @new_value:	New value that will be added to the pseudo moving sum. | 
|  | * | 
|  | * Moving sum (moving average * window size) is good for handling noise, but | 
|  | * the cost of keeping past values can be high for arbitrary window size.  This | 
|  | * function implements a lightweight pseudo moving sum function that doesn't | 
|  | * keep the past window values. | 
|  | * | 
|  | * It simply assumes there was no noise in the past, and get the no-noise | 
|  | * assumed past value to drop from @nomvsum and @len_window.  @nomvsum is a | 
|  | * non-moving sum of the last window.  For example, if @len_window is 10 and we | 
|  | * have 25 values, @nomvsum is the sum of the 11th to 20th values of the 25 | 
|  | * values.  Hence, this function simply drops @nomvsum / @len_window from | 
|  | * given @mvsum and add @new_value. | 
|  | * | 
|  | * For example, if @len_window is 10 and @nomvsum is 50, the last 10 values for | 
|  | * the last window could be vary, e.g., 0, 10, 0, 10, 0, 10, 0, 0, 0, 20.  For | 
|  | * calculating next moving sum with a new value, we should drop 0 from 50 and | 
|  | * add the new value.  However, this function assumes it got value 5 for each | 
|  | * of the last ten times.  Based on the assumption, when the next value is | 
|  | * measured, it drops the assumed past value, 5 from the current sum, and add | 
|  | * the new value to get the updated pseduo-moving average. | 
|  | * | 
|  | * This means the value could have errors, but the errors will be disappeared | 
|  | * for every @len_window aligned calls.  For example, if @len_window is 10, the | 
|  | * pseudo moving sum with 11th value to 19th value would have an error.  But | 
|  | * the sum with 20th value will not have the error. | 
|  | * | 
|  | * Return: Pseudo-moving average after getting the @new_value. | 
|  | */ | 
|  | static unsigned int damon_moving_sum(unsigned int mvsum, unsigned int nomvsum, | 
|  | unsigned int len_window, unsigned int new_value) | 
|  | { | 
|  | return mvsum - nomvsum / len_window + new_value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * damon_update_region_access_rate() - Update the access rate of a region. | 
|  | * @r:		The DAMON region to update for its access check result. | 
|  | * @accessed:	Whether the region has accessed during last sampling interval. | 
|  | * @attrs:	The damon_attrs of the DAMON context. | 
|  | * | 
|  | * Update the access rate of a region with the region's last sampling interval | 
|  | * access check result. | 
|  | * | 
|  | * Usually this will be called by &damon_operations->check_accesses callback. | 
|  | */ | 
|  | void damon_update_region_access_rate(struct damon_region *r, bool accessed, | 
|  | struct damon_attrs *attrs) | 
|  | { | 
|  | unsigned int len_window = 1; | 
|  |  | 
|  | /* | 
|  | * sample_interval can be zero, but cannot be larger than | 
|  | * aggr_interval, owing to validation of damon_set_attrs(). | 
|  | */ | 
|  | if (attrs->sample_interval) | 
|  | len_window = damon_max_nr_accesses(attrs); | 
|  | r->nr_accesses_bp = damon_moving_sum(r->nr_accesses_bp, | 
|  | r->last_nr_accesses * 10000, len_window, | 
|  | accessed ? 10000 : 0); | 
|  |  | 
|  | if (accessed) | 
|  | r->nr_accesses++; | 
|  | } | 
|  |  | 
|  | static int __init damon_init(void) | 
|  | { | 
|  | damon_region_cache = KMEM_CACHE(damon_region, 0); | 
|  | if (unlikely(!damon_region_cache)) { | 
|  | pr_err("creating damon_region_cache fails\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | subsys_initcall(damon_init); | 
|  |  | 
|  | #include "core-test.h" |