|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Memory bandwidth monitoring and allocation library | 
|  | * | 
|  | * Copyright (C) 2018 Intel Corporation | 
|  | * | 
|  | * Authors: | 
|  | *    Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>, | 
|  | *    Fenghua Yu <fenghua.yu@intel.com> | 
|  | */ | 
|  | #include "resctrl.h" | 
|  |  | 
|  | #define UNCORE_IMC		"uncore_imc" | 
|  | #define READ_FILE_NAME		"events/cas_count_read" | 
|  | #define WRITE_FILE_NAME		"events/cas_count_write" | 
|  | #define DYN_PMU_PATH		"/sys/bus/event_source/devices" | 
|  | #define SCALE			0.00006103515625 | 
|  | #define MAX_IMCS		20 | 
|  | #define MAX_TOKENS		5 | 
|  | #define READ			0 | 
|  | #define WRITE			1 | 
|  | #define CON_MON_MBM_LOCAL_BYTES_PATH				\ | 
|  | "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes" | 
|  |  | 
|  | #define CON_MBM_LOCAL_BYTES_PATH		\ | 
|  | "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes" | 
|  |  | 
|  | #define MON_MBM_LOCAL_BYTES_PATH		\ | 
|  | "%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes" | 
|  |  | 
|  | #define MBM_LOCAL_BYTES_PATH			\ | 
|  | "%s/mon_data/mon_L3_%02d/mbm_local_bytes" | 
|  |  | 
|  | #define CON_MON_LCC_OCCUP_PATH		\ | 
|  | "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy" | 
|  |  | 
|  | #define CON_LCC_OCCUP_PATH		\ | 
|  | "%s/%s/mon_data/mon_L3_%02d/llc_occupancy" | 
|  |  | 
|  | #define MON_LCC_OCCUP_PATH		\ | 
|  | "%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy" | 
|  |  | 
|  | #define LCC_OCCUP_PATH			\ | 
|  | "%s/mon_data/mon_L3_%02d/llc_occupancy" | 
|  |  | 
|  | struct membw_read_format { | 
|  | __u64 value;         /* The value of the event */ | 
|  | __u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */ | 
|  | __u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */ | 
|  | __u64 id;            /* if PERF_FORMAT_ID */ | 
|  | }; | 
|  |  | 
|  | struct imc_counter_config { | 
|  | __u32 type; | 
|  | __u64 event; | 
|  | __u64 umask; | 
|  | struct perf_event_attr pe; | 
|  | struct membw_read_format return_value; | 
|  | int fd; | 
|  | }; | 
|  |  | 
|  | static char mbm_total_path[1024]; | 
|  | static int imcs; | 
|  | static struct imc_counter_config imc_counters_config[MAX_IMCS][2]; | 
|  |  | 
|  | void membw_initialize_perf_event_attr(int i, int j) | 
|  | { | 
|  | memset(&imc_counters_config[i][j].pe, 0, | 
|  | sizeof(struct perf_event_attr)); | 
|  | imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type; | 
|  | imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr); | 
|  | imc_counters_config[i][j].pe.disabled = 1; | 
|  | imc_counters_config[i][j].pe.inherit = 1; | 
|  | imc_counters_config[i][j].pe.exclude_guest = 0; | 
|  | imc_counters_config[i][j].pe.config = | 
|  | imc_counters_config[i][j].umask << 8 | | 
|  | imc_counters_config[i][j].event; | 
|  | imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER; | 
|  | imc_counters_config[i][j].pe.read_format = | 
|  | PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; | 
|  | } | 
|  |  | 
|  | void membw_ioctl_perf_event_ioc_reset_enable(int i, int j) | 
|  | { | 
|  | ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0); | 
|  | ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0); | 
|  | } | 
|  |  | 
|  | void membw_ioctl_perf_event_ioc_disable(int i, int j) | 
|  | { | 
|  | ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_event_and_umask:	Parse config into event and umask | 
|  | * @cas_count_cfg:	Config | 
|  | * @count:		iMC number | 
|  | * @op:			Operation (read/write) | 
|  | */ | 
|  | void get_event_and_umask(char *cas_count_cfg, int count, bool op) | 
|  | { | 
|  | char *token[MAX_TOKENS]; | 
|  | int i = 0; | 
|  |  | 
|  | strcat(cas_count_cfg, ","); | 
|  | token[0] = strtok(cas_count_cfg, "=,"); | 
|  |  | 
|  | for (i = 1; i < MAX_TOKENS; i++) | 
|  | token[i] = strtok(NULL, "=,"); | 
|  |  | 
|  | for (i = 0; i < MAX_TOKENS; i++) { | 
|  | if (!token[i]) | 
|  | break; | 
|  | if (strcmp(token[i], "event") == 0) { | 
|  | if (op == READ) | 
|  | imc_counters_config[count][READ].event = | 
|  | strtol(token[i + 1], NULL, 16); | 
|  | else | 
|  | imc_counters_config[count][WRITE].event = | 
|  | strtol(token[i + 1], NULL, 16); | 
|  | } | 
|  | if (strcmp(token[i], "umask") == 0) { | 
|  | if (op == READ) | 
|  | imc_counters_config[count][READ].umask = | 
|  | strtol(token[i + 1], NULL, 16); | 
|  | else | 
|  | imc_counters_config[count][WRITE].umask = | 
|  | strtol(token[i + 1], NULL, 16); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int open_perf_event(int i, int cpu_no, int j) | 
|  | { | 
|  | imc_counters_config[i][j].fd = | 
|  | perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1, | 
|  | PERF_FLAG_FD_CLOEXEC); | 
|  |  | 
|  | if (imc_counters_config[i][j].fd == -1) { | 
|  | fprintf(stderr, "Error opening leader %llx\n", | 
|  | imc_counters_config[i][j].pe.config); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get type and config (read and write) of an iMC counter */ | 
|  | static int read_from_imc_dir(char *imc_dir, int count) | 
|  | { | 
|  | char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024]; | 
|  | FILE *fp; | 
|  |  | 
|  | /* Get type of iMC counter */ | 
|  | sprintf(imc_counter_type, "%s%s", imc_dir, "type"); | 
|  | fp = fopen(imc_counter_type, "r"); | 
|  | if (!fp) { | 
|  | ksft_perror("Failed to open iMC counter type file"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) { | 
|  | ksft_perror("Could not get iMC type"); | 
|  | fclose(fp); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | fclose(fp); | 
|  |  | 
|  | imc_counters_config[count][WRITE].type = | 
|  | imc_counters_config[count][READ].type; | 
|  |  | 
|  | /* Get read config */ | 
|  | sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME); | 
|  | fp = fopen(imc_counter_cfg, "r"); | 
|  | if (!fp) { | 
|  | ksft_perror("Failed to open iMC config file"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if (fscanf(fp, "%s", cas_count_cfg) <= 0) { | 
|  | ksft_perror("Could not get iMC cas count read"); | 
|  | fclose(fp); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | fclose(fp); | 
|  |  | 
|  | get_event_and_umask(cas_count_cfg, count, READ); | 
|  |  | 
|  | /* Get write config */ | 
|  | sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME); | 
|  | fp = fopen(imc_counter_cfg, "r"); | 
|  | if (!fp) { | 
|  | ksft_perror("Failed to open iMC config file"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if  (fscanf(fp, "%s", cas_count_cfg) <= 0) { | 
|  | ksft_perror("Could not get iMC cas count write"); | 
|  | fclose(fp); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | fclose(fp); | 
|  |  | 
|  | get_event_and_umask(cas_count_cfg, count, WRITE); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A system can have 'n' number of iMC (Integrated Memory Controller) | 
|  | * counters, get that 'n'. For each iMC counter get it's type and config. | 
|  | * Also, each counter has two configs, one for read and the other for write. | 
|  | * A config again has two parts, event and umask. | 
|  | * Enumerate all these details into an array of structures. | 
|  | * | 
|  | * Return: >= 0 on success. < 0 on failure. | 
|  | */ | 
|  | static int num_of_imcs(void) | 
|  | { | 
|  | char imc_dir[512], *temp; | 
|  | unsigned int count = 0; | 
|  | struct dirent *ep; | 
|  | int ret; | 
|  | DIR *dp; | 
|  |  | 
|  | dp = opendir(DYN_PMU_PATH); | 
|  | if (dp) { | 
|  | while ((ep = readdir(dp))) { | 
|  | temp = strstr(ep->d_name, UNCORE_IMC); | 
|  | if (!temp) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * imc counters are named as "uncore_imc_<n>", hence | 
|  | * increment the pointer to point to <n>. Note that | 
|  | * sizeof(UNCORE_IMC) would count for null character as | 
|  | * well and hence the last underscore character in | 
|  | * uncore_imc'_' need not be counted. | 
|  | */ | 
|  | temp = temp + sizeof(UNCORE_IMC); | 
|  |  | 
|  | /* | 
|  | * Some directories under "DYN_PMU_PATH" could have | 
|  | * names like "uncore_imc_free_running", hence, check if | 
|  | * first character is a numerical digit or not. | 
|  | */ | 
|  | if (temp[0] >= '0' && temp[0] <= '9') { | 
|  | sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH, | 
|  | ep->d_name); | 
|  | ret = read_from_imc_dir(imc_dir, count); | 
|  | if (ret) { | 
|  | closedir(dp); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | count++; | 
|  | } | 
|  | } | 
|  | closedir(dp); | 
|  | if (count == 0) { | 
|  | ksft_print_msg("Unable to find iMC counters\n"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | ksft_perror("Unable to open PMU directory"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int initialize_mem_bw_imc(void) | 
|  | { | 
|  | int imc, j; | 
|  |  | 
|  | imcs = num_of_imcs(); | 
|  | if (imcs <= 0) | 
|  | return imcs; | 
|  |  | 
|  | /* Initialize perf_event_attr structures for all iMC's */ | 
|  | for (imc = 0; imc < imcs; imc++) { | 
|  | for (j = 0; j < 2; j++) | 
|  | membw_initialize_perf_event_attr(imc, j); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_mem_bw_imc:	Memory band width as reported by iMC counters | 
|  | * @cpu_no:		CPU number that the benchmark PID is binded to | 
|  | * @bw_report:		Bandwidth report type (reads, writes) | 
|  | * | 
|  | * Memory B/W utilized by a process on a socket can be calculated using | 
|  | * iMC counters. Perf events are used to read these counters. | 
|  | * | 
|  | * Return: = 0 on success. < 0 on failure. | 
|  | */ | 
|  | static int get_mem_bw_imc(int cpu_no, char *bw_report, float *bw_imc) | 
|  | { | 
|  | float reads, writes, of_mul_read, of_mul_write; | 
|  | int imc, j, ret; | 
|  |  | 
|  | /* Start all iMC counters to log values (both read and write) */ | 
|  | reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1; | 
|  | for (imc = 0; imc < imcs; imc++) { | 
|  | for (j = 0; j < 2; j++) { | 
|  | ret = open_perf_event(imc, cpu_no, j); | 
|  | if (ret) | 
|  | return -1; | 
|  | } | 
|  | for (j = 0; j < 2; j++) | 
|  | membw_ioctl_perf_event_ioc_reset_enable(imc, j); | 
|  | } | 
|  |  | 
|  | sleep(1); | 
|  |  | 
|  | /* Stop counters after a second to get results (both read and write) */ | 
|  | for (imc = 0; imc < imcs; imc++) { | 
|  | for (j = 0; j < 2; j++) | 
|  | membw_ioctl_perf_event_ioc_disable(imc, j); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get results which are stored in struct type imc_counter_config | 
|  | * Take over flow into consideration before calculating total b/w | 
|  | */ | 
|  | for (imc = 0; imc < imcs; imc++) { | 
|  | struct imc_counter_config *r = | 
|  | &imc_counters_config[imc][READ]; | 
|  | struct imc_counter_config *w = | 
|  | &imc_counters_config[imc][WRITE]; | 
|  |  | 
|  | if (read(r->fd, &r->return_value, | 
|  | sizeof(struct membw_read_format)) == -1) { | 
|  | ksft_perror("Couldn't get read b/w through iMC"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (read(w->fd, &w->return_value, | 
|  | sizeof(struct membw_read_format)) == -1) { | 
|  | ksft_perror("Couldn't get write bw through iMC"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | __u64 r_time_enabled = r->return_value.time_enabled; | 
|  | __u64 r_time_running = r->return_value.time_running; | 
|  |  | 
|  | if (r_time_enabled != r_time_running) | 
|  | of_mul_read = (float)r_time_enabled / | 
|  | (float)r_time_running; | 
|  |  | 
|  | __u64 w_time_enabled = w->return_value.time_enabled; | 
|  | __u64 w_time_running = w->return_value.time_running; | 
|  |  | 
|  | if (w_time_enabled != w_time_running) | 
|  | of_mul_write = (float)w_time_enabled / | 
|  | (float)w_time_running; | 
|  | reads += r->return_value.value * of_mul_read * SCALE; | 
|  | writes += w->return_value.value * of_mul_write * SCALE; | 
|  | } | 
|  |  | 
|  | for (imc = 0; imc < imcs; imc++) { | 
|  | close(imc_counters_config[imc][READ].fd); | 
|  | close(imc_counters_config[imc][WRITE].fd); | 
|  | } | 
|  |  | 
|  | if (strcmp(bw_report, "reads") == 0) { | 
|  | *bw_imc = reads; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (strcmp(bw_report, "writes") == 0) { | 
|  | *bw_imc = writes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *bw_imc = reads + writes; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void set_mbm_path(const char *ctrlgrp, const char *mongrp, int domain_id) | 
|  | { | 
|  | if (ctrlgrp && mongrp) | 
|  | sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH, | 
|  | RESCTRL_PATH, ctrlgrp, mongrp, domain_id); | 
|  | else if (!ctrlgrp && mongrp) | 
|  | sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, | 
|  | mongrp, domain_id); | 
|  | else if (ctrlgrp && !mongrp) | 
|  | sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, | 
|  | ctrlgrp, domain_id); | 
|  | else if (!ctrlgrp && !mongrp) | 
|  | sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, | 
|  | domain_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialize_mem_bw_resctrl:	Appropriately populate "mbm_total_path" | 
|  | * @ctrlgrp:			Name of the control monitor group (con_mon grp) | 
|  | * @mongrp:			Name of the monitor group (mon grp) | 
|  | * @cpu_no:			CPU number that the benchmark PID is binded to | 
|  | * @resctrl_val:		Resctrl feature (Eg: mbm, mba.. etc) | 
|  | */ | 
|  | static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp, | 
|  | int cpu_no, char *resctrl_val) | 
|  | { | 
|  | int domain_id; | 
|  |  | 
|  | if (get_domain_id("MB", cpu_no, &domain_id) < 0) { | 
|  | ksft_print_msg("Could not get domain ID\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) | 
|  | set_mbm_path(ctrlgrp, mongrp, domain_id); | 
|  |  | 
|  | if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { | 
|  | if (ctrlgrp) | 
|  | sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, | 
|  | RESCTRL_PATH, ctrlgrp, domain_id); | 
|  | else | 
|  | sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, | 
|  | RESCTRL_PATH, domain_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get MBM Local bytes as reported by resctrl FS | 
|  | * For MBM, | 
|  | * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp | 
|  | * 2. If only con_mon grp is given, then read from con_mon grp | 
|  | * 3. If both are not given, then read from root con_mon grp | 
|  | * For MBA, | 
|  | * 1. If con_mon grp is given, then read from it | 
|  | * 2. If con_mon grp is not given, then read from root con_mon grp | 
|  | */ | 
|  | static int get_mem_bw_resctrl(unsigned long *mbm_total) | 
|  | { | 
|  | FILE *fp; | 
|  |  | 
|  | fp = fopen(mbm_total_path, "r"); | 
|  | if (!fp) { | 
|  | ksft_perror("Failed to open total bw file"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if (fscanf(fp, "%lu", mbm_total) <= 0) { | 
|  | ksft_perror("Could not get mbm local bytes"); | 
|  | fclose(fp); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | fclose(fp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pid_t bm_pid, ppid; | 
|  |  | 
|  | void ctrlc_handler(int signum, siginfo_t *info, void *ptr) | 
|  | { | 
|  | /* Only kill child after bm_pid is set after fork() */ | 
|  | if (bm_pid) | 
|  | kill(bm_pid, SIGKILL); | 
|  | umount_resctrlfs(); | 
|  | tests_cleanup(); | 
|  | ksft_print_msg("Ending\n\n"); | 
|  |  | 
|  | exit(EXIT_SUCCESS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Register CTRL-C handler for parent, as it has to kill | 
|  | * child process before exiting. | 
|  | */ | 
|  | int signal_handler_register(void) | 
|  | { | 
|  | struct sigaction sigact = {}; | 
|  | int ret = 0; | 
|  |  | 
|  | bm_pid = 0; | 
|  |  | 
|  | sigact.sa_sigaction = ctrlc_handler; | 
|  | sigemptyset(&sigact.sa_mask); | 
|  | sigact.sa_flags = SA_SIGINFO; | 
|  | if (sigaction(SIGINT, &sigact, NULL) || | 
|  | sigaction(SIGTERM, &sigact, NULL) || | 
|  | sigaction(SIGHUP, &sigact, NULL)) { | 
|  | ksft_perror("sigaction"); | 
|  | ret = -1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset signal handler to SIG_DFL. | 
|  | * Non-Value return because the caller should keep | 
|  | * the error code of other path even if sigaction fails. | 
|  | */ | 
|  | void signal_handler_unregister(void) | 
|  | { | 
|  | struct sigaction sigact = {}; | 
|  |  | 
|  | sigact.sa_handler = SIG_DFL; | 
|  | sigemptyset(&sigact.sa_mask); | 
|  | if (sigaction(SIGINT, &sigact, NULL) || | 
|  | sigaction(SIGTERM, &sigact, NULL) || | 
|  | sigaction(SIGHUP, &sigact, NULL)) { | 
|  | ksft_perror("sigaction"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * print_results_bw:	the memory bandwidth results are stored in a file | 
|  | * @filename:		file that stores the results | 
|  | * @bm_pid:		child pid that runs benchmark | 
|  | * @bw_imc:		perf imc counter value | 
|  | * @bw_resc:		memory bandwidth value | 
|  | * | 
|  | * Return:		0 on success, < 0 on error. | 
|  | */ | 
|  | static int print_results_bw(char *filename,  int bm_pid, float bw_imc, | 
|  | unsigned long bw_resc) | 
|  | { | 
|  | unsigned long diff = fabs(bw_imc - bw_resc); | 
|  | FILE *fp; | 
|  |  | 
|  | if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) { | 
|  | printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc); | 
|  | printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff); | 
|  | } else { | 
|  | fp = fopen(filename, "a"); | 
|  | if (!fp) { | 
|  | ksft_perror("Cannot open results file"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n", | 
|  | bm_pid, bw_imc, bw_resc, diff) <= 0) { | 
|  | ksft_print_msg("Could not log results\n"); | 
|  | fclose(fp); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  | fclose(fp); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num) | 
|  | { | 
|  | if (strlen(ctrlgrp) && strlen(mongrp)) | 
|  | sprintf(llc_occup_path,	CON_MON_LCC_OCCUP_PATH,	RESCTRL_PATH, | 
|  | ctrlgrp, mongrp, sock_num); | 
|  | else if (!strlen(ctrlgrp) && strlen(mongrp)) | 
|  | sprintf(llc_occup_path,	MON_LCC_OCCUP_PATH, RESCTRL_PATH, | 
|  | mongrp, sock_num); | 
|  | else if (strlen(ctrlgrp) && !strlen(mongrp)) | 
|  | sprintf(llc_occup_path,	CON_LCC_OCCUP_PATH, RESCTRL_PATH, | 
|  | ctrlgrp, sock_num); | 
|  | else if (!strlen(ctrlgrp) && !strlen(mongrp)) | 
|  | sprintf(llc_occup_path, LCC_OCCUP_PATH,	RESCTRL_PATH, sock_num); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialize_llc_occu_resctrl:	Appropriately populate "llc_occup_path" | 
|  | * @ctrlgrp:			Name of the control monitor group (con_mon grp) | 
|  | * @mongrp:			Name of the monitor group (mon grp) | 
|  | * @cpu_no:			CPU number that the benchmark PID is binded to | 
|  | * @resctrl_val:		Resctrl feature (Eg: cat, cmt.. etc) | 
|  | */ | 
|  | static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp, | 
|  | int cpu_no, char *resctrl_val) | 
|  | { | 
|  | int domain_id; | 
|  |  | 
|  | if (get_domain_id("L3", cpu_no, &domain_id) < 0) { | 
|  | ksft_print_msg("Could not get domain ID\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) | 
|  | set_cmt_path(ctrlgrp, mongrp, domain_id); | 
|  | } | 
|  |  | 
|  | static int measure_vals(const struct user_params *uparams, | 
|  | struct resctrl_val_param *param, | 
|  | unsigned long *bw_resc_start) | 
|  | { | 
|  | unsigned long bw_resc, bw_resc_end; | 
|  | float bw_imc; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Measure memory bandwidth from resctrl and from | 
|  | * another source which is perf imc value or could | 
|  | * be something else if perf imc event is not available. | 
|  | * Compare the two values to validate resctrl value. | 
|  | * It takes 1sec to measure the data. | 
|  | */ | 
|  | ret = get_mem_bw_imc(uparams->cpu, param->bw_report, &bw_imc); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = get_mem_bw_resctrl(&bw_resc_end); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | bw_resc = (bw_resc_end - *bw_resc_start) / MB; | 
|  | ret = print_results_bw(param->filename, bm_pid, bw_imc, bw_resc); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *bw_resc_start = bw_resc_end; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * run_benchmark - Run a specified benchmark or fill_buf (default benchmark) | 
|  | *		   in specified signal. Direct benchmark stdio to /dev/null. | 
|  | * @signum:	signal number | 
|  | * @info:	signal info | 
|  | * @ucontext:	user context in signal handling | 
|  | */ | 
|  | static void run_benchmark(int signum, siginfo_t *info, void *ucontext) | 
|  | { | 
|  | int operation, ret, memflush; | 
|  | char **benchmark_cmd; | 
|  | size_t span; | 
|  | bool once; | 
|  | FILE *fp; | 
|  |  | 
|  | benchmark_cmd = info->si_ptr; | 
|  |  | 
|  | /* | 
|  | * Direct stdio of child to /dev/null, so that only parent writes to | 
|  | * stdio (console) | 
|  | */ | 
|  | fp = freopen("/dev/null", "w", stdout); | 
|  | if (!fp) { | 
|  | ksft_perror("Unable to direct benchmark status to /dev/null"); | 
|  | PARENT_EXIT(); | 
|  | } | 
|  |  | 
|  | if (strcmp(benchmark_cmd[0], "fill_buf") == 0) { | 
|  | /* Execute default fill_buf benchmark */ | 
|  | span = strtoul(benchmark_cmd[1], NULL, 10); | 
|  | memflush =  atoi(benchmark_cmd[2]); | 
|  | operation = atoi(benchmark_cmd[3]); | 
|  | if (!strcmp(benchmark_cmd[4], "true")) { | 
|  | once = true; | 
|  | } else if (!strcmp(benchmark_cmd[4], "false")) { | 
|  | once = false; | 
|  | } else { | 
|  | ksft_print_msg("Invalid once parameter\n"); | 
|  | PARENT_EXIT(); | 
|  | } | 
|  |  | 
|  | if (run_fill_buf(span, memflush, operation, once)) | 
|  | fprintf(stderr, "Error in running fill buffer\n"); | 
|  | } else { | 
|  | /* Execute specified benchmark */ | 
|  | ret = execvp(benchmark_cmd[0], benchmark_cmd); | 
|  | if (ret) | 
|  | ksft_perror("execvp"); | 
|  | } | 
|  |  | 
|  | fclose(stdout); | 
|  | ksft_print_msg("Unable to run specified benchmark\n"); | 
|  | PARENT_EXIT(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resctrl_val:	execute benchmark and measure memory bandwidth on | 
|  | *			the benchmark | 
|  | * @test:		test information structure | 
|  | * @uparams:		user supplied parameters | 
|  | * @benchmark_cmd:	benchmark command and its arguments | 
|  | * @param:		parameters passed to resctrl_val() | 
|  | * | 
|  | * Return:		0 when the test was run, < 0 on error. | 
|  | */ | 
|  | int resctrl_val(const struct resctrl_test *test, | 
|  | const struct user_params *uparams, | 
|  | const char * const *benchmark_cmd, | 
|  | struct resctrl_val_param *param) | 
|  | { | 
|  | char *resctrl_val = param->resctrl_val; | 
|  | unsigned long bw_resc_start = 0; | 
|  | struct sigaction sigact; | 
|  | int ret = 0, pipefd[2]; | 
|  | char pipe_message = 0; | 
|  | union sigval value; | 
|  |  | 
|  | if (strcmp(param->filename, "") == 0) | 
|  | sprintf(param->filename, "stdio"); | 
|  |  | 
|  | if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) || | 
|  | !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) { | 
|  | ret = validate_bw_report_request(param->bw_report); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If benchmark wasn't successfully started by child, then child should | 
|  | * kill parent, so save parent's pid | 
|  | */ | 
|  | ppid = getpid(); | 
|  |  | 
|  | if (pipe(pipefd)) { | 
|  | ksft_perror("Unable to create pipe"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fork to start benchmark, save child's pid so that it can be killed | 
|  | * when needed | 
|  | */ | 
|  | fflush(stdout); | 
|  | bm_pid = fork(); | 
|  | if (bm_pid == -1) { | 
|  | ksft_perror("Unable to fork"); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (bm_pid == 0) { | 
|  | /* | 
|  | * Mask all signals except SIGUSR1, parent uses SIGUSR1 to | 
|  | * start benchmark | 
|  | */ | 
|  | sigfillset(&sigact.sa_mask); | 
|  | sigdelset(&sigact.sa_mask, SIGUSR1); | 
|  |  | 
|  | sigact.sa_sigaction = run_benchmark; | 
|  | sigact.sa_flags = SA_SIGINFO; | 
|  |  | 
|  | /* Register for "SIGUSR1" signal from parent */ | 
|  | if (sigaction(SIGUSR1, &sigact, NULL)) { | 
|  | ksft_perror("Can't register child for signal"); | 
|  | PARENT_EXIT(); | 
|  | } | 
|  |  | 
|  | /* Tell parent that child is ready */ | 
|  | close(pipefd[0]); | 
|  | pipe_message = 1; | 
|  | if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) < | 
|  | sizeof(pipe_message)) { | 
|  | ksft_perror("Failed signaling parent process"); | 
|  | close(pipefd[1]); | 
|  | return -1; | 
|  | } | 
|  | close(pipefd[1]); | 
|  |  | 
|  | /* Suspend child until delivery of "SIGUSR1" from parent */ | 
|  | sigsuspend(&sigact.sa_mask); | 
|  |  | 
|  | ksft_perror("Child is done"); | 
|  | PARENT_EXIT(); | 
|  | } | 
|  |  | 
|  | ksft_print_msg("Benchmark PID: %d\n", bm_pid); | 
|  |  | 
|  | /* | 
|  | * The cast removes constness but nothing mutates benchmark_cmd within | 
|  | * the context of this process. At the receiving process, it becomes | 
|  | * argv, which is mutable, on exec() but that's after fork() so it | 
|  | * doesn't matter for the process running the tests. | 
|  | */ | 
|  | value.sival_ptr = (void *)benchmark_cmd; | 
|  |  | 
|  | /* Taskset benchmark to specified cpu */ | 
|  | ret = taskset_benchmark(bm_pid, uparams->cpu, NULL); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Write benchmark to specified control&monitoring grp in resctrl FS */ | 
|  | ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp, | 
|  | resctrl_val); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) || | 
|  | !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { | 
|  | ret = initialize_mem_bw_imc(); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp, | 
|  | uparams->cpu, resctrl_val); | 
|  | } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) | 
|  | initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp, | 
|  | uparams->cpu, resctrl_val); | 
|  |  | 
|  | /* Parent waits for child to be ready. */ | 
|  | close(pipefd[1]); | 
|  | while (pipe_message != 1) { | 
|  | if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) < | 
|  | sizeof(pipe_message)) { | 
|  | ksft_perror("Failed reading message from child process"); | 
|  | close(pipefd[0]); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | close(pipefd[0]); | 
|  |  | 
|  | /* Signal child to start benchmark */ | 
|  | if (sigqueue(bm_pid, SIGUSR1, value) == -1) { | 
|  | ksft_perror("sigqueue SIGUSR1 to child"); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Give benchmark enough time to fully run */ | 
|  | sleep(1); | 
|  |  | 
|  | /* Test runs until the callback setup() tells the test to stop. */ | 
|  | while (1) { | 
|  | ret = param->setup(test, uparams, param); | 
|  | if (ret == END_OF_TESTS) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | if (ret < 0) | 
|  | break; | 
|  |  | 
|  | if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) || | 
|  | !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) { | 
|  | ret = measure_vals(uparams, param, &bw_resc_start); | 
|  | if (ret) | 
|  | break; | 
|  | } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) { | 
|  | sleep(1); | 
|  | ret = measure_llc_resctrl(param->filename, bm_pid); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | kill(bm_pid, SIGKILL); | 
|  |  | 
|  | return ret; | 
|  | } |