| /* |
| * Copyright (C) 2016 Oracle. All Rights Reserved. |
| * |
| * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it would be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_shared.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_trans.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_rmap_item.h" |
| #include "xfs_log.h" |
| #include "xfs_rmap.h" |
| |
| |
| kmem_zone_t *xfs_rui_zone; |
| kmem_zone_t *xfs_rud_zone; |
| |
| static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_rui_log_item, rui_item); |
| } |
| |
| void |
| xfs_rui_item_free( |
| struct xfs_rui_log_item *ruip) |
| { |
| if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS) |
| kmem_free(ruip); |
| else |
| kmem_zone_free(xfs_rui_zone, ruip); |
| } |
| |
| STATIC void |
| xfs_rui_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| struct xfs_rui_log_item *ruip = RUI_ITEM(lip); |
| |
| *nvecs += 1; |
| *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given rui log item. We use only 1 iovec, and we point that |
| * at the rui_log_format structure embedded in the rui item. |
| * It is at this point that we assert that all of the extent |
| * slots in the rui item have been filled. |
| */ |
| STATIC void |
| xfs_rui_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_rui_log_item *ruip = RUI_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| ASSERT(atomic_read(&ruip->rui_next_extent) == |
| ruip->rui_format.rui_nextents); |
| |
| ruip->rui_format.rui_type = XFS_LI_RUI; |
| ruip->rui_format.rui_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format, |
| xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents)); |
| } |
| |
| /* |
| * Pinning has no meaning for an rui item, so just return. |
| */ |
| STATIC void |
| xfs_rui_item_pin( |
| struct xfs_log_item *lip) |
| { |
| } |
| |
| /* |
| * The unpin operation is the last place an RUI is manipulated in the log. It is |
| * either inserted in the AIL or aborted in the event of a log I/O error. In |
| * either case, the RUI transaction has been successfully committed to make it |
| * this far. Therefore, we expect whoever committed the RUI to either construct |
| * and commit the RUD or drop the RUD's reference in the event of error. Simply |
| * drop the log's RUI reference now that the log is done with it. |
| */ |
| STATIC void |
| xfs_rui_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| struct xfs_rui_log_item *ruip = RUI_ITEM(lip); |
| |
| xfs_rui_release(ruip); |
| } |
| |
| /* |
| * RUI items have no locking or pushing. However, since RUIs are pulled from |
| * the AIL when their corresponding RUDs are committed to disk, their situation |
| * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller |
| * will eventually flush the log. This should help in getting the RUI out of |
| * the AIL. |
| */ |
| STATIC uint |
| xfs_rui_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| { |
| return XFS_ITEM_PINNED; |
| } |
| |
| /* |
| * The RUI has been either committed or aborted if the transaction has been |
| * cancelled. If the transaction was cancelled, an RUD isn't going to be |
| * constructed and thus we free the RUI here directly. |
| */ |
| STATIC void |
| xfs_rui_item_unlock( |
| struct xfs_log_item *lip) |
| { |
| if (lip->li_flags & XFS_LI_ABORTED) |
| xfs_rui_item_free(RUI_ITEM(lip)); |
| } |
| |
| /* |
| * The RUI is logged only once and cannot be moved in the log, so simply return |
| * the lsn at which it's been logged. |
| */ |
| STATIC xfs_lsn_t |
| xfs_rui_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| return lsn; |
| } |
| |
| /* |
| * The RUI dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| STATIC void |
| xfs_rui_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| } |
| |
| /* |
| * This is the ops vector shared by all rui log items. |
| */ |
| static const struct xfs_item_ops xfs_rui_item_ops = { |
| .iop_size = xfs_rui_item_size, |
| .iop_format = xfs_rui_item_format, |
| .iop_pin = xfs_rui_item_pin, |
| .iop_unpin = xfs_rui_item_unpin, |
| .iop_unlock = xfs_rui_item_unlock, |
| .iop_committed = xfs_rui_item_committed, |
| .iop_push = xfs_rui_item_push, |
| .iop_committing = xfs_rui_item_committing, |
| }; |
| |
| /* |
| * Allocate and initialize an rui item with the given number of extents. |
| */ |
| struct xfs_rui_log_item * |
| xfs_rui_init( |
| struct xfs_mount *mp, |
| uint nextents) |
| |
| { |
| struct xfs_rui_log_item *ruip; |
| |
| ASSERT(nextents > 0); |
| if (nextents > XFS_RUI_MAX_FAST_EXTENTS) |
| ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP); |
| else |
| ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP); |
| |
| xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops); |
| ruip->rui_format.rui_nextents = nextents; |
| ruip->rui_format.rui_id = (uintptr_t)(void *)ruip; |
| atomic_set(&ruip->rui_next_extent, 0); |
| atomic_set(&ruip->rui_refcount, 2); |
| |
| return ruip; |
| } |
| |
| /* |
| * Copy an RUI format buffer from the given buf, and into the destination |
| * RUI format structure. The RUI/RUD items were designed not to need any |
| * special alignment handling. |
| */ |
| int |
| xfs_rui_copy_format( |
| struct xfs_log_iovec *buf, |
| struct xfs_rui_log_format *dst_rui_fmt) |
| { |
| struct xfs_rui_log_format *src_rui_fmt; |
| uint len; |
| |
| src_rui_fmt = buf->i_addr; |
| len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents); |
| |
| if (buf->i_len != len) |
| return -EFSCORRUPTED; |
| |
| memcpy(dst_rui_fmt, src_rui_fmt, len); |
| return 0; |
| } |
| |
| /* |
| * Freeing the RUI requires that we remove it from the AIL if it has already |
| * been placed there. However, the RUI may not yet have been placed in the AIL |
| * when called by xfs_rui_release() from RUD processing due to the ordering of |
| * committed vs unpin operations in bulk insert operations. Hence the reference |
| * count to ensure only the last caller frees the RUI. |
| */ |
| void |
| xfs_rui_release( |
| struct xfs_rui_log_item *ruip) |
| { |
| ASSERT(atomic_read(&ruip->rui_refcount) > 0); |
| if (atomic_dec_and_test(&ruip->rui_refcount)) { |
| xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR); |
| xfs_rui_item_free(ruip); |
| } |
| } |
| |
| static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip) |
| { |
| return container_of(lip, struct xfs_rud_log_item, rud_item); |
| } |
| |
| STATIC void |
| xfs_rud_item_size( |
| struct xfs_log_item *lip, |
| int *nvecs, |
| int *nbytes) |
| { |
| *nvecs += 1; |
| *nbytes += sizeof(struct xfs_rud_log_format); |
| } |
| |
| /* |
| * This is called to fill in the vector of log iovecs for the |
| * given rud log item. We use only 1 iovec, and we point that |
| * at the rud_log_format structure embedded in the rud item. |
| * It is at this point that we assert that all of the extent |
| * slots in the rud item have been filled. |
| */ |
| STATIC void |
| xfs_rud_item_format( |
| struct xfs_log_item *lip, |
| struct xfs_log_vec *lv) |
| { |
| struct xfs_rud_log_item *rudp = RUD_ITEM(lip); |
| struct xfs_log_iovec *vecp = NULL; |
| |
| rudp->rud_format.rud_type = XFS_LI_RUD; |
| rudp->rud_format.rud_size = 1; |
| |
| xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format, |
| sizeof(struct xfs_rud_log_format)); |
| } |
| |
| /* |
| * Pinning has no meaning for an rud item, so just return. |
| */ |
| STATIC void |
| xfs_rud_item_pin( |
| struct xfs_log_item *lip) |
| { |
| } |
| |
| /* |
| * Since pinning has no meaning for an rud item, unpinning does |
| * not either. |
| */ |
| STATIC void |
| xfs_rud_item_unpin( |
| struct xfs_log_item *lip, |
| int remove) |
| { |
| } |
| |
| /* |
| * There isn't much you can do to push on an rud item. It is simply stuck |
| * waiting for the log to be flushed to disk. |
| */ |
| STATIC uint |
| xfs_rud_item_push( |
| struct xfs_log_item *lip, |
| struct list_head *buffer_list) |
| { |
| return XFS_ITEM_PINNED; |
| } |
| |
| /* |
| * The RUD is either committed or aborted if the transaction is cancelled. If |
| * the transaction is cancelled, drop our reference to the RUI and free the |
| * RUD. |
| */ |
| STATIC void |
| xfs_rud_item_unlock( |
| struct xfs_log_item *lip) |
| { |
| struct xfs_rud_log_item *rudp = RUD_ITEM(lip); |
| |
| if (lip->li_flags & XFS_LI_ABORTED) { |
| xfs_rui_release(rudp->rud_ruip); |
| kmem_zone_free(xfs_rud_zone, rudp); |
| } |
| } |
| |
| /* |
| * When the rud item is committed to disk, all we need to do is delete our |
| * reference to our partner rui item and then free ourselves. Since we're |
| * freeing ourselves we must return -1 to keep the transaction code from |
| * further referencing this item. |
| */ |
| STATIC xfs_lsn_t |
| xfs_rud_item_committed( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| struct xfs_rud_log_item *rudp = RUD_ITEM(lip); |
| |
| /* |
| * Drop the RUI reference regardless of whether the RUD has been |
| * aborted. Once the RUD transaction is constructed, it is the sole |
| * responsibility of the RUD to release the RUI (even if the RUI is |
| * aborted due to log I/O error). |
| */ |
| xfs_rui_release(rudp->rud_ruip); |
| kmem_zone_free(xfs_rud_zone, rudp); |
| |
| return (xfs_lsn_t)-1; |
| } |
| |
| /* |
| * The RUD dependency tracking op doesn't do squat. It can't because |
| * it doesn't know where the free extent is coming from. The dependency |
| * tracking has to be handled by the "enclosing" metadata object. For |
| * example, for inodes, the inode is locked throughout the extent freeing |
| * so the dependency should be recorded there. |
| */ |
| STATIC void |
| xfs_rud_item_committing( |
| struct xfs_log_item *lip, |
| xfs_lsn_t lsn) |
| { |
| } |
| |
| /* |
| * This is the ops vector shared by all rud log items. |
| */ |
| static const struct xfs_item_ops xfs_rud_item_ops = { |
| .iop_size = xfs_rud_item_size, |
| .iop_format = xfs_rud_item_format, |
| .iop_pin = xfs_rud_item_pin, |
| .iop_unpin = xfs_rud_item_unpin, |
| .iop_unlock = xfs_rud_item_unlock, |
| .iop_committed = xfs_rud_item_committed, |
| .iop_push = xfs_rud_item_push, |
| .iop_committing = xfs_rud_item_committing, |
| }; |
| |
| /* |
| * Allocate and initialize an rud item with the given number of extents. |
| */ |
| struct xfs_rud_log_item * |
| xfs_rud_init( |
| struct xfs_mount *mp, |
| struct xfs_rui_log_item *ruip) |
| |
| { |
| struct xfs_rud_log_item *rudp; |
| |
| rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP); |
| xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops); |
| rudp->rud_ruip = ruip; |
| rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id; |
| |
| return rudp; |
| } |
| |
| /* |
| * Process an rmap update intent item that was recovered from the log. |
| * We need to update the rmapbt. |
| */ |
| int |
| xfs_rui_recover( |
| struct xfs_mount *mp, |
| struct xfs_rui_log_item *ruip) |
| { |
| int i; |
| int error = 0; |
| struct xfs_map_extent *rmap; |
| xfs_fsblock_t startblock_fsb; |
| bool op_ok; |
| struct xfs_rud_log_item *rudp; |
| enum xfs_rmap_intent_type type; |
| int whichfork; |
| xfs_exntst_t state; |
| struct xfs_trans *tp; |
| struct xfs_btree_cur *rcur = NULL; |
| |
| ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags)); |
| |
| /* |
| * First check the validity of the extents described by the |
| * RUI. If any are bad, then assume that all are bad and |
| * just toss the RUI. |
| */ |
| for (i = 0; i < ruip->rui_format.rui_nextents; i++) { |
| rmap = &ruip->rui_format.rui_extents[i]; |
| startblock_fsb = XFS_BB_TO_FSB(mp, |
| XFS_FSB_TO_DADDR(mp, rmap->me_startblock)); |
| switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { |
| case XFS_RMAP_EXTENT_MAP: |
| case XFS_RMAP_EXTENT_MAP_SHARED: |
| case XFS_RMAP_EXTENT_UNMAP: |
| case XFS_RMAP_EXTENT_UNMAP_SHARED: |
| case XFS_RMAP_EXTENT_CONVERT: |
| case XFS_RMAP_EXTENT_CONVERT_SHARED: |
| case XFS_RMAP_EXTENT_ALLOC: |
| case XFS_RMAP_EXTENT_FREE: |
| op_ok = true; |
| break; |
| default: |
| op_ok = false; |
| break; |
| } |
| if (!op_ok || startblock_fsb == 0 || |
| rmap->me_len == 0 || |
| startblock_fsb >= mp->m_sb.sb_dblocks || |
| rmap->me_len >= mp->m_sb.sb_agblocks || |
| (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) { |
| /* |
| * This will pull the RUI from the AIL and |
| * free the memory associated with it. |
| */ |
| set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); |
| xfs_rui_release(ruip); |
| return -EIO; |
| } |
| } |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, |
| mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp); |
| if (error) |
| return error; |
| rudp = xfs_trans_get_rud(tp, ruip); |
| |
| for (i = 0; i < ruip->rui_format.rui_nextents; i++) { |
| rmap = &ruip->rui_format.rui_extents[i]; |
| state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ? |
| XFS_EXT_UNWRITTEN : XFS_EXT_NORM; |
| whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ? |
| XFS_ATTR_FORK : XFS_DATA_FORK; |
| switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) { |
| case XFS_RMAP_EXTENT_MAP: |
| type = XFS_RMAP_MAP; |
| break; |
| case XFS_RMAP_EXTENT_MAP_SHARED: |
| type = XFS_RMAP_MAP_SHARED; |
| break; |
| case XFS_RMAP_EXTENT_UNMAP: |
| type = XFS_RMAP_UNMAP; |
| break; |
| case XFS_RMAP_EXTENT_UNMAP_SHARED: |
| type = XFS_RMAP_UNMAP_SHARED; |
| break; |
| case XFS_RMAP_EXTENT_CONVERT: |
| type = XFS_RMAP_CONVERT; |
| break; |
| case XFS_RMAP_EXTENT_CONVERT_SHARED: |
| type = XFS_RMAP_CONVERT_SHARED; |
| break; |
| case XFS_RMAP_EXTENT_ALLOC: |
| type = XFS_RMAP_ALLOC; |
| break; |
| case XFS_RMAP_EXTENT_FREE: |
| type = XFS_RMAP_FREE; |
| break; |
| default: |
| error = -EFSCORRUPTED; |
| goto abort_error; |
| } |
| error = xfs_trans_log_finish_rmap_update(tp, rudp, type, |
| rmap->me_owner, whichfork, |
| rmap->me_startoff, rmap->me_startblock, |
| rmap->me_len, state, &rcur); |
| if (error) |
| goto abort_error; |
| |
| } |
| |
| xfs_rmap_finish_one_cleanup(tp, rcur, error); |
| set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags); |
| error = xfs_trans_commit(tp); |
| return error; |
| |
| abort_error: |
| xfs_rmap_finish_one_cleanup(tp, rcur, error); |
| xfs_trans_cancel(tp); |
| return error; |
| } |