blob: 413925bce0ca8c6587b28afcaee44f5ef332eb3f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2010 Google, Inc.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/ktime.h>
#include <soc/tegra/common.h>
#include "sdhci-pltfm.h"
#include "cqhci.h"
/* Tegra SDHOST controller vendor register definitions */
#define SDHCI_TEGRA_VENDOR_CLOCK_CTRL 0x100
#define SDHCI_CLOCK_CTRL_TAP_MASK 0x00ff0000
#define SDHCI_CLOCK_CTRL_TAP_SHIFT 16
#define SDHCI_CLOCK_CTRL_TRIM_MASK 0x1f000000
#define SDHCI_CLOCK_CTRL_TRIM_SHIFT 24
#define SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE BIT(5)
#define SDHCI_CLOCK_CTRL_PADPIPE_CLKEN_OVERRIDE BIT(3)
#define SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE BIT(2)
#define SDHCI_TEGRA_VENDOR_SYS_SW_CTRL 0x104
#define SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE BIT(31)
#define SDHCI_TEGRA_VENDOR_CAP_OVERRIDES 0x10c
#define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK 0x00003f00
#define SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT 8
#define SDHCI_TEGRA_VENDOR_MISC_CTRL 0x120
#define SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT BIT(0)
#define SDHCI_MISC_CTRL_ENABLE_SDR104 0x8
#define SDHCI_MISC_CTRL_ENABLE_SDR50 0x10
#define SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 0x20
#define SDHCI_MISC_CTRL_ENABLE_DDR50 0x200
#define SDHCI_TEGRA_VENDOR_DLLCAL_CFG 0x1b0
#define SDHCI_TEGRA_DLLCAL_CALIBRATE BIT(31)
#define SDHCI_TEGRA_VENDOR_DLLCAL_STA 0x1bc
#define SDHCI_TEGRA_DLLCAL_STA_ACTIVE BIT(31)
#define SDHCI_VNDR_TUN_CTRL0_0 0x1c0
#define SDHCI_VNDR_TUN_CTRL0_TUN_HW_TAP 0x20000
#define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK 0x03fc0000
#define SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT 18
#define SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK 0x00001fc0
#define SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT 6
#define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK 0x000e000
#define SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT 13
#define TRIES_128 2
#define TRIES_256 4
#define SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK 0x7
#define SDHCI_TEGRA_VNDR_TUN_CTRL1_0 0x1c4
#define SDHCI_TEGRA_VNDR_TUN_STATUS0 0x1C8
#define SDHCI_TEGRA_VNDR_TUN_STATUS1 0x1CC
#define SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK 0xFF
#define SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT 0x8
#define TUNING_WORD_BIT_SIZE 32
#define SDHCI_TEGRA_AUTO_CAL_CONFIG 0x1e4
#define SDHCI_AUTO_CAL_START BIT(31)
#define SDHCI_AUTO_CAL_ENABLE BIT(29)
#define SDHCI_AUTO_CAL_PDPU_OFFSET_MASK 0x0000ffff
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL 0x1e0
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK 0x0000000f
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL 0x7
#define SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD BIT(31)
#define SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK 0x07FFF000
#define SDHCI_TEGRA_AUTO_CAL_STATUS 0x1ec
#define SDHCI_TEGRA_AUTO_CAL_ACTIVE BIT(31)
#define NVQUIRK_FORCE_SDHCI_SPEC_200 BIT(0)
#define NVQUIRK_ENABLE_BLOCK_GAP_DET BIT(1)
#define NVQUIRK_ENABLE_SDHCI_SPEC_300 BIT(2)
#define NVQUIRK_ENABLE_SDR50 BIT(3)
#define NVQUIRK_ENABLE_SDR104 BIT(4)
#define NVQUIRK_ENABLE_DDR50 BIT(5)
/*
* HAS_PADCALIB NVQUIRK is for SoC's supporting auto calibration of pads
* drive strength.
*/
#define NVQUIRK_HAS_PADCALIB BIT(6)
/*
* NEEDS_PAD_CONTROL NVQUIRK is for SoC's having separate 3V3 and 1V8 pads.
* 3V3/1V8 pad selection happens through pinctrl state selection depending
* on the signaling mode.
*/
#define NVQUIRK_NEEDS_PAD_CONTROL BIT(7)
#define NVQUIRK_DIS_CARD_CLK_CONFIG_TAP BIT(8)
#define NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING BIT(9)
/*
* NVQUIRK_HAS_TMCLK is for SoC's having separate timeout clock for Tegra
* SDMMC hardware data timeout.
*/
#define NVQUIRK_HAS_TMCLK BIT(10)
#define NVQUIRK_HAS_ANDROID_GPT_SECTOR BIT(11)
/* SDMMC CQE Base Address for Tegra Host Ver 4.1 and Higher */
#define SDHCI_TEGRA_CQE_BASE_ADDR 0xF000
#define SDHCI_TEGRA_CQE_TRNS_MODE (SDHCI_TRNS_MULTI | \
SDHCI_TRNS_BLK_CNT_EN | \
SDHCI_TRNS_DMA)
struct sdhci_tegra_soc_data {
const struct sdhci_pltfm_data *pdata;
u64 dma_mask;
u32 nvquirks;
u8 min_tap_delay;
u8 max_tap_delay;
};
/* Magic pull up and pull down pad calibration offsets */
struct sdhci_tegra_autocal_offsets {
u32 pull_up_3v3;
u32 pull_down_3v3;
u32 pull_up_3v3_timeout;
u32 pull_down_3v3_timeout;
u32 pull_up_1v8;
u32 pull_down_1v8;
u32 pull_up_1v8_timeout;
u32 pull_down_1v8_timeout;
u32 pull_up_sdr104;
u32 pull_down_sdr104;
u32 pull_up_hs400;
u32 pull_down_hs400;
};
struct sdhci_tegra {
const struct sdhci_tegra_soc_data *soc_data;
struct gpio_desc *power_gpio;
struct clk *tmclk;
bool ddr_signaling;
bool pad_calib_required;
bool pad_control_available;
struct reset_control *rst;
struct pinctrl *pinctrl_sdmmc;
struct pinctrl_state *pinctrl_state_3v3;
struct pinctrl_state *pinctrl_state_1v8;
struct pinctrl_state *pinctrl_state_3v3_drv;
struct pinctrl_state *pinctrl_state_1v8_drv;
struct sdhci_tegra_autocal_offsets autocal_offsets;
ktime_t last_calib;
u32 default_tap;
u32 default_trim;
u32 dqs_trim;
bool enable_hwcq;
unsigned long curr_clk_rate;
u8 tuned_tap_delay;
};
static u16 tegra_sdhci_readw(struct sdhci_host *host, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (unlikely((soc_data->nvquirks & NVQUIRK_FORCE_SDHCI_SPEC_200) &&
(reg == SDHCI_HOST_VERSION))) {
/* Erratum: Version register is invalid in HW. */
return SDHCI_SPEC_200;
}
return readw(host->ioaddr + reg);
}
static void tegra_sdhci_writew(struct sdhci_host *host, u16 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
switch (reg) {
case SDHCI_TRANSFER_MODE:
/*
* Postpone this write, we must do it together with a
* command write that is down below.
*/
pltfm_host->xfer_mode_shadow = val;
return;
case SDHCI_COMMAND:
writel((val << 16) | pltfm_host->xfer_mode_shadow,
host->ioaddr + SDHCI_TRANSFER_MODE);
return;
}
writew(val, host->ioaddr + reg);
}
static void tegra_sdhci_writel(struct sdhci_host *host, u32 val, int reg)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
/* Seems like we're getting spurious timeout and crc errors, so
* disable signalling of them. In case of real errors software
* timers should take care of eventually detecting them.
*/
if (unlikely(reg == SDHCI_SIGNAL_ENABLE))
val &= ~(SDHCI_INT_TIMEOUT|SDHCI_INT_CRC);
writel(val, host->ioaddr + reg);
if (unlikely((soc_data->nvquirks & NVQUIRK_ENABLE_BLOCK_GAP_DET) &&
(reg == SDHCI_INT_ENABLE))) {
/* Erratum: Must enable block gap interrupt detection */
u8 gap_ctrl = readb(host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
if (val & SDHCI_INT_CARD_INT)
gap_ctrl |= 0x8;
else
gap_ctrl &= ~0x8;
writeb(gap_ctrl, host->ioaddr + SDHCI_BLOCK_GAP_CONTROL);
}
}
static bool tegra_sdhci_configure_card_clk(struct sdhci_host *host, bool enable)
{
bool status;
u32 reg;
reg = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
status = !!(reg & SDHCI_CLOCK_CARD_EN);
if (status == enable)
return status;
if (enable)
reg |= SDHCI_CLOCK_CARD_EN;
else
reg &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, reg, SDHCI_CLOCK_CONTROL);
return status;
}
static void tegra210_sdhci_writew(struct sdhci_host *host, u16 val, int reg)
{
bool is_tuning_cmd = 0;
bool clk_enabled;
u8 cmd;
if (reg == SDHCI_COMMAND) {
cmd = SDHCI_GET_CMD(val);
is_tuning_cmd = cmd == MMC_SEND_TUNING_BLOCK ||
cmd == MMC_SEND_TUNING_BLOCK_HS200;
}
if (is_tuning_cmd)
clk_enabled = tegra_sdhci_configure_card_clk(host, 0);
writew(val, host->ioaddr + reg);
if (is_tuning_cmd) {
udelay(1);
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
tegra_sdhci_configure_card_clk(host, clk_enabled);
}
}
static unsigned int tegra_sdhci_get_ro(struct sdhci_host *host)
{
/*
* Write-enable shall be assumed if GPIO is missing in a board's
* device-tree because SDHCI's WRITE_PROTECT bit doesn't work on
* Tegra.
*/
return mmc_gpio_get_ro(host->mmc);
}
static bool tegra_sdhci_is_pad_and_regulator_valid(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int has_1v8, has_3v3;
/*
* The SoCs which have NVQUIRK_NEEDS_PAD_CONTROL require software pad
* voltage configuration in order to perform voltage switching. This
* means that valid pinctrl info is required on SDHCI instances capable
* of performing voltage switching. Whether or not an SDHCI instance is
* capable of voltage switching is determined based on the regulator.
*/
if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL))
return true;
if (IS_ERR(host->mmc->supply.vqmmc))
return false;
has_1v8 = regulator_is_supported_voltage(host->mmc->supply.vqmmc,
1700000, 1950000);
has_3v3 = regulator_is_supported_voltage(host->mmc->supply.vqmmc,
2700000, 3600000);
if (has_1v8 == 1 && has_3v3 == 1)
return tegra_host->pad_control_available;
/* Fixed voltage, no pad control required. */
return true;
}
static void tegra_sdhci_set_tap(struct sdhci_host *host, unsigned int tap)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
bool card_clk_enabled = false;
u32 reg;
/*
* Touching the tap values is a bit tricky on some SoC generations.
* The quirk enables a workaround for a glitch that sometimes occurs if
* the tap values are changed.
*/
if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP)
card_clk_enabled = tegra_sdhci_configure_card_clk(host, false);
reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
reg &= ~SDHCI_CLOCK_CTRL_TAP_MASK;
reg |= tap << SDHCI_CLOCK_CTRL_TAP_SHIFT;
sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
if (soc_data->nvquirks & NVQUIRK_DIS_CARD_CLK_CONFIG_TAP &&
card_clk_enabled) {
udelay(1);
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
tegra_sdhci_configure_card_clk(host, card_clk_enabled);
}
}
static void tegra_sdhci_reset(struct sdhci_host *host, u8 mask)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
u32 misc_ctrl, clk_ctrl, pad_ctrl;
sdhci_reset(host, mask);
if (!(mask & SDHCI_RESET_ALL))
return;
tegra_sdhci_set_tap(host, tegra_host->default_tap);
misc_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL);
clk_ctrl = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
misc_ctrl &= ~(SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300 |
SDHCI_MISC_CTRL_ENABLE_SDR50 |
SDHCI_MISC_CTRL_ENABLE_DDR50 |
SDHCI_MISC_CTRL_ENABLE_SDR104);
clk_ctrl &= ~(SDHCI_CLOCK_CTRL_TRIM_MASK |
SDHCI_CLOCK_CTRL_SPI_MODE_CLKEN_OVERRIDE);
if (tegra_sdhci_is_pad_and_regulator_valid(host)) {
/* Erratum: Enable SDHCI spec v3.00 support */
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDHCI_SPEC_300)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDHCI_SPEC_300;
/* Advertise UHS modes as supported by host */
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR50;
if (soc_data->nvquirks & NVQUIRK_ENABLE_DDR50)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_DDR50;
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR104)
misc_ctrl |= SDHCI_MISC_CTRL_ENABLE_SDR104;
if (soc_data->nvquirks & NVQUIRK_ENABLE_SDR50)
clk_ctrl |= SDHCI_CLOCK_CTRL_SDR50_TUNING_OVERRIDE;
}
clk_ctrl |= tegra_host->default_trim << SDHCI_CLOCK_CTRL_TRIM_SHIFT;
sdhci_writel(host, misc_ctrl, SDHCI_TEGRA_VENDOR_MISC_CTRL);
sdhci_writel(host, clk_ctrl, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB) {
pad_ctrl = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
pad_ctrl &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_MASK;
pad_ctrl |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_VREF_SEL_VAL;
sdhci_writel(host, pad_ctrl, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
tegra_host->pad_calib_required = true;
}
tegra_host->ddr_signaling = false;
}
static void tegra_sdhci_configure_cal_pad(struct sdhci_host *host, bool enable)
{
u32 val;
/*
* Enable or disable the additional I/O pad used by the drive strength
* calibration process.
*/
val = sdhci_readl(host, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
if (enable)
val |= SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD;
else
val &= ~SDHCI_TEGRA_SDMEM_COMP_PADCTRL_E_INPUT_E_PWRD;
sdhci_writel(host, val, SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
if (enable)
usleep_range(1, 2);
}
static void tegra_sdhci_set_pad_autocal_offset(struct sdhci_host *host,
u16 pdpu)
{
u32 reg;
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg &= ~SDHCI_AUTO_CAL_PDPU_OFFSET_MASK;
reg |= pdpu;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
}
static int tegra_sdhci_set_padctrl(struct sdhci_host *host, int voltage,
bool state_drvupdn)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets *offsets =
&tegra_host->autocal_offsets;
struct pinctrl_state *pinctrl_drvupdn = NULL;
int ret = 0;
u8 drvup = 0, drvdn = 0;
u32 reg;
if (!state_drvupdn) {
/* PADS Drive Strength */
if (voltage == MMC_SIGNAL_VOLTAGE_180) {
if (tegra_host->pinctrl_state_1v8_drv) {
pinctrl_drvupdn =
tegra_host->pinctrl_state_1v8_drv;
} else {
drvup = offsets->pull_up_1v8_timeout;
drvdn = offsets->pull_down_1v8_timeout;
}
} else {
if (tegra_host->pinctrl_state_3v3_drv) {
pinctrl_drvupdn =
tegra_host->pinctrl_state_3v3_drv;
} else {
drvup = offsets->pull_up_3v3_timeout;
drvdn = offsets->pull_down_3v3_timeout;
}
}
if (pinctrl_drvupdn != NULL) {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
pinctrl_drvupdn);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"failed pads drvupdn, ret: %d\n", ret);
} else if ((drvup) || (drvdn)) {
reg = sdhci_readl(host,
SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
reg &= ~SDHCI_COMP_PADCTRL_DRVUPDN_OFFSET_MASK;
reg |= (drvup << 20) | (drvdn << 12);
sdhci_writel(host, reg,
SDHCI_TEGRA_SDMEM_COMP_PADCTRL);
}
} else {
/* Dual Voltage PADS Voltage selection */
if (!tegra_host->pad_control_available)
return 0;
if (voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
tegra_host->pinctrl_state_1v8);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"setting 1.8V failed, ret: %d\n", ret);
} else {
ret = pinctrl_select_state(tegra_host->pinctrl_sdmmc,
tegra_host->pinctrl_state_3v3);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"setting 3.3V failed, ret: %d\n", ret);
}
}
return ret;
}
static void tegra_sdhci_pad_autocalib(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets offsets =
tegra_host->autocal_offsets;
struct mmc_ios *ios = &host->mmc->ios;
bool card_clk_enabled;
u16 pdpu;
u32 reg;
int ret;
switch (ios->timing) {
case MMC_TIMING_UHS_SDR104:
pdpu = offsets.pull_down_sdr104 << 8 | offsets.pull_up_sdr104;
break;
case MMC_TIMING_MMC_HS400:
pdpu = offsets.pull_down_hs400 << 8 | offsets.pull_up_hs400;
break;
default:
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
pdpu = offsets.pull_down_1v8 << 8 | offsets.pull_up_1v8;
else
pdpu = offsets.pull_down_3v3 << 8 | offsets.pull_up_3v3;
}
/* Set initial offset before auto-calibration */
tegra_sdhci_set_pad_autocal_offset(host, pdpu);
card_clk_enabled = tegra_sdhci_configure_card_clk(host, false);
tegra_sdhci_configure_cal_pad(host, true);
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg |= SDHCI_AUTO_CAL_ENABLE | SDHCI_AUTO_CAL_START;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
usleep_range(1, 2);
/* 10 ms timeout */
ret = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_AUTO_CAL_STATUS,
reg, !(reg & SDHCI_TEGRA_AUTO_CAL_ACTIVE),
1000, 10000);
tegra_sdhci_configure_cal_pad(host, false);
tegra_sdhci_configure_card_clk(host, card_clk_enabled);
if (ret) {
dev_err(mmc_dev(host->mmc), "Pad autocal timed out\n");
/* Disable automatic cal and use fixed Drive Strengths */
reg = sdhci_readl(host, SDHCI_TEGRA_AUTO_CAL_CONFIG);
reg &= ~SDHCI_AUTO_CAL_ENABLE;
sdhci_writel(host, reg, SDHCI_TEGRA_AUTO_CAL_CONFIG);
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, false);
if (ret < 0)
dev_err(mmc_dev(host->mmc),
"Setting drive strengths failed: %d\n", ret);
}
}
static void tegra_sdhci_parse_pad_autocal_dt(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct sdhci_tegra_autocal_offsets *autocal =
&tegra_host->autocal_offsets;
int err;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-3v3",
&autocal->pull_up_3v3);
if (err)
autocal->pull_up_3v3 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-3v3",
&autocal->pull_down_3v3);
if (err)
autocal->pull_down_3v3 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-1v8",
&autocal->pull_up_1v8);
if (err)
autocal->pull_up_1v8 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-1v8",
&autocal->pull_down_1v8);
if (err)
autocal->pull_down_1v8 = 0;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-sdr104",
&autocal->pull_up_sdr104);
if (err)
autocal->pull_up_sdr104 = autocal->pull_up_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-sdr104",
&autocal->pull_down_sdr104);
if (err)
autocal->pull_down_sdr104 = autocal->pull_down_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-hs400",
&autocal->pull_up_hs400);
if (err)
autocal->pull_up_hs400 = autocal->pull_up_1v8;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-hs400",
&autocal->pull_down_hs400);
if (err)
autocal->pull_down_hs400 = autocal->pull_down_1v8;
/*
* Different fail-safe drive strength values based on the signaling
* voltage are applicable for SoCs supporting 3V3 and 1V8 pad controls.
* So, avoid reading below device tree properties for SoCs that don't
* have NVQUIRK_NEEDS_PAD_CONTROL.
*/
if (!(tegra_host->soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL))
return;
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-3v3-timeout",
&autocal->pull_up_3v3_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_3v3) &&
(tegra_host->pinctrl_state_3v3_drv == NULL))
pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_up_3v3_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-3v3-timeout",
&autocal->pull_down_3v3_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_3v3) &&
(tegra_host->pinctrl_state_3v3_drv == NULL))
pr_warn("%s: Missing autocal timeout 3v3-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_down_3v3_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-up-offset-1v8-timeout",
&autocal->pull_up_1v8_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_1v8) &&
(tegra_host->pinctrl_state_1v8_drv == NULL))
pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_up_1v8_timeout = 0;
}
err = device_property_read_u32(mmc_dev(host->mmc),
"nvidia,pad-autocal-pull-down-offset-1v8-timeout",
&autocal->pull_down_1v8_timeout);
if (err) {
if (!IS_ERR(tegra_host->pinctrl_state_1v8) &&
(tegra_host->pinctrl_state_1v8_drv == NULL))
pr_warn("%s: Missing autocal timeout 1v8-pad drvs\n",
mmc_hostname(host->mmc));
autocal->pull_down_1v8_timeout = 0;
}
}
static void tegra_sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
ktime_t since_calib = ktime_sub(ktime_get(), tegra_host->last_calib);
/* 100 ms calibration interval is specified in the TRM */
if (ktime_to_ms(since_calib) > 100) {
tegra_sdhci_pad_autocalib(host);
tegra_host->last_calib = ktime_get();
}
sdhci_request(mmc, mrq);
}
static void tegra_sdhci_parse_tap_and_trim(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int err;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-tap",
&tegra_host->default_tap);
if (err)
tegra_host->default_tap = 0;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,default-trim",
&tegra_host->default_trim);
if (err)
tegra_host->default_trim = 0;
err = device_property_read_u32(mmc_dev(host->mmc), "nvidia,dqs-trim",
&tegra_host->dqs_trim);
if (err)
tegra_host->dqs_trim = 0x11;
}
static void tegra_sdhci_parse_dt(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
if (device_property_read_bool(mmc_dev(host->mmc), "supports-cqe"))
tegra_host->enable_hwcq = true;
else
tegra_host->enable_hwcq = false;
tegra_sdhci_parse_pad_autocal_dt(host);
tegra_sdhci_parse_tap_and_trim(host);
}
static void tegra_sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct device *dev = mmc_dev(host->mmc);
unsigned long host_clk;
int err;
if (!clock)
return sdhci_set_clock(host, clock);
/*
* In DDR50/52 modes the Tegra SDHCI controllers require the SDHCI
* divider to be configured to divided the host clock by two. The SDHCI
* clock divider is calculated as part of sdhci_set_clock() by
* sdhci_calc_clk(). The divider is calculated from host->max_clk and
* the requested clock rate.
*
* By setting the host->max_clk to clock * 2 the divider calculation
* will always result in the correct value for DDR50/52 modes,
* regardless of clock rate rounding, which may happen if the value
* from clk_get_rate() is used.
*/
host_clk = tegra_host->ddr_signaling ? clock * 2 : clock;
err = dev_pm_opp_set_rate(dev, host_clk);
if (err)
dev_err(dev, "failed to set clk rate to %luHz: %d\n",
host_clk, err);
tegra_host->curr_clk_rate = clk_get_rate(pltfm_host->clk);
if (tegra_host->ddr_signaling)
host->max_clk = host_clk;
else
host->max_clk = clk_get_rate(pltfm_host->clk);
sdhci_set_clock(host, clock);
if (tegra_host->pad_calib_required) {
tegra_sdhci_pad_autocalib(host);
tegra_host->pad_calib_required = false;
}
}
static void tegra_sdhci_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 val;
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL);
if (ios->enhanced_strobe) {
val |= SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE;
/*
* When CMD13 is sent from mmc_select_hs400es() after
* switching to HS400ES mode, the bus is operating at
* either MMC_HIGH_26_MAX_DTR or MMC_HIGH_52_MAX_DTR.
* To meet Tegra SDHCI requirement at HS400ES mode, force SDHCI
* interface clock to MMC_HS200_MAX_DTR (200 MHz) so that host
* controller CAR clock and the interface clock are rate matched.
*/
tegra_sdhci_set_clock(host, MMC_HS200_MAX_DTR);
} else {
val &= ~SDHCI_TEGRA_SYS_SW_CTRL_ENHANCED_STROBE;
}
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_SYS_SW_CTRL);
}
static unsigned int tegra_sdhci_get_max_clock(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_round_rate(pltfm_host->clk, UINT_MAX);
}
static void tegra_sdhci_set_dqs_trim(struct sdhci_host *host, u8 trim)
{
u32 val;
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES);
val &= ~SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_MASK;
val |= trim << SDHCI_TEGRA_CAP_OVERRIDES_DQS_TRIM_SHIFT;
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_CAP_OVERRIDES);
}
static void tegra_sdhci_hs400_dll_cal(struct sdhci_host *host)
{
u32 reg;
int err;
reg = sdhci_readl(host, SDHCI_TEGRA_VENDOR_DLLCAL_CFG);
reg |= SDHCI_TEGRA_DLLCAL_CALIBRATE;
sdhci_writel(host, reg, SDHCI_TEGRA_VENDOR_DLLCAL_CFG);
/* 1 ms sleep, 5 ms timeout */
err = readl_poll_timeout(host->ioaddr + SDHCI_TEGRA_VENDOR_DLLCAL_STA,
reg, !(reg & SDHCI_TEGRA_DLLCAL_STA_ACTIVE),
1000, 5000);
if (err)
dev_err(mmc_dev(host->mmc),
"HS400 delay line calibration timed out\n");
}
static void tegra_sdhci_tap_correction(struct sdhci_host *host, u8 thd_up,
u8 thd_low, u8 fixed_tap)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
u32 val, tun_status;
u8 word, bit, edge1, tap, window;
bool tap_result;
bool start_fail = false;
bool start_pass = false;
bool end_pass = false;
bool first_fail = false;
bool first_pass = false;
u8 start_pass_tap = 0;
u8 end_pass_tap = 0;
u8 first_fail_tap = 0;
u8 first_pass_tap = 0;
u8 total_tuning_words = host->tuning_loop_count / TUNING_WORD_BIT_SIZE;
/*
* Read auto-tuned results and extract good valid passing window by
* filtering out un-wanted bubble/partial/merged windows.
*/
for (word = 0; word < total_tuning_words; word++) {
val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0);
val &= ~SDHCI_VNDR_TUN_CTRL0_TUN_WORD_SEL_MASK;
val |= word;
sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0);
tun_status = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS0);
bit = 0;
while (bit < TUNING_WORD_BIT_SIZE) {
tap = word * TUNING_WORD_BIT_SIZE + bit;
tap_result = tun_status & (1 << bit);
if (!tap_result && !start_fail) {
start_fail = true;
if (!first_fail) {
first_fail_tap = tap;
first_fail = true;
}
} else if (tap_result && start_fail && !start_pass) {
start_pass_tap = tap;
start_pass = true;
if (!first_pass) {
first_pass_tap = tap;
first_pass = true;
}
} else if (!tap_result && start_fail && start_pass &&
!end_pass) {
end_pass_tap = tap - 1;
end_pass = true;
} else if (tap_result && start_pass && start_fail &&
end_pass) {
window = end_pass_tap - start_pass_tap;
/* discard merged window and bubble window */
if (window >= thd_up || window < thd_low) {
start_pass_tap = tap;
end_pass = false;
} else {
/* set tap at middle of valid window */
tap = start_pass_tap + window / 2;
tegra_host->tuned_tap_delay = tap;
return;
}
}
bit++;
}
}
if (!first_fail) {
WARN(1, "no edge detected, continue with hw tuned delay.\n");
} else if (first_pass) {
/* set tap location at fixed tap relative to the first edge */
edge1 = first_fail_tap + (first_pass_tap - first_fail_tap) / 2;
if (edge1 - 1 > fixed_tap)
tegra_host->tuned_tap_delay = edge1 - fixed_tap;
else
tegra_host->tuned_tap_delay = edge1 + fixed_tap;
}
}
static void tegra_sdhci_post_tuning(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
u32 avg_tap_dly, val, min_tap_dly, max_tap_dly;
u8 fixed_tap, start_tap, end_tap, window_width;
u8 thdupper, thdlower;
u8 num_iter;
u32 clk_rate_mhz, period_ps, bestcase, worstcase;
/* retain HW tuned tap to use incase if no correction is needed */
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_CLOCK_CTRL);
tegra_host->tuned_tap_delay = (val & SDHCI_CLOCK_CTRL_TAP_MASK) >>
SDHCI_CLOCK_CTRL_TAP_SHIFT;
if (soc_data->min_tap_delay && soc_data->max_tap_delay) {
min_tap_dly = soc_data->min_tap_delay;
max_tap_dly = soc_data->max_tap_delay;
clk_rate_mhz = tegra_host->curr_clk_rate / USEC_PER_SEC;
period_ps = USEC_PER_SEC / clk_rate_mhz;
bestcase = period_ps / min_tap_dly;
worstcase = period_ps / max_tap_dly;
/*
* Upper and Lower bound thresholds used to detect merged and
* bubble windows
*/
thdupper = (2 * worstcase + bestcase) / 2;
thdlower = worstcase / 4;
/*
* fixed tap is used when HW tuning result contains single edge
* and tap is set at fixed tap delay relative to the first edge
*/
avg_tap_dly = (period_ps * 2) / (min_tap_dly + max_tap_dly);
fixed_tap = avg_tap_dly / 2;
val = sdhci_readl(host, SDHCI_TEGRA_VNDR_TUN_STATUS1);
start_tap = val & SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK;
end_tap = (val >> SDHCI_TEGRA_VNDR_TUN_STATUS1_END_TAP_SHIFT) &
SDHCI_TEGRA_VNDR_TUN_STATUS1_TAP_MASK;
window_width = end_tap - start_tap;
num_iter = host->tuning_loop_count;
/*
* partial window includes edges of the tuning range.
* merged window includes more taps so window width is higher
* than upper threshold.
*/
if (start_tap == 0 || (end_tap == (num_iter - 1)) ||
(end_tap == num_iter - 2) || window_width >= thdupper) {
pr_debug("%s: Apply tuning correction\n",
mmc_hostname(host->mmc));
tegra_sdhci_tap_correction(host, thdupper, thdlower,
fixed_tap);
}
}
tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay);
}
static int tegra_sdhci_execute_hw_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err;
err = sdhci_execute_tuning(mmc, opcode);
if (!err && !host->tuning_err)
tegra_sdhci_post_tuning(host);
return err;
}
static void tegra_sdhci_set_uhs_signaling(struct sdhci_host *host,
unsigned timing)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
bool set_default_tap = false;
bool set_dqs_trim = false;
bool do_hs400_dll_cal = false;
u8 iter = TRIES_256;
u32 val;
tegra_host->ddr_signaling = false;
switch (timing) {
case MMC_TIMING_UHS_SDR50:
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
/* Don't set default tap on tunable modes. */
iter = TRIES_128;
break;
case MMC_TIMING_MMC_HS400:
set_dqs_trim = true;
do_hs400_dll_cal = true;
iter = TRIES_128;
break;
case MMC_TIMING_MMC_DDR52:
case MMC_TIMING_UHS_DDR50:
tegra_host->ddr_signaling = true;
set_default_tap = true;
break;
default:
set_default_tap = true;
break;
}
val = sdhci_readl(host, SDHCI_VNDR_TUN_CTRL0_0);
val &= ~(SDHCI_VNDR_TUN_CTRL0_TUN_ITER_MASK |
SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_MASK |
SDHCI_VNDR_TUN_CTRL0_MUL_M_MASK);
val |= (iter << SDHCI_VNDR_TUN_CTRL0_TUN_ITER_SHIFT |
0 << SDHCI_VNDR_TUN_CTRL0_START_TAP_VAL_SHIFT |
1 << SDHCI_VNDR_TUN_CTRL0_MUL_M_SHIFT);
sdhci_writel(host, val, SDHCI_VNDR_TUN_CTRL0_0);
sdhci_writel(host, 0, SDHCI_TEGRA_VNDR_TUN_CTRL1_0);
host->tuning_loop_count = (iter == TRIES_128) ? 128 : 256;
sdhci_set_uhs_signaling(host, timing);
tegra_sdhci_pad_autocalib(host);
if (tegra_host->tuned_tap_delay && !set_default_tap)
tegra_sdhci_set_tap(host, tegra_host->tuned_tap_delay);
else
tegra_sdhci_set_tap(host, tegra_host->default_tap);
if (set_dqs_trim)
tegra_sdhci_set_dqs_trim(host, tegra_host->dqs_trim);
if (do_hs400_dll_cal)
tegra_sdhci_hs400_dll_cal(host);
}
static int tegra_sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
unsigned int min, max;
/*
* Start search for minimum tap value at 10, as smaller values are
* may wrongly be reported as working but fail at higher speeds,
* according to the TRM.
*/
min = 10;
while (min < 255) {
tegra_sdhci_set_tap(host, min);
if (!mmc_send_tuning(host->mmc, opcode, NULL))
break;
min++;
}
/* Find the maximum tap value that still passes. */
max = min + 1;
while (max < 255) {
tegra_sdhci_set_tap(host, max);
if (mmc_send_tuning(host->mmc, opcode, NULL)) {
max--;
break;
}
max++;
}
/* The TRM states the ideal tap value is at 75% in the passing range. */
tegra_sdhci_set_tap(host, min + ((max - min) * 3 / 4));
return mmc_send_tuning(host->mmc, opcode, NULL);
}
static int sdhci_tegra_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
int ret = 0;
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true);
if (ret < 0)
return ret;
ret = sdhci_start_signal_voltage_switch(mmc, ios);
} else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
ret = sdhci_start_signal_voltage_switch(mmc, ios);
if (ret < 0)
return ret;
ret = tegra_sdhci_set_padctrl(host, ios->signal_voltage, true);
}
if (tegra_host->pad_calib_required)
tegra_sdhci_pad_autocalib(host);
return ret;
}
static int tegra_sdhci_init_pinctrl_info(struct device *dev,
struct sdhci_tegra *tegra_host)
{
tegra_host->pinctrl_sdmmc = devm_pinctrl_get(dev);
if (IS_ERR(tegra_host->pinctrl_sdmmc)) {
dev_dbg(dev, "No pinctrl info, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_sdmmc));
return -1;
}
tegra_host->pinctrl_state_1v8_drv = pinctrl_lookup_state(
tegra_host->pinctrl_sdmmc, "sdmmc-1v8-drv");
if (IS_ERR(tegra_host->pinctrl_state_1v8_drv)) {
if (PTR_ERR(tegra_host->pinctrl_state_1v8_drv) == -ENODEV)
tegra_host->pinctrl_state_1v8_drv = NULL;
}
tegra_host->pinctrl_state_3v3_drv = pinctrl_lookup_state(
tegra_host->pinctrl_sdmmc, "sdmmc-3v3-drv");
if (IS_ERR(tegra_host->pinctrl_state_3v3_drv)) {
if (PTR_ERR(tegra_host->pinctrl_state_3v3_drv) == -ENODEV)
tegra_host->pinctrl_state_3v3_drv = NULL;
}
tegra_host->pinctrl_state_3v3 =
pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-3v3");
if (IS_ERR(tegra_host->pinctrl_state_3v3)) {
dev_warn(dev, "Missing 3.3V pad state, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_state_3v3));
return -1;
}
tegra_host->pinctrl_state_1v8 =
pinctrl_lookup_state(tegra_host->pinctrl_sdmmc, "sdmmc-1v8");
if (IS_ERR(tegra_host->pinctrl_state_1v8)) {
dev_warn(dev, "Missing 1.8V pad state, err: %ld\n",
PTR_ERR(tegra_host->pinctrl_state_1v8));
return -1;
}
tegra_host->pad_control_available = true;
return 0;
}
static void tegra_sdhci_voltage_switch(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB)
tegra_host->pad_calib_required = true;
}
static void tegra_cqhci_writel(struct cqhci_host *cq_host, u32 val, int reg)
{
struct mmc_host *mmc = cq_host->mmc;
struct sdhci_host *host = mmc_priv(mmc);
u8 ctrl;
ktime_t timeout;
bool timed_out;
/*
* During CQE resume/unhalt, CQHCI driver unhalts CQE prior to
* cqhci_host_ops enable where SDHCI DMA and BLOCK_SIZE registers need
* to be re-configured.
* Tegra CQHCI/SDHCI prevents write access to block size register when
* CQE is unhalted. So handling CQE resume sequence here to configure
* SDHCI block registers prior to exiting CQE halt state.
*/
if (reg == CQHCI_CTL && !(val & CQHCI_HALT) &&
cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT) {
sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE);
sdhci_cqe_enable(mmc);
writel(val, cq_host->mmio + reg);
timeout = ktime_add_us(ktime_get(), 50);
while (1) {
timed_out = ktime_compare(ktime_get(), timeout) > 0;
ctrl = cqhci_readl(cq_host, CQHCI_CTL);
if (!(ctrl & CQHCI_HALT) || timed_out)
break;
}
/*
* CQE usually resumes very quick, but incase if Tegra CQE
* doesn't resume retry unhalt.
*/
if (timed_out)
writel(val, cq_host->mmio + reg);
} else {
writel(val, cq_host->mmio + reg);
}
}
static void sdhci_tegra_update_dcmd_desc(struct mmc_host *mmc,
struct mmc_request *mrq, u64 *data)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(mmc_priv(mmc));
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
const struct sdhci_tegra_soc_data *soc_data = tegra_host->soc_data;
if (soc_data->nvquirks & NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING &&
mrq->cmd->flags & MMC_RSP_R1B)
*data |= CQHCI_CMD_TIMING(1);
}
static void sdhci_tegra_cqe_enable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct sdhci_host *host = mmc_priv(mmc);
u32 val;
/*
* Tegra CQHCI/SDMMC design prevents write access to sdhci block size
* register when CQE is enabled and unhalted.
* CQHCI driver enables CQE prior to activation, so disable CQE before
* programming block size in sdhci controller and enable it back.
*/
if (!cq_host->activated) {
val = cqhci_readl(cq_host, CQHCI_CFG);
if (val & CQHCI_ENABLE)
cqhci_writel(cq_host, (val & ~CQHCI_ENABLE),
CQHCI_CFG);
sdhci_writew(host, SDHCI_TEGRA_CQE_TRNS_MODE, SDHCI_TRANSFER_MODE);
sdhci_cqe_enable(mmc);
if (val & CQHCI_ENABLE)
cqhci_writel(cq_host, val, CQHCI_CFG);
}
/*
* CMD CRC errors are seen sometimes with some eMMC devices when status
* command is sent during transfer of last data block which is the
* default case as send status command block counter (CBC) is 1.
* Recommended fix to set CBC to 0 allowing send status command only
* when data lines are idle.
*/
val = cqhci_readl(cq_host, CQHCI_SSC1);
val &= ~CQHCI_SSC1_CBC_MASK;
cqhci_writel(cq_host, val, CQHCI_SSC1);
}
static void sdhci_tegra_dumpregs(struct mmc_host *mmc)
{
sdhci_dumpregs(mmc_priv(mmc));
}
static u32 sdhci_tegra_cqhci_irq(struct sdhci_host *host, u32 intmask)
{
int cmd_error = 0;
int data_error = 0;
if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
return intmask;
cqhci_irq(host->mmc, intmask, cmd_error, data_error);
return 0;
}
static void tegra_sdhci_set_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
u32 val;
/*
* HW busy detection timeout is based on programmed data timeout
* counter and maximum supported timeout is 11s which may not be
* enough for long operations like cache flush, sleep awake, erase.
*
* ERASE_TIMEOUT_LIMIT bit of VENDOR_MISC_CTRL register allows
* host controller to wait for busy state until the card is busy
* without HW timeout.
*
* So, use infinite busy wait mode for operations that may take
* more than maximum HW busy timeout of 11s otherwise use finite
* busy wait mode.
*/
val = sdhci_readl(host, SDHCI_TEGRA_VENDOR_MISC_CTRL);
if (cmd && cmd->busy_timeout >= 11 * MSEC_PER_SEC)
val |= SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT;
else
val &= ~SDHCI_MISC_CTRL_ERASE_TIMEOUT_LIMIT;
sdhci_writel(host, val, SDHCI_TEGRA_VENDOR_MISC_CTRL);
__sdhci_set_timeout(host, cmd);
}
static void sdhci_tegra_cqe_pre_enable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg |= CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
}
static void sdhci_tegra_cqe_post_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
struct sdhci_host *host = mmc_priv(mmc);
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
}
static const struct cqhci_host_ops sdhci_tegra_cqhci_ops = {
.write_l = tegra_cqhci_writel,
.enable = sdhci_tegra_cqe_enable,
.disable = sdhci_cqe_disable,
.dumpregs = sdhci_tegra_dumpregs,
.update_dcmd_desc = sdhci_tegra_update_dcmd_desc,
.pre_enable = sdhci_tegra_cqe_pre_enable,
.post_disable = sdhci_tegra_cqe_post_disable,
};
static int tegra_sdhci_set_dma_mask(struct sdhci_host *host)
{
struct sdhci_pltfm_host *platform = sdhci_priv(host);
struct sdhci_tegra *tegra = sdhci_pltfm_priv(platform);
const struct sdhci_tegra_soc_data *soc = tegra->soc_data;
struct device *dev = mmc_dev(host->mmc);
if (soc->dma_mask)
return dma_set_mask_and_coherent(dev, soc->dma_mask);
return 0;
}
static const struct sdhci_ops tegra_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.platform_execute_tuning = tegra_sdhci_execute_tuning,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
};
static const struct sdhci_pltfm_data sdhci_tegra20_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.ops = &tegra_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra20 = {
.pdata = &sdhci_tegra20_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_FORCE_SDHCI_SPEC_200 |
NVQUIRK_HAS_ANDROID_GPT_SECTOR |
NVQUIRK_ENABLE_BLOCK_GAP_DET,
};
static const struct sdhci_pltfm_data sdhci_tegra30_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN |
SDHCI_QUIRK2_BROKEN_HS200 |
/*
* Auto-CMD23 leads to "Got command interrupt 0x00010000 even
* though no command operation was in progress."
*
* The exact reason is unknown, as the same hardware seems
* to support Auto CMD23 on a downstream 3.1 kernel.
*/
SDHCI_QUIRK2_ACMD23_BROKEN,
.ops = &tegra_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra30 = {
.pdata = &sdhci_tegra30_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_ENABLE_SDHCI_SPEC_300 |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_ANDROID_GPT_SECTOR |
NVQUIRK_HAS_PADCALIB,
};
static const struct sdhci_ops tegra114_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_w = tegra_sdhci_writew,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.platform_execute_tuning = tegra_sdhci_execute_tuning,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
};
static const struct sdhci_pltfm_data sdhci_tegra114_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra114_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra114 = {
.pdata = &sdhci_tegra114_pdata,
.dma_mask = DMA_BIT_MASK(32),
.nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR,
};
static const struct sdhci_pltfm_data sdhci_tegra124_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra114_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra124 = {
.pdata = &sdhci_tegra124_pdata,
.dma_mask = DMA_BIT_MASK(34),
.nvquirks = NVQUIRK_HAS_ANDROID_GPT_SECTOR,
};
static const struct sdhci_ops tegra210_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_w = tegra210_sdhci_writew,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
.set_timeout = tegra_sdhci_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_tegra210_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra210_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra210 = {
.pdata = &sdhci_tegra210_pdata,
.dma_mask = DMA_BIT_MASK(34),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK,
.min_tap_delay = 106,
.max_tap_delay = 185,
};
static const struct sdhci_ops tegra186_sdhci_ops = {
.get_ro = tegra_sdhci_get_ro,
.read_w = tegra_sdhci_readw,
.write_l = tegra_sdhci_writel,
.set_clock = tegra_sdhci_set_clock,
.set_dma_mask = tegra_sdhci_set_dma_mask,
.set_bus_width = sdhci_set_bus_width,
.reset = tegra_sdhci_reset,
.set_uhs_signaling = tegra_sdhci_set_uhs_signaling,
.voltage_switch = tegra_sdhci_voltage_switch,
.get_max_clock = tegra_sdhci_get_max_clock,
.irq = sdhci_tegra_cqhci_irq,
.set_timeout = tegra_sdhci_set_timeout,
};
static const struct sdhci_pltfm_data sdhci_tegra186_pdata = {
.quirks = SDHCI_QUIRK_BROKEN_TIMEOUT_VAL |
SDHCI_QUIRK_SINGLE_POWER_WRITE |
SDHCI_QUIRK_NO_HISPD_BIT |
SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC |
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN,
.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
.ops = &tegra186_sdhci_ops,
};
static const struct sdhci_tegra_soc_data soc_data_tegra186 = {
.pdata = &sdhci_tegra186_pdata,
.dma_mask = DMA_BIT_MASK(40),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK |
NVQUIRK_CQHCI_DCMD_R1B_CMD_TIMING,
.min_tap_delay = 84,
.max_tap_delay = 136,
};
static const struct sdhci_tegra_soc_data soc_data_tegra194 = {
.pdata = &sdhci_tegra186_pdata,
.dma_mask = DMA_BIT_MASK(39),
.nvquirks = NVQUIRK_NEEDS_PAD_CONTROL |
NVQUIRK_HAS_PADCALIB |
NVQUIRK_DIS_CARD_CLK_CONFIG_TAP |
NVQUIRK_ENABLE_SDR50 |
NVQUIRK_ENABLE_SDR104 |
NVQUIRK_HAS_TMCLK,
.min_tap_delay = 96,
.max_tap_delay = 139,
};
static const struct of_device_id sdhci_tegra_dt_match[] = {
{ .compatible = "nvidia,tegra194-sdhci", .data = &soc_data_tegra194 },
{ .compatible = "nvidia,tegra186-sdhci", .data = &soc_data_tegra186 },
{ .compatible = "nvidia,tegra210-sdhci", .data = &soc_data_tegra210 },
{ .compatible = "nvidia,tegra124-sdhci", .data = &soc_data_tegra124 },
{ .compatible = "nvidia,tegra114-sdhci", .data = &soc_data_tegra114 },
{ .compatible = "nvidia,tegra30-sdhci", .data = &soc_data_tegra30 },
{ .compatible = "nvidia,tegra20-sdhci", .data = &soc_data_tegra20 },
{}
};
MODULE_DEVICE_TABLE(of, sdhci_tegra_dt_match);
static int sdhci_tegra_add_host(struct sdhci_host *host)
{
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
struct cqhci_host *cq_host;
bool dma64;
int ret;
if (!tegra_host->enable_hwcq)
return sdhci_add_host(host);
sdhci_enable_v4_mode(host);
ret = sdhci_setup_host(host);
if (ret)
return ret;
host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
cq_host = devm_kzalloc(mmc_dev(host->mmc),
sizeof(*cq_host), GFP_KERNEL);
if (!cq_host) {
ret = -ENOMEM;
goto cleanup;
}
cq_host->mmio = host->ioaddr + SDHCI_TEGRA_CQE_BASE_ADDR;
cq_host->ops = &sdhci_tegra_cqhci_ops;
dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
if (dma64)
cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
ret = cqhci_init(cq_host, host->mmc, dma64);
if (ret)
goto cleanup;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
static int sdhci_tegra_probe(struct platform_device *pdev)
{
const struct sdhci_tegra_soc_data *soc_data;
struct sdhci_host *host;
struct sdhci_pltfm_host *pltfm_host;
struct sdhci_tegra *tegra_host;
struct clk *clk;
int rc;
soc_data = of_device_get_match_data(&pdev->dev);
if (!soc_data)
return -EINVAL;
host = sdhci_pltfm_init(pdev, soc_data->pdata, sizeof(*tegra_host));
if (IS_ERR(host))
return PTR_ERR(host);
pltfm_host = sdhci_priv(host);
tegra_host = sdhci_pltfm_priv(pltfm_host);
tegra_host->ddr_signaling = false;
tegra_host->pad_calib_required = false;
tegra_host->pad_control_available = false;
tegra_host->soc_data = soc_data;
if (soc_data->nvquirks & NVQUIRK_HAS_ANDROID_GPT_SECTOR)
host->mmc->caps2 |= MMC_CAP2_ALT_GPT_TEGRA;
if (soc_data->nvquirks & NVQUIRK_NEEDS_PAD_CONTROL) {
rc = tegra_sdhci_init_pinctrl_info(&pdev->dev, tegra_host);
if (rc == 0)
host->mmc_host_ops.start_signal_voltage_switch =
sdhci_tegra_start_signal_voltage_switch;
}
/* Hook to periodically rerun pad calibration */
if (soc_data->nvquirks & NVQUIRK_HAS_PADCALIB)
host->mmc_host_ops.request = tegra_sdhci_request;
host->mmc_host_ops.hs400_enhanced_strobe =
tegra_sdhci_hs400_enhanced_strobe;
if (!host->ops->platform_execute_tuning)
host->mmc_host_ops.execute_tuning =
tegra_sdhci_execute_hw_tuning;
rc = mmc_of_parse(host->mmc);
if (rc)
goto err_parse_dt;
if (tegra_host->soc_data->nvquirks & NVQUIRK_ENABLE_DDR50)
host->mmc->caps |= MMC_CAP_1_8V_DDR;
/* HW busy detection is supported, but R1B responses are required. */
host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
/* GPIO CD can be set as a wakeup source */
host->mmc->caps |= MMC_CAP_CD_WAKE;
tegra_sdhci_parse_dt(host);
tegra_host->power_gpio = devm_gpiod_get_optional(&pdev->dev, "power",
GPIOD_OUT_HIGH);
if (IS_ERR(tegra_host->power_gpio)) {
rc = PTR_ERR(tegra_host->power_gpio);
goto err_power_req;
}
/*
* Tegra210 has a separate SDMMC_LEGACY_TM clock used for host
* timeout clock and SW can choose TMCLK or SDCLK for hardware
* data timeout through the bit USE_TMCLK_FOR_DATA_TIMEOUT of
* the register SDHCI_TEGRA_VENDOR_SYS_SW_CTRL.
*
* USE_TMCLK_FOR_DATA_TIMEOUT bit default is set to 1 and SDMMC uses
* 12Mhz TMCLK which is advertised in host capability register.
* With TMCLK of 12Mhz provides maximum data timeout period that can
* be achieved is 11s better than using SDCLK for data timeout.
*
* So, TMCLK is set to 12Mhz and kept enabled all the time on SoC's
* supporting separate TMCLK.
*/
if (soc_data->nvquirks & NVQUIRK_HAS_TMCLK) {
clk = devm_clk_get(&pdev->dev, "tmclk");
if (IS_ERR(clk)) {
rc = PTR_ERR(clk);
if (rc == -EPROBE_DEFER)
goto err_power_req;
dev_warn(&pdev->dev, "failed to get tmclk: %d\n", rc);
clk = NULL;
}
clk_set_rate(clk, 12000000);
rc = clk_prepare_enable(clk);
if (rc) {
dev_err(&pdev->dev,
"failed to enable tmclk: %d\n", rc);
goto err_power_req;
}
tegra_host->tmclk = clk;
}
clk = devm_clk_get(mmc_dev(host->mmc), NULL);
if (IS_ERR(clk)) {
rc = dev_err_probe(&pdev->dev, PTR_ERR(clk),
"failed to get clock\n");
goto err_clk_get;
}
pltfm_host->clk = clk;
tegra_host->rst = devm_reset_control_get_exclusive(&pdev->dev,
"sdhci");
if (IS_ERR(tegra_host->rst)) {
rc = PTR_ERR(tegra_host->rst);
dev_err(&pdev->dev, "failed to get reset control: %d\n", rc);
goto err_rst_get;
}
rc = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
if (rc)
goto err_rst_get;
pm_runtime_enable(&pdev->dev);
rc = pm_runtime_resume_and_get(&pdev->dev);
if (rc)
goto err_pm_get;
rc = reset_control_assert(tegra_host->rst);
if (rc)
goto err_rst_assert;
usleep_range(2000, 4000);
rc = reset_control_deassert(tegra_host->rst);
if (rc)
goto err_rst_assert;
usleep_range(2000, 4000);
rc = sdhci_tegra_add_host(host);
if (rc)
goto err_add_host;
return 0;
err_add_host:
reset_control_assert(tegra_host->rst);
err_rst_assert:
pm_runtime_put_sync_suspend(&pdev->dev);
err_pm_get:
pm_runtime_disable(&pdev->dev);
err_rst_get:
err_clk_get:
clk_disable_unprepare(tegra_host->tmclk);
err_power_req:
err_parse_dt:
sdhci_pltfm_free(pdev);
return rc;
}
static int sdhci_tegra_remove(struct platform_device *pdev)
{
struct sdhci_host *host = platform_get_drvdata(pdev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
struct sdhci_tegra *tegra_host = sdhci_pltfm_priv(pltfm_host);
sdhci_remove_host(host, 0);
reset_control_assert(tegra_host->rst);
usleep_range(2000, 4000);
pm_runtime_put_sync_suspend(&pdev->dev);
pm_runtime_force_suspend(&pdev->dev);
clk_disable_unprepare(tegra_host->tmclk);
sdhci_pltfm_free(pdev);
return 0;
}
static int __maybe_unused sdhci_tegra_runtime_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
clk_disable_unprepare(pltfm_host->clk);
return 0;
}
static int __maybe_unused sdhci_tegra_runtime_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
return clk_prepare_enable(pltfm_host->clk);
}
#ifdef CONFIG_PM_SLEEP
static int sdhci_tegra_suspend(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_suspend(host->mmc);
if (ret)
return ret;
}
ret = sdhci_suspend_host(host);
if (ret) {
cqhci_resume(host->mmc);
return ret;
}
ret = pm_runtime_force_suspend(dev);
if (ret) {
sdhci_resume_host(host);
cqhci_resume(host->mmc);
return ret;
}
return mmc_gpio_set_cd_wake(host->mmc, true);
}
static int sdhci_tegra_resume(struct device *dev)
{
struct sdhci_host *host = dev_get_drvdata(dev);
int ret;
ret = mmc_gpio_set_cd_wake(host->mmc, false);
if (ret)
return ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
ret = sdhci_resume_host(host);
if (ret)
goto disable_clk;
if (host->mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_resume(host->mmc);
if (ret)
goto suspend_host;
}
return 0;
suspend_host:
sdhci_suspend_host(host);
disable_clk:
pm_runtime_force_suspend(dev);
return ret;
}
#endif
static const struct dev_pm_ops sdhci_tegra_dev_pm_ops = {
SET_RUNTIME_PM_OPS(sdhci_tegra_runtime_suspend, sdhci_tegra_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(sdhci_tegra_suspend, sdhci_tegra_resume)
};
static struct platform_driver sdhci_tegra_driver = {
.driver = {
.name = "sdhci-tegra",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = sdhci_tegra_dt_match,
.pm = &sdhci_tegra_dev_pm_ops,
},
.probe = sdhci_tegra_probe,
.remove = sdhci_tegra_remove,
};
module_platform_driver(sdhci_tegra_driver);
MODULE_DESCRIPTION("SDHCI driver for Tegra");
MODULE_AUTHOR("Google, Inc.");
MODULE_LICENSE("GPL v2");