|  | /* | 
|  | * kexec: kexec_file_load system call | 
|  | * | 
|  | * Copyright (C) 2014 Red Hat Inc. | 
|  | * Authors: | 
|  | *      Vivek Goyal <vgoyal@redhat.com> | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/ima.h> | 
|  | #include <crypto/hash.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include "kexec_internal.h" | 
|  |  | 
|  | static int kexec_calculate_store_digests(struct kimage *image); | 
|  |  | 
|  | /* Architectures can provide this probe function */ | 
|  | int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | void * __weak arch_kexec_kernel_image_load(struct kimage *image) | 
|  | { | 
|  | return ERR_PTR(-ENOEXEC); | 
|  | } | 
|  |  | 
|  | int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, | 
|  | unsigned long buf_len) | 
|  | { | 
|  | return -EKEYREJECTED; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Apply relocations of type RELA */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, | 
|  | unsigned int relsec) | 
|  | { | 
|  | pr_err("RELA relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* Apply relocations of type REL */ | 
|  | int __weak | 
|  | arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, | 
|  | unsigned int relsec) | 
|  | { | 
|  | pr_err("REL relocation unsupported.\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free up memory used by kernel, initrd, and command line. This is temporary | 
|  | * memory allocation which is not needed any more after these buffers have | 
|  | * been loaded into separate segments and have been copied elsewhere. | 
|  | */ | 
|  | void kimage_file_post_load_cleanup(struct kimage *image) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | vfree(image->kernel_buf); | 
|  | image->kernel_buf = NULL; | 
|  |  | 
|  | vfree(image->initrd_buf); | 
|  | image->initrd_buf = NULL; | 
|  |  | 
|  | kfree(image->cmdline_buf); | 
|  | image->cmdline_buf = NULL; | 
|  |  | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  |  | 
|  | vfree(pi->sechdrs); | 
|  | pi->sechdrs = NULL; | 
|  |  | 
|  | /* See if architecture has anything to cleanup post load */ | 
|  | arch_kimage_file_post_load_cleanup(image); | 
|  |  | 
|  | /* | 
|  | * Above call should have called into bootloader to free up | 
|  | * any data stored in kimage->image_loader_data. It should | 
|  | * be ok now to free it up. | 
|  | */ | 
|  | kfree(image->image_loader_data); | 
|  | image->image_loader_data = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In file mode list of segments is prepared by kernel. Copy relevant | 
|  | * data from user space, do error checking, prepare segment list | 
|  | */ | 
|  | static int | 
|  | kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, | 
|  | const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned flags) | 
|  | { | 
|  | int ret = 0; | 
|  | void *ldata; | 
|  | loff_t size; | 
|  |  | 
|  | ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, | 
|  | &size, INT_MAX, READING_KEXEC_IMAGE); | 
|  | if (ret) | 
|  | return ret; | 
|  | image->kernel_buf_len = size; | 
|  |  | 
|  | /* IMA needs to pass the measurement list to the next kernel. */ | 
|  | ima_add_kexec_buffer(image); | 
|  |  | 
|  | /* Call arch image probe handlers */ | 
|  | ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | #ifdef CONFIG_KEXEC_VERIFY_SIG | 
|  | ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, | 
|  | image->kernel_buf_len); | 
|  | if (ret) { | 
|  | pr_debug("kernel signature verification failed.\n"); | 
|  | goto out; | 
|  | } | 
|  | pr_debug("kernel signature verification successful.\n"); | 
|  | #endif | 
|  | /* It is possible that there no initramfs is being loaded */ | 
|  | if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { | 
|  | ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, | 
|  | &size, INT_MAX, | 
|  | READING_KEXEC_INITRAMFS); | 
|  | if (ret) | 
|  | goto out; | 
|  | image->initrd_buf_len = size; | 
|  | } | 
|  |  | 
|  | if (cmdline_len) { | 
|  | image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); | 
|  | if (IS_ERR(image->cmdline_buf)) { | 
|  | ret = PTR_ERR(image->cmdline_buf); | 
|  | image->cmdline_buf = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->cmdline_buf_len = cmdline_len; | 
|  |  | 
|  | /* command line should be a string with last byte null */ | 
|  | if (image->cmdline_buf[cmdline_len - 1] != '\0') { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Call arch image load handlers */ | 
|  | ldata = arch_kexec_kernel_image_load(image); | 
|  |  | 
|  | if (IS_ERR(ldata)) { | 
|  | ret = PTR_ERR(ldata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | image->image_loader_data = ldata; | 
|  | out: | 
|  | /* In case of error, free up all allocated memory in this function */ | 
|  | if (ret) | 
|  | kimage_file_post_load_cleanup(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, | 
|  | int initrd_fd, const char __user *cmdline_ptr, | 
|  | unsigned long cmdline_len, unsigned long flags) | 
|  | { | 
|  | int ret; | 
|  | struct kimage *image; | 
|  | bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; | 
|  |  | 
|  | image = do_kimage_alloc_init(); | 
|  | if (!image) | 
|  | return -ENOMEM; | 
|  |  | 
|  | image->file_mode = 1; | 
|  |  | 
|  | if (kexec_on_panic) { | 
|  | /* Enable special crash kernel control page alloc policy. */ | 
|  | image->control_page = crashk_res.start; | 
|  | image->type = KEXEC_TYPE_CRASH; | 
|  | } | 
|  |  | 
|  | ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, | 
|  | cmdline_ptr, cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out_free_image; | 
|  |  | 
|  | ret = sanity_check_segment_list(image); | 
|  | if (ret) | 
|  | goto out_free_post_load_bufs; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | image->control_code_page = kimage_alloc_control_pages(image, | 
|  | get_order(KEXEC_CONTROL_PAGE_SIZE)); | 
|  | if (!image->control_code_page) { | 
|  | pr_err("Could not allocate control_code_buffer\n"); | 
|  | goto out_free_post_load_bufs; | 
|  | } | 
|  |  | 
|  | if (!kexec_on_panic) { | 
|  | image->swap_page = kimage_alloc_control_pages(image, 0); | 
|  | if (!image->swap_page) { | 
|  | pr_err("Could not allocate swap buffer\n"); | 
|  | goto out_free_control_pages; | 
|  | } | 
|  | } | 
|  |  | 
|  | *rimage = image; | 
|  | return 0; | 
|  | out_free_control_pages: | 
|  | kimage_free_page_list(&image->control_pages); | 
|  | out_free_post_load_bufs: | 
|  | kimage_file_post_load_cleanup(image); | 
|  | out_free_image: | 
|  | kfree(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, | 
|  | unsigned long, cmdline_len, const char __user *, cmdline_ptr, | 
|  | unsigned long, flags) | 
|  | { | 
|  | int ret = 0, i; | 
|  | struct kimage **dest_image, *image; | 
|  |  | 
|  | /* We only trust the superuser with rebooting the system. */ | 
|  | if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Make sure we have a legal set of flags */ | 
|  | if (flags != (flags & KEXEC_FILE_FLAGS)) | 
|  | return -EINVAL; | 
|  |  | 
|  | image = NULL; | 
|  |  | 
|  | if (!mutex_trylock(&kexec_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | dest_image = &kexec_image; | 
|  | if (flags & KEXEC_FILE_ON_CRASH) { | 
|  | dest_image = &kexec_crash_image; | 
|  | if (kexec_crash_image) | 
|  | arch_kexec_unprotect_crashkres(); | 
|  | } | 
|  |  | 
|  | if (flags & KEXEC_FILE_UNLOAD) | 
|  | goto exchange; | 
|  |  | 
|  | /* | 
|  | * In case of crash, new kernel gets loaded in reserved region. It is | 
|  | * same memory where old crash kernel might be loaded. Free any | 
|  | * current crash dump kernel before we corrupt it. | 
|  | */ | 
|  | if (flags & KEXEC_FILE_ON_CRASH) | 
|  | kimage_free(xchg(&kexec_crash_image, NULL)); | 
|  |  | 
|  | ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, | 
|  | cmdline_len, flags); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = machine_kexec_prepare(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Some architecture(like S390) may touch the crash memory before | 
|  | * machine_kexec_prepare(), we must copy vmcoreinfo data after it. | 
|  | */ | 
|  | ret = kimage_crash_copy_vmcoreinfo(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = kexec_calculate_store_digests(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", | 
|  | i, ksegment->buf, ksegment->bufsz, ksegment->mem, | 
|  | ksegment->memsz); | 
|  |  | 
|  | ret = kimage_load_segment(image, &image->segment[i]); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kimage_terminate(image); | 
|  |  | 
|  | /* | 
|  | * Free up any temporary buffers allocated which are not needed | 
|  | * after image has been loaded | 
|  | */ | 
|  | kimage_file_post_load_cleanup(image); | 
|  | exchange: | 
|  | image = xchg(dest_image, image); | 
|  | out: | 
|  | if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) | 
|  | arch_kexec_protect_crashkres(); | 
|  |  | 
|  | mutex_unlock(&kexec_mutex); | 
|  | kimage_free(image); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_top_down(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_end = min(end, kbuf->buf_max); | 
|  | temp_start = temp_end - kbuf->memsz; | 
|  |  | 
|  | do { | 
|  | /* align down start */ | 
|  | temp_start = temp_start & (~(kbuf->buf_align - 1)); | 
|  |  | 
|  | if (temp_start < start || temp_start < kbuf->buf_min) | 
|  | return 0; | 
|  |  | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start - PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, | 
|  | struct kexec_buf *kbuf) | 
|  | { | 
|  | struct kimage *image = kbuf->image; | 
|  | unsigned long temp_start, temp_end; | 
|  |  | 
|  | temp_start = max(start, kbuf->buf_min); | 
|  |  | 
|  | do { | 
|  | temp_start = ALIGN(temp_start, kbuf->buf_align); | 
|  | temp_end = temp_start + kbuf->memsz - 1; | 
|  |  | 
|  | if (temp_end > end || temp_end > kbuf->buf_max) | 
|  | return 0; | 
|  | /* | 
|  | * Make sure this does not conflict with any of existing | 
|  | * segments | 
|  | */ | 
|  | if (kimage_is_destination_range(image, temp_start, temp_end)) { | 
|  | temp_start = temp_start + PAGE_SIZE; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We found a suitable memory range */ | 
|  | break; | 
|  | } while (1); | 
|  |  | 
|  | /* If we are here, we found a suitable memory range */ | 
|  | kbuf->mem = temp_start; | 
|  |  | 
|  | /* Success, stop navigating through remaining System RAM ranges */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int locate_mem_hole_callback(struct resource *res, void *arg) | 
|  | { | 
|  | struct kexec_buf *kbuf = (struct kexec_buf *)arg; | 
|  | u64 start = res->start, end = res->end; | 
|  | unsigned long sz = end - start + 1; | 
|  |  | 
|  | /* Returning 0 will take to next memory range */ | 
|  | if (sz < kbuf->memsz) | 
|  | return 0; | 
|  |  | 
|  | if (end < kbuf->buf_min || start > kbuf->buf_max) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allocate memory top down with-in ram range. Otherwise bottom up | 
|  | * allocation. | 
|  | */ | 
|  | if (kbuf->top_down) | 
|  | return locate_mem_hole_top_down(start, end, kbuf); | 
|  | return locate_mem_hole_bottom_up(start, end, kbuf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * arch_kexec_walk_mem - call func(data) on free memory regions | 
|  | * @kbuf:	Context info for the search. Also passed to @func. | 
|  | * @func:	Function to call for each memory region. | 
|  | * | 
|  | * Return: The memory walk will stop when func returns a non-zero value | 
|  | * and that value will be returned. If all free regions are visited without | 
|  | * func returning non-zero, then zero will be returned. | 
|  | */ | 
|  | int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf, | 
|  | int (*func)(struct resource *, void *)) | 
|  | { | 
|  | if (kbuf->image->type == KEXEC_TYPE_CRASH) | 
|  | return walk_iomem_res_desc(crashk_res.desc, | 
|  | IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, | 
|  | crashk_res.start, crashk_res.end, | 
|  | kbuf, func); | 
|  | else | 
|  | return walk_system_ram_res(0, ULONG_MAX, kbuf, func); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel | 
|  | * @kbuf:	Parameters for the memory search. | 
|  | * | 
|  | * On success, kbuf->mem will have the start address of the memory region found. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int kexec_locate_mem_hole(struct kexec_buf *kbuf) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback); | 
|  |  | 
|  | return ret == 1 ? 0 : -EADDRNOTAVAIL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kexec_add_buffer - place a buffer in a kexec segment | 
|  | * @kbuf:	Buffer contents and memory parameters. | 
|  | * | 
|  | * This function assumes that kexec_mutex is held. | 
|  | * On successful return, @kbuf->mem will have the physical address of | 
|  | * the buffer in memory. | 
|  | * | 
|  | * Return: 0 on success, negative errno on error. | 
|  | */ | 
|  | int kexec_add_buffer(struct kexec_buf *kbuf) | 
|  | { | 
|  |  | 
|  | struct kexec_segment *ksegment; | 
|  | int ret; | 
|  |  | 
|  | /* Currently adding segment this way is allowed only in file mode */ | 
|  | if (!kbuf->image->file_mode) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Make sure we are not trying to add buffer after allocating | 
|  | * control pages. All segments need to be placed first before | 
|  | * any control pages are allocated. As control page allocation | 
|  | * logic goes through list of segments to make sure there are | 
|  | * no destination overlaps. | 
|  | */ | 
|  | if (!list_empty(&kbuf->image->control_pages)) { | 
|  | WARN_ON(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Ensure minimum alignment needed for segments. */ | 
|  | kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); | 
|  | kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); | 
|  |  | 
|  | /* Walk the RAM ranges and allocate a suitable range for the buffer */ | 
|  | ret = kexec_locate_mem_hole(kbuf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Found a suitable memory range */ | 
|  | ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; | 
|  | ksegment->kbuf = kbuf->buffer; | 
|  | ksegment->bufsz = kbuf->bufsz; | 
|  | ksegment->mem = kbuf->mem; | 
|  | ksegment->memsz = kbuf->memsz; | 
|  | kbuf->image->nr_segments++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Calculate and store the digest of segments */ | 
|  | static int kexec_calculate_store_digests(struct kimage *image) | 
|  | { | 
|  | struct crypto_shash *tfm; | 
|  | struct shash_desc *desc; | 
|  | int ret = 0, i, j, zero_buf_sz, sha_region_sz; | 
|  | size_t desc_size, nullsz; | 
|  | char *digest; | 
|  | void *zero_buf; | 
|  | struct kexec_sha_region *sha_regions; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  |  | 
|  | zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); | 
|  | zero_buf_sz = PAGE_SIZE; | 
|  |  | 
|  | tfm = crypto_alloc_shash("sha256", 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | ret = PTR_ERR(tfm); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); | 
|  | desc = kzalloc(desc_size, GFP_KERNEL); | 
|  | if (!desc) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_tfm; | 
|  | } | 
|  |  | 
|  | sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); | 
|  | sha_regions = vzalloc(sha_region_sz); | 
|  | if (!sha_regions) | 
|  | goto out_free_desc; | 
|  |  | 
|  | desc->tfm   = tfm; | 
|  | desc->flags = 0; | 
|  |  | 
|  | ret = crypto_shash_init(desc); | 
|  | if (ret < 0) | 
|  | goto out_free_sha_regions; | 
|  |  | 
|  | digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); | 
|  | if (!digest) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_sha_regions; | 
|  | } | 
|  |  | 
|  | for (j = i = 0; i < image->nr_segments; i++) { | 
|  | struct kexec_segment *ksegment; | 
|  |  | 
|  | ksegment = &image->segment[i]; | 
|  | /* | 
|  | * Skip purgatory as it will be modified once we put digest | 
|  | * info in purgatory. | 
|  | */ | 
|  | if (ksegment->kbuf == pi->purgatory_buf) | 
|  | continue; | 
|  |  | 
|  | ret = crypto_shash_update(desc, ksegment->kbuf, | 
|  | ksegment->bufsz); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Assume rest of the buffer is filled with zero and | 
|  | * update digest accordingly. | 
|  | */ | 
|  | nullsz = ksegment->memsz - ksegment->bufsz; | 
|  | while (nullsz) { | 
|  | unsigned long bytes = nullsz; | 
|  |  | 
|  | if (bytes > zero_buf_sz) | 
|  | bytes = zero_buf_sz; | 
|  | ret = crypto_shash_update(desc, zero_buf, bytes); | 
|  | if (ret) | 
|  | break; | 
|  | nullsz -= bytes; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | sha_regions[j].start = ksegment->mem; | 
|  | sha_regions[j].len = ksegment->memsz; | 
|  | j++; | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | ret = crypto_shash_final(desc, digest); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", | 
|  | sha_regions, sha_region_sz, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  |  | 
|  | ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", | 
|  | digest, SHA256_DIGEST_SIZE, 0); | 
|  | if (ret) | 
|  | goto out_free_digest; | 
|  | } | 
|  |  | 
|  | out_free_digest: | 
|  | kfree(digest); | 
|  | out_free_sha_regions: | 
|  | vfree(sha_regions); | 
|  | out_free_desc: | 
|  | kfree(desc); | 
|  | out_free_tfm: | 
|  | kfree(tfm); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Actually load purgatory. Lot of code taken from kexec-tools */ | 
|  | static int __kexec_load_purgatory(struct kimage *image, unsigned long min, | 
|  | unsigned long max, int top_down) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | unsigned long align, bss_align, bss_sz, bss_pad; | 
|  | unsigned long entry, load_addr, curr_load_addr, bss_addr, offset; | 
|  | unsigned char *buf_addr, *src; | 
|  | int i, ret = 0, entry_sidx = -1; | 
|  | const Elf_Shdr *sechdrs_c; | 
|  | Elf_Shdr *sechdrs = NULL; | 
|  | struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1, | 
|  | .buf_min = min, .buf_max = max, | 
|  | .top_down = top_down }; | 
|  |  | 
|  | /* | 
|  | * sechdrs_c points to section headers in purgatory and are read | 
|  | * only. No modifications allowed. | 
|  | */ | 
|  | sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; | 
|  |  | 
|  | /* | 
|  | * We can not modify sechdrs_c[] and its fields. It is read only. | 
|  | * Copy it over to a local copy where one can store some temporary | 
|  | * data and free it at the end. We need to modify ->sh_addr and | 
|  | * ->sh_offset fields to keep track of permanent and temporary | 
|  | * locations of sections. | 
|  | */ | 
|  | sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
|  | if (!sechdrs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); | 
|  |  | 
|  | /* | 
|  | * We seem to have multiple copies of sections. First copy is which | 
|  | * is embedded in kernel in read only section. Some of these sections | 
|  | * will be copied to a temporary buffer and relocated. And these | 
|  | * sections will finally be copied to their final destination at | 
|  | * segment load time. | 
|  | * | 
|  | * Use ->sh_offset to reflect section address in memory. It will | 
|  | * point to original read only copy if section is not allocatable. | 
|  | * Otherwise it will point to temporary copy which will be relocated. | 
|  | * | 
|  | * Use ->sh_addr to contain final address of the section where it | 
|  | * will go during execution time. | 
|  | */ | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (sechdrs[i].sh_type == SHT_NOBITS) | 
|  | continue; | 
|  |  | 
|  | sechdrs[i].sh_offset = (unsigned long)pi->ehdr + | 
|  | sechdrs[i].sh_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify entry point section and make entry relative to section | 
|  | * start. | 
|  | */ | 
|  | entry = pi->ehdr->e_entry; | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) | 
|  | continue; | 
|  |  | 
|  | /* Make entry section relative */ | 
|  | if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && | 
|  | ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > | 
|  | pi->ehdr->e_entry)) { | 
|  | entry_sidx = i; | 
|  | entry -= sechdrs[i].sh_addr; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine how much memory is needed to load relocatable object. */ | 
|  | bss_align = 1; | 
|  | bss_sz = 0; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type != SHT_NOBITS) { | 
|  | if (kbuf.buf_align < align) | 
|  | kbuf.buf_align = align; | 
|  | kbuf.bufsz = ALIGN(kbuf.bufsz, align); | 
|  | kbuf.bufsz += sechdrs[i].sh_size; | 
|  | } else { | 
|  | /* bss section */ | 
|  | if (bss_align < align) | 
|  | bss_align = align; | 
|  | bss_sz = ALIGN(bss_sz, align); | 
|  | bss_sz += sechdrs[i].sh_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine the bss padding required to align bss properly */ | 
|  | bss_pad = 0; | 
|  | if (kbuf.bufsz & (bss_align - 1)) | 
|  | bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1)); | 
|  |  | 
|  | kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz; | 
|  |  | 
|  | /* Allocate buffer for purgatory */ | 
|  | kbuf.buffer = vzalloc(kbuf.bufsz); | 
|  | if (!kbuf.buffer) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kbuf.buf_align < bss_align) | 
|  | kbuf.buf_align = bss_align; | 
|  |  | 
|  | /* Add buffer to segment list */ | 
|  | ret = kexec_add_buffer(&kbuf); | 
|  | if (ret) | 
|  | goto out; | 
|  | pi->purgatory_load_addr = kbuf.mem; | 
|  |  | 
|  | /* Load SHF_ALLOC sections */ | 
|  | buf_addr = kbuf.buffer; | 
|  | load_addr = curr_load_addr = pi->purgatory_load_addr; | 
|  | bss_addr = load_addr + kbuf.bufsz + bss_pad; | 
|  |  | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | if (!(sechdrs[i].sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | align = sechdrs[i].sh_addralign; | 
|  | if (sechdrs[i].sh_type != SHT_NOBITS) { | 
|  | curr_load_addr = ALIGN(curr_load_addr, align); | 
|  | offset = curr_load_addr - load_addr; | 
|  | /* We already modifed ->sh_offset to keep src addr */ | 
|  | src = (char *) sechdrs[i].sh_offset; | 
|  | memcpy(buf_addr + offset, src, sechdrs[i].sh_size); | 
|  |  | 
|  | /* Store load address and source address of section */ | 
|  | sechdrs[i].sh_addr = curr_load_addr; | 
|  |  | 
|  | /* | 
|  | * This section got copied to temporary buffer. Update | 
|  | * ->sh_offset accordingly. | 
|  | */ | 
|  | sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); | 
|  |  | 
|  | /* Advance to the next address */ | 
|  | curr_load_addr += sechdrs[i].sh_size; | 
|  | } else { | 
|  | bss_addr = ALIGN(bss_addr, align); | 
|  | sechdrs[i].sh_addr = bss_addr; | 
|  | bss_addr += sechdrs[i].sh_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update entry point based on load address of text section */ | 
|  | if (entry_sidx >= 0) | 
|  | entry += sechdrs[entry_sidx].sh_addr; | 
|  |  | 
|  | /* Make kernel jump to purgatory after shutdown */ | 
|  | image->start = entry; | 
|  |  | 
|  | /* Used later to get/set symbol values */ | 
|  | pi->sechdrs = sechdrs; | 
|  |  | 
|  | /* | 
|  | * Used later to identify which section is purgatory and skip it | 
|  | * from checksumming. | 
|  | */ | 
|  | pi->purgatory_buf = kbuf.buffer; | 
|  | return ret; | 
|  | out: | 
|  | vfree(sechdrs); | 
|  | vfree(kbuf.buffer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kexec_apply_relocations(struct kimage *image) | 
|  | { | 
|  | int i, ret; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | Elf_Shdr *sechdrs = pi->sechdrs; | 
|  |  | 
|  | /* Apply relocations */ | 
|  | for (i = 0; i < pi->ehdr->e_shnum; i++) { | 
|  | Elf_Shdr *section, *symtab; | 
|  |  | 
|  | if (sechdrs[i].sh_type != SHT_RELA && | 
|  | sechdrs[i].sh_type != SHT_REL) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * For section of type SHT_RELA/SHT_REL, | 
|  | * ->sh_link contains section header index of associated | 
|  | * symbol table. And ->sh_info contains section header | 
|  | * index of section to which relocations apply. | 
|  | */ | 
|  | if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || | 
|  | sechdrs[i].sh_link >= pi->ehdr->e_shnum) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | section = &sechdrs[sechdrs[i].sh_info]; | 
|  | symtab = &sechdrs[sechdrs[i].sh_link]; | 
|  |  | 
|  | if (!(section->sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * symtab->sh_link contain section header index of associated | 
|  | * string table. | 
|  | */ | 
|  | if (symtab->sh_link >= pi->ehdr->e_shnum) | 
|  | /* Invalid section number? */ | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Respective architecture needs to provide support for applying | 
|  | * relocations of type SHT_RELA/SHT_REL. | 
|  | */ | 
|  | if (sechdrs[i].sh_type == SHT_RELA) | 
|  | ret = arch_kexec_apply_relocations_add(pi->ehdr, | 
|  | sechdrs, i); | 
|  | else if (sechdrs[i].sh_type == SHT_REL) | 
|  | ret = arch_kexec_apply_relocations(pi->ehdr, | 
|  | sechdrs, i); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Load relocatable purgatory object and relocate it appropriately */ | 
|  | int kexec_load_purgatory(struct kimage *image, unsigned long min, | 
|  | unsigned long max, int top_down, | 
|  | unsigned long *load_addr) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | int ret; | 
|  |  | 
|  | if (kexec_purgatory_size <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kexec_purgatory_size < sizeof(Elf_Ehdr)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | pi->ehdr = (Elf_Ehdr *)kexec_purgatory; | 
|  |  | 
|  | if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 | 
|  | || pi->ehdr->e_type != ET_REL | 
|  | || !elf_check_arch(pi->ehdr) | 
|  | || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (pi->ehdr->e_shoff >= kexec_purgatory_size | 
|  | || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > | 
|  | kexec_purgatory_size - pi->ehdr->e_shoff)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | ret = __kexec_load_purgatory(image, min, max, top_down); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = kexec_apply_relocations(image); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | *load_addr = pi->purgatory_load_addr; | 
|  | return 0; | 
|  | out: | 
|  | vfree(pi->sechdrs); | 
|  | pi->sechdrs = NULL; | 
|  |  | 
|  | vfree(pi->purgatory_buf); | 
|  | pi->purgatory_buf = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, | 
|  | const char *name) | 
|  | { | 
|  | Elf_Sym *syms; | 
|  | Elf_Shdr *sechdrs; | 
|  | Elf_Ehdr *ehdr; | 
|  | int i, k; | 
|  | const char *strtab; | 
|  |  | 
|  | if (!pi->sechdrs || !pi->ehdr) | 
|  | return NULL; | 
|  |  | 
|  | sechdrs = pi->sechdrs; | 
|  | ehdr = pi->ehdr; | 
|  |  | 
|  | for (i = 0; i < ehdr->e_shnum; i++) { | 
|  | if (sechdrs[i].sh_type != SHT_SYMTAB) | 
|  | continue; | 
|  |  | 
|  | if (sechdrs[i].sh_link >= ehdr->e_shnum) | 
|  | /* Invalid strtab section number */ | 
|  | continue; | 
|  | strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; | 
|  | syms = (Elf_Sym *)sechdrs[i].sh_offset; | 
|  |  | 
|  | /* Go through symbols for a match */ | 
|  | for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { | 
|  | if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) | 
|  | continue; | 
|  |  | 
|  | if (strcmp(strtab + syms[k].st_name, name) != 0) | 
|  | continue; | 
|  |  | 
|  | if (syms[k].st_shndx == SHN_UNDEF || | 
|  | syms[k].st_shndx >= ehdr->e_shnum) { | 
|  | pr_debug("Symbol: %s has bad section index %d.\n", | 
|  | name, syms[k].st_shndx); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Found the symbol we are looking for */ | 
|  | return &syms[k]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) | 
|  | { | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | Elf_Sym *sym; | 
|  | Elf_Shdr *sechdr; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | sechdr = &pi->sechdrs[sym->st_shndx]; | 
|  |  | 
|  | /* | 
|  | * Returns the address where symbol will finally be loaded after | 
|  | * kexec_load_segment() | 
|  | */ | 
|  | return (void *)(sechdr->sh_addr + sym->st_value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get or set value of a symbol. If "get_value" is true, symbol value is | 
|  | * returned in buf otherwise symbol value is set based on value in buf. | 
|  | */ | 
|  | int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, | 
|  | void *buf, unsigned int size, bool get_value) | 
|  | { | 
|  | Elf_Sym *sym; | 
|  | Elf_Shdr *sechdrs; | 
|  | struct purgatory_info *pi = &image->purgatory_info; | 
|  | char *sym_buf; | 
|  |  | 
|  | sym = kexec_purgatory_find_symbol(pi, name); | 
|  | if (!sym) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (sym->st_size != size) { | 
|  | pr_err("symbol %s size mismatch: expected %lu actual %u\n", | 
|  | name, (unsigned long)sym->st_size, size); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sechdrs = pi->sechdrs; | 
|  |  | 
|  | if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { | 
|  | pr_err("symbol %s is in a bss section. Cannot %s\n", name, | 
|  | get_value ? "get" : "set"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + | 
|  | sym->st_value; | 
|  |  | 
|  | if (get_value) | 
|  | memcpy((void *)buf, sym_buf, size); | 
|  | else | 
|  | memcpy((void *)sym_buf, buf, size); | 
|  |  | 
|  | return 0; | 
|  | } |