| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2008-2018 Intel Corporation |
| */ |
| |
| #include <linux/sched/mm.h> |
| #include <linux/stop_machine.h> |
| #include <linux/string_helpers.h> |
| |
| #include "display/intel_display.h" |
| #include "display/intel_overlay.h" |
| |
| #include "gem/i915_gem_context.h" |
| |
| #include "gt/intel_gt_regs.h" |
| |
| #include "i915_drv.h" |
| #include "i915_file_private.h" |
| #include "i915_gpu_error.h" |
| #include "i915_irq.h" |
| #include "intel_breadcrumbs.h" |
| #include "intel_engine_pm.h" |
| #include "intel_engine_regs.h" |
| #include "intel_gt.h" |
| #include "intel_gt_pm.h" |
| #include "intel_gt_requests.h" |
| #include "intel_mchbar_regs.h" |
| #include "intel_pci_config.h" |
| #include "intel_reset.h" |
| |
| #include "uc/intel_guc.h" |
| |
| #define RESET_MAX_RETRIES 3 |
| |
| /* XXX How to handle concurrent GGTT updates using tiling registers? */ |
| #define RESET_UNDER_STOP_MACHINE 0 |
| |
| static void client_mark_guilty(struct i915_gem_context *ctx, bool banned) |
| { |
| struct drm_i915_file_private *file_priv = ctx->file_priv; |
| unsigned long prev_hang; |
| unsigned int score; |
| |
| if (IS_ERR_OR_NULL(file_priv)) |
| return; |
| |
| score = 0; |
| if (banned) |
| score = I915_CLIENT_SCORE_CONTEXT_BAN; |
| |
| prev_hang = xchg(&file_priv->hang_timestamp, jiffies); |
| if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES)) |
| score += I915_CLIENT_SCORE_HANG_FAST; |
| |
| if (score) { |
| atomic_add(score, &file_priv->ban_score); |
| |
| drm_dbg(&ctx->i915->drm, |
| "client %s: gained %u ban score, now %u\n", |
| ctx->name, score, |
| atomic_read(&file_priv->ban_score)); |
| } |
| } |
| |
| static bool mark_guilty(struct i915_request *rq) |
| { |
| struct i915_gem_context *ctx; |
| unsigned long prev_hang; |
| bool banned; |
| int i; |
| |
| if (intel_context_is_closed(rq->context)) |
| return true; |
| |
| rcu_read_lock(); |
| ctx = rcu_dereference(rq->context->gem_context); |
| if (ctx && !kref_get_unless_zero(&ctx->ref)) |
| ctx = NULL; |
| rcu_read_unlock(); |
| if (!ctx) |
| return intel_context_is_banned(rq->context); |
| |
| atomic_inc(&ctx->guilty_count); |
| |
| /* Cool contexts are too cool to be banned! (Used for reset testing.) */ |
| if (!i915_gem_context_is_bannable(ctx)) { |
| banned = false; |
| goto out; |
| } |
| |
| drm_notice(&ctx->i915->drm, |
| "%s context reset due to GPU hang\n", |
| ctx->name); |
| |
| /* Record the timestamp for the last N hangs */ |
| prev_hang = ctx->hang_timestamp[0]; |
| for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++) |
| ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1]; |
| ctx->hang_timestamp[i] = jiffies; |
| |
| /* If we have hung N+1 times in rapid succession, we ban the context! */ |
| banned = !i915_gem_context_is_recoverable(ctx); |
| if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES)) |
| banned = true; |
| if (banned) |
| drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n", |
| ctx->name, atomic_read(&ctx->guilty_count)); |
| |
| client_mark_guilty(ctx, banned); |
| |
| out: |
| i915_gem_context_put(ctx); |
| return banned; |
| } |
| |
| static void mark_innocent(struct i915_request *rq) |
| { |
| struct i915_gem_context *ctx; |
| |
| rcu_read_lock(); |
| ctx = rcu_dereference(rq->context->gem_context); |
| if (ctx) |
| atomic_inc(&ctx->active_count); |
| rcu_read_unlock(); |
| } |
| |
| void __i915_request_reset(struct i915_request *rq, bool guilty) |
| { |
| bool banned = false; |
| |
| RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty)); |
| GEM_BUG_ON(__i915_request_is_complete(rq)); |
| |
| rcu_read_lock(); /* protect the GEM context */ |
| if (guilty) { |
| i915_request_set_error_once(rq, -EIO); |
| __i915_request_skip(rq); |
| banned = mark_guilty(rq); |
| } else { |
| i915_request_set_error_once(rq, -EAGAIN); |
| mark_innocent(rq); |
| } |
| rcu_read_unlock(); |
| |
| if (banned) |
| intel_context_ban(rq->context, rq); |
| } |
| |
| static bool i915_in_reset(struct pci_dev *pdev) |
| { |
| u8 gdrst; |
| |
| pci_read_config_byte(pdev, I915_GDRST, &gdrst); |
| return gdrst & GRDOM_RESET_STATUS; |
| } |
| |
| static int i915_do_reset(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); |
| int err; |
| |
| /* Assert reset for at least 20 usec, and wait for acknowledgement. */ |
| pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); |
| udelay(50); |
| err = wait_for_atomic(i915_in_reset(pdev), 50); |
| |
| /* Clear the reset request. */ |
| pci_write_config_byte(pdev, I915_GDRST, 0); |
| udelay(50); |
| if (!err) |
| err = wait_for_atomic(!i915_in_reset(pdev), 50); |
| |
| return err; |
| } |
| |
| static bool g4x_reset_complete(struct pci_dev *pdev) |
| { |
| u8 gdrst; |
| |
| pci_read_config_byte(pdev, I915_GDRST, &gdrst); |
| return (gdrst & GRDOM_RESET_ENABLE) == 0; |
| } |
| |
| static int g33_do_reset(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); |
| |
| pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE); |
| return wait_for_atomic(g4x_reset_complete(pdev), 50); |
| } |
| |
| static int g4x_do_reset(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev); |
| struct intel_uncore *uncore = gt->uncore; |
| int ret; |
| |
| /* WaVcpClkGateDisableForMediaReset:ctg,elk */ |
| intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE); |
| intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); |
| |
| pci_write_config_byte(pdev, I915_GDRST, |
| GRDOM_MEDIA | GRDOM_RESET_ENABLE); |
| ret = wait_for_atomic(g4x_reset_complete(pdev), 50); |
| if (ret) { |
| GT_TRACE(gt, "Wait for media reset failed\n"); |
| goto out; |
| } |
| |
| pci_write_config_byte(pdev, I915_GDRST, |
| GRDOM_RENDER | GRDOM_RESET_ENABLE); |
| ret = wait_for_atomic(g4x_reset_complete(pdev), 50); |
| if (ret) { |
| GT_TRACE(gt, "Wait for render reset failed\n"); |
| goto out; |
| } |
| |
| out: |
| pci_write_config_byte(pdev, I915_GDRST, 0); |
| |
| intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0); |
| intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D); |
| |
| return ret; |
| } |
| |
| static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| int ret; |
| |
| intel_uncore_write_fw(uncore, ILK_GDSR, |
| ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE); |
| ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, |
| ILK_GRDOM_RESET_ENABLE, 0, |
| 5000, 0, |
| NULL); |
| if (ret) { |
| GT_TRACE(gt, "Wait for render reset failed\n"); |
| goto out; |
| } |
| |
| intel_uncore_write_fw(uncore, ILK_GDSR, |
| ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE); |
| ret = __intel_wait_for_register_fw(uncore, ILK_GDSR, |
| ILK_GRDOM_RESET_ENABLE, 0, |
| 5000, 0, |
| NULL); |
| if (ret) { |
| GT_TRACE(gt, "Wait for media reset failed\n"); |
| goto out; |
| } |
| |
| out: |
| intel_uncore_write_fw(uncore, ILK_GDSR, 0); |
| intel_uncore_posting_read_fw(uncore, ILK_GDSR); |
| return ret; |
| } |
| |
| /* Reset the hardware domains (GENX_GRDOM_*) specified by mask */ |
| static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask) |
| { |
| struct intel_uncore *uncore = gt->uncore; |
| int loops = 2; |
| int err; |
| |
| /* |
| * GEN6_GDRST is not in the gt power well, no need to check |
| * for fifo space for the write or forcewake the chip for |
| * the read |
| */ |
| do { |
| intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask); |
| |
| /* |
| * Wait for the device to ack the reset requests. |
| * |
| * On some platforms, e.g. Jasperlake, we see that the |
| * engine register state is not cleared until shortly after |
| * GDRST reports completion, causing a failure as we try |
| * to immediately resume while the internal state is still |
| * in flux. If we immediately repeat the reset, the second |
| * reset appears to serialise with the first, and since |
| * it is a no-op, the registers should retain their reset |
| * value. However, there is still a concern that upon |
| * leaving the second reset, the internal engine state |
| * is still in flux and not ready for resuming. |
| */ |
| err = __intel_wait_for_register_fw(uncore, GEN6_GDRST, |
| hw_domain_mask, 0, |
| 2000, 0, |
| NULL); |
| } while (err == 0 && --loops); |
| if (err) |
| GT_TRACE(gt, |
| "Wait for 0x%08x engines reset failed\n", |
| hw_domain_mask); |
| |
| /* |
| * As we have observed that the engine state is still volatile |
| * after GDRST is acked, impose a small delay to let everything settle. |
| */ |
| udelay(50); |
| |
| return err; |
| } |
| |
| static int __gen6_reset_engines(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct intel_engine_cs *engine; |
| u32 hw_mask; |
| |
| if (engine_mask == ALL_ENGINES) { |
| hw_mask = GEN6_GRDOM_FULL; |
| } else { |
| intel_engine_mask_t tmp; |
| |
| hw_mask = 0; |
| for_each_engine_masked(engine, gt, engine_mask, tmp) { |
| hw_mask |= engine->reset_domain; |
| } |
| } |
| |
| return gen6_hw_domain_reset(gt, hw_mask); |
| } |
| |
| static int gen6_reset_engines(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(>->uncore->lock, flags); |
| ret = __gen6_reset_engines(gt, engine_mask, retry); |
| spin_unlock_irqrestore(>->uncore->lock, flags); |
| |
| return ret; |
| } |
| |
| static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine) |
| { |
| int vecs_id; |
| |
| GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS); |
| |
| vecs_id = _VECS((engine->instance) / 2); |
| |
| return engine->gt->engine[vecs_id]; |
| } |
| |
| struct sfc_lock_data { |
| i915_reg_t lock_reg; |
| i915_reg_t ack_reg; |
| i915_reg_t usage_reg; |
| u32 lock_bit; |
| u32 ack_bit; |
| u32 usage_bit; |
| u32 reset_bit; |
| }; |
| |
| static void get_sfc_forced_lock_data(struct intel_engine_cs *engine, |
| struct sfc_lock_data *sfc_lock) |
| { |
| switch (engine->class) { |
| default: |
| MISSING_CASE(engine->class); |
| fallthrough; |
| case VIDEO_DECODE_CLASS: |
| sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base); |
| sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT; |
| |
| sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); |
| sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT; |
| |
| sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base); |
| sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT; |
| sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance); |
| |
| break; |
| case VIDEO_ENHANCEMENT_CLASS: |
| sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base); |
| sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT; |
| |
| sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base); |
| sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT; |
| |
| sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base); |
| sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT; |
| sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance); |
| |
| break; |
| } |
| } |
| |
| static int gen11_lock_sfc(struct intel_engine_cs *engine, |
| u32 *reset_mask, |
| u32 *unlock_mask) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; |
| struct sfc_lock_data sfc_lock; |
| bool lock_obtained, lock_to_other = false; |
| int ret; |
| |
| switch (engine->class) { |
| case VIDEO_DECODE_CLASS: |
| if ((BIT(engine->instance) & vdbox_sfc_access) == 0) |
| return 0; |
| |
| fallthrough; |
| case VIDEO_ENHANCEMENT_CLASS: |
| get_sfc_forced_lock_data(engine, &sfc_lock); |
| |
| break; |
| default: |
| return 0; |
| } |
| |
| if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) { |
| struct intel_engine_cs *paired_vecs; |
| |
| if (engine->class != VIDEO_DECODE_CLASS || |
| GRAPHICS_VER(engine->i915) != 12) |
| return 0; |
| |
| /* |
| * Wa_14010733141 |
| * |
| * If the VCS-MFX isn't using the SFC, we also need to check |
| * whether VCS-HCP is using it. If so, we need to issue a *VE* |
| * forced lock on the VE engine that shares the same SFC. |
| */ |
| if (!(intel_uncore_read_fw(uncore, |
| GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) & |
| GEN12_HCP_SFC_USAGE_BIT)) |
| return 0; |
| |
| paired_vecs = find_sfc_paired_vecs_engine(engine); |
| get_sfc_forced_lock_data(paired_vecs, &sfc_lock); |
| lock_to_other = true; |
| *unlock_mask |= paired_vecs->mask; |
| } else { |
| *unlock_mask |= engine->mask; |
| } |
| |
| /* |
| * If the engine is using an SFC, tell the engine that a software reset |
| * is going to happen. The engine will then try to force lock the SFC. |
| * If SFC ends up being locked to the engine we want to reset, we have |
| * to reset it as well (we will unlock it once the reset sequence is |
| * completed). |
| */ |
| intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit); |
| |
| ret = __intel_wait_for_register_fw(uncore, |
| sfc_lock.ack_reg, |
| sfc_lock.ack_bit, |
| sfc_lock.ack_bit, |
| 1000, 0, NULL); |
| |
| /* |
| * Was the SFC released while we were trying to lock it? |
| * |
| * We should reset both the engine and the SFC if: |
| * - We were locking the SFC to this engine and the lock succeeded |
| * OR |
| * - We were locking the SFC to a different engine (Wa_14010733141) |
| * but the SFC was released before the lock was obtained. |
| * |
| * Otherwise we need only reset the engine by itself and we can |
| * leave the SFC alone. |
| */ |
| lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & |
| sfc_lock.usage_bit) != 0; |
| if (lock_obtained == lock_to_other) |
| return 0; |
| |
| if (ret) { |
| ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n"); |
| return ret; |
| } |
| |
| *reset_mask |= sfc_lock.reset_bit; |
| return 0; |
| } |
| |
| static void gen11_unlock_sfc(struct intel_engine_cs *engine) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access; |
| struct sfc_lock_data sfc_lock = {}; |
| |
| if (engine->class != VIDEO_DECODE_CLASS && |
| engine->class != VIDEO_ENHANCEMENT_CLASS) |
| return; |
| |
| if (engine->class == VIDEO_DECODE_CLASS && |
| (BIT(engine->instance) & vdbox_sfc_access) == 0) |
| return; |
| |
| get_sfc_forced_lock_data(engine, &sfc_lock); |
| |
| intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0); |
| } |
| |
| static int __gen11_reset_engines(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct intel_engine_cs *engine; |
| intel_engine_mask_t tmp; |
| u32 reset_mask, unlock_mask = 0; |
| int ret; |
| |
| if (engine_mask == ALL_ENGINES) { |
| reset_mask = GEN11_GRDOM_FULL; |
| } else { |
| reset_mask = 0; |
| for_each_engine_masked(engine, gt, engine_mask, tmp) { |
| reset_mask |= engine->reset_domain; |
| ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask); |
| if (ret) |
| goto sfc_unlock; |
| } |
| } |
| |
| ret = gen6_hw_domain_reset(gt, reset_mask); |
| |
| sfc_unlock: |
| /* |
| * We unlock the SFC based on the lock status and not the result of |
| * gen11_lock_sfc to make sure that we clean properly if something |
| * wrong happened during the lock (e.g. lock acquired after timeout |
| * expiration). |
| * |
| * Due to Wa_14010733141, we may have locked an SFC to an engine that |
| * wasn't being reset. So instead of calling gen11_unlock_sfc() |
| * on engine_mask, we instead call it on the mask of engines that our |
| * gen11_lock_sfc() calls told us actually had locks attempted. |
| */ |
| for_each_engine_masked(engine, gt, unlock_mask, tmp) |
| gen11_unlock_sfc(engine); |
| |
| return ret; |
| } |
| |
| static int gen8_engine_reset_prepare(struct intel_engine_cs *engine) |
| { |
| struct intel_uncore *uncore = engine->uncore; |
| const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base); |
| u32 request, mask, ack; |
| int ret; |
| |
| if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1))) |
| return -ETIMEDOUT; |
| |
| ack = intel_uncore_read_fw(uncore, reg); |
| if (ack & RESET_CTL_CAT_ERROR) { |
| /* |
| * For catastrophic errors, ready-for-reset sequence |
| * needs to be bypassed: HAS#396813 |
| */ |
| request = RESET_CTL_CAT_ERROR; |
| mask = RESET_CTL_CAT_ERROR; |
| |
| /* Catastrophic errors need to be cleared by HW */ |
| ack = 0; |
| } else if (!(ack & RESET_CTL_READY_TO_RESET)) { |
| request = RESET_CTL_REQUEST_RESET; |
| mask = RESET_CTL_READY_TO_RESET; |
| ack = RESET_CTL_READY_TO_RESET; |
| } else { |
| return 0; |
| } |
| |
| intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request)); |
| ret = __intel_wait_for_register_fw(uncore, reg, mask, ack, |
| 700, 0, NULL); |
| if (ret) |
| drm_err(&engine->i915->drm, |
| "%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n", |
| engine->name, request, |
| intel_uncore_read_fw(uncore, reg)); |
| |
| return ret; |
| } |
| |
| static void gen8_engine_reset_cancel(struct intel_engine_cs *engine) |
| { |
| intel_uncore_write_fw(engine->uncore, |
| RING_RESET_CTL(engine->mmio_base), |
| _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET)); |
| } |
| |
| static int gen8_reset_engines(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry) |
| { |
| struct intel_engine_cs *engine; |
| const bool reset_non_ready = retry >= 1; |
| intel_engine_mask_t tmp; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(>->uncore->lock, flags); |
| |
| for_each_engine_masked(engine, gt, engine_mask, tmp) { |
| ret = gen8_engine_reset_prepare(engine); |
| if (ret && !reset_non_ready) |
| goto skip_reset; |
| |
| /* |
| * If this is not the first failed attempt to prepare, |
| * we decide to proceed anyway. |
| * |
| * By doing so we risk context corruption and with |
| * some gens (kbl), possible system hang if reset |
| * happens during active bb execution. |
| * |
| * We rather take context corruption instead of |
| * failed reset with a wedged driver/gpu. And |
| * active bb execution case should be covered by |
| * stop_engines() we have before the reset. |
| */ |
| } |
| |
| /* |
| * Wa_22011100796:dg2, whenever Full soft reset is required, |
| * reset all individual engines firstly, and then do a full soft reset. |
| * |
| * This is best effort, so ignore any error from the initial reset. |
| */ |
| if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES) |
| __gen11_reset_engines(gt, gt->info.engine_mask, 0); |
| |
| if (GRAPHICS_VER(gt->i915) >= 11) |
| ret = __gen11_reset_engines(gt, engine_mask, retry); |
| else |
| ret = __gen6_reset_engines(gt, engine_mask, retry); |
| |
| skip_reset: |
| for_each_engine_masked(engine, gt, engine_mask, tmp) |
| gen8_engine_reset_cancel(engine); |
| |
| spin_unlock_irqrestore(>->uncore->lock, flags); |
| |
| return ret; |
| } |
| |
| static int mock_reset(struct intel_gt *gt, |
| intel_engine_mask_t mask, |
| unsigned int retry) |
| { |
| return 0; |
| } |
| |
| typedef int (*reset_func)(struct intel_gt *, |
| intel_engine_mask_t engine_mask, |
| unsigned int retry); |
| |
| static reset_func intel_get_gpu_reset(const struct intel_gt *gt) |
| { |
| struct drm_i915_private *i915 = gt->i915; |
| |
| if (is_mock_gt(gt)) |
| return mock_reset; |
| else if (GRAPHICS_VER(i915) >= 8) |
| return gen8_reset_engines; |
| else if (GRAPHICS_VER(i915) >= 6) |
| return gen6_reset_engines; |
| else if (GRAPHICS_VER(i915) >= 5) |
| return ilk_do_reset; |
| else if (IS_G4X(i915)) |
| return g4x_do_reset; |
| else if (IS_G33(i915) || IS_PINEVIEW(i915)) |
| return g33_do_reset; |
| else if (GRAPHICS_VER(i915) >= 3) |
| return i915_do_reset; |
| else |
| return NULL; |
| } |
| |
| int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask) |
| { |
| const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1; |
| reset_func reset; |
| int ret = -ETIMEDOUT; |
| int retry; |
| |
| reset = intel_get_gpu_reset(gt); |
| if (!reset) |
| return -ENODEV; |
| |
| /* |
| * If the power well sleeps during the reset, the reset |
| * request may be dropped and never completes (causing -EIO). |
| */ |
| intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); |
| for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) { |
| GT_TRACE(gt, "engine_mask=%x\n", engine_mask); |
| preempt_disable(); |
| ret = reset(gt, engine_mask, retry); |
| preempt_enable(); |
| } |
| intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); |
| |
| return ret; |
| } |
| |
| bool intel_has_gpu_reset(const struct intel_gt *gt) |
| { |
| if (!gt->i915->params.reset) |
| return NULL; |
| |
| return intel_get_gpu_reset(gt); |
| } |
| |
| bool intel_has_reset_engine(const struct intel_gt *gt) |
| { |
| if (gt->i915->params.reset < 2) |
| return false; |
| |
| return INTEL_INFO(gt->i915)->has_reset_engine; |
| } |
| |
| int intel_reset_guc(struct intel_gt *gt) |
| { |
| u32 guc_domain = |
| GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC; |
| int ret; |
| |
| GEM_BUG_ON(!HAS_GT_UC(gt->i915)); |
| |
| intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); |
| ret = gen6_hw_domain_reset(gt, guc_domain); |
| intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); |
| |
| return ret; |
| } |
| |
| /* |
| * Ensure irq handler finishes, and not run again. |
| * Also return the active request so that we only search for it once. |
| */ |
| static void reset_prepare_engine(struct intel_engine_cs *engine) |
| { |
| /* |
| * During the reset sequence, we must prevent the engine from |
| * entering RC6. As the context state is undefined until we restart |
| * the engine, if it does enter RC6 during the reset, the state |
| * written to the powercontext is undefined and so we may lose |
| * GPU state upon resume, i.e. fail to restart after a reset. |
| */ |
| intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL); |
| if (engine->reset.prepare) |
| engine->reset.prepare(engine); |
| } |
| |
| static void revoke_mmaps(struct intel_gt *gt) |
| { |
| int i; |
| |
| for (i = 0; i < gt->ggtt->num_fences; i++) { |
| struct drm_vma_offset_node *node; |
| struct i915_vma *vma; |
| u64 vma_offset; |
| |
| vma = READ_ONCE(gt->ggtt->fence_regs[i].vma); |
| if (!vma) |
| continue; |
| |
| if (!i915_vma_has_userfault(vma)) |
| continue; |
| |
| GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]); |
| |
| if (!vma->mmo) |
| continue; |
| |
| node = &vma->mmo->vma_node; |
| vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; |
| |
| unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping, |
| drm_vma_node_offset_addr(node) + vma_offset, |
| vma->size, |
| 1); |
| } |
| } |
| |
| static intel_engine_mask_t reset_prepare(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| intel_engine_mask_t awake = 0; |
| enum intel_engine_id id; |
| |
| /* For GuC mode, ensure submission is disabled before stopping ring */ |
| intel_uc_reset_prepare(>->uc); |
| |
| for_each_engine(engine, gt, id) { |
| if (intel_engine_pm_get_if_awake(engine)) |
| awake |= engine->mask; |
| reset_prepare_engine(engine); |
| } |
| |
| return awake; |
| } |
| |
| static void gt_revoke(struct intel_gt *gt) |
| { |
| revoke_mmaps(gt); |
| } |
| |
| static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int err; |
| |
| /* |
| * Everything depends on having the GTT running, so we need to start |
| * there. |
| */ |
| err = i915_ggtt_enable_hw(gt->i915); |
| if (err) |
| return err; |
| |
| local_bh_disable(); |
| for_each_engine(engine, gt, id) |
| __intel_engine_reset(engine, stalled_mask & engine->mask); |
| local_bh_enable(); |
| |
| intel_uc_reset(>->uc, ALL_ENGINES); |
| |
| intel_ggtt_restore_fences(gt->ggtt); |
| |
| return err; |
| } |
| |
| static void reset_finish_engine(struct intel_engine_cs *engine) |
| { |
| if (engine->reset.finish) |
| engine->reset.finish(engine); |
| intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL); |
| |
| intel_engine_signal_breadcrumbs(engine); |
| } |
| |
| static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, gt, id) { |
| reset_finish_engine(engine); |
| if (awake & engine->mask) |
| intel_engine_pm_put(engine); |
| } |
| |
| intel_uc_reset_finish(>->uc); |
| } |
| |
| static void nop_submit_request(struct i915_request *request) |
| { |
| RQ_TRACE(request, "-EIO\n"); |
| |
| request = i915_request_mark_eio(request); |
| if (request) { |
| i915_request_submit(request); |
| intel_engine_signal_breadcrumbs(request->engine); |
| |
| i915_request_put(request); |
| } |
| } |
| |
| static void __intel_gt_set_wedged(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| intel_engine_mask_t awake; |
| enum intel_engine_id id; |
| |
| if (test_bit(I915_WEDGED, >->reset.flags)) |
| return; |
| |
| GT_TRACE(gt, "start\n"); |
| |
| /* |
| * First, stop submission to hw, but do not yet complete requests by |
| * rolling the global seqno forward (since this would complete requests |
| * for which we haven't set the fence error to EIO yet). |
| */ |
| awake = reset_prepare(gt); |
| |
| /* Even if the GPU reset fails, it should still stop the engines */ |
| if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| __intel_gt_reset(gt, ALL_ENGINES); |
| |
| for_each_engine(engine, gt, id) |
| engine->submit_request = nop_submit_request; |
| |
| /* |
| * Make sure no request can slip through without getting completed by |
| * either this call here to intel_engine_write_global_seqno, or the one |
| * in nop_submit_request. |
| */ |
| synchronize_rcu_expedited(); |
| set_bit(I915_WEDGED, >->reset.flags); |
| |
| /* Mark all executing requests as skipped */ |
| local_bh_disable(); |
| for_each_engine(engine, gt, id) |
| if (engine->reset.cancel) |
| engine->reset.cancel(engine); |
| intel_uc_cancel_requests(>->uc); |
| local_bh_enable(); |
| |
| reset_finish(gt, awake); |
| |
| GT_TRACE(gt, "end\n"); |
| } |
| |
| void intel_gt_set_wedged(struct intel_gt *gt) |
| { |
| intel_wakeref_t wakeref; |
| |
| if (test_bit(I915_WEDGED, >->reset.flags)) |
| return; |
| |
| wakeref = intel_runtime_pm_get(gt->uncore->rpm); |
| mutex_lock(>->reset.mutex); |
| |
| if (GEM_SHOW_DEBUG()) { |
| struct drm_printer p = drm_debug_printer(__func__); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| drm_printf(&p, "called from %pS\n", (void *)_RET_IP_); |
| for_each_engine(engine, gt, id) { |
| if (intel_engine_is_idle(engine)) |
| continue; |
| |
| intel_engine_dump(engine, &p, "%s\n", engine->name); |
| } |
| } |
| |
| __intel_gt_set_wedged(gt); |
| |
| mutex_unlock(>->reset.mutex); |
| intel_runtime_pm_put(gt->uncore->rpm, wakeref); |
| } |
| |
| static bool __intel_gt_unset_wedged(struct intel_gt *gt) |
| { |
| struct intel_gt_timelines *timelines = >->timelines; |
| struct intel_timeline *tl; |
| bool ok; |
| |
| if (!test_bit(I915_WEDGED, >->reset.flags)) |
| return true; |
| |
| /* Never fully initialised, recovery impossible */ |
| if (intel_gt_has_unrecoverable_error(gt)) |
| return false; |
| |
| GT_TRACE(gt, "start\n"); |
| |
| /* |
| * Before unwedging, make sure that all pending operations |
| * are flushed and errored out - we may have requests waiting upon |
| * third party fences. We marked all inflight requests as EIO, and |
| * every execbuf since returned EIO, for consistency we want all |
| * the currently pending requests to also be marked as EIO, which |
| * is done inside our nop_submit_request - and so we must wait. |
| * |
| * No more can be submitted until we reset the wedged bit. |
| */ |
| spin_lock(&timelines->lock); |
| list_for_each_entry(tl, &timelines->active_list, link) { |
| struct dma_fence *fence; |
| |
| fence = i915_active_fence_get(&tl->last_request); |
| if (!fence) |
| continue; |
| |
| spin_unlock(&timelines->lock); |
| |
| /* |
| * All internal dependencies (i915_requests) will have |
| * been flushed by the set-wedge, but we may be stuck waiting |
| * for external fences. These should all be capped to 10s |
| * (I915_FENCE_TIMEOUT) so this wait should not be unbounded |
| * in the worst case. |
| */ |
| dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT); |
| dma_fence_put(fence); |
| |
| /* Restart iteration after droping lock */ |
| spin_lock(&timelines->lock); |
| tl = list_entry(&timelines->active_list, typeof(*tl), link); |
| } |
| spin_unlock(&timelines->lock); |
| |
| /* We must reset pending GPU events before restoring our submission */ |
| ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */ |
| if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| ok = __intel_gt_reset(gt, ALL_ENGINES) == 0; |
| if (!ok) { |
| /* |
| * Warn CI about the unrecoverable wedged condition. |
| * Time for a reboot. |
| */ |
| add_taint_for_CI(gt->i915, TAINT_WARN); |
| return false; |
| } |
| |
| /* |
| * Undo nop_submit_request. We prevent all new i915 requests from |
| * being queued (by disallowing execbuf whilst wedged) so having |
| * waited for all active requests above, we know the system is idle |
| * and do not have to worry about a thread being inside |
| * engine->submit_request() as we swap over. So unlike installing |
| * the nop_submit_request on reset, we can do this from normal |
| * context and do not require stop_machine(). |
| */ |
| intel_engines_reset_default_submission(gt); |
| |
| GT_TRACE(gt, "end\n"); |
| |
| smp_mb__before_atomic(); /* complete takeover before enabling execbuf */ |
| clear_bit(I915_WEDGED, >->reset.flags); |
| |
| return true; |
| } |
| |
| bool intel_gt_unset_wedged(struct intel_gt *gt) |
| { |
| bool result; |
| |
| mutex_lock(>->reset.mutex); |
| result = __intel_gt_unset_wedged(gt); |
| mutex_unlock(>->reset.mutex); |
| |
| return result; |
| } |
| |
| static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask) |
| { |
| int err, i; |
| |
| err = __intel_gt_reset(gt, ALL_ENGINES); |
| for (i = 0; err && i < RESET_MAX_RETRIES; i++) { |
| msleep(10 * (i + 1)); |
| err = __intel_gt_reset(gt, ALL_ENGINES); |
| } |
| if (err) |
| return err; |
| |
| return gt_reset(gt, stalled_mask); |
| } |
| |
| static int resume(struct intel_gt *gt) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int ret; |
| |
| for_each_engine(engine, gt, id) { |
| ret = intel_engine_resume(engine); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * intel_gt_reset - reset chip after a hang |
| * @gt: #intel_gt to reset |
| * @stalled_mask: mask of the stalled engines with the guilty requests |
| * @reason: user error message for why we are resetting |
| * |
| * Reset the chip. Useful if a hang is detected. Marks the device as wedged |
| * on failure. |
| * |
| * Procedure is fairly simple: |
| * - reset the chip using the reset reg |
| * - re-init context state |
| * - re-init hardware status page |
| * - re-init ring buffer |
| * - re-init interrupt state |
| * - re-init display |
| */ |
| void intel_gt_reset(struct intel_gt *gt, |
| intel_engine_mask_t stalled_mask, |
| const char *reason) |
| { |
| intel_engine_mask_t awake; |
| int ret; |
| |
| GT_TRACE(gt, "flags=%lx\n", gt->reset.flags); |
| |
| might_sleep(); |
| GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags)); |
| |
| /* |
| * FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence |
| * critical section like gpu reset. |
| */ |
| gt_revoke(gt); |
| |
| mutex_lock(>->reset.mutex); |
| |
| /* Clear any previous failed attempts at recovery. Time to try again. */ |
| if (!__intel_gt_unset_wedged(gt)) |
| goto unlock; |
| |
| if (reason) |
| drm_notice(>->i915->drm, |
| "Resetting chip for %s\n", reason); |
| atomic_inc(>->i915->gpu_error.reset_count); |
| |
| awake = reset_prepare(gt); |
| |
| if (!intel_has_gpu_reset(gt)) { |
| if (gt->i915->params.reset) |
| drm_err(>->i915->drm, "GPU reset not supported\n"); |
| else |
| drm_dbg(>->i915->drm, "GPU reset disabled\n"); |
| goto error; |
| } |
| |
| if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| intel_runtime_pm_disable_interrupts(gt->i915); |
| |
| if (do_reset(gt, stalled_mask)) { |
| drm_err(>->i915->drm, "Failed to reset chip\n"); |
| goto taint; |
| } |
| |
| if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) |
| intel_runtime_pm_enable_interrupts(gt->i915); |
| |
| intel_overlay_reset(gt->i915); |
| |
| /* |
| * Next we need to restore the context, but we don't use those |
| * yet either... |
| * |
| * Ring buffer needs to be re-initialized in the KMS case, or if X |
| * was running at the time of the reset (i.e. we weren't VT |
| * switched away). |
| */ |
| ret = intel_gt_init_hw(gt); |
| if (ret) { |
| drm_err(>->i915->drm, |
| "Failed to initialise HW following reset (%d)\n", |
| ret); |
| goto taint; |
| } |
| |
| ret = resume(gt); |
| if (ret) |
| goto taint; |
| |
| finish: |
| reset_finish(gt, awake); |
| unlock: |
| mutex_unlock(>->reset.mutex); |
| return; |
| |
| taint: |
| /* |
| * History tells us that if we cannot reset the GPU now, we |
| * never will. This then impacts everything that is run |
| * subsequently. On failing the reset, we mark the driver |
| * as wedged, preventing further execution on the GPU. |
| * We also want to go one step further and add a taint to the |
| * kernel so that any subsequent faults can be traced back to |
| * this failure. This is important for CI, where if the |
| * GPU/driver fails we would like to reboot and restart testing |
| * rather than continue on into oblivion. For everyone else, |
| * the system should still plod along, but they have been warned! |
| */ |
| add_taint_for_CI(gt->i915, TAINT_WARN); |
| error: |
| __intel_gt_set_wedged(gt); |
| goto finish; |
| } |
| |
| static int intel_gt_reset_engine(struct intel_engine_cs *engine) |
| { |
| return __intel_gt_reset(engine->gt, engine->mask); |
| } |
| |
| int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg) |
| { |
| struct intel_gt *gt = engine->gt; |
| int ret; |
| |
| ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags); |
| GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags)); |
| |
| if (intel_engine_uses_guc(engine)) |
| return -ENODEV; |
| |
| if (!intel_engine_pm_get_if_awake(engine)) |
| return 0; |
| |
| reset_prepare_engine(engine); |
| |
| if (msg) |
| drm_notice(&engine->i915->drm, |
| "Resetting %s for %s\n", engine->name, msg); |
| atomic_inc(&engine->i915->gpu_error.reset_engine_count[engine->uabi_class]); |
| |
| ret = intel_gt_reset_engine(engine); |
| if (ret) { |
| /* If we fail here, we expect to fallback to a global reset */ |
| ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret); |
| goto out; |
| } |
| |
| /* |
| * The request that caused the hang is stuck on elsp, we know the |
| * active request and can drop it, adjust head to skip the offending |
| * request to resume executing remaining requests in the queue. |
| */ |
| __intel_engine_reset(engine, true); |
| |
| /* |
| * The engine and its registers (and workarounds in case of render) |
| * have been reset to their default values. Follow the init_ring |
| * process to program RING_MODE, HWSP and re-enable submission. |
| */ |
| ret = intel_engine_resume(engine); |
| |
| out: |
| intel_engine_cancel_stop_cs(engine); |
| reset_finish_engine(engine); |
| intel_engine_pm_put_async(engine); |
| return ret; |
| } |
| |
| /** |
| * intel_engine_reset - reset GPU engine to recover from a hang |
| * @engine: engine to reset |
| * @msg: reason for GPU reset; or NULL for no drm_notice() |
| * |
| * Reset a specific GPU engine. Useful if a hang is detected. |
| * Returns zero on successful reset or otherwise an error code. |
| * |
| * Procedure is: |
| * - identifies the request that caused the hang and it is dropped |
| * - reset engine (which will force the engine to idle) |
| * - re-init/configure engine |
| */ |
| int intel_engine_reset(struct intel_engine_cs *engine, const char *msg) |
| { |
| int err; |
| |
| local_bh_disable(); |
| err = __intel_engine_reset_bh(engine, msg); |
| local_bh_enable(); |
| |
| return err; |
| } |
| |
| static void intel_gt_reset_global(struct intel_gt *gt, |
| u32 engine_mask, |
| const char *reason) |
| { |
| struct kobject *kobj = >->i915->drm.primary->kdev->kobj; |
| char *error_event[] = { I915_ERROR_UEVENT "=1", NULL }; |
| char *reset_event[] = { I915_RESET_UEVENT "=1", NULL }; |
| char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL }; |
| struct intel_wedge_me w; |
| |
| kobject_uevent_env(kobj, KOBJ_CHANGE, error_event); |
| |
| GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask); |
| kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event); |
| |
| /* Use a watchdog to ensure that our reset completes */ |
| intel_wedge_on_timeout(&w, gt, 60 * HZ) { |
| intel_display_prepare_reset(gt->i915); |
| |
| intel_gt_reset(gt, engine_mask, reason); |
| |
| intel_display_finish_reset(gt->i915); |
| } |
| |
| if (!test_bit(I915_WEDGED, >->reset.flags)) |
| kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event); |
| } |
| |
| /** |
| * intel_gt_handle_error - handle a gpu error |
| * @gt: the intel_gt |
| * @engine_mask: mask representing engines that are hung |
| * @flags: control flags |
| * @fmt: Error message format string |
| * |
| * Do some basic checking of register state at error time and |
| * dump it to the syslog. Also call i915_capture_error_state() to make |
| * sure we get a record and make it available in debugfs. Fire a uevent |
| * so userspace knows something bad happened (should trigger collection |
| * of a ring dump etc.). |
| */ |
| void intel_gt_handle_error(struct intel_gt *gt, |
| intel_engine_mask_t engine_mask, |
| unsigned long flags, |
| const char *fmt, ...) |
| { |
| struct intel_engine_cs *engine; |
| intel_wakeref_t wakeref; |
| intel_engine_mask_t tmp; |
| char error_msg[80]; |
| char *msg = NULL; |
| |
| if (fmt) { |
| va_list args; |
| |
| va_start(args, fmt); |
| vscnprintf(error_msg, sizeof(error_msg), fmt, args); |
| va_end(args); |
| |
| msg = error_msg; |
| } |
| |
| /* |
| * In most cases it's guaranteed that we get here with an RPM |
| * reference held, for example because there is a pending GPU |
| * request that won't finish until the reset is done. This |
| * isn't the case at least when we get here by doing a |
| * simulated reset via debugfs, so get an RPM reference. |
| */ |
| wakeref = intel_runtime_pm_get(gt->uncore->rpm); |
| |
| engine_mask &= gt->info.engine_mask; |
| |
| if (flags & I915_ERROR_CAPTURE) { |
| i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE); |
| intel_gt_clear_error_registers(gt, engine_mask); |
| } |
| |
| /* |
| * Try engine reset when available. We fall back to full reset if |
| * single reset fails. |
| */ |
| if (!intel_uc_uses_guc_submission(>->uc) && |
| intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) { |
| local_bh_disable(); |
| for_each_engine_masked(engine, gt, engine_mask, tmp) { |
| BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE); |
| if (test_and_set_bit(I915_RESET_ENGINE + engine->id, |
| >->reset.flags)) |
| continue; |
| |
| if (__intel_engine_reset_bh(engine, msg) == 0) |
| engine_mask &= ~engine->mask; |
| |
| clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, |
| >->reset.flags); |
| } |
| local_bh_enable(); |
| } |
| |
| if (!engine_mask) |
| goto out; |
| |
| /* Full reset needs the mutex, stop any other user trying to do so. */ |
| if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) { |
| wait_event(gt->reset.queue, |
| !test_bit(I915_RESET_BACKOFF, >->reset.flags)); |
| goto out; /* piggy-back on the other reset */ |
| } |
| |
| /* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */ |
| synchronize_rcu_expedited(); |
| |
| /* |
| * Prevent any other reset-engine attempt. We don't do this for GuC |
| * submission the GuC owns the per-engine reset, not the i915. |
| */ |
| if (!intel_uc_uses_guc_submission(>->uc)) { |
| for_each_engine(engine, gt, tmp) { |
| while (test_and_set_bit(I915_RESET_ENGINE + engine->id, |
| >->reset.flags)) |
| wait_on_bit(>->reset.flags, |
| I915_RESET_ENGINE + engine->id, |
| TASK_UNINTERRUPTIBLE); |
| } |
| } |
| |
| /* Flush everyone using a resource about to be clobbered */ |
| synchronize_srcu_expedited(>->reset.backoff_srcu); |
| |
| intel_gt_reset_global(gt, engine_mask, msg); |
| |
| if (!intel_uc_uses_guc_submission(>->uc)) { |
| for_each_engine(engine, gt, tmp) |
| clear_bit_unlock(I915_RESET_ENGINE + engine->id, |
| >->reset.flags); |
| } |
| clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags); |
| smp_mb__after_atomic(); |
| wake_up_all(>->reset.queue); |
| |
| out: |
| intel_runtime_pm_put(gt->uncore->rpm, wakeref); |
| } |
| |
| static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry) |
| { |
| might_lock(>->reset.backoff_srcu); |
| if (retry) |
| might_sleep(); |
| |
| rcu_read_lock(); |
| while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) { |
| rcu_read_unlock(); |
| |
| if (!retry) |
| return -EBUSY; |
| |
| if (wait_event_interruptible(gt->reset.queue, |
| !test_bit(I915_RESET_BACKOFF, |
| >->reset.flags))) |
| return -EINTR; |
| |
| rcu_read_lock(); |
| } |
| *srcu = srcu_read_lock(>->reset.backoff_srcu); |
| rcu_read_unlock(); |
| |
| return 0; |
| } |
| |
| int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu) |
| { |
| return _intel_gt_reset_lock(gt, srcu, false); |
| } |
| |
| int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu) |
| { |
| return _intel_gt_reset_lock(gt, srcu, true); |
| } |
| |
| void intel_gt_reset_unlock(struct intel_gt *gt, int tag) |
| __releases(>->reset.backoff_srcu) |
| { |
| srcu_read_unlock(>->reset.backoff_srcu, tag); |
| } |
| |
| int intel_gt_terminally_wedged(struct intel_gt *gt) |
| { |
| might_sleep(); |
| |
| if (!intel_gt_is_wedged(gt)) |
| return 0; |
| |
| if (intel_gt_has_unrecoverable_error(gt)) |
| return -EIO; |
| |
| /* Reset still in progress? Maybe we will recover? */ |
| if (wait_event_interruptible(gt->reset.queue, |
| !test_bit(I915_RESET_BACKOFF, |
| >->reset.flags))) |
| return -EINTR; |
| |
| return intel_gt_is_wedged(gt) ? -EIO : 0; |
| } |
| |
| void intel_gt_set_wedged_on_init(struct intel_gt *gt) |
| { |
| BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES > |
| I915_WEDGED_ON_INIT); |
| intel_gt_set_wedged(gt); |
| i915_disable_error_state(gt->i915, -ENODEV); |
| set_bit(I915_WEDGED_ON_INIT, >->reset.flags); |
| |
| /* Wedged on init is non-recoverable */ |
| add_taint_for_CI(gt->i915, TAINT_WARN); |
| } |
| |
| void intel_gt_set_wedged_on_fini(struct intel_gt *gt) |
| { |
| intel_gt_set_wedged(gt); |
| i915_disable_error_state(gt->i915, -ENODEV); |
| set_bit(I915_WEDGED_ON_FINI, >->reset.flags); |
| intel_gt_retire_requests(gt); /* cleanup any wedged requests */ |
| } |
| |
| void intel_gt_init_reset(struct intel_gt *gt) |
| { |
| init_waitqueue_head(>->reset.queue); |
| mutex_init(>->reset.mutex); |
| init_srcu_struct(>->reset.backoff_srcu); |
| |
| /* |
| * While undesirable to wait inside the shrinker, complain anyway. |
| * |
| * If we have to wait during shrinking, we guarantee forward progress |
| * by forcing the reset. Therefore during the reset we must not |
| * re-enter the shrinker. By declaring that we take the reset mutex |
| * within the shrinker, we forbid ourselves from performing any |
| * fs-reclaim or taking related locks during reset. |
| */ |
| i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex); |
| |
| /* no GPU until we are ready! */ |
| __set_bit(I915_WEDGED, >->reset.flags); |
| } |
| |
| void intel_gt_fini_reset(struct intel_gt *gt) |
| { |
| cleanup_srcu_struct(>->reset.backoff_srcu); |
| } |
| |
| static void intel_wedge_me(struct work_struct *work) |
| { |
| struct intel_wedge_me *w = container_of(work, typeof(*w), work.work); |
| |
| drm_err(&w->gt->i915->drm, |
| "%s timed out, cancelling all in-flight rendering.\n", |
| w->name); |
| intel_gt_set_wedged(w->gt); |
| } |
| |
| void __intel_init_wedge(struct intel_wedge_me *w, |
| struct intel_gt *gt, |
| long timeout, |
| const char *name) |
| { |
| w->gt = gt; |
| w->name = name; |
| |
| INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me); |
| schedule_delayed_work(&w->work, timeout); |
| } |
| |
| void __intel_fini_wedge(struct intel_wedge_me *w) |
| { |
| cancel_delayed_work_sync(&w->work); |
| destroy_delayed_work_on_stack(&w->work); |
| w->gt = NULL; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_reset.c" |
| #include "selftest_hangcheck.c" |
| #endif |