blob: de675d799c7d80ae767c97716b8afb953d220179 [file] [log] [blame]
/*
* KVMGT - the implementation of Intel mediated pass-through framework for KVM
*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Kevin Tian <kevin.tian@intel.com>
* Jike Song <jike.song@intel.com>
* Xiaoguang Chen <xiaoguang.chen@intel.com>
* Eddie Dong <eddie.dong@intel.com>
*
* Contributors:
* Niu Bing <bing.niu@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/kthread.h>
#include <linux/sched/mm.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>
#include <linux/mdev.h>
#include <linux/debugfs.h>
#include <linux/nospec.h>
#include <drm/drm_edid.h>
#include "i915_drv.h"
#include "intel_gvt.h"
#include "gvt.h"
MODULE_IMPORT_NS(DMA_BUF);
MODULE_IMPORT_NS(I915_GVT);
/* helper macros copied from vfio-pci */
#define VFIO_PCI_OFFSET_SHIFT 40
#define VFIO_PCI_OFFSET_TO_INDEX(off) (off >> VFIO_PCI_OFFSET_SHIFT)
#define VFIO_PCI_INDEX_TO_OFFSET(index) ((u64)(index) << VFIO_PCI_OFFSET_SHIFT)
#define VFIO_PCI_OFFSET_MASK (((u64)(1) << VFIO_PCI_OFFSET_SHIFT) - 1)
#define EDID_BLOB_OFFSET (PAGE_SIZE/2)
#define OPREGION_SIGNATURE "IntelGraphicsMem"
struct vfio_region;
struct intel_vgpu_regops {
size_t (*rw)(struct intel_vgpu *vgpu, char *buf,
size_t count, loff_t *ppos, bool iswrite);
void (*release)(struct intel_vgpu *vgpu,
struct vfio_region *region);
};
struct vfio_region {
u32 type;
u32 subtype;
size_t size;
u32 flags;
const struct intel_vgpu_regops *ops;
void *data;
};
struct vfio_edid_region {
struct vfio_region_gfx_edid vfio_edid_regs;
void *edid_blob;
};
struct kvmgt_pgfn {
gfn_t gfn;
struct hlist_node hnode;
};
struct gvt_dma {
struct intel_vgpu *vgpu;
struct rb_node gfn_node;
struct rb_node dma_addr_node;
gfn_t gfn;
dma_addr_t dma_addr;
unsigned long size;
struct kref ref;
};
#define vfio_dev_to_vgpu(vfio_dev) \
container_of((vfio_dev), struct intel_vgpu, vfio_device)
static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *val, int len,
struct kvm_page_track_notifier_node *node);
static void kvmgt_page_track_flush_slot(struct kvm *kvm,
struct kvm_memory_slot *slot,
struct kvm_page_track_notifier_node *node);
static ssize_t intel_vgpu_show_description(struct mdev_type *mtype, char *buf)
{
struct intel_vgpu_type *type =
container_of(mtype, struct intel_vgpu_type, type);
return sprintf(buf, "low_gm_size: %dMB\nhigh_gm_size: %dMB\n"
"fence: %d\nresolution: %s\n"
"weight: %d\n",
BYTES_TO_MB(type->conf->low_mm),
BYTES_TO_MB(type->conf->high_mm),
type->conf->fence, vgpu_edid_str(type->conf->edid),
type->conf->weight);
}
static void gvt_unpin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
unsigned long size)
{
vfio_unpin_pages(&vgpu->vfio_device, gfn << PAGE_SHIFT,
DIV_ROUND_UP(size, PAGE_SIZE));
}
/* Pin a normal or compound guest page for dma. */
static int gvt_pin_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
unsigned long size, struct page **page)
{
int total_pages = DIV_ROUND_UP(size, PAGE_SIZE);
struct page *base_page = NULL;
int npage;
int ret;
/*
* We pin the pages one-by-one to avoid allocating a big arrary
* on stack to hold pfns.
*/
for (npage = 0; npage < total_pages; npage++) {
dma_addr_t cur_iova = (gfn + npage) << PAGE_SHIFT;
struct page *cur_page;
ret = vfio_pin_pages(&vgpu->vfio_device, cur_iova, 1,
IOMMU_READ | IOMMU_WRITE, &cur_page);
if (ret != 1) {
gvt_vgpu_err("vfio_pin_pages failed for iova %pad, ret %d\n",
&cur_iova, ret);
goto err;
}
if (npage == 0)
base_page = cur_page;
else if (base_page + npage != cur_page) {
gvt_vgpu_err("The pages are not continuous\n");
ret = -EINVAL;
npage++;
goto err;
}
}
*page = base_page;
return 0;
err:
gvt_unpin_guest_page(vgpu, gfn, npage * PAGE_SIZE);
return ret;
}
static int gvt_dma_map_page(struct intel_vgpu *vgpu, unsigned long gfn,
dma_addr_t *dma_addr, unsigned long size)
{
struct device *dev = vgpu->gvt->gt->i915->drm.dev;
struct page *page = NULL;
int ret;
ret = gvt_pin_guest_page(vgpu, gfn, size, &page);
if (ret)
return ret;
/* Setup DMA mapping. */
*dma_addr = dma_map_page(dev, page, 0, size, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, *dma_addr)) {
gvt_vgpu_err("DMA mapping failed for pfn 0x%lx, ret %d\n",
page_to_pfn(page), ret);
gvt_unpin_guest_page(vgpu, gfn, size);
return -ENOMEM;
}
return 0;
}
static void gvt_dma_unmap_page(struct intel_vgpu *vgpu, unsigned long gfn,
dma_addr_t dma_addr, unsigned long size)
{
struct device *dev = vgpu->gvt->gt->i915->drm.dev;
dma_unmap_page(dev, dma_addr, size, DMA_BIDIRECTIONAL);
gvt_unpin_guest_page(vgpu, gfn, size);
}
static struct gvt_dma *__gvt_cache_find_dma_addr(struct intel_vgpu *vgpu,
dma_addr_t dma_addr)
{
struct rb_node *node = vgpu->dma_addr_cache.rb_node;
struct gvt_dma *itr;
while (node) {
itr = rb_entry(node, struct gvt_dma, dma_addr_node);
if (dma_addr < itr->dma_addr)
node = node->rb_left;
else if (dma_addr > itr->dma_addr)
node = node->rb_right;
else
return itr;
}
return NULL;
}
static struct gvt_dma *__gvt_cache_find_gfn(struct intel_vgpu *vgpu, gfn_t gfn)
{
struct rb_node *node = vgpu->gfn_cache.rb_node;
struct gvt_dma *itr;
while (node) {
itr = rb_entry(node, struct gvt_dma, gfn_node);
if (gfn < itr->gfn)
node = node->rb_left;
else if (gfn > itr->gfn)
node = node->rb_right;
else
return itr;
}
return NULL;
}
static int __gvt_cache_add(struct intel_vgpu *vgpu, gfn_t gfn,
dma_addr_t dma_addr, unsigned long size)
{
struct gvt_dma *new, *itr;
struct rb_node **link, *parent = NULL;
new = kzalloc(sizeof(struct gvt_dma), GFP_KERNEL);
if (!new)
return -ENOMEM;
new->vgpu = vgpu;
new->gfn = gfn;
new->dma_addr = dma_addr;
new->size = size;
kref_init(&new->ref);
/* gfn_cache maps gfn to struct gvt_dma. */
link = &vgpu->gfn_cache.rb_node;
while (*link) {
parent = *link;
itr = rb_entry(parent, struct gvt_dma, gfn_node);
if (gfn < itr->gfn)
link = &parent->rb_left;
else
link = &parent->rb_right;
}
rb_link_node(&new->gfn_node, parent, link);
rb_insert_color(&new->gfn_node, &vgpu->gfn_cache);
/* dma_addr_cache maps dma addr to struct gvt_dma. */
parent = NULL;
link = &vgpu->dma_addr_cache.rb_node;
while (*link) {
parent = *link;
itr = rb_entry(parent, struct gvt_dma, dma_addr_node);
if (dma_addr < itr->dma_addr)
link = &parent->rb_left;
else
link = &parent->rb_right;
}
rb_link_node(&new->dma_addr_node, parent, link);
rb_insert_color(&new->dma_addr_node, &vgpu->dma_addr_cache);
vgpu->nr_cache_entries++;
return 0;
}
static void __gvt_cache_remove_entry(struct intel_vgpu *vgpu,
struct gvt_dma *entry)
{
rb_erase(&entry->gfn_node, &vgpu->gfn_cache);
rb_erase(&entry->dma_addr_node, &vgpu->dma_addr_cache);
kfree(entry);
vgpu->nr_cache_entries--;
}
static void gvt_cache_destroy(struct intel_vgpu *vgpu)
{
struct gvt_dma *dma;
struct rb_node *node = NULL;
for (;;) {
mutex_lock(&vgpu->cache_lock);
node = rb_first(&vgpu->gfn_cache);
if (!node) {
mutex_unlock(&vgpu->cache_lock);
break;
}
dma = rb_entry(node, struct gvt_dma, gfn_node);
gvt_dma_unmap_page(vgpu, dma->gfn, dma->dma_addr, dma->size);
__gvt_cache_remove_entry(vgpu, dma);
mutex_unlock(&vgpu->cache_lock);
}
}
static void gvt_cache_init(struct intel_vgpu *vgpu)
{
vgpu->gfn_cache = RB_ROOT;
vgpu->dma_addr_cache = RB_ROOT;
vgpu->nr_cache_entries = 0;
mutex_init(&vgpu->cache_lock);
}
static void kvmgt_protect_table_init(struct intel_vgpu *info)
{
hash_init(info->ptable);
}
static void kvmgt_protect_table_destroy(struct intel_vgpu *info)
{
struct kvmgt_pgfn *p;
struct hlist_node *tmp;
int i;
hash_for_each_safe(info->ptable, i, tmp, p, hnode) {
hash_del(&p->hnode);
kfree(p);
}
}
static struct kvmgt_pgfn *
__kvmgt_protect_table_find(struct intel_vgpu *info, gfn_t gfn)
{
struct kvmgt_pgfn *p, *res = NULL;
hash_for_each_possible(info->ptable, p, hnode, gfn) {
if (gfn == p->gfn) {
res = p;
break;
}
}
return res;
}
static bool kvmgt_gfn_is_write_protected(struct intel_vgpu *info, gfn_t gfn)
{
struct kvmgt_pgfn *p;
p = __kvmgt_protect_table_find(info, gfn);
return !!p;
}
static void kvmgt_protect_table_add(struct intel_vgpu *info, gfn_t gfn)
{
struct kvmgt_pgfn *p;
if (kvmgt_gfn_is_write_protected(info, gfn))
return;
p = kzalloc(sizeof(struct kvmgt_pgfn), GFP_ATOMIC);
if (WARN(!p, "gfn: 0x%llx\n", gfn))
return;
p->gfn = gfn;
hash_add(info->ptable, &p->hnode, gfn);
}
static void kvmgt_protect_table_del(struct intel_vgpu *info, gfn_t gfn)
{
struct kvmgt_pgfn *p;
p = __kvmgt_protect_table_find(info, gfn);
if (p) {
hash_del(&p->hnode);
kfree(p);
}
}
static size_t intel_vgpu_reg_rw_opregion(struct intel_vgpu *vgpu, char *buf,
size_t count, loff_t *ppos, bool iswrite)
{
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
VFIO_PCI_NUM_REGIONS;
void *base = vgpu->region[i].data;
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
if (pos >= vgpu->region[i].size || iswrite) {
gvt_vgpu_err("invalid op or offset for Intel vgpu OpRegion\n");
return -EINVAL;
}
count = min(count, (size_t)(vgpu->region[i].size - pos));
memcpy(buf, base + pos, count);
return count;
}
static void intel_vgpu_reg_release_opregion(struct intel_vgpu *vgpu,
struct vfio_region *region)
{
}
static const struct intel_vgpu_regops intel_vgpu_regops_opregion = {
.rw = intel_vgpu_reg_rw_opregion,
.release = intel_vgpu_reg_release_opregion,
};
static int handle_edid_regs(struct intel_vgpu *vgpu,
struct vfio_edid_region *region, char *buf,
size_t count, u16 offset, bool is_write)
{
struct vfio_region_gfx_edid *regs = &region->vfio_edid_regs;
unsigned int data;
if (offset + count > sizeof(*regs))
return -EINVAL;
if (count != 4)
return -EINVAL;
if (is_write) {
data = *((unsigned int *)buf);
switch (offset) {
case offsetof(struct vfio_region_gfx_edid, link_state):
if (data == VFIO_DEVICE_GFX_LINK_STATE_UP) {
if (!drm_edid_block_valid(
(u8 *)region->edid_blob,
0,
true,
NULL)) {
gvt_vgpu_err("invalid EDID blob\n");
return -EINVAL;
}
intel_vgpu_emulate_hotplug(vgpu, true);
} else if (data == VFIO_DEVICE_GFX_LINK_STATE_DOWN)
intel_vgpu_emulate_hotplug(vgpu, false);
else {
gvt_vgpu_err("invalid EDID link state %d\n",
regs->link_state);
return -EINVAL;
}
regs->link_state = data;
break;
case offsetof(struct vfio_region_gfx_edid, edid_size):
if (data > regs->edid_max_size) {
gvt_vgpu_err("EDID size is bigger than %d!\n",
regs->edid_max_size);
return -EINVAL;
}
regs->edid_size = data;
break;
default:
/* read-only regs */
gvt_vgpu_err("write read-only EDID region at offset %d\n",
offset);
return -EPERM;
}
} else {
memcpy(buf, (char *)regs + offset, count);
}
return count;
}
static int handle_edid_blob(struct vfio_edid_region *region, char *buf,
size_t count, u16 offset, bool is_write)
{
if (offset + count > region->vfio_edid_regs.edid_size)
return -EINVAL;
if (is_write)
memcpy(region->edid_blob + offset, buf, count);
else
memcpy(buf, region->edid_blob + offset, count);
return count;
}
static size_t intel_vgpu_reg_rw_edid(struct intel_vgpu *vgpu, char *buf,
size_t count, loff_t *ppos, bool iswrite)
{
int ret;
unsigned int i = VFIO_PCI_OFFSET_TO_INDEX(*ppos) -
VFIO_PCI_NUM_REGIONS;
struct vfio_edid_region *region = vgpu->region[i].data;
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
if (pos < region->vfio_edid_regs.edid_offset) {
ret = handle_edid_regs(vgpu, region, buf, count, pos, iswrite);
} else {
pos -= EDID_BLOB_OFFSET;
ret = handle_edid_blob(region, buf, count, pos, iswrite);
}
if (ret < 0)
gvt_vgpu_err("failed to access EDID region\n");
return ret;
}
static void intel_vgpu_reg_release_edid(struct intel_vgpu *vgpu,
struct vfio_region *region)
{
kfree(region->data);
}
static const struct intel_vgpu_regops intel_vgpu_regops_edid = {
.rw = intel_vgpu_reg_rw_edid,
.release = intel_vgpu_reg_release_edid,
};
static int intel_vgpu_register_reg(struct intel_vgpu *vgpu,
unsigned int type, unsigned int subtype,
const struct intel_vgpu_regops *ops,
size_t size, u32 flags, void *data)
{
struct vfio_region *region;
region = krealloc(vgpu->region,
(vgpu->num_regions + 1) * sizeof(*region),
GFP_KERNEL);
if (!region)
return -ENOMEM;
vgpu->region = region;
vgpu->region[vgpu->num_regions].type = type;
vgpu->region[vgpu->num_regions].subtype = subtype;
vgpu->region[vgpu->num_regions].ops = ops;
vgpu->region[vgpu->num_regions].size = size;
vgpu->region[vgpu->num_regions].flags = flags;
vgpu->region[vgpu->num_regions].data = data;
vgpu->num_regions++;
return 0;
}
int intel_gvt_set_opregion(struct intel_vgpu *vgpu)
{
void *base;
int ret;
/* Each vgpu has its own opregion, although VFIO would create another
* one later. This one is used to expose opregion to VFIO. And the
* other one created by VFIO later, is used by guest actually.
*/
base = vgpu_opregion(vgpu)->va;
if (!base)
return -ENOMEM;
if (memcmp(base, OPREGION_SIGNATURE, 16)) {
memunmap(base);
return -EINVAL;
}
ret = intel_vgpu_register_reg(vgpu,
PCI_VENDOR_ID_INTEL | VFIO_REGION_TYPE_PCI_VENDOR_TYPE,
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION,
&intel_vgpu_regops_opregion, OPREGION_SIZE,
VFIO_REGION_INFO_FLAG_READ, base);
return ret;
}
int intel_gvt_set_edid(struct intel_vgpu *vgpu, int port_num)
{
struct intel_vgpu_port *port = intel_vgpu_port(vgpu, port_num);
struct vfio_edid_region *base;
int ret;
base = kzalloc(sizeof(*base), GFP_KERNEL);
if (!base)
return -ENOMEM;
/* TODO: Add multi-port and EDID extension block support */
base->vfio_edid_regs.edid_offset = EDID_BLOB_OFFSET;
base->vfio_edid_regs.edid_max_size = EDID_SIZE;
base->vfio_edid_regs.edid_size = EDID_SIZE;
base->vfio_edid_regs.max_xres = vgpu_edid_xres(port->id);
base->vfio_edid_regs.max_yres = vgpu_edid_yres(port->id);
base->edid_blob = port->edid->edid_block;
ret = intel_vgpu_register_reg(vgpu,
VFIO_REGION_TYPE_GFX,
VFIO_REGION_SUBTYPE_GFX_EDID,
&intel_vgpu_regops_edid, EDID_SIZE,
VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE |
VFIO_REGION_INFO_FLAG_CAPS, base);
return ret;
}
static void intel_vgpu_dma_unmap(struct vfio_device *vfio_dev, u64 iova,
u64 length)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
struct gvt_dma *entry;
u64 iov_pfn = iova >> PAGE_SHIFT;
u64 end_iov_pfn = iov_pfn + length / PAGE_SIZE;
mutex_lock(&vgpu->cache_lock);
for (; iov_pfn < end_iov_pfn; iov_pfn++) {
entry = __gvt_cache_find_gfn(vgpu, iov_pfn);
if (!entry)
continue;
gvt_dma_unmap_page(vgpu, entry->gfn, entry->dma_addr,
entry->size);
__gvt_cache_remove_entry(vgpu, entry);
}
mutex_unlock(&vgpu->cache_lock);
}
static bool __kvmgt_vgpu_exist(struct intel_vgpu *vgpu)
{
struct intel_vgpu *itr;
int id;
bool ret = false;
mutex_lock(&vgpu->gvt->lock);
for_each_active_vgpu(vgpu->gvt, itr, id) {
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, itr->status))
continue;
if (vgpu->vfio_device.kvm == itr->vfio_device.kvm) {
ret = true;
goto out;
}
}
out:
mutex_unlock(&vgpu->gvt->lock);
return ret;
}
static int intel_vgpu_open_device(struct vfio_device *vfio_dev)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
if (!vgpu->vfio_device.kvm ||
vgpu->vfio_device.kvm->mm != current->mm) {
gvt_vgpu_err("KVM is required to use Intel vGPU\n");
return -ESRCH;
}
if (__kvmgt_vgpu_exist(vgpu))
return -EEXIST;
vgpu->track_node.track_write = kvmgt_page_track_write;
vgpu->track_node.track_flush_slot = kvmgt_page_track_flush_slot;
kvm_get_kvm(vgpu->vfio_device.kvm);
kvm_page_track_register_notifier(vgpu->vfio_device.kvm,
&vgpu->track_node);
set_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
debugfs_create_ulong(KVMGT_DEBUGFS_FILENAME, 0444, vgpu->debugfs,
&vgpu->nr_cache_entries);
intel_gvt_activate_vgpu(vgpu);
return 0;
}
static void intel_vgpu_release_msi_eventfd_ctx(struct intel_vgpu *vgpu)
{
struct eventfd_ctx *trigger;
trigger = vgpu->msi_trigger;
if (trigger) {
eventfd_ctx_put(trigger);
vgpu->msi_trigger = NULL;
}
}
static void intel_vgpu_close_device(struct vfio_device *vfio_dev)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
intel_gvt_release_vgpu(vgpu);
clear_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status);
debugfs_lookup_and_remove(KVMGT_DEBUGFS_FILENAME, vgpu->debugfs);
kvm_page_track_unregister_notifier(vgpu->vfio_device.kvm,
&vgpu->track_node);
kvm_put_kvm(vgpu->vfio_device.kvm);
kvmgt_protect_table_destroy(vgpu);
gvt_cache_destroy(vgpu);
WARN_ON(vgpu->nr_cache_entries);
vgpu->gfn_cache = RB_ROOT;
vgpu->dma_addr_cache = RB_ROOT;
intel_vgpu_release_msi_eventfd_ctx(vgpu);
}
static u64 intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
{
u32 start_lo, start_hi;
u32 mem_type;
start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
PCI_BASE_ADDRESS_MEM_MASK;
mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_64:
start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
+ bar + 4));
break;
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
/* 1M mem BAR treated as 32-bit BAR */
default:
/* mem unknown type treated as 32-bit BAR */
start_hi = 0;
break;
}
return ((u64)start_hi << 32) | start_lo;
}
static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, u64 off,
void *buf, unsigned int count, bool is_write)
{
u64 bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
int ret;
if (is_write)
ret = intel_vgpu_emulate_mmio_write(vgpu,
bar_start + off, buf, count);
else
ret = intel_vgpu_emulate_mmio_read(vgpu,
bar_start + off, buf, count);
return ret;
}
static inline bool intel_vgpu_in_aperture(struct intel_vgpu *vgpu, u64 off)
{
return off >= vgpu_aperture_offset(vgpu) &&
off < vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu);
}
static int intel_vgpu_aperture_rw(struct intel_vgpu *vgpu, u64 off,
void *buf, unsigned long count, bool is_write)
{
void __iomem *aperture_va;
if (!intel_vgpu_in_aperture(vgpu, off) ||
!intel_vgpu_in_aperture(vgpu, off + count)) {
gvt_vgpu_err("Invalid aperture offset %llu\n", off);
return -EINVAL;
}
aperture_va = io_mapping_map_wc(&vgpu->gvt->gt->ggtt->iomap,
ALIGN_DOWN(off, PAGE_SIZE),
count + offset_in_page(off));
if (!aperture_va)
return -EIO;
if (is_write)
memcpy_toio(aperture_va + offset_in_page(off), buf, count);
else
memcpy_fromio(buf, aperture_va + offset_in_page(off), count);
io_mapping_unmap(aperture_va);
return 0;
}
static ssize_t intel_vgpu_rw(struct intel_vgpu *vgpu, char *buf,
size_t count, loff_t *ppos, bool is_write)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
int ret = -EINVAL;
if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions) {
gvt_vgpu_err("invalid index: %u\n", index);
return -EINVAL;
}
switch (index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
if (is_write)
ret = intel_vgpu_emulate_cfg_write(vgpu, pos,
buf, count);
else
ret = intel_vgpu_emulate_cfg_read(vgpu, pos,
buf, count);
break;
case VFIO_PCI_BAR0_REGION_INDEX:
ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
buf, count, is_write);
break;
case VFIO_PCI_BAR2_REGION_INDEX:
ret = intel_vgpu_aperture_rw(vgpu, pos, buf, count, is_write);
break;
case VFIO_PCI_BAR1_REGION_INDEX:
case VFIO_PCI_BAR3_REGION_INDEX:
case VFIO_PCI_BAR4_REGION_INDEX:
case VFIO_PCI_BAR5_REGION_INDEX:
case VFIO_PCI_VGA_REGION_INDEX:
case VFIO_PCI_ROM_REGION_INDEX:
break;
default:
if (index >= VFIO_PCI_NUM_REGIONS + vgpu->num_regions)
return -EINVAL;
index -= VFIO_PCI_NUM_REGIONS;
return vgpu->region[index].ops->rw(vgpu, buf, count,
ppos, is_write);
}
return ret == 0 ? count : ret;
}
static bool gtt_entry(struct intel_vgpu *vgpu, loff_t *ppos)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
struct intel_gvt *gvt = vgpu->gvt;
int offset;
/* Only allow MMIO GGTT entry access */
if (index != PCI_BASE_ADDRESS_0)
return false;
offset = (u64)(*ppos & VFIO_PCI_OFFSET_MASK) -
intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
return (offset >= gvt->device_info.gtt_start_offset &&
offset < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt)) ?
true : false;
}
static ssize_t intel_vgpu_read(struct vfio_device *vfio_dev, char __user *buf,
size_t count, loff_t *ppos)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
/* Only support GGTT entry 8 bytes read */
if (count >= 8 && !(*ppos % 8) &&
gtt_entry(vgpu, ppos)) {
u64 val;
ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 8;
} else if (count >= 4 && !(*ppos % 4)) {
u32 val;
ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
ppos, false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 2;
} else {
u8 val;
ret = intel_vgpu_rw(vgpu, &val, sizeof(val), ppos,
false);
if (ret <= 0)
goto read_err;
if (copy_to_user(buf, &val, sizeof(val)))
goto read_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
read_err:
return -EFAULT;
}
static ssize_t intel_vgpu_write(struct vfio_device *vfio_dev,
const char __user *buf,
size_t count, loff_t *ppos)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
unsigned int done = 0;
int ret;
while (count) {
size_t filled;
/* Only support GGTT entry 8 bytes write */
if (count >= 8 && !(*ppos % 8) &&
gtt_entry(vgpu, ppos)) {
u64 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
ppos, true);
if (ret <= 0)
goto write_err;
filled = 8;
} else if (count >= 4 && !(*ppos % 4)) {
u32 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = intel_vgpu_rw(vgpu, (char *)&val, sizeof(val),
ppos, true);
if (ret <= 0)
goto write_err;
filled = 4;
} else if (count >= 2 && !(*ppos % 2)) {
u16 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = intel_vgpu_rw(vgpu, (char *)&val,
sizeof(val), ppos, true);
if (ret <= 0)
goto write_err;
filled = 2;
} else {
u8 val;
if (copy_from_user(&val, buf, sizeof(val)))
goto write_err;
ret = intel_vgpu_rw(vgpu, &val, sizeof(val),
ppos, true);
if (ret <= 0)
goto write_err;
filled = 1;
}
count -= filled;
done += filled;
*ppos += filled;
buf += filled;
}
return done;
write_err:
return -EFAULT;
}
static int intel_vgpu_mmap(struct vfio_device *vfio_dev,
struct vm_area_struct *vma)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
unsigned int index;
u64 virtaddr;
unsigned long req_size, pgoff, req_start;
pgprot_t pg_prot;
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
if (index >= VFIO_PCI_ROM_REGION_INDEX)
return -EINVAL;
if (vma->vm_end < vma->vm_start)
return -EINVAL;
if ((vma->vm_flags & VM_SHARED) == 0)
return -EINVAL;
if (index != VFIO_PCI_BAR2_REGION_INDEX)
return -EINVAL;
pg_prot = vma->vm_page_prot;
virtaddr = vma->vm_start;
req_size = vma->vm_end - vma->vm_start;
pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
req_start = pgoff << PAGE_SHIFT;
if (!intel_vgpu_in_aperture(vgpu, req_start))
return -EINVAL;
if (req_start + req_size >
vgpu_aperture_offset(vgpu) + vgpu_aperture_sz(vgpu))
return -EINVAL;
pgoff = (gvt_aperture_pa_base(vgpu->gvt) >> PAGE_SHIFT) + pgoff;
return remap_pfn_range(vma, virtaddr, pgoff, req_size, pg_prot);
}
static int intel_vgpu_get_irq_count(struct intel_vgpu *vgpu, int type)
{
if (type == VFIO_PCI_INTX_IRQ_INDEX || type == VFIO_PCI_MSI_IRQ_INDEX)
return 1;
return 0;
}
static int intel_vgpu_set_intx_mask(struct intel_vgpu *vgpu,
unsigned int index, unsigned int start,
unsigned int count, u32 flags,
void *data)
{
return 0;
}
static int intel_vgpu_set_intx_unmask(struct intel_vgpu *vgpu,
unsigned int index, unsigned int start,
unsigned int count, u32 flags, void *data)
{
return 0;
}
static int intel_vgpu_set_intx_trigger(struct intel_vgpu *vgpu,
unsigned int index, unsigned int start, unsigned int count,
u32 flags, void *data)
{
return 0;
}
static int intel_vgpu_set_msi_trigger(struct intel_vgpu *vgpu,
unsigned int index, unsigned int start, unsigned int count,
u32 flags, void *data)
{
struct eventfd_ctx *trigger;
if (flags & VFIO_IRQ_SET_DATA_EVENTFD) {
int fd = *(int *)data;
trigger = eventfd_ctx_fdget(fd);
if (IS_ERR(trigger)) {
gvt_vgpu_err("eventfd_ctx_fdget failed\n");
return PTR_ERR(trigger);
}
vgpu->msi_trigger = trigger;
} else if ((flags & VFIO_IRQ_SET_DATA_NONE) && !count)
intel_vgpu_release_msi_eventfd_ctx(vgpu);
return 0;
}
static int intel_vgpu_set_irqs(struct intel_vgpu *vgpu, u32 flags,
unsigned int index, unsigned int start, unsigned int count,
void *data)
{
int (*func)(struct intel_vgpu *vgpu, unsigned int index,
unsigned int start, unsigned int count, u32 flags,
void *data) = NULL;
switch (index) {
case VFIO_PCI_INTX_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
func = intel_vgpu_set_intx_mask;
break;
case VFIO_IRQ_SET_ACTION_UNMASK:
func = intel_vgpu_set_intx_unmask;
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
func = intel_vgpu_set_intx_trigger;
break;
}
break;
case VFIO_PCI_MSI_IRQ_INDEX:
switch (flags & VFIO_IRQ_SET_ACTION_TYPE_MASK) {
case VFIO_IRQ_SET_ACTION_MASK:
case VFIO_IRQ_SET_ACTION_UNMASK:
/* XXX Need masking support exported */
break;
case VFIO_IRQ_SET_ACTION_TRIGGER:
func = intel_vgpu_set_msi_trigger;
break;
}
break;
}
if (!func)
return -ENOTTY;
return func(vgpu, index, start, count, flags, data);
}
static long intel_vgpu_ioctl(struct vfio_device *vfio_dev, unsigned int cmd,
unsigned long arg)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
unsigned long minsz;
gvt_dbg_core("vgpu%d ioctl, cmd: %d\n", vgpu->id, cmd);
if (cmd == VFIO_DEVICE_GET_INFO) {
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_DEVICE_FLAGS_PCI;
info.flags |= VFIO_DEVICE_FLAGS_RESET;
info.num_regions = VFIO_PCI_NUM_REGIONS +
vgpu->num_regions;
info.num_irqs = VFIO_PCI_NUM_IRQS;
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
struct vfio_region_info info;
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
unsigned int i;
int ret;
struct vfio_region_info_cap_sparse_mmap *sparse = NULL;
int nr_areas = 1;
int cap_type_id;
minsz = offsetofend(struct vfio_region_info, offset);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = vgpu->gvt->device_info.cfg_space_size;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
case VFIO_PCI_BAR0_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = vgpu->cfg_space.bar[info.index].size;
if (!info.size) {
info.flags = 0;
break;
}
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
case VFIO_PCI_BAR1_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = 0;
info.flags = 0;
break;
case VFIO_PCI_BAR2_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.flags = VFIO_REGION_INFO_FLAG_CAPS |
VFIO_REGION_INFO_FLAG_MMAP |
VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
info.size = gvt_aperture_sz(vgpu->gvt);
sparse = kzalloc(struct_size(sparse, areas, nr_areas),
GFP_KERNEL);
if (!sparse)
return -ENOMEM;
sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
sparse->header.version = 1;
sparse->nr_areas = nr_areas;
cap_type_id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
sparse->areas[0].offset =
PAGE_ALIGN(vgpu_aperture_offset(vgpu));
sparse->areas[0].size = vgpu_aperture_sz(vgpu);
break;
case VFIO_PCI_BAR3_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = 0;
info.flags = 0;
gvt_dbg_core("get region info bar:%d\n", info.index);
break;
case VFIO_PCI_ROM_REGION_INDEX:
case VFIO_PCI_VGA_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = 0;
info.flags = 0;
gvt_dbg_core("get region info index:%d\n", info.index);
break;
default:
{
struct vfio_region_info_cap_type cap_type = {
.header.id = VFIO_REGION_INFO_CAP_TYPE,
.header.version = 1 };
if (info.index >= VFIO_PCI_NUM_REGIONS +
vgpu->num_regions)
return -EINVAL;
info.index =
array_index_nospec(info.index,
VFIO_PCI_NUM_REGIONS +
vgpu->num_regions);
i = info.index - VFIO_PCI_NUM_REGIONS;
info.offset =
VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = vgpu->region[i].size;
info.flags = vgpu->region[i].flags;
cap_type.type = vgpu->region[i].type;
cap_type.subtype = vgpu->region[i].subtype;
ret = vfio_info_add_capability(&caps,
&cap_type.header,
sizeof(cap_type));
if (ret)
return ret;
}
}
if ((info.flags & VFIO_REGION_INFO_FLAG_CAPS) && sparse) {
switch (cap_type_id) {
case VFIO_REGION_INFO_CAP_SPARSE_MMAP:
ret = vfio_info_add_capability(&caps,
&sparse->header,
struct_size(sparse, areas,
sparse->nr_areas));
if (ret) {
kfree(sparse);
return ret;
}
break;
default:
kfree(sparse);
return -EINVAL;
}
}
if (caps.size) {
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
if (info.argsz < sizeof(info) + caps.size) {
info.argsz = sizeof(info) + caps.size;
info.cap_offset = 0;
} else {
vfio_info_cap_shift(&caps, sizeof(info));
if (copy_to_user((void __user *)arg +
sizeof(info), caps.buf,
caps.size)) {
kfree(caps.buf);
kfree(sparse);
return -EFAULT;
}
info.cap_offset = sizeof(info);
}
kfree(caps.buf);
}
kfree(sparse);
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_GET_IRQ_INFO) {
struct vfio_irq_info info;
minsz = offsetofend(struct vfio_irq_info, count);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_INTX_IRQ_INDEX:
case VFIO_PCI_MSI_IRQ_INDEX:
break;
default:
return -EINVAL;
}
info.flags = VFIO_IRQ_INFO_EVENTFD;
info.count = intel_vgpu_get_irq_count(vgpu, info.index);
if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
info.flags |= (VFIO_IRQ_INFO_MASKABLE |
VFIO_IRQ_INFO_AUTOMASKED);
else
info.flags |= VFIO_IRQ_INFO_NORESIZE;
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_SET_IRQS) {
struct vfio_irq_set hdr;
u8 *data = NULL;
int ret = 0;
size_t data_size = 0;
minsz = offsetofend(struct vfio_irq_set, count);
if (copy_from_user(&hdr, (void __user *)arg, minsz))
return -EFAULT;
if (!(hdr.flags & VFIO_IRQ_SET_DATA_NONE)) {
int max = intel_vgpu_get_irq_count(vgpu, hdr.index);
ret = vfio_set_irqs_validate_and_prepare(&hdr, max,
VFIO_PCI_NUM_IRQS, &data_size);
if (ret) {
gvt_vgpu_err("intel:vfio_set_irqs_validate_and_prepare failed\n");
return -EINVAL;
}
if (data_size) {
data = memdup_user((void __user *)(arg + minsz),
data_size);
if (IS_ERR(data))
return PTR_ERR(data);
}
}
ret = intel_vgpu_set_irqs(vgpu, hdr.flags, hdr.index,
hdr.start, hdr.count, data);
kfree(data);
return ret;
} else if (cmd == VFIO_DEVICE_RESET) {
intel_gvt_reset_vgpu(vgpu);
return 0;
} else if (cmd == VFIO_DEVICE_QUERY_GFX_PLANE) {
struct vfio_device_gfx_plane_info dmabuf;
int ret = 0;
minsz = offsetofend(struct vfio_device_gfx_plane_info,
dmabuf_id);
if (copy_from_user(&dmabuf, (void __user *)arg, minsz))
return -EFAULT;
if (dmabuf.argsz < minsz)
return -EINVAL;
ret = intel_vgpu_query_plane(vgpu, &dmabuf);
if (ret != 0)
return ret;
return copy_to_user((void __user *)arg, &dmabuf, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_DEVICE_GET_GFX_DMABUF) {
__u32 dmabuf_id;
if (get_user(dmabuf_id, (__u32 __user *)arg))
return -EFAULT;
return intel_vgpu_get_dmabuf(vgpu, dmabuf_id);
}
return -ENOTTY;
}
static ssize_t
vgpu_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct intel_vgpu *vgpu = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", vgpu->id);
}
static DEVICE_ATTR_RO(vgpu_id);
static struct attribute *intel_vgpu_attrs[] = {
&dev_attr_vgpu_id.attr,
NULL
};
static const struct attribute_group intel_vgpu_group = {
.name = "intel_vgpu",
.attrs = intel_vgpu_attrs,
};
static const struct attribute_group *intel_vgpu_groups[] = {
&intel_vgpu_group,
NULL,
};
static int intel_vgpu_init_dev(struct vfio_device *vfio_dev)
{
struct mdev_device *mdev = to_mdev_device(vfio_dev->dev);
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
struct intel_vgpu_type *type =
container_of(mdev->type, struct intel_vgpu_type, type);
int ret;
vgpu->gvt = kdev_to_i915(mdev->type->parent->dev)->gvt;
ret = intel_gvt_create_vgpu(vgpu, type->conf);
if (ret)
return ret;
kvmgt_protect_table_init(vgpu);
gvt_cache_init(vgpu);
return 0;
}
static void intel_vgpu_release_dev(struct vfio_device *vfio_dev)
{
struct intel_vgpu *vgpu = vfio_dev_to_vgpu(vfio_dev);
intel_gvt_destroy_vgpu(vgpu);
}
static const struct vfio_device_ops intel_vgpu_dev_ops = {
.init = intel_vgpu_init_dev,
.release = intel_vgpu_release_dev,
.open_device = intel_vgpu_open_device,
.close_device = intel_vgpu_close_device,
.read = intel_vgpu_read,
.write = intel_vgpu_write,
.mmap = intel_vgpu_mmap,
.ioctl = intel_vgpu_ioctl,
.dma_unmap = intel_vgpu_dma_unmap,
.bind_iommufd = vfio_iommufd_emulated_bind,
.unbind_iommufd = vfio_iommufd_emulated_unbind,
.attach_ioas = vfio_iommufd_emulated_attach_ioas,
};
static int intel_vgpu_probe(struct mdev_device *mdev)
{
struct intel_vgpu *vgpu;
int ret;
vgpu = vfio_alloc_device(intel_vgpu, vfio_device, &mdev->dev,
&intel_vgpu_dev_ops);
if (IS_ERR(vgpu)) {
gvt_err("failed to create intel vgpu: %ld\n", PTR_ERR(vgpu));
return PTR_ERR(vgpu);
}
dev_set_drvdata(&mdev->dev, vgpu);
ret = vfio_register_emulated_iommu_dev(&vgpu->vfio_device);
if (ret)
goto out_put_vdev;
gvt_dbg_core("intel_vgpu_create succeeded for mdev: %s\n",
dev_name(mdev_dev(mdev)));
return 0;
out_put_vdev:
vfio_put_device(&vgpu->vfio_device);
return ret;
}
static void intel_vgpu_remove(struct mdev_device *mdev)
{
struct intel_vgpu *vgpu = dev_get_drvdata(&mdev->dev);
vfio_unregister_group_dev(&vgpu->vfio_device);
vfio_put_device(&vgpu->vfio_device);
}
static unsigned int intel_vgpu_get_available(struct mdev_type *mtype)
{
struct intel_vgpu_type *type =
container_of(mtype, struct intel_vgpu_type, type);
struct intel_gvt *gvt = kdev_to_i915(mtype->parent->dev)->gvt;
unsigned int low_gm_avail, high_gm_avail, fence_avail;
mutex_lock(&gvt->lock);
low_gm_avail = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE -
gvt->gm.vgpu_allocated_low_gm_size;
high_gm_avail = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE -
gvt->gm.vgpu_allocated_high_gm_size;
fence_avail = gvt_fence_sz(gvt) - HOST_FENCE -
gvt->fence.vgpu_allocated_fence_num;
mutex_unlock(&gvt->lock);
return min3(low_gm_avail / type->conf->low_mm,
high_gm_avail / type->conf->high_mm,
fence_avail / type->conf->fence);
}
static struct mdev_driver intel_vgpu_mdev_driver = {
.device_api = VFIO_DEVICE_API_PCI_STRING,
.driver = {
.name = "intel_vgpu_mdev",
.owner = THIS_MODULE,
.dev_groups = intel_vgpu_groups,
},
.probe = intel_vgpu_probe,
.remove = intel_vgpu_remove,
.get_available = intel_vgpu_get_available,
.show_description = intel_vgpu_show_description,
};
int intel_gvt_page_track_add(struct intel_vgpu *info, u64 gfn)
{
struct kvm *kvm = info->vfio_device.kvm;
struct kvm_memory_slot *slot;
int idx;
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
return -ESRCH;
idx = srcu_read_lock(&kvm->srcu);
slot = gfn_to_memslot(kvm, gfn);
if (!slot) {
srcu_read_unlock(&kvm->srcu, idx);
return -EINVAL;
}
write_lock(&kvm->mmu_lock);
if (kvmgt_gfn_is_write_protected(info, gfn))
goto out;
kvm_slot_page_track_add_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
kvmgt_protect_table_add(info, gfn);
out:
write_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
return 0;
}
int intel_gvt_page_track_remove(struct intel_vgpu *info, u64 gfn)
{
struct kvm *kvm = info->vfio_device.kvm;
struct kvm_memory_slot *slot;
int idx;
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, info->status))
return -ESRCH;
idx = srcu_read_lock(&kvm->srcu);
slot = gfn_to_memslot(kvm, gfn);
if (!slot) {
srcu_read_unlock(&kvm->srcu, idx);
return -EINVAL;
}
write_lock(&kvm->mmu_lock);
if (!kvmgt_gfn_is_write_protected(info, gfn))
goto out;
kvm_slot_page_track_remove_page(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE);
kvmgt_protect_table_del(info, gfn);
out:
write_unlock(&kvm->mmu_lock);
srcu_read_unlock(&kvm->srcu, idx);
return 0;
}
static void kvmgt_page_track_write(struct kvm_vcpu *vcpu, gpa_t gpa,
const u8 *val, int len,
struct kvm_page_track_notifier_node *node)
{
struct intel_vgpu *info =
container_of(node, struct intel_vgpu, track_node);
if (kvmgt_gfn_is_write_protected(info, gpa_to_gfn(gpa)))
intel_vgpu_page_track_handler(info, gpa,
(void *)val, len);
}
static void kvmgt_page_track_flush_slot(struct kvm *kvm,
struct kvm_memory_slot *slot,
struct kvm_page_track_notifier_node *node)
{
int i;
gfn_t gfn;
struct intel_vgpu *info =
container_of(node, struct intel_vgpu, track_node);
write_lock(&kvm->mmu_lock);
for (i = 0; i < slot->npages; i++) {
gfn = slot->base_gfn + i;
if (kvmgt_gfn_is_write_protected(info, gfn)) {
kvm_slot_page_track_remove_page(kvm, slot, gfn,
KVM_PAGE_TRACK_WRITE);
kvmgt_protect_table_del(info, gfn);
}
}
write_unlock(&kvm->mmu_lock);
}
void intel_vgpu_detach_regions(struct intel_vgpu *vgpu)
{
int i;
if (!vgpu->region)
return;
for (i = 0; i < vgpu->num_regions; i++)
if (vgpu->region[i].ops->release)
vgpu->region[i].ops->release(vgpu,
&vgpu->region[i]);
vgpu->num_regions = 0;
kfree(vgpu->region);
vgpu->region = NULL;
}
int intel_gvt_dma_map_guest_page(struct intel_vgpu *vgpu, unsigned long gfn,
unsigned long size, dma_addr_t *dma_addr)
{
struct gvt_dma *entry;
int ret;
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
return -EINVAL;
mutex_lock(&vgpu->cache_lock);
entry = __gvt_cache_find_gfn(vgpu, gfn);
if (!entry) {
ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
if (ret)
goto err_unlock;
ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
if (ret)
goto err_unmap;
} else if (entry->size != size) {
/* the same gfn with different size: unmap and re-map */
gvt_dma_unmap_page(vgpu, gfn, entry->dma_addr, entry->size);
__gvt_cache_remove_entry(vgpu, entry);
ret = gvt_dma_map_page(vgpu, gfn, dma_addr, size);
if (ret)
goto err_unlock;
ret = __gvt_cache_add(vgpu, gfn, *dma_addr, size);
if (ret)
goto err_unmap;
} else {
kref_get(&entry->ref);
*dma_addr = entry->dma_addr;
}
mutex_unlock(&vgpu->cache_lock);
return 0;
err_unmap:
gvt_dma_unmap_page(vgpu, gfn, *dma_addr, size);
err_unlock:
mutex_unlock(&vgpu->cache_lock);
return ret;
}
int intel_gvt_dma_pin_guest_page(struct intel_vgpu *vgpu, dma_addr_t dma_addr)
{
struct gvt_dma *entry;
int ret = 0;
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
return -EINVAL;
mutex_lock(&vgpu->cache_lock);
entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
if (entry)
kref_get(&entry->ref);
else
ret = -ENOMEM;
mutex_unlock(&vgpu->cache_lock);
return ret;
}
static void __gvt_dma_release(struct kref *ref)
{
struct gvt_dma *entry = container_of(ref, typeof(*entry), ref);
gvt_dma_unmap_page(entry->vgpu, entry->gfn, entry->dma_addr,
entry->size);
__gvt_cache_remove_entry(entry->vgpu, entry);
}
void intel_gvt_dma_unmap_guest_page(struct intel_vgpu *vgpu,
dma_addr_t dma_addr)
{
struct gvt_dma *entry;
if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
return;
mutex_lock(&vgpu->cache_lock);
entry = __gvt_cache_find_dma_addr(vgpu, dma_addr);
if (entry)
kref_put(&entry->ref, __gvt_dma_release);
mutex_unlock(&vgpu->cache_lock);
}
static void init_device_info(struct intel_gvt *gvt)
{
struct intel_gvt_device_info *info = &gvt->device_info;
struct pci_dev *pdev = to_pci_dev(gvt->gt->i915->drm.dev);
info->max_support_vgpus = 8;
info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
info->mmio_size = 2 * 1024 * 1024;
info->mmio_bar = 0;
info->gtt_start_offset = 8 * 1024 * 1024;
info->gtt_entry_size = 8;
info->gtt_entry_size_shift = 3;
info->gmadr_bytes_in_cmd = 8;
info->max_surface_size = 36 * 1024 * 1024;
info->msi_cap_offset = pdev->msi_cap;
}
static void intel_gvt_test_and_emulate_vblank(struct intel_gvt *gvt)
{
struct intel_vgpu *vgpu;
int id;
mutex_lock(&gvt->lock);
idr_for_each_entry((&(gvt)->vgpu_idr), (vgpu), (id)) {
if (test_and_clear_bit(INTEL_GVT_REQUEST_EMULATE_VBLANK + id,
(void *)&gvt->service_request)) {
if (test_bit(INTEL_VGPU_STATUS_ACTIVE, vgpu->status))
intel_vgpu_emulate_vblank(vgpu);
}
}
mutex_unlock(&gvt->lock);
}
static int gvt_service_thread(void *data)
{
struct intel_gvt *gvt = (struct intel_gvt *)data;
int ret;
gvt_dbg_core("service thread start\n");
while (!kthread_should_stop()) {
ret = wait_event_interruptible(gvt->service_thread_wq,
kthread_should_stop() || gvt->service_request);
if (kthread_should_stop())
break;
if (WARN_ONCE(ret, "service thread is waken up by signal.\n"))
continue;
intel_gvt_test_and_emulate_vblank(gvt);
if (test_bit(INTEL_GVT_REQUEST_SCHED,
(void *)&gvt->service_request) ||
test_bit(INTEL_GVT_REQUEST_EVENT_SCHED,
(void *)&gvt->service_request)) {
intel_gvt_schedule(gvt);
}
}
return 0;
}
static void clean_service_thread(struct intel_gvt *gvt)
{
kthread_stop(gvt->service_thread);
}
static int init_service_thread(struct intel_gvt *gvt)
{
init_waitqueue_head(&gvt->service_thread_wq);
gvt->service_thread = kthread_run(gvt_service_thread,
gvt, "gvt_service_thread");
if (IS_ERR(gvt->service_thread)) {
gvt_err("fail to start service thread.\n");
return PTR_ERR(gvt->service_thread);
}
return 0;
}
/**
* intel_gvt_clean_device - clean a GVT device
* @i915: i915 private
*
* This function is called at the driver unloading stage, to free the
* resources owned by a GVT device.
*
*/
static void intel_gvt_clean_device(struct drm_i915_private *i915)
{
struct intel_gvt *gvt = fetch_and_zero(&i915->gvt);
if (drm_WARN_ON(&i915->drm, !gvt))
return;
mdev_unregister_parent(&gvt->parent);
intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
intel_gvt_clean_vgpu_types(gvt);
intel_gvt_debugfs_clean(gvt);
clean_service_thread(gvt);
intel_gvt_clean_cmd_parser(gvt);
intel_gvt_clean_sched_policy(gvt);
intel_gvt_clean_workload_scheduler(gvt);
intel_gvt_clean_gtt(gvt);
intel_gvt_free_firmware(gvt);
intel_gvt_clean_mmio_info(gvt);
idr_destroy(&gvt->vgpu_idr);
kfree(i915->gvt);
}
/**
* intel_gvt_init_device - initialize a GVT device
* @i915: drm i915 private data
*
* This function is called at the initialization stage, to initialize
* necessary GVT components.
*
* Returns:
* Zero on success, negative error code if failed.
*
*/
static int intel_gvt_init_device(struct drm_i915_private *i915)
{
struct intel_gvt *gvt;
struct intel_vgpu *vgpu;
int ret;
if (drm_WARN_ON(&i915->drm, i915->gvt))
return -EEXIST;
gvt = kzalloc(sizeof(struct intel_gvt), GFP_KERNEL);
if (!gvt)
return -ENOMEM;
gvt_dbg_core("init gvt device\n");
idr_init_base(&gvt->vgpu_idr, 1);
spin_lock_init(&gvt->scheduler.mmio_context_lock);
mutex_init(&gvt->lock);
mutex_init(&gvt->sched_lock);
gvt->gt = to_gt(i915);
i915->gvt = gvt;
init_device_info(gvt);
ret = intel_gvt_setup_mmio_info(gvt);
if (ret)
goto out_clean_idr;
intel_gvt_init_engine_mmio_context(gvt);
ret = intel_gvt_load_firmware(gvt);
if (ret)
goto out_clean_mmio_info;
ret = intel_gvt_init_irq(gvt);
if (ret)
goto out_free_firmware;
ret = intel_gvt_init_gtt(gvt);
if (ret)
goto out_free_firmware;
ret = intel_gvt_init_workload_scheduler(gvt);
if (ret)
goto out_clean_gtt;
ret = intel_gvt_init_sched_policy(gvt);
if (ret)
goto out_clean_workload_scheduler;
ret = intel_gvt_init_cmd_parser(gvt);
if (ret)
goto out_clean_sched_policy;
ret = init_service_thread(gvt);
if (ret)
goto out_clean_cmd_parser;
ret = intel_gvt_init_vgpu_types(gvt);
if (ret)
goto out_clean_thread;
vgpu = intel_gvt_create_idle_vgpu(gvt);
if (IS_ERR(vgpu)) {
ret = PTR_ERR(vgpu);
gvt_err("failed to create idle vgpu\n");
goto out_clean_types;
}
gvt->idle_vgpu = vgpu;
intel_gvt_debugfs_init(gvt);
ret = mdev_register_parent(&gvt->parent, i915->drm.dev,
&intel_vgpu_mdev_driver,
gvt->mdev_types, gvt->num_types);
if (ret)
goto out_destroy_idle_vgpu;
gvt_dbg_core("gvt device initialization is done\n");
return 0;
out_destroy_idle_vgpu:
intel_gvt_destroy_idle_vgpu(gvt->idle_vgpu);
intel_gvt_debugfs_clean(gvt);
out_clean_types:
intel_gvt_clean_vgpu_types(gvt);
out_clean_thread:
clean_service_thread(gvt);
out_clean_cmd_parser:
intel_gvt_clean_cmd_parser(gvt);
out_clean_sched_policy:
intel_gvt_clean_sched_policy(gvt);
out_clean_workload_scheduler:
intel_gvt_clean_workload_scheduler(gvt);
out_clean_gtt:
intel_gvt_clean_gtt(gvt);
out_free_firmware:
intel_gvt_free_firmware(gvt);
out_clean_mmio_info:
intel_gvt_clean_mmio_info(gvt);
out_clean_idr:
idr_destroy(&gvt->vgpu_idr);
kfree(gvt);
i915->gvt = NULL;
return ret;
}
static void intel_gvt_pm_resume(struct drm_i915_private *i915)
{
struct intel_gvt *gvt = i915->gvt;
intel_gvt_restore_fence(gvt);
intel_gvt_restore_mmio(gvt);
intel_gvt_restore_ggtt(gvt);
}
static const struct intel_vgpu_ops intel_gvt_vgpu_ops = {
.init_device = intel_gvt_init_device,
.clean_device = intel_gvt_clean_device,
.pm_resume = intel_gvt_pm_resume,
};
static int __init kvmgt_init(void)
{
int ret;
ret = intel_gvt_set_ops(&intel_gvt_vgpu_ops);
if (ret)
return ret;
ret = mdev_register_driver(&intel_vgpu_mdev_driver);
if (ret)
intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
return ret;
}
static void __exit kvmgt_exit(void)
{
mdev_unregister_driver(&intel_vgpu_mdev_driver);
intel_gvt_clear_ops(&intel_gvt_vgpu_ops);
}
module_init(kvmgt_init);
module_exit(kvmgt_exit);
MODULE_LICENSE("GPL and additional rights");
MODULE_AUTHOR("Intel Corporation");