| // SPDX-License-Identifier: GPL-2.0 |
| /* Marvell PTP driver |
| * |
| * Copyright (C) 2020 Marvell. |
| * |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/hrtimer.h> |
| #include <linux/ktime.h> |
| |
| #include "ptp.h" |
| #include "mbox.h" |
| #include "rvu.h" |
| |
| #define DRV_NAME "Marvell PTP Driver" |
| |
| #define PCI_DEVID_OCTEONTX2_PTP 0xA00C |
| #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 |
| #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 |
| #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 |
| #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 |
| #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 |
| #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 |
| #define PCI_DEVID_OCTEONTX2_RST 0xA085 |
| #define PCI_DEVID_CN10K_PTP 0xA09E |
| #define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900 |
| #define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00 |
| #define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00 |
| |
| #define PCI_PTP_BAR_NO 0 |
| |
| #define PTP_CLOCK_CFG 0xF00ULL |
| #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) |
| #define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) |
| #define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) |
| #define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) |
| #define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) |
| #define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) |
| #define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) |
| #define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) |
| |
| #define PTP_PPS_HI_INCR 0xF60ULL |
| #define PTP_PPS_LO_INCR 0xF68ULL |
| #define PTP_PPS_THRESH_HI 0xF58ULL |
| |
| #define PTP_CLOCK_LO 0xF08ULL |
| #define PTP_CLOCK_HI 0xF10ULL |
| #define PTP_CLOCK_COMP 0xF18ULL |
| #define PTP_TIMESTAMP 0xF20ULL |
| #define PTP_CLOCK_SEC 0xFD0ULL |
| #define PTP_SEC_ROLLOVER 0xFD8ULL |
| |
| #define CYCLE_MULT 1000 |
| |
| static struct ptp *first_ptp_block; |
| static const struct pci_device_id ptp_id_table[]; |
| |
| static bool is_ptp_dev_cnf10kb(struct ptp *ptp) |
| { |
| return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false; |
| } |
| |
| static bool is_ptp_dev_cn10k(struct ptp *ptp) |
| { |
| return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false; |
| } |
| |
| static bool cn10k_ptp_errata(struct ptp *ptp) |
| { |
| if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || |
| ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) |
| return true; |
| return false; |
| } |
| |
| static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp) |
| { |
| if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || |
| ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) |
| return true; |
| return false; |
| } |
| |
| static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer) |
| { |
| struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer); |
| ktime_t curr_ts = ktime_get(); |
| ktime_t delta_ns, period_ns; |
| u64 ptp_clock_hi; |
| |
| /* calculate the elapsed time since last restart */ |
| delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts)); |
| |
| /* if the ptp clock value has crossed 0.5 seconds, |
| * its too late to update pps threshold value, so |
| * update threshold after 1 second. |
| */ |
| ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); |
| if (ptp_clock_hi > 500000000) { |
| period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi)); |
| } else { |
| writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI); |
| period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns)); |
| } |
| |
| hrtimer_forward_now(hrtimer, period_ns); |
| ptp->last_ts = curr_ts; |
| |
| return HRTIMER_RESTART; |
| } |
| |
| static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns) |
| { |
| ktime_t period_ns; |
| |
| period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns)); |
| hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL); |
| ptp->last_ts = ktime_get(); |
| } |
| |
| static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp) |
| { |
| u64 sec, sec1, nsec; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ptp->ptp_lock, flags); |
| sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; |
| nsec = readq(ptp->reg_base + PTP_CLOCK_HI); |
| sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; |
| /* check nsec rollover */ |
| if (sec1 > sec) { |
| nsec = readq(ptp->reg_base + PTP_CLOCK_HI); |
| sec = sec1; |
| } |
| spin_unlock_irqrestore(&ptp->ptp_lock, flags); |
| |
| return sec * NSEC_PER_SEC + nsec; |
| } |
| |
| static u64 read_ptp_tstmp_nsec(struct ptp *ptp) |
| { |
| return readq(ptp->reg_base + PTP_CLOCK_HI); |
| } |
| |
| static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq) |
| { |
| u64 comp, adj = 0, cycles_per_sec, ns_drift = 0; |
| u32 ptp_clock_nsec, cycle_time; |
| int cycle; |
| |
| /* Errata: |
| * Issue #1: At the time of 1 sec rollover of the nano-second counter, |
| * the nano-second counter is set to 0. However, it should be set to |
| * (existing counter_value - 10^9). |
| * |
| * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF. |
| * It should roll over at 0x3B9A_CA00. |
| */ |
| |
| /* calculate ptp_clock_comp value */ |
| comp = ((u64)1000000000ULL << 32) / ptp_clock_freq; |
| /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */ |
| cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq; |
| /* cycles per sec */ |
| cycles_per_sec = ptp_clock_freq; |
| |
| /* check whether ptp nanosecond counter rolls over early */ |
| cycle = cycles_per_sec - 1; |
| ptp_clock_nsec = (cycle * comp) >> 32; |
| while (ptp_clock_nsec < NSEC_PER_SEC) { |
| if (ptp_clock_nsec == 0x3B9AC9FF) |
| goto calc_adj_comp; |
| cycle++; |
| ptp_clock_nsec = (cycle * comp) >> 32; |
| } |
| /* compute nanoseconds lost per second when nsec counter rolls over */ |
| ns_drift = ptp_clock_nsec - NSEC_PER_SEC; |
| /* calculate ptp_clock_comp adjustment */ |
| if (ns_drift > 0) { |
| adj = comp * ns_drift; |
| adj = adj / 1000000000ULL; |
| } |
| /* speed up the ptp clock to account for nanoseconds lost */ |
| comp += adj; |
| return comp; |
| |
| calc_adj_comp: |
| /* slow down the ptp clock to not rollover early */ |
| adj = comp * cycle_time; |
| adj = adj / 1000000000ULL; |
| adj = adj / CYCLE_MULT; |
| comp -= adj; |
| |
| return comp; |
| } |
| |
| struct ptp *ptp_get(void) |
| { |
| struct ptp *ptp = first_ptp_block; |
| |
| /* Check PTP block is present in hardware */ |
| if (!pci_dev_present(ptp_id_table)) |
| return ERR_PTR(-ENODEV); |
| /* Check driver is bound to PTP block */ |
| if (!ptp) |
| ptp = ERR_PTR(-EPROBE_DEFER); |
| else |
| pci_dev_get(ptp->pdev); |
| |
| return ptp; |
| } |
| |
| void ptp_put(struct ptp *ptp) |
| { |
| if (!ptp) |
| return; |
| |
| pci_dev_put(ptp->pdev); |
| } |
| |
| static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) |
| { |
| bool neg_adj = false; |
| u32 freq, freq_adj; |
| u64 comp, adj; |
| s64 ppb; |
| |
| if (scaled_ppm < 0) { |
| neg_adj = true; |
| scaled_ppm = -scaled_ppm; |
| } |
| |
| /* The hardware adds the clock compensation value to the PTP clock |
| * on every coprocessor clock cycle. Typical convention is that it |
| * represent number of nanosecond betwen each cycle. In this |
| * convention compensation value is in 64 bit fixed-point |
| * representation where upper 32 bits are number of nanoseconds |
| * and lower is fractions of nanosecond. |
| * The scaled_ppm represent the ratio in "parts per million" by which |
| * the compensation value should be corrected. |
| * To calculate new compenstation value we use 64bit fixed point |
| * arithmetic on following formula |
| * comp = tbase + tbase * scaled_ppm / (1M * 2^16) |
| * where tbase is the basic compensation value calculated |
| * initialy in the probe function. |
| */ |
| /* convert scaled_ppm to ppb */ |
| ppb = 1 + scaled_ppm; |
| ppb *= 125; |
| ppb >>= 13; |
| |
| if (cn10k_ptp_errata(ptp)) { |
| /* calculate the new frequency based on ppb */ |
| freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL; |
| freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj; |
| comp = ptp_calc_adjusted_comp(freq); |
| } else { |
| comp = ((u64)1000000000ull << 32) / ptp->clock_rate; |
| adj = comp * ppb; |
| adj = div_u64(adj, 1000000000ull); |
| comp = neg_adj ? comp - adj : comp + adj; |
| } |
| writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); |
| |
| return 0; |
| } |
| |
| static int ptp_get_clock(struct ptp *ptp, u64 *clk) |
| { |
| /* Return the current PTP clock */ |
| *clk = ptp->read_ptp_tstmp(ptp); |
| |
| return 0; |
| } |
| |
| void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts) |
| { |
| struct pci_dev *pdev; |
| u64 clock_comp; |
| u64 clock_cfg; |
| |
| if (!ptp) |
| return; |
| |
| pdev = ptp->pdev; |
| |
| if (!sclk) { |
| dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); |
| return; |
| } |
| |
| /* sclk is in MHz */ |
| ptp->clock_rate = sclk * 1000000; |
| |
| /* Program the seconds rollover value to 1 second */ |
| if (is_ptp_dev_cnf10kb(ptp)) |
| writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER); |
| |
| /* Enable PTP clock */ |
| clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); |
| |
| if (ext_clk_freq) { |
| ptp->clock_rate = ext_clk_freq; |
| /* Set GPIO as PTP clock source */ |
| clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; |
| clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; |
| } |
| |
| if (extts) { |
| clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; |
| /* Set GPIO as timestamping source */ |
| clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; |
| clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; |
| } |
| |
| clock_cfg |= PTP_CLOCK_CFG_PTP_EN; |
| clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; |
| writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); |
| |
| /* Set 50% duty cycle for 1Hz output */ |
| writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR); |
| writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR); |
| if (cn10k_ptp_errata(ptp)) { |
| /* The ptp_clock_hi rollsover to zero once clock cycle before it |
| * reaches one second boundary. so, program the pps_lo_incr in |
| * such a way that the pps threshold value comparison at one |
| * second boundary will succeed and pps edge changes. After each |
| * one second boundary, the hrtimer handler will be invoked and |
| * reprograms the pps threshold value. |
| */ |
| ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate; |
| writeq((0x1dcd6500ULL - ptp->clock_period) << 32, |
| ptp->reg_base + PTP_PPS_LO_INCR); |
| } |
| |
| if (cn10k_ptp_errata(ptp)) |
| clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate); |
| else |
| clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; |
| |
| /* Initial compensation value to start the nanosecs counter */ |
| writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); |
| } |
| |
| static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) |
| { |
| u64 timestamp; |
| |
| if (is_ptp_dev_cn10k(ptp)) { |
| timestamp = readq(ptp->reg_base + PTP_TIMESTAMP); |
| *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF); |
| } else { |
| *clk = readq(ptp->reg_base + PTP_TIMESTAMP); |
| } |
| |
| return 0; |
| } |
| |
| static int ptp_set_thresh(struct ptp *ptp, u64 thresh) |
| { |
| if (!cn10k_ptp_errata(ptp)) |
| writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); |
| |
| return 0; |
| } |
| |
| static int ptp_extts_on(struct ptp *ptp, int on) |
| { |
| u64 ptp_clock_hi; |
| |
| if (cn10k_ptp_errata(ptp)) { |
| if (on) { |
| ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); |
| ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi); |
| } else { |
| if (hrtimer_active(&ptp->hrtimer)) |
| hrtimer_cancel(&ptp->hrtimer); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int ptp_probe(struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct device *dev = &pdev->dev; |
| struct ptp *ptp; |
| int err; |
| |
| ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL); |
| if (!ptp) { |
| err = -ENOMEM; |
| goto error; |
| } |
| |
| ptp->pdev = pdev; |
| |
| err = pcim_enable_device(pdev); |
| if (err) |
| goto error_free; |
| |
| err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); |
| if (err) |
| goto error_free; |
| |
| ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; |
| |
| pci_set_drvdata(pdev, ptp); |
| if (!first_ptp_block) |
| first_ptp_block = ptp; |
| |
| spin_lock_init(&ptp->ptp_lock); |
| if (is_ptp_tsfmt_sec_nsec(ptp)) |
| ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec; |
| else |
| ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec; |
| |
| if (cn10k_ptp_errata(ptp)) { |
| hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| ptp->hrtimer.function = ptp_reset_thresh; |
| } |
| |
| return 0; |
| |
| error_free: |
| devm_kfree(dev, ptp); |
| |
| error: |
| /* For `ptp_get()` we need to differentiate between the case |
| * when the core has not tried to probe this device and the case when |
| * the probe failed. In the later case we pretend that the |
| * initialization was successful and keep the error in |
| * `dev->driver_data`. |
| */ |
| pci_set_drvdata(pdev, ERR_PTR(err)); |
| if (!first_ptp_block) |
| first_ptp_block = ERR_PTR(err); |
| |
| return 0; |
| } |
| |
| static void ptp_remove(struct pci_dev *pdev) |
| { |
| struct ptp *ptp = pci_get_drvdata(pdev); |
| u64 clock_cfg; |
| |
| if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer)) |
| hrtimer_cancel(&ptp->hrtimer); |
| |
| if (IS_ERR_OR_NULL(ptp)) |
| return; |
| |
| /* Disable PTP clock */ |
| clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); |
| clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; |
| writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); |
| } |
| |
| static const struct pci_device_id ptp_id_table[] = { |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, |
| { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, |
| PCI_VENDOR_ID_CAVIUM, |
| PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, |
| { 0, } |
| }; |
| |
| struct pci_driver ptp_driver = { |
| .name = DRV_NAME, |
| .id_table = ptp_id_table, |
| .probe = ptp_probe, |
| .remove = ptp_remove, |
| }; |
| |
| int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, |
| struct ptp_rsp *rsp) |
| { |
| int err = 0; |
| |
| /* This function is the PTP mailbox handler invoked when |
| * called by AF consumers/netdev drivers via mailbox mechanism. |
| * It is used by netdev driver to get the PTP clock and to set |
| * frequency adjustments. Since mailbox can be called without |
| * notion of whether the driver is bound to ptp device below |
| * validation is needed as first step. |
| */ |
| if (!rvu->ptp) |
| return -ENODEV; |
| |
| switch (req->op) { |
| case PTP_OP_ADJFINE: |
| err = ptp_adjfine(rvu->ptp, req->scaled_ppm); |
| break; |
| case PTP_OP_GET_CLOCK: |
| err = ptp_get_clock(rvu->ptp, &rsp->clk); |
| break; |
| case PTP_OP_GET_TSTMP: |
| err = ptp_get_tstmp(rvu->ptp, &rsp->clk); |
| break; |
| case PTP_OP_SET_THRESH: |
| err = ptp_set_thresh(rvu->ptp, req->thresh); |
| break; |
| case PTP_OP_EXTTS_ON: |
| err = ptp_extts_on(rvu->ptp, req->extts_on); |
| break; |
| default: |
| err = -EINVAL; |
| break; |
| } |
| |
| return err; |
| } |