|  | /* | 
|  | *  kernel/sched.c | 
|  | * | 
|  | *  Kernel scheduler and related syscalls | 
|  | * | 
|  | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | * | 
|  | *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
|  | *		make semaphores SMP safe | 
|  | *  1998-11-19	Implemented schedule_timeout() and related stuff | 
|  | *		by Andrea Arcangeli | 
|  | *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
|  | *		hybrid priority-list and round-robin design with | 
|  | *		an array-switch method of distributing timeslices | 
|  | *		and per-CPU runqueues.  Cleanups and useful suggestions | 
|  | *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
|  | *  2003-09-03	Interactivity tuning by Con Kolivas. | 
|  | *  2004-04-02	Scheduler domains code by Nick Piggin | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/init.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/times.h> | 
|  | #include <linux/acct.h> | 
|  | #include <asm/tlb.h> | 
|  |  | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | /* | 
|  | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | * and back. | 
|  | */ | 
|  | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  |  | 
|  | /* | 
|  | * 'User priority' is the nice value converted to something we | 
|  | * can work with better when scaling various scheduler parameters, | 
|  | * it's a [ 0 ... 39 ] range. | 
|  | */ | 
|  | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  |  | 
|  | /* | 
|  | * Some helpers for converting nanosecond timing to jiffy resolution | 
|  | */ | 
|  | #define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ)) | 
|  | #define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ)) | 
|  |  | 
|  | /* | 
|  | * These are the 'tuning knobs' of the scheduler: | 
|  | * | 
|  | * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger), | 
|  | * default timeslice is 100 msecs, maximum timeslice is 800 msecs. | 
|  | * Timeslices get refilled after they expire. | 
|  | */ | 
|  | #define MIN_TIMESLICE		max(5 * HZ / 1000, 1) | 
|  | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
|  | #define ON_RUNQUEUE_WEIGHT	 30 | 
|  | #define CHILD_PENALTY		 95 | 
|  | #define PARENT_PENALTY		100 | 
|  | #define EXIT_WEIGHT		  3 | 
|  | #define PRIO_BONUS_RATIO	 25 | 
|  | #define MAX_BONUS		(MAX_USER_PRIO * PRIO_BONUS_RATIO / 100) | 
|  | #define INTERACTIVE_DELTA	  2 | 
|  | #define MAX_SLEEP_AVG		(DEF_TIMESLICE * MAX_BONUS) | 
|  | #define STARVATION_LIMIT	(MAX_SLEEP_AVG) | 
|  | #define NS_MAX_SLEEP_AVG	(JIFFIES_TO_NS(MAX_SLEEP_AVG)) | 
|  |  | 
|  | /* | 
|  | * If a task is 'interactive' then we reinsert it in the active | 
|  | * array after it has expired its current timeslice. (it will not | 
|  | * continue to run immediately, it will still roundrobin with | 
|  | * other interactive tasks.) | 
|  | * | 
|  | * This part scales the interactivity limit depending on niceness. | 
|  | * | 
|  | * We scale it linearly, offset by the INTERACTIVE_DELTA delta. | 
|  | * Here are a few examples of different nice levels: | 
|  | * | 
|  | *  TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0] | 
|  | *  TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0] | 
|  | *  TASK_INTERACTIVE(  0): [1,1,1,1,0,0,0,0,0,0,0] | 
|  | *  TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0] | 
|  | *  TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0] | 
|  | * | 
|  | * (the X axis represents the possible -5 ... 0 ... +5 dynamic | 
|  | *  priority range a task can explore, a value of '1' means the | 
|  | *  task is rated interactive.) | 
|  | * | 
|  | * Ie. nice +19 tasks can never get 'interactive' enough to be | 
|  | * reinserted into the active array. And only heavily CPU-hog nice -20 | 
|  | * tasks will be expired. Default nice 0 tasks are somewhere between, | 
|  | * it takes some effort for them to get interactive, but it's not | 
|  | * too hard. | 
|  | */ | 
|  |  | 
|  | #define CURRENT_BONUS(p) \ | 
|  | (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \ | 
|  | MAX_SLEEP_AVG) | 
|  |  | 
|  | #define GRANULARITY	(10 * HZ / 1000 ? : 1) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \ | 
|  | num_online_cpus()) | 
|  | #else | 
|  | #define TIMESLICE_GRANULARITY(p)	(GRANULARITY * \ | 
|  | (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1))) | 
|  | #endif | 
|  |  | 
|  | #define SCALE(v1,v1_max,v2_max) \ | 
|  | (v1) * (v2_max) / (v1_max) | 
|  |  | 
|  | #define DELTA(p) \ | 
|  | (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA) | 
|  |  | 
|  | #define TASK_INTERACTIVE(p) \ | 
|  | ((p)->prio <= (p)->static_prio - DELTA(p)) | 
|  |  | 
|  | #define INTERACTIVE_SLEEP(p) \ | 
|  | (JIFFIES_TO_NS(MAX_SLEEP_AVG * \ | 
|  | (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1)) | 
|  |  | 
|  | #define TASK_PREEMPTS_CURR(p, rq) \ | 
|  | ((p)->prio < (rq)->curr->prio) | 
|  |  | 
|  | /* | 
|  | * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to time slice values: [800ms ... 100ms ... 5ms] | 
|  | * | 
|  | * The higher a thread's priority, the bigger timeslices | 
|  | * it gets during one round of execution. But even the lowest | 
|  | * priority thread gets MIN_TIMESLICE worth of execution time. | 
|  | */ | 
|  |  | 
|  | #define SCALE_PRIO(x, prio) \ | 
|  | max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) | 
|  |  | 
|  | static inline unsigned int task_timeslice(task_t *p) | 
|  | { | 
|  | if (p->static_prio < NICE_TO_PRIO(0)) | 
|  | return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); | 
|  | else | 
|  | return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); | 
|  | } | 
|  | #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\ | 
|  | < (long long) (sd)->cache_hot_time) | 
|  |  | 
|  | /* | 
|  | * These are the runqueue data structures: | 
|  | */ | 
|  |  | 
|  | #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) | 
|  |  | 
|  | typedef struct runqueue runqueue_t; | 
|  |  | 
|  | struct prio_array { | 
|  | unsigned int nr_active; | 
|  | unsigned long bitmap[BITMAP_SIZE]; | 
|  | struct list_head queue[MAX_PRIO]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is the main, per-CPU runqueue data structure. | 
|  | * | 
|  | * Locking rule: those places that want to lock multiple runqueues | 
|  | * (such as the load balancing or the thread migration code), lock | 
|  | * acquire operations must be ordered by ascending &runqueue. | 
|  | */ | 
|  | struct runqueue { | 
|  | spinlock_t lock; | 
|  |  | 
|  | /* | 
|  | * nr_running and cpu_load should be in the same cacheline because | 
|  | * remote CPUs use both these fields when doing load calculation. | 
|  | */ | 
|  | unsigned long nr_running; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long cpu_load; | 
|  | #endif | 
|  | unsigned long long nr_switches; | 
|  |  | 
|  | /* | 
|  | * This is part of a global counter where only the total sum | 
|  | * over all CPUs matters. A task can increase this counter on | 
|  | * one CPU and if it got migrated afterwards it may decrease | 
|  | * it on another CPU. Always updated under the runqueue lock: | 
|  | */ | 
|  | unsigned long nr_uninterruptible; | 
|  |  | 
|  | unsigned long expired_timestamp; | 
|  | unsigned long long timestamp_last_tick; | 
|  | task_t *curr, *idle; | 
|  | struct mm_struct *prev_mm; | 
|  | prio_array_t *active, *expired, arrays[2]; | 
|  | int best_expired_prio; | 
|  | atomic_t nr_iowait; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | /* For active balancing */ | 
|  | int active_balance; | 
|  | int push_cpu; | 
|  |  | 
|  | task_t *migration_thread; | 
|  | struct list_head migration_queue; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* latency stats */ | 
|  | struct sched_info rq_sched_info; | 
|  |  | 
|  | /* sys_sched_yield() stats */ | 
|  | unsigned long yld_exp_empty; | 
|  | unsigned long yld_act_empty; | 
|  | unsigned long yld_both_empty; | 
|  | unsigned long yld_cnt; | 
|  |  | 
|  | /* schedule() stats */ | 
|  | unsigned long sched_switch; | 
|  | unsigned long sched_cnt; | 
|  | unsigned long sched_goidle; | 
|  |  | 
|  | /* try_to_wake_up() stats */ | 
|  | unsigned long ttwu_cnt; | 
|  | unsigned long ttwu_local; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct runqueue, runqueues); | 
|  |  | 
|  | #define for_each_domain(cpu, domain) \ | 
|  | for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent) | 
|  |  | 
|  | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  |  | 
|  | /* | 
|  | * Default context-switch locking: | 
|  | */ | 
|  | #ifndef prepare_arch_switch | 
|  | # define prepare_arch_switch(rq, next)	do { } while (0) | 
|  | # define finish_arch_switch(rq, next)	spin_unlock_irq(&(rq)->lock) | 
|  | # define task_running(rq, p)		((rq)->curr == (p)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * task_rq_lock - lock the runqueue a given task resides on and disable | 
|  | * interrupts.  Note the ordering: we can safely lookup the task_rq without | 
|  | * explicitly disabling preemption. | 
|  | */ | 
|  | static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct runqueue *rq; | 
|  |  | 
|  | repeat_lock_task: | 
|  | local_irq_save(*flags); | 
|  | rq = task_rq(p); | 
|  | spin_lock(&rq->lock); | 
|  | if (unlikely(rq != task_rq(p))) { | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | goto repeat_lock_task; | 
|  | } | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* | 
|  | * bump this up when changing the output format or the meaning of an existing | 
|  | * format, so that tools can adapt (or abort) | 
|  | */ | 
|  | #define SCHEDSTAT_VERSION 11 | 
|  |  | 
|  | static int show_schedstat(struct seq_file *seq, void *v) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); | 
|  | seq_printf(seq, "timestamp %lu\n", jiffies); | 
|  | for_each_online_cpu(cpu) { | 
|  | runqueue_t *rq = cpu_rq(cpu); | 
|  | #ifdef CONFIG_SMP | 
|  | struct sched_domain *sd; | 
|  | int dcnt = 0; | 
|  | #endif | 
|  |  | 
|  | /* runqueue-specific stats */ | 
|  | seq_printf(seq, | 
|  | "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | cpu, rq->yld_both_empty, | 
|  | rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt, | 
|  | rq->sched_switch, rq->sched_cnt, rq->sched_goidle, | 
|  | rq->ttwu_cnt, rq->ttwu_local, | 
|  | rq->rq_sched_info.cpu_time, | 
|  | rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt); | 
|  |  | 
|  | seq_printf(seq, "\n"); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* domain-specific stats */ | 
|  | for_each_domain(cpu, sd) { | 
|  | enum idle_type itype; | 
|  | char mask_str[NR_CPUS]; | 
|  |  | 
|  | cpumask_scnprintf(mask_str, NR_CPUS, sd->span); | 
|  | seq_printf(seq, "domain%d %s", dcnt++, mask_str); | 
|  | for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES; | 
|  | itype++) { | 
|  | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu", | 
|  | sd->lb_cnt[itype], | 
|  | sd->lb_balanced[itype], | 
|  | sd->lb_failed[itype], | 
|  | sd->lb_imbalance[itype], | 
|  | sd->lb_gained[itype], | 
|  | sd->lb_hot_gained[itype], | 
|  | sd->lb_nobusyq[itype], | 
|  | sd->lb_nobusyg[itype]); | 
|  | } | 
|  | seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n", | 
|  | sd->alb_cnt, sd->alb_failed, sd->alb_pushed, | 
|  | sd->sbe_pushed, sd->sbe_attempts, | 
|  | sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int schedstat_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); | 
|  | char *buf = kmalloc(size, GFP_KERNEL); | 
|  | struct seq_file *m; | 
|  | int res; | 
|  |  | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  | res = single_open(file, show_schedstat, NULL); | 
|  | if (!res) { | 
|  | m = file->private_data; | 
|  | m->buf = buf; | 
|  | m->size = size; | 
|  | } else | 
|  | kfree(buf); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | struct file_operations proc_schedstat_operations = { | 
|  | .open    = schedstat_open, | 
|  | .read    = seq_read, | 
|  | .llseek  = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | # define schedstat_inc(rq, field)	do { (rq)->field++; } while (0) | 
|  | # define schedstat_add(rq, field, amt)	do { (rq)->field += (amt); } while (0) | 
|  | #else /* !CONFIG_SCHEDSTATS */ | 
|  | # define schedstat_inc(rq, field)	do { } while (0) | 
|  | # define schedstat_add(rq, field, amt)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * rq_lock - lock a given runqueue and disable interrupts. | 
|  | */ | 
|  | static inline runqueue_t *this_rq_lock(void) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | runqueue_t *rq; | 
|  |  | 
|  | local_irq_disable(); | 
|  | rq = this_rq(); | 
|  | spin_lock(&rq->lock); | 
|  |  | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static int cpu_and_siblings_are_idle(int cpu) | 
|  | { | 
|  | int sib; | 
|  | for_each_cpu_mask(sib, cpu_sibling_map[cpu]) { | 
|  | if (idle_cpu(sib)) | 
|  | continue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | #define cpu_and_siblings_are_idle(A) idle_cpu(A) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* | 
|  | * Called when a process is dequeued from the active array and given | 
|  | * the cpu.  We should note that with the exception of interactive | 
|  | * tasks, the expired queue will become the active queue after the active | 
|  | * queue is empty, without explicitly dequeuing and requeuing tasks in the | 
|  | * expired queue.  (Interactive tasks may be requeued directly to the | 
|  | * active queue, thus delaying tasks in the expired queue from running; | 
|  | * see scheduler_tick()). | 
|  | * | 
|  | * This function is only called from sched_info_arrive(), rather than | 
|  | * dequeue_task(). Even though a task may be queued and dequeued multiple | 
|  | * times as it is shuffled about, we're really interested in knowing how | 
|  | * long it was from the *first* time it was queued to the time that it | 
|  | * finally hit a cpu. | 
|  | */ | 
|  | static inline void sched_info_dequeued(task_t *t) | 
|  | { | 
|  | t->sched_info.last_queued = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a task finally hits the cpu.  We can now calculate how | 
|  | * long it was waiting to run.  We also note when it began so that we | 
|  | * can keep stats on how long its timeslice is. | 
|  | */ | 
|  | static inline void sched_info_arrive(task_t *t) | 
|  | { | 
|  | unsigned long now = jiffies, diff = 0; | 
|  | struct runqueue *rq = task_rq(t); | 
|  |  | 
|  | if (t->sched_info.last_queued) | 
|  | diff = now - t->sched_info.last_queued; | 
|  | sched_info_dequeued(t); | 
|  | t->sched_info.run_delay += diff; | 
|  | t->sched_info.last_arrival = now; | 
|  | t->sched_info.pcnt++; | 
|  |  | 
|  | if (!rq) | 
|  | return; | 
|  |  | 
|  | rq->rq_sched_info.run_delay += diff; | 
|  | rq->rq_sched_info.pcnt++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a process is queued into either the active or expired | 
|  | * array.  The time is noted and later used to determine how long we | 
|  | * had to wait for us to reach the cpu.  Since the expired queue will | 
|  | * become the active queue after active queue is empty, without dequeuing | 
|  | * and requeuing any tasks, we are interested in queuing to either. It | 
|  | * is unusual but not impossible for tasks to be dequeued and immediately | 
|  | * requeued in the same or another array: this can happen in sched_yield(), | 
|  | * set_user_nice(), and even load_balance() as it moves tasks from runqueue | 
|  | * to runqueue. | 
|  | * | 
|  | * This function is only called from enqueue_task(), but also only updates | 
|  | * the timestamp if it is already not set.  It's assumed that | 
|  | * sched_info_dequeued() will clear that stamp when appropriate. | 
|  | */ | 
|  | static inline void sched_info_queued(task_t *t) | 
|  | { | 
|  | if (!t->sched_info.last_queued) | 
|  | t->sched_info.last_queued = jiffies; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when a process ceases being the active-running process, either | 
|  | * voluntarily or involuntarily.  Now we can calculate how long we ran. | 
|  | */ | 
|  | static inline void sched_info_depart(task_t *t) | 
|  | { | 
|  | struct runqueue *rq = task_rq(t); | 
|  | unsigned long diff = jiffies - t->sched_info.last_arrival; | 
|  |  | 
|  | t->sched_info.cpu_time += diff; | 
|  |  | 
|  | if (rq) | 
|  | rq->rq_sched_info.cpu_time += diff; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called when tasks are switched involuntarily due, typically, to expiring | 
|  | * their time slice.  (This may also be called when switching to or from | 
|  | * the idle task.)  We are only called when prev != next. | 
|  | */ | 
|  | static inline void sched_info_switch(task_t *prev, task_t *next) | 
|  | { | 
|  | struct runqueue *rq = task_rq(prev); | 
|  |  | 
|  | /* | 
|  | * prev now departs the cpu.  It's not interesting to record | 
|  | * stats about how efficient we were at scheduling the idle | 
|  | * process, however. | 
|  | */ | 
|  | if (prev != rq->idle) | 
|  | sched_info_depart(prev); | 
|  |  | 
|  | if (next != rq->idle) | 
|  | sched_info_arrive(next); | 
|  | } | 
|  | #else | 
|  | #define sched_info_queued(t)		do { } while (0) | 
|  | #define sched_info_switch(t, next)	do { } while (0) | 
|  | #endif /* CONFIG_SCHEDSTATS */ | 
|  |  | 
|  | /* | 
|  | * Adding/removing a task to/from a priority array: | 
|  | */ | 
|  | static void dequeue_task(struct task_struct *p, prio_array_t *array) | 
|  | { | 
|  | array->nr_active--; | 
|  | list_del(&p->run_list); | 
|  | if (list_empty(array->queue + p->prio)) | 
|  | __clear_bit(p->prio, array->bitmap); | 
|  | } | 
|  |  | 
|  | static void enqueue_task(struct task_struct *p, prio_array_t *array) | 
|  | { | 
|  | sched_info_queued(p); | 
|  | list_add_tail(&p->run_list, array->queue + p->prio); | 
|  | __set_bit(p->prio, array->bitmap); | 
|  | array->nr_active++; | 
|  | p->array = array; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put task to the end of the run list without the overhead of dequeue | 
|  | * followed by enqueue. | 
|  | */ | 
|  | static void requeue_task(struct task_struct *p, prio_array_t *array) | 
|  | { | 
|  | list_move_tail(&p->run_list, array->queue + p->prio); | 
|  | } | 
|  |  | 
|  | static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array) | 
|  | { | 
|  | list_add(&p->run_list, array->queue + p->prio); | 
|  | __set_bit(p->prio, array->bitmap); | 
|  | array->nr_active++; | 
|  | p->array = array; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * effective_prio - return the priority that is based on the static | 
|  | * priority but is modified by bonuses/penalties. | 
|  | * | 
|  | * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] | 
|  | * into the -5 ... 0 ... +5 bonus/penalty range. | 
|  | * | 
|  | * We use 25% of the full 0...39 priority range so that: | 
|  | * | 
|  | * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs. | 
|  | * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks. | 
|  | * | 
|  | * Both properties are important to certain workloads. | 
|  | */ | 
|  | static int effective_prio(task_t *p) | 
|  | { | 
|  | int bonus, prio; | 
|  |  | 
|  | if (rt_task(p)) | 
|  | return p->prio; | 
|  |  | 
|  | bonus = CURRENT_BONUS(p) - MAX_BONUS / 2; | 
|  |  | 
|  | prio = p->static_prio - bonus; | 
|  | if (prio < MAX_RT_PRIO) | 
|  | prio = MAX_RT_PRIO; | 
|  | if (prio > MAX_PRIO-1) | 
|  | prio = MAX_PRIO-1; | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __activate_task - move a task to the runqueue. | 
|  | */ | 
|  | static inline void __activate_task(task_t *p, runqueue_t *rq) | 
|  | { | 
|  | enqueue_task(p, rq->active); | 
|  | rq->nr_running++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __activate_idle_task - move idle task to the _front_ of runqueue. | 
|  | */ | 
|  | static inline void __activate_idle_task(task_t *p, runqueue_t *rq) | 
|  | { | 
|  | enqueue_task_head(p, rq->active); | 
|  | rq->nr_running++; | 
|  | } | 
|  |  | 
|  | static void recalc_task_prio(task_t *p, unsigned long long now) | 
|  | { | 
|  | /* Caller must always ensure 'now >= p->timestamp' */ | 
|  | unsigned long long __sleep_time = now - p->timestamp; | 
|  | unsigned long sleep_time; | 
|  |  | 
|  | if (__sleep_time > NS_MAX_SLEEP_AVG) | 
|  | sleep_time = NS_MAX_SLEEP_AVG; | 
|  | else | 
|  | sleep_time = (unsigned long)__sleep_time; | 
|  |  | 
|  | if (likely(sleep_time > 0)) { | 
|  | /* | 
|  | * User tasks that sleep a long time are categorised as | 
|  | * idle and will get just interactive status to stay active & | 
|  | * prevent them suddenly becoming cpu hogs and starving | 
|  | * other processes. | 
|  | */ | 
|  | if (p->mm && p->activated != -1 && | 
|  | sleep_time > INTERACTIVE_SLEEP(p)) { | 
|  | p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG - | 
|  | DEF_TIMESLICE); | 
|  | } else { | 
|  | /* | 
|  | * The lower the sleep avg a task has the more | 
|  | * rapidly it will rise with sleep time. | 
|  | */ | 
|  | sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1; | 
|  |  | 
|  | /* | 
|  | * Tasks waking from uninterruptible sleep are | 
|  | * limited in their sleep_avg rise as they | 
|  | * are likely to be waiting on I/O | 
|  | */ | 
|  | if (p->activated == -1 && p->mm) { | 
|  | if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) | 
|  | sleep_time = 0; | 
|  | else if (p->sleep_avg + sleep_time >= | 
|  | INTERACTIVE_SLEEP(p)) { | 
|  | p->sleep_avg = INTERACTIVE_SLEEP(p); | 
|  | sleep_time = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This code gives a bonus to interactive tasks. | 
|  | * | 
|  | * The boost works by updating the 'average sleep time' | 
|  | * value here, based on ->timestamp. The more time a | 
|  | * task spends sleeping, the higher the average gets - | 
|  | * and the higher the priority boost gets as well. | 
|  | */ | 
|  | p->sleep_avg += sleep_time; | 
|  |  | 
|  | if (p->sleep_avg > NS_MAX_SLEEP_AVG) | 
|  | p->sleep_avg = NS_MAX_SLEEP_AVG; | 
|  | } | 
|  | } | 
|  |  | 
|  | p->prio = effective_prio(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * activate_task - move a task to the runqueue and do priority recalculation | 
|  | * | 
|  | * Update all the scheduling statistics stuff. (sleep average | 
|  | * calculation, priority modifiers, etc.) | 
|  | */ | 
|  | static void activate_task(task_t *p, runqueue_t *rq, int local) | 
|  | { | 
|  | unsigned long long now; | 
|  |  | 
|  | now = sched_clock(); | 
|  | #ifdef CONFIG_SMP | 
|  | if (!local) { | 
|  | /* Compensate for drifting sched_clock */ | 
|  | runqueue_t *this_rq = this_rq(); | 
|  | now = (now - this_rq->timestamp_last_tick) | 
|  | + rq->timestamp_last_tick; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | recalc_task_prio(p, now); | 
|  |  | 
|  | /* | 
|  | * This checks to make sure it's not an uninterruptible task | 
|  | * that is now waking up. | 
|  | */ | 
|  | if (!p->activated) { | 
|  | /* | 
|  | * Tasks which were woken up by interrupts (ie. hw events) | 
|  | * are most likely of interactive nature. So we give them | 
|  | * the credit of extending their sleep time to the period | 
|  | * of time they spend on the runqueue, waiting for execution | 
|  | * on a CPU, first time around: | 
|  | */ | 
|  | if (in_interrupt()) | 
|  | p->activated = 2; | 
|  | else { | 
|  | /* | 
|  | * Normal first-time wakeups get a credit too for | 
|  | * on-runqueue time, but it will be weighted down: | 
|  | */ | 
|  | p->activated = 1; | 
|  | } | 
|  | } | 
|  | p->timestamp = now; | 
|  |  | 
|  | __activate_task(p, rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deactivate_task - remove a task from the runqueue. | 
|  | */ | 
|  | static void deactivate_task(struct task_struct *p, runqueue_t *rq) | 
|  | { | 
|  | rq->nr_running--; | 
|  | dequeue_task(p, p->array); | 
|  | p->array = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * resched_task - mark a task 'to be rescheduled now'. | 
|  | * | 
|  | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | * the target CPU. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | static void resched_task(task_t *p) | 
|  | { | 
|  | int need_resched, nrpolling; | 
|  |  | 
|  | assert_spin_locked(&task_rq(p)->lock); | 
|  |  | 
|  | /* minimise the chance of sending an interrupt to poll_idle() */ | 
|  | nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
|  | need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED); | 
|  | nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG); | 
|  |  | 
|  | if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id())) | 
|  | smp_send_reschedule(task_cpu(p)); | 
|  | } | 
|  | #else | 
|  | static inline void resched_task(task_t *p) | 
|  | { | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_curr - is this task currently executing on a CPU? | 
|  | * @p: the task in question. | 
|  | */ | 
|  | inline int task_curr(const task_t *p) | 
|  | { | 
|  | return cpu_curr(task_cpu(p)) == p; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | enum request_type { | 
|  | REQ_MOVE_TASK, | 
|  | REQ_SET_DOMAIN, | 
|  | }; | 
|  |  | 
|  | typedef struct { | 
|  | struct list_head list; | 
|  | enum request_type type; | 
|  |  | 
|  | /* For REQ_MOVE_TASK */ | 
|  | task_t *task; | 
|  | int dest_cpu; | 
|  |  | 
|  | /* For REQ_SET_DOMAIN */ | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | struct completion done; | 
|  | } migration_req_t; | 
|  |  | 
|  | /* | 
|  | * The task's runqueue lock must be held. | 
|  | * Returns true if you have to wait for migration thread. | 
|  | */ | 
|  | static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req) | 
|  | { | 
|  | runqueue_t *rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the task is not on a runqueue (and not running), then | 
|  | * it is sufficient to simply update the task's cpu field. | 
|  | */ | 
|  | if (!p->array && !task_running(rq, p)) { | 
|  | set_task_cpu(p, dest_cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | init_completion(&req->done); | 
|  | req->type = REQ_MOVE_TASK; | 
|  | req->task = p; | 
|  | req->dest_cpu = dest_cpu; | 
|  | list_add(&req->list, &rq->migration_queue); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait_task_inactive - wait for a thread to unschedule. | 
|  | * | 
|  | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | * else this function might spin for a *long* time. This function can't | 
|  | * be called with interrupts off, or it may introduce deadlock with | 
|  | * smp_call_function() if an IPI is sent by the same process we are | 
|  | * waiting to become inactive. | 
|  | */ | 
|  | void wait_task_inactive(task_t * p) | 
|  | { | 
|  | unsigned long flags; | 
|  | runqueue_t *rq; | 
|  | int preempted; | 
|  |  | 
|  | repeat: | 
|  | rq = task_rq_lock(p, &flags); | 
|  | /* Must be off runqueue entirely, not preempted. */ | 
|  | if (unlikely(p->array || task_running(rq, p))) { | 
|  | /* If it's preempted, we yield.  It could be a while. */ | 
|  | preempted = !task_running(rq, p); | 
|  | task_rq_unlock(rq, &flags); | 
|  | cpu_relax(); | 
|  | if (preempted) | 
|  | yield(); | 
|  | goto repeat; | 
|  | } | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * kick_process - kick a running thread to enter/exit the kernel | 
|  | * @p: the to-be-kicked thread | 
|  | * | 
|  | * Cause a process which is running on another CPU to enter | 
|  | * kernel-mode, without any delay. (to get signals handled.) | 
|  | * | 
|  | * NOTE: this function doesnt have to take the runqueue lock, | 
|  | * because all it wants to ensure is that the remote task enters | 
|  | * the kernel. If the IPI races and the task has been migrated | 
|  | * to another CPU then no harm is done and the purpose has been | 
|  | * achieved as well. | 
|  | */ | 
|  | void kick_process(task_t *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | preempt_disable(); | 
|  | cpu = task_cpu(p); | 
|  | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a low guess at the load of a migration-source cpu. | 
|  | * | 
|  | * We want to under-estimate the load of migration sources, to | 
|  | * balance conservatively. | 
|  | */ | 
|  | static inline unsigned long source_load(int cpu) | 
|  | { | 
|  | runqueue_t *rq = cpu_rq(cpu); | 
|  | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  |  | 
|  | return min(rq->cpu_load, load_now); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a high guess at the load of a migration-target cpu | 
|  | */ | 
|  | static inline unsigned long target_load(int cpu) | 
|  | { | 
|  | runqueue_t *rq = cpu_rq(cpu); | 
|  | unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; | 
|  |  | 
|  | return max(rq->cpu_load, load_now); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * wake_idle() will wake a task on an idle cpu if task->cpu is | 
|  | * not idle and an idle cpu is available.  The span of cpus to | 
|  | * search starts with cpus closest then further out as needed, | 
|  | * so we always favor a closer, idle cpu. | 
|  | * | 
|  | * Returns the CPU we should wake onto. | 
|  | */ | 
|  | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | 
|  | static int wake_idle(int cpu, task_t *p) | 
|  | { | 
|  | cpumask_t tmp; | 
|  | struct sched_domain *sd; | 
|  | int i; | 
|  |  | 
|  | if (idle_cpu(cpu)) | 
|  | return cpu; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (sd->flags & SD_WAKE_IDLE) { | 
|  | cpus_and(tmp, sd->span, cpu_online_map); | 
|  | cpus_and(tmp, tmp, p->cpus_allowed); | 
|  | for_each_cpu_mask(i, tmp) { | 
|  | if (idle_cpu(i)) | 
|  | return i; | 
|  | } | 
|  | } | 
|  | else break; | 
|  | } | 
|  | return cpu; | 
|  | } | 
|  | #else | 
|  | static inline int wake_idle(int cpu, task_t *p) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /*** | 
|  | * try_to_wake_up - wake up a thread | 
|  | * @p: the to-be-woken-up thread | 
|  | * @state: the mask of task states that can be woken | 
|  | * @sync: do a synchronous wakeup? | 
|  | * | 
|  | * Put it on the run-queue if it's not already there. The "current" | 
|  | * thread is always on the run-queue (except when the actual | 
|  | * re-schedule is in progress), and as such you're allowed to do | 
|  | * the simpler "current->state = TASK_RUNNING" to mark yourself | 
|  | * runnable without the overhead of this. | 
|  | * | 
|  | * returns failure only if the task is already active. | 
|  | */ | 
|  | static int try_to_wake_up(task_t * p, unsigned int state, int sync) | 
|  | { | 
|  | int cpu, this_cpu, success = 0; | 
|  | unsigned long flags; | 
|  | long old_state; | 
|  | runqueue_t *rq; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long load, this_load; | 
|  | struct sched_domain *sd; | 
|  | int new_cpu; | 
|  | #endif | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  |  | 
|  | if (p->array) | 
|  | goto out_running; | 
|  |  | 
|  | cpu = task_cpu(p); | 
|  | this_cpu = smp_processor_id(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (unlikely(task_running(rq, p))) | 
|  | goto out_activate; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | schedstat_inc(rq, ttwu_cnt); | 
|  | if (cpu == this_cpu) { | 
|  | schedstat_inc(rq, ttwu_local); | 
|  | } else { | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | schedstat_inc(sd, ttwu_wake_remote); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | new_cpu = cpu; | 
|  | if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) | 
|  | goto out_set_cpu; | 
|  |  | 
|  | load = source_load(cpu); | 
|  | this_load = target_load(this_cpu); | 
|  |  | 
|  | /* | 
|  | * If sync wakeup then subtract the (maximum possible) effect of | 
|  | * the currently running task from the load of the current CPU: | 
|  | */ | 
|  | if (sync) | 
|  | this_load -= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Don't pull the task off an idle CPU to a busy one */ | 
|  | if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2) | 
|  | goto out_set_cpu; | 
|  |  | 
|  | new_cpu = this_cpu; /* Wake to this CPU if we can */ | 
|  |  | 
|  | /* | 
|  | * Scan domains for affine wakeup and passive balancing | 
|  | * possibilities. | 
|  | */ | 
|  | for_each_domain(this_cpu, sd) { | 
|  | unsigned int imbalance; | 
|  | /* | 
|  | * Start passive balancing when half the imbalance_pct | 
|  | * limit is reached. | 
|  | */ | 
|  | imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2; | 
|  |  | 
|  | if ((sd->flags & SD_WAKE_AFFINE) && | 
|  | !task_hot(p, rq->timestamp_last_tick, sd)) { | 
|  | /* | 
|  | * This domain has SD_WAKE_AFFINE and p is cache cold | 
|  | * in this domain. | 
|  | */ | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | schedstat_inc(sd, ttwu_move_affine); | 
|  | goto out_set_cpu; | 
|  | } | 
|  | } else if ((sd->flags & SD_WAKE_BALANCE) && | 
|  | imbalance*this_load <= 100*load) { | 
|  | /* | 
|  | * This domain has SD_WAKE_BALANCE and there is | 
|  | * an imbalance. | 
|  | */ | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | schedstat_inc(sd, ttwu_move_balance); | 
|  | goto out_set_cpu; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */ | 
|  | out_set_cpu: | 
|  | new_cpu = wake_idle(new_cpu, p); | 
|  | if (new_cpu != cpu) { | 
|  | set_task_cpu(p, new_cpu); | 
|  | task_rq_unlock(rq, &flags); | 
|  | /* might preempt at this point */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  | if (p->array) | 
|  | goto out_running; | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | cpu = task_cpu(p); | 
|  | } | 
|  |  | 
|  | out_activate: | 
|  | #endif /* CONFIG_SMP */ | 
|  | if (old_state == TASK_UNINTERRUPTIBLE) { | 
|  | rq->nr_uninterruptible--; | 
|  | /* | 
|  | * Tasks on involuntary sleep don't earn | 
|  | * sleep_avg beyond just interactive state. | 
|  | */ | 
|  | p->activated = -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sync wakeups (i.e. those types of wakeups where the waker | 
|  | * has indicated that it will leave the CPU in short order) | 
|  | * don't trigger a preemption, if the woken up task will run on | 
|  | * this cpu. (in this case the 'I will reschedule' promise of | 
|  | * the waker guarantees that the freshly woken up task is going | 
|  | * to be considered on this CPU.) | 
|  | */ | 
|  | activate_task(p, rq, cpu == this_cpu); | 
|  | if (!sync || cpu != this_cpu) { | 
|  | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | success = 1; | 
|  |  | 
|  | out_running: | 
|  | p->state = TASK_RUNNING; | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | int fastcall wake_up_process(task_t * p) | 
|  | { | 
|  | return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED | | 
|  | TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(wake_up_process); | 
|  |  | 
|  | int fastcall wake_up_state(task_t *p, unsigned int state) | 
|  | { | 
|  | return try_to_wake_up(p, state, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | 
|  | struct sched_domain *sd); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Perform scheduler related setup for a newly forked process p. | 
|  | * p is forked by current. | 
|  | */ | 
|  | void fastcall sched_fork(task_t *p) | 
|  | { | 
|  | /* | 
|  | * We mark the process as running here, but have not actually | 
|  | * inserted it onto the runqueue yet. This guarantees that | 
|  | * nobody will actually run it, and a signal or other external | 
|  | * event cannot wake it up and insert it on the runqueue either. | 
|  | */ | 
|  | p->state = TASK_RUNNING; | 
|  | INIT_LIST_HEAD(&p->run_list); | 
|  | p->array = NULL; | 
|  | spin_lock_init(&p->switch_lock); | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | #endif | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * During context-switch we hold precisely one spinlock, which | 
|  | * schedule_tail drops. (in the common case it's this_rq()->lock, | 
|  | * but it also can be p->switch_lock.) So we compensate with a count | 
|  | * of 1. Also, we want to start with kernel preemption disabled. | 
|  | */ | 
|  | p->thread_info->preempt_count = 1; | 
|  | #endif | 
|  | /* | 
|  | * Share the timeslice between parent and child, thus the | 
|  | * total amount of pending timeslices in the system doesn't change, | 
|  | * resulting in more scheduling fairness. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | p->time_slice = (current->time_slice + 1) >> 1; | 
|  | /* | 
|  | * The remainder of the first timeslice might be recovered by | 
|  | * the parent if the child exits early enough. | 
|  | */ | 
|  | p->first_time_slice = 1; | 
|  | current->time_slice >>= 1; | 
|  | p->timestamp = sched_clock(); | 
|  | if (unlikely(!current->time_slice)) { | 
|  | /* | 
|  | * This case is rare, it happens when the parent has only | 
|  | * a single jiffy left from its timeslice. Taking the | 
|  | * runqueue lock is not a problem. | 
|  | */ | 
|  | current->time_slice = 1; | 
|  | preempt_disable(); | 
|  | scheduler_tick(); | 
|  | local_irq_enable(); | 
|  | preempt_enable(); | 
|  | } else | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | * | 
|  | * This function will do some initial scheduler statistics housekeeping | 
|  | * that must be done for every newly created context, then puts the task | 
|  | * on the runqueue and wakes it. | 
|  | */ | 
|  | void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | int this_cpu, cpu; | 
|  | runqueue_t *rq, *this_rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | cpu = task_cpu(p); | 
|  | this_cpu = smp_processor_id(); | 
|  |  | 
|  | BUG_ON(p->state != TASK_RUNNING); | 
|  |  | 
|  | /* | 
|  | * We decrease the sleep average of forking parents | 
|  | * and children as well, to keep max-interactive tasks | 
|  | * from forking tasks that are max-interactive. The parent | 
|  | * (current) is done further down, under its lock. | 
|  | */ | 
|  | p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) * | 
|  | CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  |  | 
|  | p->prio = effective_prio(p); | 
|  |  | 
|  | if (likely(cpu == this_cpu)) { | 
|  | if (!(clone_flags & CLONE_VM)) { | 
|  | /* | 
|  | * The VM isn't cloned, so we're in a good position to | 
|  | * do child-runs-first in anticipation of an exec. This | 
|  | * usually avoids a lot of COW overhead. | 
|  | */ | 
|  | if (unlikely(!current->array)) | 
|  | __activate_task(p, rq); | 
|  | else { | 
|  | p->prio = current->prio; | 
|  | list_add_tail(&p->run_list, ¤t->run_list); | 
|  | p->array = current->array; | 
|  | p->array->nr_active++; | 
|  | rq->nr_running++; | 
|  | } | 
|  | set_need_resched(); | 
|  | } else | 
|  | /* Run child last */ | 
|  | __activate_task(p, rq); | 
|  | /* | 
|  | * We skip the following code due to cpu == this_cpu | 
|  | * | 
|  | *   task_rq_unlock(rq, &flags); | 
|  | *   this_rq = task_rq_lock(current, &flags); | 
|  | */ | 
|  | this_rq = rq; | 
|  | } else { | 
|  | this_rq = cpu_rq(this_cpu); | 
|  |  | 
|  | /* | 
|  | * Not the local CPU - must adjust timestamp. This should | 
|  | * get optimised away in the !CONFIG_SMP case. | 
|  | */ | 
|  | p->timestamp = (p->timestamp - this_rq->timestamp_last_tick) | 
|  | + rq->timestamp_last_tick; | 
|  | __activate_task(p, rq); | 
|  | if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  |  | 
|  | /* | 
|  | * Parent and child are on different CPUs, now get the | 
|  | * parent runqueue to update the parent's ->sleep_avg: | 
|  | */ | 
|  | task_rq_unlock(rq, &flags); | 
|  | this_rq = task_rq_lock(current, &flags); | 
|  | } | 
|  | current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) * | 
|  | PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS); | 
|  | task_rq_unlock(this_rq, &flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Potentially available exiting-child timeslices are | 
|  | * retrieved here - this way the parent does not get | 
|  | * penalized for creating too many threads. | 
|  | * | 
|  | * (this cannot be used to 'generate' timeslices | 
|  | * artificially, because any timeslice recovered here | 
|  | * was given away by the parent in the first place.) | 
|  | */ | 
|  | void fastcall sched_exit(task_t * p) | 
|  | { | 
|  | unsigned long flags; | 
|  | runqueue_t *rq; | 
|  |  | 
|  | /* | 
|  | * If the child was a (relative-) CPU hog then decrease | 
|  | * the sleep_avg of the parent as well. | 
|  | */ | 
|  | rq = task_rq_lock(p->parent, &flags); | 
|  | if (p->first_time_slice) { | 
|  | p->parent->time_slice += p->time_slice; | 
|  | if (unlikely(p->parent->time_slice > task_timeslice(p))) | 
|  | p->parent->time_slice = task_timeslice(p); | 
|  | } | 
|  | if (p->sleep_avg < p->parent->sleep_avg) | 
|  | p->parent->sleep_avg = p->parent->sleep_avg / | 
|  | (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg / | 
|  | (EXIT_WEIGHT + 1); | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_task_switch - clean up after a task-switch | 
|  | * @prev: the thread we just switched away from. | 
|  | * | 
|  | * We enter this with the runqueue still locked, and finish_arch_switch() | 
|  | * will unlock it along with doing any other architecture-specific cleanup | 
|  | * actions. | 
|  | * | 
|  | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | * so, we finish that here outside of the runqueue lock.  (Doing it | 
|  | * with the lock held can cause deadlocks; see schedule() for | 
|  | * details.) | 
|  | */ | 
|  | static inline void finish_task_switch(task_t *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | runqueue_t *rq = this_rq(); | 
|  | struct mm_struct *mm = rq->prev_mm; | 
|  | unsigned long prev_task_flags; | 
|  |  | 
|  | rq->prev_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * A task struct has one reference for the use as "current". | 
|  | * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and | 
|  | * calls schedule one last time. The schedule call will never return, | 
|  | * and the scheduled task must drop that reference. | 
|  | * The test for EXIT_ZOMBIE must occur while the runqueue locks are | 
|  | * still held, otherwise prev could be scheduled on another cpu, die | 
|  | * there before we look at prev->state, and then the reference would | 
|  | * be dropped twice. | 
|  | *		Manfred Spraul <manfred@colorfullife.com> | 
|  | */ | 
|  | prev_task_flags = prev->flags; | 
|  | finish_arch_switch(rq, prev); | 
|  | if (mm) | 
|  | mmdrop(mm); | 
|  | if (unlikely(prev_task_flags & PF_DEAD)) | 
|  | put_task_struct(prev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_tail - first thing a freshly forked thread must call. | 
|  | * @prev: the thread we just switched away from. | 
|  | */ | 
|  | asmlinkage void schedule_tail(task_t *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | finish_task_switch(prev); | 
|  |  | 
|  | if (current->set_child_tid) | 
|  | put_user(current->pid, current->set_child_tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context_switch - switch to the new MM and the new | 
|  | * thread's register state. | 
|  | */ | 
|  | static inline | 
|  | task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next) | 
|  | { | 
|  | struct mm_struct *mm = next->mm; | 
|  | struct mm_struct *oldmm = prev->active_mm; | 
|  |  | 
|  | if (unlikely(!mm)) { | 
|  | next->active_mm = oldmm; | 
|  | atomic_inc(&oldmm->mm_count); | 
|  | enter_lazy_tlb(oldmm, next); | 
|  | } else | 
|  | switch_mm(oldmm, mm, next); | 
|  |  | 
|  | if (unlikely(!prev->mm)) { | 
|  | prev->active_mm = NULL; | 
|  | WARN_ON(rq->prev_mm); | 
|  | rq->prev_mm = oldmm; | 
|  | } | 
|  |  | 
|  | /* Here we just switch the register state and the stack. */ | 
|  | switch_to(prev, next, prev); | 
|  |  | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nr_running, nr_uninterruptible and nr_context_switches: | 
|  | * | 
|  | * externally visible scheduler statistics: current number of runnable | 
|  | * threads, current number of uninterruptible-sleeping threads, total | 
|  | * number of context switches performed since bootup. | 
|  | */ | 
|  | unsigned long nr_running(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | sum += cpu_rq(i)->nr_running; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_uninterruptible(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_cpu(i) | 
|  | sum += cpu_rq(i)->nr_uninterruptible; | 
|  |  | 
|  | /* | 
|  | * Since we read the counters lockless, it might be slightly | 
|  | * inaccurate. Do not allow it to go below zero though: | 
|  | */ | 
|  | if (unlikely((long)sum < 0)) | 
|  | sum = 0; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long long nr_context_switches(void) | 
|  | { | 
|  | unsigned long long i, sum = 0; | 
|  |  | 
|  | for_each_cpu(i) | 
|  | sum += cpu_rq(i)->nr_switches; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_iowait(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_cpu(i) | 
|  | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * double_rq_lock - safely lock two runqueues | 
|  | * | 
|  | * Note this does not disable interrupts like task_rq_lock, | 
|  | * you need to do so manually before calling. | 
|  | */ | 
|  | static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | __acquires(rq1->lock) | 
|  | __acquires(rq2->lock) | 
|  | { | 
|  | if (rq1 == rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | } else { | 
|  | if (rq1 < rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | spin_lock(&rq2->lock); | 
|  | } else { | 
|  | spin_lock(&rq2->lock); | 
|  | spin_lock(&rq1->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_unlock - safely unlock two runqueues | 
|  | * | 
|  | * Note this does not restore interrupts like task_rq_unlock, | 
|  | * you need to do so manually after calling. | 
|  | */ | 
|  | static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) | 
|  | __releases(rq1->lock) | 
|  | __releases(rq2->lock) | 
|  | { | 
|  | spin_unlock(&rq1->lock); | 
|  | if (rq1 != rq2) | 
|  | spin_unlock(&rq2->lock); | 
|  | else | 
|  | __release(rq2->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | */ | 
|  | static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest) | 
|  | __releases(this_rq->lock) | 
|  | __acquires(busiest->lock) | 
|  | __acquires(this_rq->lock) | 
|  | { | 
|  | if (unlikely(!spin_trylock(&busiest->lock))) { | 
|  | if (busiest < this_rq) { | 
|  | spin_unlock(&this_rq->lock); | 
|  | spin_lock(&busiest->lock); | 
|  | spin_lock(&this_rq->lock); | 
|  | } else | 
|  | spin_lock(&busiest->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_cpu - find the least busy runqueue. | 
|  | */ | 
|  | static int find_idlest_cpu(struct task_struct *p, int this_cpu, | 
|  | struct sched_domain *sd) | 
|  | { | 
|  | unsigned long load, min_load, this_load; | 
|  | int i, min_cpu; | 
|  | cpumask_t mask; | 
|  |  | 
|  | min_cpu = UINT_MAX; | 
|  | min_load = ULONG_MAX; | 
|  |  | 
|  | cpus_and(mask, sd->span, p->cpus_allowed); | 
|  |  | 
|  | for_each_cpu_mask(i, mask) { | 
|  | load = target_load(i); | 
|  |  | 
|  | if (load < min_load) { | 
|  | min_cpu = i; | 
|  | min_load = load; | 
|  |  | 
|  | /* break out early on an idle CPU: */ | 
|  | if (!min_load) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* add +1 to account for the new task */ | 
|  | this_load = source_load(this_cpu) + SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* | 
|  | * Would with the addition of the new task to the | 
|  | * current CPU there be an imbalance between this | 
|  | * CPU and the idlest CPU? | 
|  | * | 
|  | * Use half of the balancing threshold - new-context is | 
|  | * a good opportunity to balance. | 
|  | */ | 
|  | if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100) | 
|  | return min_cpu; | 
|  |  | 
|  | return this_cpu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If dest_cpu is allowed for this process, migrate the task to it. | 
|  | * This is accomplished by forcing the cpu_allowed mask to only | 
|  | * allow dest_cpu, which will force the cpu onto dest_cpu.  Then | 
|  | * the cpu_allowed mask is restored. | 
|  | */ | 
|  | static void sched_migrate_task(task_t *p, int dest_cpu) | 
|  | { | 
|  | migration_req_t req; | 
|  | runqueue_t *rq; | 
|  | unsigned long flags; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
|  | || unlikely(cpu_is_offline(dest_cpu))) | 
|  | goto out; | 
|  |  | 
|  | /* force the process onto the specified CPU */ | 
|  | if (migrate_task(p, dest_cpu, &req)) { | 
|  | /* Need to wait for migration thread (might exit: take ref). */ | 
|  | struct task_struct *mt = rq->migration_thread; | 
|  | get_task_struct(mt); | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(mt); | 
|  | put_task_struct(mt); | 
|  | wait_for_completion(&req.done); | 
|  | return; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_exec(): find the highest-level, exec-balance-capable | 
|  | * domain and try to migrate the task to the least loaded CPU. | 
|  | * | 
|  | * execve() is a valuable balancing opportunity, because at this point | 
|  | * the task has the smallest effective memory and cache footprint. | 
|  | */ | 
|  | void sched_exec(void) | 
|  | { | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  | int new_cpu, this_cpu = get_cpu(); | 
|  |  | 
|  | /* Prefer the current CPU if there's only this task running */ | 
|  | if (this_rq()->nr_running <= 1) | 
|  | goto out; | 
|  |  | 
|  | for_each_domain(this_cpu, tmp) | 
|  | if (tmp->flags & SD_BALANCE_EXEC) | 
|  | sd = tmp; | 
|  |  | 
|  | if (sd) { | 
|  | schedstat_inc(sd, sbe_attempts); | 
|  | new_cpu = find_idlest_cpu(current, this_cpu, sd); | 
|  | if (new_cpu != this_cpu) { | 
|  | schedstat_inc(sd, sbe_pushed); | 
|  | put_cpu(); | 
|  | sched_migrate_task(current, new_cpu); | 
|  | return; | 
|  | } | 
|  | } | 
|  | out: | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pull_task - move a task from a remote runqueue to the local runqueue. | 
|  | * Both runqueues must be locked. | 
|  | */ | 
|  | static inline | 
|  | void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, | 
|  | runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) | 
|  | { | 
|  | dequeue_task(p, src_array); | 
|  | src_rq->nr_running--; | 
|  | set_task_cpu(p, this_cpu); | 
|  | this_rq->nr_running++; | 
|  | enqueue_task(p, this_array); | 
|  | p->timestamp = (p->timestamp - src_rq->timestamp_last_tick) | 
|  | + this_rq->timestamp_last_tick; | 
|  | /* | 
|  | * Note that idle threads have a prio of MAX_PRIO, for this test | 
|  | * to be always true for them. | 
|  | */ | 
|  | if (TASK_PREEMPTS_CURR(p, this_rq)) | 
|  | resched_task(this_rq->curr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | */ | 
|  | static inline | 
|  | int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, | 
|  | struct sched_domain *sd, enum idle_type idle) | 
|  | { | 
|  | /* | 
|  | * We do not migrate tasks that are: | 
|  | * 1) running (obviously), or | 
|  | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | * 3) are cache-hot on their current CPU. | 
|  | */ | 
|  | if (task_running(rq, p)) | 
|  | return 0; | 
|  | if (!cpu_isset(this_cpu, p->cpus_allowed)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Aggressive migration if: | 
|  | * 1) the [whole] cpu is idle, or | 
|  | * 2) too many balance attempts have failed. | 
|  | */ | 
|  |  | 
|  | if (cpu_and_siblings_are_idle(this_cpu) || \ | 
|  | sd->nr_balance_failed > sd->cache_nice_tries) | 
|  | return 1; | 
|  |  | 
|  | if (task_hot(p, rq->timestamp_last_tick, sd)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, | 
|  | * as part of a balancing operation within "domain". Returns the number of | 
|  | * tasks moved. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, | 
|  | unsigned long max_nr_move, struct sched_domain *sd, | 
|  | enum idle_type idle) | 
|  | { | 
|  | prio_array_t *array, *dst_array; | 
|  | struct list_head *head, *curr; | 
|  | int idx, pulled = 0; | 
|  | task_t *tmp; | 
|  |  | 
|  | if (max_nr_move <= 0 || busiest->nr_running <= 1) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We first consider expired tasks. Those will likely not be | 
|  | * executed in the near future, and they are most likely to | 
|  | * be cache-cold, thus switching CPUs has the least effect | 
|  | * on them. | 
|  | */ | 
|  | if (busiest->expired->nr_active) { | 
|  | array = busiest->expired; | 
|  | dst_array = this_rq->expired; | 
|  | } else { | 
|  | array = busiest->active; | 
|  | dst_array = this_rq->active; | 
|  | } | 
|  |  | 
|  | new_array: | 
|  | /* Start searching at priority 0: */ | 
|  | idx = 0; | 
|  | skip_bitmap: | 
|  | if (!idx) | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | else | 
|  | idx = find_next_bit(array->bitmap, MAX_PRIO, idx); | 
|  | if (idx >= MAX_PRIO) { | 
|  | if (array == busiest->expired && busiest->active->nr_active) { | 
|  | array = busiest->active; | 
|  | dst_array = this_rq->active; | 
|  | goto new_array; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | head = array->queue + idx; | 
|  | curr = head->prev; | 
|  | skip_queue: | 
|  | tmp = list_entry(curr, task_t, run_list); | 
|  |  | 
|  | curr = curr->prev; | 
|  |  | 
|  | if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) { | 
|  | if (curr != head) | 
|  | goto skip_queue; | 
|  | idx++; | 
|  | goto skip_bitmap; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (task_hot(tmp, busiest->timestamp_last_tick, sd)) | 
|  | schedstat_inc(sd, lb_hot_gained[idle]); | 
|  | #endif | 
|  |  | 
|  | pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu); | 
|  | pulled++; | 
|  |  | 
|  | /* We only want to steal up to the prescribed number of tasks. */ | 
|  | if (pulled < max_nr_move) { | 
|  | if (curr != head) | 
|  | goto skip_queue; | 
|  | idx++; | 
|  | goto skip_bitmap; | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * Right now, this is the only place pull_task() is called, | 
|  | * so we can safely collect pull_task() stats here rather than | 
|  | * inside pull_task(). | 
|  | */ | 
|  | schedstat_add(sd, lb_gained[idle], pulled); | 
|  | return pulled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_group finds and returns the busiest CPU group within the | 
|  | * domain. It calculates and returns the number of tasks which should be | 
|  | * moved to restore balance via the imbalance parameter. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
|  | unsigned long *imbalance, enum idle_type idle) | 
|  | { | 
|  | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
|  | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
|  |  | 
|  | max_load = this_load = total_load = total_pwr = 0; | 
|  |  | 
|  | do { | 
|  | unsigned long load; | 
|  | int local_group; | 
|  | int i; | 
|  |  | 
|  | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | avg_load = 0; | 
|  |  | 
|  | for_each_cpu_mask(i, group->cpumask) { | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = target_load(i); | 
|  | else | 
|  | load = source_load(i); | 
|  |  | 
|  | avg_load += load; | 
|  | } | 
|  |  | 
|  | total_load += avg_load; | 
|  | total_pwr += group->cpu_power; | 
|  |  | 
|  | /* Adjust by relative CPU power of the group */ | 
|  | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | this = group; | 
|  | goto nextgroup; | 
|  | } else if (avg_load > max_load) { | 
|  | max_load = avg_load; | 
|  | busiest = group; | 
|  | } | 
|  | nextgroup: | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  |  | 
|  | if (!busiest || this_load >= max_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
|  |  | 
|  | if (this_load >= avg_load || | 
|  | 100*max_load <= sd->imbalance_pct*this_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * We're trying to get all the cpus to the average_load, so we don't | 
|  | * want to push ourselves above the average load, nor do we wish to | 
|  | * reduce the max loaded cpu below the average load, as either of these | 
|  | * actions would just result in more rebalancing later, and ping-pong | 
|  | * tasks around. Thus we look for the minimum possible imbalance. | 
|  | * Negative imbalances (*we* are more loaded than anyone else) will | 
|  | * be counted as no imbalance for these purposes -- we can't fix that | 
|  | * by pulling tasks to us.  Be careful of negative numbers as they'll | 
|  | * appear as very large values with unsigned longs. | 
|  | */ | 
|  | /* How much load to actually move to equalise the imbalance */ | 
|  | *imbalance = min((max_load - avg_load) * busiest->cpu_power, | 
|  | (avg_load - this_load) * this->cpu_power) | 
|  | / SCHED_LOAD_SCALE; | 
|  |  | 
|  | if (*imbalance < SCHED_LOAD_SCALE) { | 
|  | unsigned long pwr_now = 0, pwr_move = 0; | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (max_load - this_load >= SCHED_LOAD_SCALE*2) { | 
|  | *imbalance = 1; | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | * however we may be able to increase total CPU power used by | 
|  | * moving them. | 
|  | */ | 
|  |  | 
|  | pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); | 
|  | pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); | 
|  | pwr_now /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Amount of load we'd subtract */ | 
|  | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; | 
|  | if (max_load > tmp) | 
|  | pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, | 
|  | max_load - tmp); | 
|  |  | 
|  | /* Amount of load we'd add */ | 
|  | if (max_load*busiest->cpu_power < | 
|  | SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) | 
|  | tmp = max_load*busiest->cpu_power/this->cpu_power; | 
|  | else | 
|  | tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; | 
|  | pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); | 
|  | pwr_move /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Move if we gain throughput */ | 
|  | if (pwr_move <= pwr_now) | 
|  | goto out_balanced; | 
|  |  | 
|  | *imbalance = 1; | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* Get rid of the scaling factor, rounding down as we divide */ | 
|  | *imbalance = *imbalance / SCHED_LOAD_SCALE; | 
|  |  | 
|  | return busiest; | 
|  |  | 
|  | out_balanced: | 
|  | if (busiest && (idle == NEWLY_IDLE || | 
|  | (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) { | 
|  | *imbalance = 1; | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | *imbalance = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | */ | 
|  | static runqueue_t *find_busiest_queue(struct sched_group *group) | 
|  | { | 
|  | unsigned long load, max_load = 0; | 
|  | runqueue_t *busiest = NULL; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, group->cpumask) { | 
|  | load = source_load(i); | 
|  |  | 
|  | if (load > max_load) { | 
|  | max_load = load; | 
|  | busiest = cpu_rq(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | * | 
|  | * Called with this_rq unlocked. | 
|  | */ | 
|  | static int load_balance(int this_cpu, runqueue_t *this_rq, | 
|  | struct sched_domain *sd, enum idle_type idle) | 
|  | { | 
|  | struct sched_group *group; | 
|  | runqueue_t *busiest; | 
|  | unsigned long imbalance; | 
|  | int nr_moved; | 
|  |  | 
|  | spin_lock(&this_rq->lock); | 
|  | schedstat_inc(sd, lb_cnt[idle]); | 
|  |  | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, idle); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This should be "impossible", but since load | 
|  | * balancing is inherently racy and statistical, | 
|  | * it could happen in theory. | 
|  | */ | 
|  | if (unlikely(busiest == this_rq)) { | 
|  | WARN_ON(1); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[idle], imbalance); | 
|  |  | 
|  | nr_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* | 
|  | * Attempt to move tasks. If find_busiest_group has found | 
|  | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | * still unbalanced. nr_moved simply stays zero, so it is | 
|  | * correctly treated as an imbalance. | 
|  | */ | 
|  | double_lock_balance(this_rq, busiest); | 
|  | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | imbalance, sd, idle); | 
|  | spin_unlock(&busiest->lock); | 
|  | } | 
|  | spin_unlock(&this_rq->lock); | 
|  |  | 
|  | if (!nr_moved) { | 
|  | schedstat_inc(sd, lb_failed[idle]); | 
|  | sd->nr_balance_failed++; | 
|  |  | 
|  | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
|  | int wake = 0; | 
|  |  | 
|  | spin_lock(&busiest->lock); | 
|  | if (!busiest->active_balance) { | 
|  | busiest->active_balance = 1; | 
|  | busiest->push_cpu = this_cpu; | 
|  | wake = 1; | 
|  | } | 
|  | spin_unlock(&busiest->lock); | 
|  | if (wake) | 
|  | wake_up_process(busiest->migration_thread); | 
|  |  | 
|  | /* | 
|  | * We've kicked active balancing, reset the failure | 
|  | * counter. | 
|  | */ | 
|  | sd->nr_balance_failed = sd->cache_nice_tries; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We were unbalanced, but unsuccessful in move_tasks(), | 
|  | * so bump the balance_interval to lessen the lock contention. | 
|  | */ | 
|  | if (sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval++; | 
|  | } else { | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | /* We were unbalanced, so reset the balancing interval */ | 
|  | sd->balance_interval = sd->min_interval; | 
|  | } | 
|  |  | 
|  | return nr_moved; | 
|  |  | 
|  | out_balanced: | 
|  | spin_unlock(&this_rq->lock); | 
|  |  | 
|  | schedstat_inc(sd, lb_balanced[idle]); | 
|  |  | 
|  | /* tune up the balancing interval */ | 
|  | if (sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval *= 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | * | 
|  | * Called from schedule when this_rq is about to become idle (NEWLY_IDLE). | 
|  | * this_rq is locked. | 
|  | */ | 
|  | static int load_balance_newidle(int this_cpu, runqueue_t *this_rq, | 
|  | struct sched_domain *sd) | 
|  | { | 
|  | struct sched_group *group; | 
|  | runqueue_t *busiest = NULL; | 
|  | unsigned long imbalance; | 
|  | int nr_moved = 0; | 
|  |  | 
|  | schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
|  | schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group); | 
|  | if (!busiest || busiest == this_rq) { | 
|  | schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); | 
|  | schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Attempt to move tasks */ | 
|  | double_lock_balance(this_rq, busiest); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance); | 
|  | nr_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | imbalance, sd, NEWLY_IDLE); | 
|  | if (!nr_moved) | 
|  | schedstat_inc(sd, lb_failed[NEWLY_IDLE]); | 
|  |  | 
|  | spin_unlock(&busiest->lock); | 
|  |  | 
|  | out: | 
|  | return nr_moved; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | * idle. Attempts to pull tasks from other CPUs. | 
|  | */ | 
|  | static inline void idle_balance(int this_cpu, runqueue_t *this_rq) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (sd->flags & SD_BALANCE_NEWIDLE) { | 
|  | if (load_balance_newidle(this_cpu, this_rq, sd)) { | 
|  | /* We've pulled tasks over so stop searching */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * active_load_balance is run by migration threads. It pushes running tasks | 
|  | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
|  | * running on each physical CPU where possible, and avoids physical / | 
|  | * logical imbalances. | 
|  | * | 
|  | * Called with busiest_rq locked. | 
|  | */ | 
|  | static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | struct sched_group *cpu_group; | 
|  | runqueue_t *target_rq; | 
|  | cpumask_t visited_cpus; | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * Search for suitable CPUs to push tasks to in successively higher | 
|  | * domains with SD_LOAD_BALANCE set. | 
|  | */ | 
|  | visited_cpus = CPU_MASK_NONE; | 
|  | for_each_domain(busiest_cpu, sd) { | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | /* no more domains to search */ | 
|  | break; | 
|  |  | 
|  | schedstat_inc(sd, alb_cnt); | 
|  |  | 
|  | cpu_group = sd->groups; | 
|  | do { | 
|  | for_each_cpu_mask(cpu, cpu_group->cpumask) { | 
|  | if (busiest_rq->nr_running <= 1) | 
|  | /* no more tasks left to move */ | 
|  | return; | 
|  | if (cpu_isset(cpu, visited_cpus)) | 
|  | continue; | 
|  | cpu_set(cpu, visited_cpus); | 
|  | if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu) | 
|  | continue; | 
|  |  | 
|  | target_rq = cpu_rq(cpu); | 
|  | /* | 
|  | * This condition is "impossible", if it occurs | 
|  | * we need to fix it.  Originally reported by | 
|  | * Bjorn Helgaas on a 128-cpu setup. | 
|  | */ | 
|  | BUG_ON(busiest_rq == target_rq); | 
|  |  | 
|  | /* move a task from busiest_rq to target_rq */ | 
|  | double_lock_balance(busiest_rq, target_rq); | 
|  | if (move_tasks(target_rq, cpu, busiest_rq, | 
|  | 1, sd, SCHED_IDLE)) { | 
|  | schedstat_inc(sd, alb_pushed); | 
|  | } else { | 
|  | schedstat_inc(sd, alb_failed); | 
|  | } | 
|  | spin_unlock(&target_rq->lock); | 
|  | } | 
|  | cpu_group = cpu_group->next; | 
|  | } while (cpu_group != sd->groups); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * rebalance_tick will get called every timer tick, on every CPU. | 
|  | * | 
|  | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | * and initiates a balancing operation if so. | 
|  | * | 
|  | * Balancing parameters are set up in arch_init_sched_domains. | 
|  | */ | 
|  |  | 
|  | /* Don't have all balancing operations going off at once */ | 
|  | #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS) | 
|  |  | 
|  | static void rebalance_tick(int this_cpu, runqueue_t *this_rq, | 
|  | enum idle_type idle) | 
|  | { | 
|  | unsigned long old_load, this_load; | 
|  | unsigned long j = jiffies + CPU_OFFSET(this_cpu); | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | /* Update our load */ | 
|  | old_load = this_rq->cpu_load; | 
|  | this_load = this_rq->nr_running * SCHED_LOAD_SCALE; | 
|  | /* | 
|  | * Round up the averaging division if load is increasing. This | 
|  | * prevents us from getting stuck on 9 if the load is 10, for | 
|  | * example. | 
|  | */ | 
|  | if (this_load > old_load) | 
|  | old_load++; | 
|  | this_rq->cpu_load = (old_load + this_load) / 2; | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | unsigned long interval; | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | interval = sd->balance_interval; | 
|  | if (idle != SCHED_IDLE) | 
|  | interval *= sd->busy_factor; | 
|  |  | 
|  | /* scale ms to jiffies */ | 
|  | interval = msecs_to_jiffies(interval); | 
|  | if (unlikely(!interval)) | 
|  | interval = 1; | 
|  |  | 
|  | if (j - sd->last_balance >= interval) { | 
|  | if (load_balance(this_cpu, this_rq, sd, idle)) { | 
|  | /* We've pulled tasks over so no longer idle */ | 
|  | idle = NOT_IDLE; | 
|  | } | 
|  | sd->last_balance += interval; | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * on UP we do not need to balance between CPUs: | 
|  | */ | 
|  | static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle) | 
|  | { | 
|  | } | 
|  | static inline void idle_balance(int cpu, runqueue_t *rq) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int wake_priority_sleeper(runqueue_t *rq) | 
|  | { | 
|  | int ret = 0; | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | spin_lock(&rq->lock); | 
|  | /* | 
|  | * If an SMT sibling task has been put to sleep for priority | 
|  | * reasons reschedule the idle task to see if it can now run. | 
|  | */ | 
|  | if (rq->nr_running) { | 
|  | resched_task(rq->idle); | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock(&rq->lock); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  |  | 
|  | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  |  | 
|  | /* | 
|  | * This is called on clock ticks and on context switches. | 
|  | * Bank in p->sched_time the ns elapsed since the last tick or switch. | 
|  | */ | 
|  | static inline void update_cpu_clock(task_t *p, runqueue_t *rq, | 
|  | unsigned long long now) | 
|  | { | 
|  | unsigned long long last = max(p->timestamp, rq->timestamp_last_tick); | 
|  | p->sched_time += now - last; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return current->sched_time plus any more ns on the sched_clock | 
|  | * that have not yet been banked. | 
|  | */ | 
|  | unsigned long long current_sched_time(const task_t *tsk) | 
|  | { | 
|  | unsigned long long ns; | 
|  | unsigned long flags; | 
|  | local_irq_save(flags); | 
|  | ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick); | 
|  | ns = tsk->sched_time + (sched_clock() - ns); | 
|  | local_irq_restore(flags); | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We place interactive tasks back into the active array, if possible. | 
|  | * | 
|  | * To guarantee that this does not starve expired tasks we ignore the | 
|  | * interactivity of a task if the first expired task had to wait more | 
|  | * than a 'reasonable' amount of time. This deadline timeout is | 
|  | * load-dependent, as the frequency of array switched decreases with | 
|  | * increasing number of running tasks. We also ignore the interactivity | 
|  | * if a better static_prio task has expired: | 
|  | */ | 
|  | #define EXPIRED_STARVING(rq) \ | 
|  | ((STARVATION_LIMIT && ((rq)->expired_timestamp && \ | 
|  | (jiffies - (rq)->expired_timestamp >= \ | 
|  | STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \ | 
|  | ((rq)->curr->static_prio > (rq)->best_expired_prio)) | 
|  |  | 
|  | /* | 
|  | * Account user cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in user space since the last update | 
|  | */ | 
|  | void account_user_time(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp; | 
|  |  | 
|  | p->utime = cputime_add(p->utime, cputime); | 
|  |  | 
|  | /* Add user time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (TASK_NICE(p) > 0) | 
|  | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
|  | else | 
|  | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account system cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in kernel space since the last update | 
|  | */ | 
|  | void account_system_time(struct task_struct *p, int hardirq_offset, | 
|  | cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | runqueue_t *rq = this_rq(); | 
|  | cputime64_t tmp; | 
|  |  | 
|  | p->stime = cputime_add(p->stime, cputime); | 
|  |  | 
|  | /* Add system time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (hardirq_count() - hardirq_offset) | 
|  | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
|  | else if (softirq_count()) | 
|  | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
|  | else if (p != rq->idle) | 
|  | cpustat->system = cputime64_add(cpustat->system, tmp); | 
|  | else if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | /* Account for system time used */ | 
|  | acct_update_integrals(p); | 
|  | /* Update rss highwater mark */ | 
|  | update_mem_hiwater(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for involuntary wait time. | 
|  | * @p: the process from which the cpu time has been stolen | 
|  | * @steal: the cpu time spent in involuntary wait | 
|  | */ | 
|  | void account_steal_time(struct task_struct *p, cputime_t steal) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp = cputime_to_cputime64(steal); | 
|  | runqueue_t *rq = this_rq(); | 
|  |  | 
|  | if (p == rq->idle) { | 
|  | p->stime = cputime_add(p->stime, steal); | 
|  | if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | } else | 
|  | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by the timer code, with HZ frequency. | 
|  | * We call it with interrupts disabled. | 
|  | * | 
|  | * It also gets called by the fork code, when changing the parent's | 
|  | * timeslices. | 
|  | */ | 
|  | void scheduler_tick(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | runqueue_t *rq = this_rq(); | 
|  | task_t *p = current; | 
|  | unsigned long long now = sched_clock(); | 
|  |  | 
|  | update_cpu_clock(p, rq, now); | 
|  |  | 
|  | rq->timestamp_last_tick = now; | 
|  |  | 
|  | if (p == rq->idle) { | 
|  | if (wake_priority_sleeper(rq)) | 
|  | goto out; | 
|  | rebalance_tick(cpu, rq, SCHED_IDLE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Task might have expired already, but not scheduled off yet */ | 
|  | if (p->array != rq->active) { | 
|  | set_tsk_need_resched(p); | 
|  | goto out; | 
|  | } | 
|  | spin_lock(&rq->lock); | 
|  | /* | 
|  | * The task was running during this tick - update the | 
|  | * time slice counter. Note: we do not update a thread's | 
|  | * priority until it either goes to sleep or uses up its | 
|  | * timeslice. This makes it possible for interactive tasks | 
|  | * to use up their timeslices at their highest priority levels. | 
|  | */ | 
|  | if (rt_task(p)) { | 
|  | /* | 
|  | * RR tasks need a special form of timeslice management. | 
|  | * FIFO tasks have no timeslices. | 
|  | */ | 
|  | if ((p->policy == SCHED_RR) && !--p->time_slice) { | 
|  | p->time_slice = task_timeslice(p); | 
|  | p->first_time_slice = 0; | 
|  | set_tsk_need_resched(p); | 
|  |  | 
|  | /* put it at the end of the queue: */ | 
|  | requeue_task(p, rq->active); | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  | if (!--p->time_slice) { | 
|  | dequeue_task(p, rq->active); | 
|  | set_tsk_need_resched(p); | 
|  | p->prio = effective_prio(p); | 
|  | p->time_slice = task_timeslice(p); | 
|  | p->first_time_slice = 0; | 
|  |  | 
|  | if (!rq->expired_timestamp) | 
|  | rq->expired_timestamp = jiffies; | 
|  | if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) { | 
|  | enqueue_task(p, rq->expired); | 
|  | if (p->static_prio < rq->best_expired_prio) | 
|  | rq->best_expired_prio = p->static_prio; | 
|  | } else | 
|  | enqueue_task(p, rq->active); | 
|  | } else { | 
|  | /* | 
|  | * Prevent a too long timeslice allowing a task to monopolize | 
|  | * the CPU. We do this by splitting up the timeslice into | 
|  | * smaller pieces. | 
|  | * | 
|  | * Note: this does not mean the task's timeslices expire or | 
|  | * get lost in any way, they just might be preempted by | 
|  | * another task of equal priority. (one with higher | 
|  | * priority would have preempted this task already.) We | 
|  | * requeue this task to the end of the list on this priority | 
|  | * level, which is in essence a round-robin of tasks with | 
|  | * equal priority. | 
|  | * | 
|  | * This only applies to tasks in the interactive | 
|  | * delta range with at least TIMESLICE_GRANULARITY to requeue. | 
|  | */ | 
|  | if (TASK_INTERACTIVE(p) && !((task_timeslice(p) - | 
|  | p->time_slice) % TIMESLICE_GRANULARITY(p)) && | 
|  | (p->time_slice >= TIMESLICE_GRANULARITY(p)) && | 
|  | (p->array == rq->active)) { | 
|  |  | 
|  | requeue_task(p, rq->active); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock(&rq->lock); | 
|  | out: | 
|  | rebalance_tick(cpu, rq, NOT_IDLE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
|  | { | 
|  | struct sched_domain *sd = this_rq->sd; | 
|  | cpumask_t sibling_map; | 
|  | int i; | 
|  |  | 
|  | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Unlock the current runqueue because we have to lock in | 
|  | * CPU order to avoid deadlocks. Caller knows that we might | 
|  | * unlock. We keep IRQs disabled. | 
|  | */ | 
|  | spin_unlock(&this_rq->lock); | 
|  |  | 
|  | sibling_map = sd->span; | 
|  |  | 
|  | for_each_cpu_mask(i, sibling_map) | 
|  | spin_lock(&cpu_rq(i)->lock); | 
|  | /* | 
|  | * We clear this CPU from the mask. This both simplifies the | 
|  | * inner loop and keps this_rq locked when we exit: | 
|  | */ | 
|  | cpu_clear(this_cpu, sibling_map); | 
|  |  | 
|  | for_each_cpu_mask(i, sibling_map) { | 
|  | runqueue_t *smt_rq = cpu_rq(i); | 
|  |  | 
|  | /* | 
|  | * If an SMT sibling task is sleeping due to priority | 
|  | * reasons wake it up now. | 
|  | */ | 
|  | if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running) | 
|  | resched_task(smt_rq->idle); | 
|  | } | 
|  |  | 
|  | for_each_cpu_mask(i, sibling_map) | 
|  | spin_unlock(&cpu_rq(i)->lock); | 
|  | /* | 
|  | * We exit with this_cpu's rq still held and IRQs | 
|  | * still disabled: | 
|  | */ | 
|  | } | 
|  |  | 
|  | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
|  | { | 
|  | struct sched_domain *sd = this_rq->sd; | 
|  | cpumask_t sibling_map; | 
|  | prio_array_t *array; | 
|  | int ret = 0, i; | 
|  | task_t *p; | 
|  |  | 
|  | if (!(sd->flags & SD_SHARE_CPUPOWER)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The same locking rules and details apply as for | 
|  | * wake_sleeping_dependent(): | 
|  | */ | 
|  | spin_unlock(&this_rq->lock); | 
|  | sibling_map = sd->span; | 
|  | for_each_cpu_mask(i, sibling_map) | 
|  | spin_lock(&cpu_rq(i)->lock); | 
|  | cpu_clear(this_cpu, sibling_map); | 
|  |  | 
|  | /* | 
|  | * Establish next task to be run - it might have gone away because | 
|  | * we released the runqueue lock above: | 
|  | */ | 
|  | if (!this_rq->nr_running) | 
|  | goto out_unlock; | 
|  | array = this_rq->active; | 
|  | if (!array->nr_active) | 
|  | array = this_rq->expired; | 
|  | BUG_ON(!array->nr_active); | 
|  |  | 
|  | p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, | 
|  | task_t, run_list); | 
|  |  | 
|  | for_each_cpu_mask(i, sibling_map) { | 
|  | runqueue_t *smt_rq = cpu_rq(i); | 
|  | task_t *smt_curr = smt_rq->curr; | 
|  |  | 
|  | /* | 
|  | * If a user task with lower static priority than the | 
|  | * running task on the SMT sibling is trying to schedule, | 
|  | * delay it till there is proportionately less timeslice | 
|  | * left of the sibling task to prevent a lower priority | 
|  | * task from using an unfair proportion of the | 
|  | * physical cpu's resources. -ck | 
|  | */ | 
|  | if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) > | 
|  | task_timeslice(p) || rt_task(smt_curr)) && | 
|  | p->mm && smt_curr->mm && !rt_task(p)) | 
|  | ret = 1; | 
|  |  | 
|  | /* | 
|  | * Reschedule a lower priority task on the SMT sibling, | 
|  | * or wake it up if it has been put to sleep for priority | 
|  | * reasons. | 
|  | */ | 
|  | if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) > | 
|  | task_timeslice(smt_curr) || rt_task(p)) && | 
|  | smt_curr->mm && p->mm && !rt_task(smt_curr)) || | 
|  | (smt_curr == smt_rq->idle && smt_rq->nr_running)) | 
|  | resched_task(smt_curr); | 
|  | } | 
|  | out_unlock: | 
|  | for_each_cpu_mask(i, sibling_map) | 
|  | spin_unlock(&cpu_rq(i)->lock); | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT) | 
|  |  | 
|  | void fastcall add_preempt_count(int val) | 
|  | { | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | BUG_ON(((int)preempt_count() < 0)); | 
|  | preempt_count() += val; | 
|  | /* | 
|  | * Spinlock count overflowing soon? | 
|  | */ | 
|  | BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10); | 
|  | } | 
|  | EXPORT_SYMBOL(add_preempt_count); | 
|  |  | 
|  | void fastcall sub_preempt_count(int val) | 
|  | { | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | BUG_ON(val > preempt_count()); | 
|  | /* | 
|  | * Is the spinlock portion underflowing? | 
|  | */ | 
|  | BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK)); | 
|  | preempt_count() -= val; | 
|  | } | 
|  | EXPORT_SYMBOL(sub_preempt_count); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * schedule() is the main scheduler function. | 
|  | */ | 
|  | asmlinkage void __sched schedule(void) | 
|  | { | 
|  | long *switch_count; | 
|  | task_t *prev, *next; | 
|  | runqueue_t *rq; | 
|  | prio_array_t *array; | 
|  | struct list_head *queue; | 
|  | unsigned long long now; | 
|  | unsigned long run_time; | 
|  | int cpu, idx; | 
|  |  | 
|  | /* | 
|  | * Test if we are atomic.  Since do_exit() needs to call into | 
|  | * schedule() atomically, we ignore that path for now. | 
|  | * Otherwise, whine if we are scheduling when we should not be. | 
|  | */ | 
|  | if (likely(!current->exit_state)) { | 
|  | if (unlikely(in_atomic())) { | 
|  | printk(KERN_ERR "scheduling while atomic: " | 
|  | "%s/0x%08x/%d\n", | 
|  | current->comm, preempt_count(), current->pid); | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  |  | 
|  | need_resched: | 
|  | preempt_disable(); | 
|  | prev = current; | 
|  | release_kernel_lock(prev); | 
|  | need_resched_nonpreemptible: | 
|  | rq = this_rq(); | 
|  |  | 
|  | /* | 
|  | * The idle thread is not allowed to schedule! | 
|  | * Remove this check after it has been exercised a bit. | 
|  | */ | 
|  | if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) { | 
|  | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | schedstat_inc(rq, sched_cnt); | 
|  | now = sched_clock(); | 
|  | if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) { | 
|  | run_time = now - prev->timestamp; | 
|  | if (unlikely((long long)(now - prev->timestamp) < 0)) | 
|  | run_time = 0; | 
|  | } else | 
|  | run_time = NS_MAX_SLEEP_AVG; | 
|  |  | 
|  | /* | 
|  | * Tasks charged proportionately less run_time at high sleep_avg to | 
|  | * delay them losing their interactive status | 
|  | */ | 
|  | run_time /= (CURRENT_BONUS(prev) ? : 1); | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | if (unlikely(prev->flags & PF_DEAD)) | 
|  | prev->state = EXIT_DEAD; | 
|  |  | 
|  | switch_count = &prev->nivcsw; | 
|  | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
|  | switch_count = &prev->nvcsw; | 
|  | if (unlikely((prev->state & TASK_INTERRUPTIBLE) && | 
|  | unlikely(signal_pending(prev)))) | 
|  | prev->state = TASK_RUNNING; | 
|  | else { | 
|  | if (prev->state == TASK_UNINTERRUPTIBLE) | 
|  | rq->nr_uninterruptible++; | 
|  | deactivate_task(prev, rq); | 
|  | } | 
|  | } | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | if (unlikely(!rq->nr_running)) { | 
|  | go_idle: | 
|  | idle_balance(cpu, rq); | 
|  | if (!rq->nr_running) { | 
|  | next = rq->idle; | 
|  | rq->expired_timestamp = 0; | 
|  | wake_sleeping_dependent(cpu, rq); | 
|  | /* | 
|  | * wake_sleeping_dependent() might have released | 
|  | * the runqueue, so break out if we got new | 
|  | * tasks meanwhile: | 
|  | */ | 
|  | if (!rq->nr_running) | 
|  | goto switch_tasks; | 
|  | } | 
|  | } else { | 
|  | if (dependent_sleeper(cpu, rq)) { | 
|  | next = rq->idle; | 
|  | goto switch_tasks; | 
|  | } | 
|  | /* | 
|  | * dependent_sleeper() releases and reacquires the runqueue | 
|  | * lock, hence go into the idle loop if the rq went | 
|  | * empty meanwhile: | 
|  | */ | 
|  | if (unlikely(!rq->nr_running)) | 
|  | goto go_idle; | 
|  | } | 
|  |  | 
|  | array = rq->active; | 
|  | if (unlikely(!array->nr_active)) { | 
|  | /* | 
|  | * Switch the active and expired arrays. | 
|  | */ | 
|  | schedstat_inc(rq, sched_switch); | 
|  | rq->active = rq->expired; | 
|  | rq->expired = array; | 
|  | array = rq->active; | 
|  | rq->expired_timestamp = 0; | 
|  | rq->best_expired_prio = MAX_PRIO; | 
|  | } | 
|  |  | 
|  | idx = sched_find_first_bit(array->bitmap); | 
|  | queue = array->queue + idx; | 
|  | next = list_entry(queue->next, task_t, run_list); | 
|  |  | 
|  | if (!rt_task(next) && next->activated > 0) { | 
|  | unsigned long long delta = now - next->timestamp; | 
|  | if (unlikely((long long)(now - next->timestamp) < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | if (next->activated == 1) | 
|  | delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128; | 
|  |  | 
|  | array = next->array; | 
|  | dequeue_task(next, array); | 
|  | recalc_task_prio(next, next->timestamp + delta); | 
|  | enqueue_task(next, array); | 
|  | } | 
|  | next->activated = 0; | 
|  | switch_tasks: | 
|  | if (next == rq->idle) | 
|  | schedstat_inc(rq, sched_goidle); | 
|  | prefetch(next); | 
|  | clear_tsk_need_resched(prev); | 
|  | rcu_qsctr_inc(task_cpu(prev)); | 
|  |  | 
|  | update_cpu_clock(prev, rq, now); | 
|  |  | 
|  | prev->sleep_avg -= run_time; | 
|  | if ((long)prev->sleep_avg <= 0) | 
|  | prev->sleep_avg = 0; | 
|  | prev->timestamp = prev->last_ran = now; | 
|  |  | 
|  | sched_info_switch(prev, next); | 
|  | if (likely(prev != next)) { | 
|  | next->timestamp = now; | 
|  | rq->nr_switches++; | 
|  | rq->curr = next; | 
|  | ++*switch_count; | 
|  |  | 
|  | prepare_arch_switch(rq, next); | 
|  | prev = context_switch(rq, prev, next); | 
|  | barrier(); | 
|  |  | 
|  | finish_task_switch(prev); | 
|  | } else | 
|  | spin_unlock_irq(&rq->lock); | 
|  |  | 
|  | prev = current; | 
|  | if (unlikely(reacquire_kernel_lock(prev) < 0)) | 
|  | goto need_resched_nonpreemptible; | 
|  | preempt_enable_no_resched(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(schedule); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * this is is the entry point to schedule() from in-kernel preemption | 
|  | * off of preempt_enable.  Kernel preemptions off return from interrupt | 
|  | * occur there and call schedule directly. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | struct task_struct *task = current; | 
|  | int saved_lock_depth; | 
|  | #endif | 
|  | /* | 
|  | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | * we do not want to preempt the current task.  Just return.. | 
|  | */ | 
|  | if (unlikely(ti->preempt_count || irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | need_resched: | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | /* | 
|  | * We keep the big kernel semaphore locked, but we | 
|  | * clear ->lock_depth so that schedule() doesnt | 
|  | * auto-release the semaphore: | 
|  | */ | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | saved_lock_depth = task->lock_depth; | 
|  | task->lock_depth = -1; | 
|  | #endif | 
|  | schedule(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | task->lock_depth = saved_lock_depth; | 
|  | #endif | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* we could miss a preemption opportunity between schedule and now */ | 
|  | barrier(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(preempt_schedule); | 
|  |  | 
|  | /* | 
|  | * this is is the entry point to schedule() from kernel preemption | 
|  | * off of irq context. | 
|  | * Note, that this is called and return with irqs disabled. This will | 
|  | * protect us against recursive calling from irq. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule_irq(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | struct task_struct *task = current; | 
|  | int saved_lock_depth; | 
|  | #endif | 
|  | /* Catch callers which need to be fixed*/ | 
|  | BUG_ON(ti->preempt_count || !irqs_disabled()); | 
|  |  | 
|  | need_resched: | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | /* | 
|  | * We keep the big kernel semaphore locked, but we | 
|  | * clear ->lock_depth so that schedule() doesnt | 
|  | * auto-release the semaphore: | 
|  | */ | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | saved_lock_depth = task->lock_depth; | 
|  | task->lock_depth = -1; | 
|  | #endif | 
|  | local_irq_enable(); | 
|  | schedule(); | 
|  | local_irq_disable(); | 
|  | #ifdef CONFIG_PREEMPT_BKL | 
|  | task->lock_depth = saved_lock_depth; | 
|  | #endif | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* we could miss a preemption opportunity between schedule and now */ | 
|  | barrier(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT */ | 
|  |  | 
|  | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key) | 
|  | { | 
|  | task_t *p = curr->task; | 
|  | return try_to_wake_up(p, mode, sync); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(default_wake_function); | 
|  |  | 
|  | /* | 
|  | * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | * | 
|  | * There are circumstances in which we can try to wake a task which has already | 
|  | * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns | 
|  | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | */ | 
|  | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, int sync, void *key) | 
|  | { | 
|  | struct list_head *tmp, *next; | 
|  |  | 
|  | list_for_each_safe(tmp, next, &q->task_list) { | 
|  | wait_queue_t *curr; | 
|  | unsigned flags; | 
|  | curr = list_entry(tmp, wait_queue_t, task_list); | 
|  | flags = curr->flags; | 
|  | if (curr->func(curr, mode, sync, key) && | 
|  | (flags & WQ_FLAG_EXCLUSIVE) && | 
|  | !--nr_exclusive) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * @key: is directly passed to the wakeup function | 
|  | */ | 
|  | void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__wake_up); | 
|  |  | 
|  | /* | 
|  | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | */ | 
|  | void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
|  | { | 
|  | __wake_up_common(q, mode, 1, 0, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up_sync - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * | 
|  | * The sync wakeup differs that the waker knows that it will schedule | 
|  | * away soon, so while the target thread will be woken up, it will not | 
|  | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | * with each other. This can prevent needless bouncing between CPUs. | 
|  | * | 
|  | * On UP it can prevent extra preemption. | 
|  | */ | 
|  | void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
|  | { | 
|  | unsigned long flags; | 
|  | int sync = 1; | 
|  |  | 
|  | if (unlikely(!q)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!nr_exclusive)) | 
|  | sync = 0; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  |  | 
|  | void fastcall complete(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done++; | 
|  | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 1, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete); | 
|  |  | 
|  | void fastcall complete_all(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done += UINT_MAX/2; | 
|  | __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, | 
|  | 0, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete_all); | 
|  |  | 
|  | void fastcall __sched wait_for_completion(struct completion *x) | 
|  | { | 
|  | might_sleep(); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion); | 
|  |  | 
|  | unsigned long fastcall __sched | 
|  | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!timeout) { | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_timeout); | 
|  |  | 
|  | int fastcall __sched wait_for_completion_interruptible(struct completion *x) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | schedule(); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
|  |  | 
|  | unsigned long fastcall __sched | 
|  | wait_for_completion_interruptible_timeout(struct completion *x, | 
|  | unsigned long timeout) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | if (signal_pending(current)) { | 
|  | timeout = -ERESTARTSYS; | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!timeout) { | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | goto out; | 
|  | } | 
|  | } while (!x->done); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | } | 
|  | x->done--; | 
|  | out: | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return timeout; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
|  |  | 
|  |  | 
|  | #define	SLEEP_ON_VAR					\ | 
|  | unsigned long flags;				\ | 
|  | wait_queue_t wait;				\ | 
|  | init_waitqueue_entry(&wait, current); | 
|  |  | 
|  | #define SLEEP_ON_HEAD					\ | 
|  | spin_lock_irqsave(&q->lock,flags);		\ | 
|  | __add_wait_queue(q, &wait);			\ | 
|  | spin_unlock(&q->lock); | 
|  |  | 
|  | #define	SLEEP_ON_TAIL					\ | 
|  | spin_lock_irq(&q->lock);			\ | 
|  | __remove_wait_queue(q, &wait);			\ | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | schedule(); | 
|  | SLEEP_ON_TAIL | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(interruptible_sleep_on); | 
|  |  | 
|  | long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | timeout = schedule_timeout(timeout); | 
|  | SLEEP_ON_TAIL | 
|  |  | 
|  | return timeout; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
|  |  | 
|  | void fastcall __sched sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_UNINTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | schedule(); | 
|  | SLEEP_ON_TAIL | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(sleep_on); | 
|  |  | 
|  | long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | SLEEP_ON_VAR | 
|  |  | 
|  | current->state = TASK_UNINTERRUPTIBLE; | 
|  |  | 
|  | SLEEP_ON_HEAD | 
|  | timeout = schedule_timeout(timeout); | 
|  | SLEEP_ON_TAIL | 
|  |  | 
|  | return timeout; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(sleep_on_timeout); | 
|  |  | 
|  | void set_user_nice(task_t *p, long nice) | 
|  | { | 
|  | unsigned long flags; | 
|  | prio_array_t *array; | 
|  | runqueue_t *rq; | 
|  | int old_prio, new_prio, delta; | 
|  |  | 
|  | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
|  | return; | 
|  | /* | 
|  | * We have to be careful, if called from sys_setpriority(), | 
|  | * the task might be in the middle of scheduling on another CPU. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | /* | 
|  | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | * allow the 'normal' nice value to be set - but as expected | 
|  | * it wont have any effect on scheduling until the task is | 
|  | * not SCHED_NORMAL: | 
|  | */ | 
|  | if (rt_task(p)) { | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | goto out_unlock; | 
|  | } | 
|  | array = p->array; | 
|  | if (array) | 
|  | dequeue_task(p, array); | 
|  |  | 
|  | old_prio = p->prio; | 
|  | new_prio = NICE_TO_PRIO(nice); | 
|  | delta = new_prio - old_prio; | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | p->prio += delta; | 
|  |  | 
|  | if (array) { | 
|  | enqueue_task(p, array); | 
|  | /* | 
|  | * If the task increased its priority or is running and | 
|  | * lowered its priority, then reschedule its CPU: | 
|  | */ | 
|  | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | out_unlock: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(set_user_nice); | 
|  |  | 
|  | /* | 
|  | * can_nice - check if a task can reduce its nice value | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | int can_nice(const task_t *p, const int nice) | 
|  | { | 
|  | /* convert nice value [19,-20] to rlimit style value [0,39] */ | 
|  | int nice_rlim = 19 - nice; | 
|  | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
|  | capable(CAP_SYS_NICE)); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_NICE | 
|  |  | 
|  | /* | 
|  | * sys_nice - change the priority of the current process. | 
|  | * @increment: priority increment | 
|  | * | 
|  | * sys_setpriority is a more generic, but much slower function that | 
|  | * does similar things. | 
|  | */ | 
|  | asmlinkage long sys_nice(int increment) | 
|  | { | 
|  | int retval; | 
|  | long nice; | 
|  |  | 
|  | /* | 
|  | * Setpriority might change our priority at the same moment. | 
|  | * We don't have to worry. Conceptually one call occurs first | 
|  | * and we have a single winner. | 
|  | */ | 
|  | if (increment < -40) | 
|  | increment = -40; | 
|  | if (increment > 40) | 
|  | increment = 40; | 
|  |  | 
|  | nice = PRIO_TO_NICE(current->static_prio) + increment; | 
|  | if (nice < -20) | 
|  | nice = -20; | 
|  | if (nice > 19) | 
|  | nice = 19; | 
|  |  | 
|  | if (increment < 0 && !can_nice(current, nice)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setnice(current, nice); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | set_user_nice(current, nice); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_prio - return the priority value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * This is the priority value as seen by users in /proc. | 
|  | * RT tasks are offset by -200. Normal tasks are centered | 
|  | * around 0, value goes from -16 to +15. | 
|  | */ | 
|  | int task_prio(const task_t *p) | 
|  | { | 
|  | return p->prio - MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_nice - return the nice value of a given task. | 
|  | * @p: the task in question. | 
|  | */ | 
|  | int task_nice(const task_t *p) | 
|  | { | 
|  | return TASK_NICE(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only users of task_nice are binfmt_elf and binfmt_elf32. | 
|  | * binfmt_elf is no longer modular, but binfmt_elf32 still is. | 
|  | * Therefore, task_nice is needed if there is a compat_mode. | 
|  | */ | 
|  | #ifdef CONFIG_COMPAT | 
|  | EXPORT_SYMBOL_GPL(task_nice); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * idle_cpu - is a given cpu idle currently? | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | int idle_cpu(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(idle_cpu); | 
|  |  | 
|  | /** | 
|  | * idle_task - return the idle task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | task_t *idle_task(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_process_by_pid - find a process with a matching PID value. | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | static inline task_t *find_process_by_pid(pid_t pid) | 
|  | { | 
|  | return pid ? find_task_by_pid(pid) : current; | 
|  | } | 
|  |  | 
|  | /* Actually do priority change: must hold rq lock. */ | 
|  | static void __setscheduler(struct task_struct *p, int policy, int prio) | 
|  | { | 
|  | BUG_ON(p->array); | 
|  | p->policy = policy; | 
|  | p->rt_priority = prio; | 
|  | if (policy != SCHED_NORMAL) | 
|  | p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority; | 
|  | else | 
|  | p->prio = p->static_prio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler - change the scheduling policy and/or RT priority of | 
|  | * a thread. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param) | 
|  | { | 
|  | int retval; | 
|  | int oldprio, oldpolicy = -1; | 
|  | prio_array_t *array; | 
|  | unsigned long flags; | 
|  | runqueue_t *rq; | 
|  |  | 
|  | recheck: | 
|  | /* double check policy once rq lock held */ | 
|  | if (policy < 0) | 
|  | policy = oldpolicy = p->policy; | 
|  | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
|  | policy != SCHED_NORMAL) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0. | 
|  | */ | 
|  | if (param->sched_priority < 0 || | 
|  | param->sched_priority > MAX_USER_RT_PRIO-1) | 
|  | return -EINVAL; | 
|  | if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((policy == SCHED_FIFO || policy == SCHED_RR) && | 
|  | param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur && | 
|  | !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setscheduler(p, policy, param); | 
|  | if (retval) | 
|  | return retval; | 
|  | /* | 
|  | * To be able to change p->policy safely, the apropriate | 
|  | * runqueue lock must be held. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | /* recheck policy now with rq lock held */ | 
|  | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | policy = oldpolicy = -1; | 
|  | task_rq_unlock(rq, &flags); | 
|  | goto recheck; | 
|  | } | 
|  | array = p->array; | 
|  | if (array) | 
|  | deactivate_task(p, rq); | 
|  | oldprio = p->prio; | 
|  | __setscheduler(p, policy, param->sched_priority); | 
|  | if (array) { | 
|  | __activate_task(p, rq); | 
|  | /* | 
|  | * Reschedule if we are currently running on this runqueue and | 
|  | * our priority decreased, or if we are not currently running on | 
|  | * this runqueue and our priority is higher than the current's | 
|  | */ | 
|  | if (task_running(rq, p)) { | 
|  | if (p->prio > oldprio) | 
|  | resched_task(rq->curr); | 
|  | } else if (TASK_PREEMPTS_CURR(p, rq)) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | task_rq_unlock(rq, &flags); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  |  | 
|  | static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | int retval; | 
|  | struct sched_param lparam; | 
|  | struct task_struct *p; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | return -EFAULT; | 
|  | read_lock_irq(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | read_unlock_irq(&tasklist_lock); | 
|  | return -ESRCH; | 
|  | } | 
|  | retval = sched_setscheduler(p, policy, &lparam); | 
|  | read_unlock_irq(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | * @pid: the pid in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, | 
|  | struct sched_param __user *param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, policy, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, -1, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
|  | { | 
|  | int retval = -EINVAL; | 
|  | task_t *p; | 
|  |  | 
|  | if (pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (p) { | 
|  | retval = security_task_getscheduler(p); | 
|  | if (!retval) | 
|  | retval = p->policy; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | out_nounlock: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lp; | 
|  | int retval = -EINVAL; | 
|  | task_t *p; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | retval = -ESRCH; | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | lp.sched_priority = p->rt_priority; | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | */ | 
|  | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  |  | 
|  | out_nounlock: | 
|  | return retval; | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_setaffinity(pid_t pid, cpumask_t new_mask) | 
|  | { | 
|  | task_t *p; | 
|  | int retval; | 
|  | cpumask_t cpus_allowed; | 
|  |  | 
|  | lock_cpu_hotplug(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | read_unlock(&tasklist_lock); | 
|  | unlock_cpu_hotplug(); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is not safe to call set_cpus_allowed with the | 
|  | * tasklist_lock held.  We will bump the task_struct's | 
|  | * usage count and then drop tasklist_lock. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | !capable(CAP_SYS_NICE)) | 
|  | goto out_unlock; | 
|  |  | 
|  | cpus_allowed = cpuset_cpus_allowed(p); | 
|  | cpus_and(new_mask, new_mask, cpus_allowed); | 
|  | retval = set_cpus_allowed(p, new_mask); | 
|  |  | 
|  | out_unlock: | 
|  | put_task_struct(p); | 
|  | unlock_cpu_hotplug(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | cpumask_t *new_mask) | 
|  | { | 
|  | if (len < sizeof(cpumask_t)) { | 
|  | memset(new_mask, 0, sizeof(cpumask_t)); | 
|  | } else if (len > sizeof(cpumask_t)) { | 
|  | len = sizeof(cpumask_t); | 
|  | } | 
|  | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setaffinity - set the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to the new cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | cpumask_t new_mask; | 
|  | int retval; | 
|  |  | 
|  | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return sched_setaffinity(pid, new_mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Represents all cpu's present in the system | 
|  | * In systems capable of hotplug, this map could dynamically grow | 
|  | * as new cpu's are detected in the system via any platform specific | 
|  | * method, such as ACPI for e.g. | 
|  | */ | 
|  |  | 
|  | cpumask_t cpu_present_map; | 
|  | EXPORT_SYMBOL(cpu_present_map); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | cpumask_t cpu_online_map = CPU_MASK_ALL; | 
|  | cpumask_t cpu_possible_map = CPU_MASK_ALL; | 
|  | #endif | 
|  |  | 
|  | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
|  | { | 
|  | int retval; | 
|  | task_t *p; | 
|  |  | 
|  | lock_cpu_hotplug(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = 0; | 
|  | cpus_and(*mask, p->cpus_allowed, cpu_possible_map); | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | unlock_cpu_hotplug(); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getaffinity - get the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | int ret; | 
|  | cpumask_t mask; | 
|  |  | 
|  | if (len < sizeof(cpumask_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = sched_getaffinity(pid, &mask); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return sizeof(cpumask_t); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_yield - yield the current processor to other threads. | 
|  | * | 
|  | * this function yields the current CPU by moving the calling thread | 
|  | * to the expired array. If there are no other threads running on this | 
|  | * CPU then this function will return. | 
|  | */ | 
|  | asmlinkage long sys_sched_yield(void) | 
|  | { | 
|  | runqueue_t *rq = this_rq_lock(); | 
|  | prio_array_t *array = current->array; | 
|  | prio_array_t *target = rq->expired; | 
|  |  | 
|  | schedstat_inc(rq, yld_cnt); | 
|  | /* | 
|  | * We implement yielding by moving the task into the expired | 
|  | * queue. | 
|  | * | 
|  | * (special rule: RT tasks will just roundrobin in the active | 
|  | *  array.) | 
|  | */ | 
|  | if (rt_task(current)) | 
|  | target = rq->active; | 
|  |  | 
|  | if (current->array->nr_active == 1) { | 
|  | schedstat_inc(rq, yld_act_empty); | 
|  | if (!rq->expired->nr_active) | 
|  | schedstat_inc(rq, yld_both_empty); | 
|  | } else if (!rq->expired->nr_active) | 
|  | schedstat_inc(rq, yld_exp_empty); | 
|  |  | 
|  | if (array != target) { | 
|  | dequeue_task(current, array); | 
|  | enqueue_task(current, target); | 
|  | } else | 
|  | /* | 
|  | * requeue_task is cheaper so perform that if possible. | 
|  | */ | 
|  | requeue_task(current, array); | 
|  |  | 
|  | /* | 
|  | * Since we are going to call schedule() anyway, there's | 
|  | * no need to preempt or enable interrupts: | 
|  | */ | 
|  | __release(rq->lock); | 
|  | _raw_spin_unlock(&rq->lock); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __cond_resched(void) | 
|  | { | 
|  | do { | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | schedule(); | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | } while (need_resched()); | 
|  | } | 
|  |  | 
|  | int __sched cond_resched(void) | 
|  | { | 
|  | if (need_resched()) { | 
|  | __cond_resched(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cond_resched); | 
|  |  | 
|  | /* | 
|  | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | * call schedule, and on return reacquire the lock. | 
|  | * | 
|  | * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level | 
|  | * operations here to prevent schedule() from being called twice (once via | 
|  | * spin_unlock(), once by hand). | 
|  | */ | 
|  | int cond_resched_lock(spinlock_t * lock) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (need_lockbreak(lock)) { | 
|  | spin_unlock(lock); | 
|  | cpu_relax(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | if (need_resched()) { | 
|  | _raw_spin_unlock(lock); | 
|  | preempt_enable_no_resched(); | 
|  | __cond_resched(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cond_resched_lock); | 
|  |  | 
|  | int __sched cond_resched_softirq(void) | 
|  | { | 
|  | BUG_ON(!in_softirq()); | 
|  |  | 
|  | if (need_resched()) { | 
|  | __local_bh_enable(); | 
|  | __cond_resched(); | 
|  | local_bh_disable(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(cond_resched_softirq); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * yield - yield the current processor to other threads. | 
|  | * | 
|  | * this is a shortcut for kernel-space yielding - it marks the | 
|  | * thread runnable and calls sys_sched_yield(). | 
|  | */ | 
|  | void __sched yield(void) | 
|  | { | 
|  | set_current_state(TASK_RUNNING); | 
|  | sys_sched_yield(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(yield); | 
|  |  | 
|  | /* | 
|  | * This task is about to go to sleep on IO.  Increment rq->nr_iowait so | 
|  | * that process accounting knows that this is a task in IO wait state. | 
|  | * | 
|  | * But don't do that if it is a deliberate, throttling IO wait (this task | 
|  | * has set its backing_dev_info: the queue against which it should throttle) | 
|  | */ | 
|  | void __sched io_schedule(void) | 
|  | { | 
|  | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | 
|  |  | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | schedule(); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(io_schedule); | 
|  |  | 
|  | long __sched io_schedule_timeout(long timeout) | 
|  | { | 
|  | struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id()); | 
|  | long ret; | 
|  |  | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | ret = schedule_timeout(timeout); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the maximum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_max(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = MAX_USER_RT_PRIO-1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the minimum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_min(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = 1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | * @pid: pid of the process. | 
|  | * @interval: userspace pointer to the timeslice value. | 
|  | * | 
|  | * this syscall writes the default timeslice value of a given process | 
|  | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | */ | 
|  | asmlinkage | 
|  | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
|  | { | 
|  | int retval = -EINVAL; | 
|  | struct timespec t; | 
|  | task_t *p; | 
|  |  | 
|  | if (pid < 0) | 
|  | goto out_nounlock; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | jiffies_to_timespec(p->policy & SCHED_FIFO ? | 
|  | 0 : task_timeslice(p), &t); | 
|  | read_unlock(&tasklist_lock); | 
|  | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
|  | out_nounlock: | 
|  | return retval; | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *eldest_child(struct task_struct *p) | 
|  | { | 
|  | if (list_empty(&p->children)) return NULL; | 
|  | return list_entry(p->children.next,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *older_sibling(struct task_struct *p) | 
|  | { | 
|  | if (p->sibling.prev==&p->parent->children) return NULL; | 
|  | return list_entry(p->sibling.prev,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static inline struct task_struct *younger_sibling(struct task_struct *p) | 
|  | { | 
|  | if (p->sibling.next==&p->parent->children) return NULL; | 
|  | return list_entry(p->sibling.next,struct task_struct,sibling); | 
|  | } | 
|  |  | 
|  | static void show_task(task_t * p) | 
|  | { | 
|  | task_t *relative; | 
|  | unsigned state; | 
|  | unsigned long free = 0; | 
|  | static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" }; | 
|  |  | 
|  | printk("%-13.13s ", p->comm); | 
|  | state = p->state ? __ffs(p->state) + 1 : 0; | 
|  | if (state < ARRAY_SIZE(stat_nam)) | 
|  | printk(stat_nam[state]); | 
|  | else | 
|  | printk("?"); | 
|  | #if (BITS_PER_LONG == 32) | 
|  | if (state == TASK_RUNNING) | 
|  | printk(" running "); | 
|  | else | 
|  | printk(" %08lX ", thread_saved_pc(p)); | 
|  | #else | 
|  | if (state == TASK_RUNNING) | 
|  | printk("  running task   "); | 
|  | else | 
|  | printk(" %016lx ", thread_saved_pc(p)); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | { | 
|  | unsigned long * n = (unsigned long *) (p->thread_info+1); | 
|  | while (!*n) | 
|  | n++; | 
|  | free = (unsigned long) n - (unsigned long)(p->thread_info+1); | 
|  | } | 
|  | #endif | 
|  | printk("%5lu %5d %6d ", free, p->pid, p->parent->pid); | 
|  | if ((relative = eldest_child(p))) | 
|  | printk("%5d ", relative->pid); | 
|  | else | 
|  | printk("      "); | 
|  | if ((relative = younger_sibling(p))) | 
|  | printk("%7d", relative->pid); | 
|  | else | 
|  | printk("       "); | 
|  | if ((relative = older_sibling(p))) | 
|  | printk(" %5d", relative->pid); | 
|  | else | 
|  | printk("      "); | 
|  | if (!p->mm) | 
|  | printk(" (L-TLB)\n"); | 
|  | else | 
|  | printk(" (NOTLB)\n"); | 
|  |  | 
|  | if (state != TASK_RUNNING) | 
|  | show_stack(p, NULL); | 
|  | } | 
|  |  | 
|  | void show_state(void) | 
|  | { | 
|  | task_t *g, *p; | 
|  |  | 
|  | #if (BITS_PER_LONG == 32) | 
|  | printk("\n" | 
|  | "                                               sibling\n"); | 
|  | printk("  task             PC      pid father child younger older\n"); | 
|  | #else | 
|  | printk("\n" | 
|  | "                                                       sibling\n"); | 
|  | printk("  task                 PC          pid father child younger older\n"); | 
|  | #endif | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_thread(g, p) { | 
|  | /* | 
|  | * reset the NMI-timeout, listing all files on a slow | 
|  | * console might take alot of time: | 
|  | */ | 
|  | touch_nmi_watchdog(); | 
|  | show_task(p); | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | void __devinit init_idle(task_t *idle, int cpu) | 
|  | { | 
|  | runqueue_t *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | idle->sleep_avg = 0; | 
|  | idle->array = NULL; | 
|  | idle->prio = MAX_PRIO; | 
|  | idle->state = TASK_RUNNING; | 
|  | idle->cpus_allowed = cpumask_of_cpu(cpu); | 
|  | set_task_cpu(idle, cpu); | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | rq->curr = rq->idle = idle; | 
|  | set_tsk_need_resched(idle); | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  |  | 
|  | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL) | 
|  | idle->thread_info->preempt_count = (idle->lock_depth >= 0); | 
|  | #else | 
|  | idle->thread_info->preempt_count = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a system that switches off the HZ timer nohz_cpu_mask | 
|  | * indicates which cpus entered this state. This is used | 
|  | * in the rcu update to wait only for active cpus. For system | 
|  | * which do not switch off the HZ timer nohz_cpu_mask should | 
|  | * always be CPU_MASK_NONE. | 
|  | */ | 
|  | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This is how migration works: | 
|  | * | 
|  | * 1) we queue a migration_req_t structure in the source CPU's | 
|  | *    runqueue and wake up that CPU's migration thread. | 
|  | * 2) we down() the locked semaphore => thread blocks. | 
|  | * 3) migration thread wakes up (implicitly it forces the migrated | 
|  | *    thread off the CPU) | 
|  | * 4) it gets the migration request and checks whether the migrated | 
|  | *    task is still in the wrong runqueue. | 
|  | * 5) if it's in the wrong runqueue then the migration thread removes | 
|  | *    it and puts it into the right queue. | 
|  | * 6) migration thread up()s the semaphore. | 
|  | * 7) we wake up and the migration is done. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | * proper CPU and schedule it away if the CPU it's executing on | 
|  | * is removed from the allowed bitmask. | 
|  | * | 
|  | * NOTE: the caller must have a valid reference to the task, the | 
|  | * task must not exit() & deallocate itself prematurely.  The | 
|  | * call is not atomic; no spinlocks may be held. | 
|  | */ | 
|  | int set_cpus_allowed(task_t *p, cpumask_t new_mask) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  | migration_req_t req; | 
|  | runqueue_t *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpus_intersects(new_mask, cpu_online_map)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | p->cpus_allowed = new_mask; | 
|  | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | if (cpu_isset(task_cpu(p), new_mask)) | 
|  | goto out; | 
|  |  | 
|  | if (migrate_task(p, any_online_cpu(new_mask), &req)) { | 
|  | /* Need help from migration thread: drop lock and wait. */ | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(rq->migration_thread); | 
|  | wait_for_completion(&req.done); | 
|  | tlb_migrate_finish(p->mm); | 
|  | return 0; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(set_cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * Move (not current) task off this cpu, onto dest cpu.  We're doing | 
|  | * this because either it can't run here any more (set_cpus_allowed() | 
|  | * away from this CPU, or CPU going down), or because we're | 
|  | * attempting to rebalance this task on exec (sched_exec). | 
|  | * | 
|  | * So we race with normal scheduler movements, but that's OK, as long | 
|  | * as the task is no longer on this CPU. | 
|  | */ | 
|  | static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | { | 
|  | runqueue_t *rq_dest, *rq_src; | 
|  |  | 
|  | if (unlikely(cpu_is_offline(dest_cpu))) | 
|  | return; | 
|  |  | 
|  | rq_src = cpu_rq(src_cpu); | 
|  | rq_dest = cpu_rq(dest_cpu); | 
|  |  | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | /* Already moved. */ | 
|  | if (task_cpu(p) != src_cpu) | 
|  | goto out; | 
|  | /* Affinity changed (again). */ | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
|  | goto out; | 
|  |  | 
|  | set_task_cpu(p, dest_cpu); | 
|  | if (p->array) { | 
|  | /* | 
|  | * Sync timestamp with rq_dest's before activating. | 
|  | * The same thing could be achieved by doing this step | 
|  | * afterwards, and pretending it was a local activate. | 
|  | * This way is cleaner and logically correct. | 
|  | */ | 
|  | p->timestamp = p->timestamp - rq_src->timestamp_last_tick | 
|  | + rq_dest->timestamp_last_tick; | 
|  | deactivate_task(p, rq_src); | 
|  | activate_task(p, rq_dest, 0); | 
|  | if (TASK_PREEMPTS_CURR(p, rq_dest)) | 
|  | resched_task(rq_dest->curr); | 
|  | } | 
|  |  | 
|  | out: | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migration_thread - this is a highprio system thread that performs | 
|  | * thread migration by bumping thread off CPU then 'pushing' onto | 
|  | * another runqueue. | 
|  | */ | 
|  | static int migration_thread(void * data) | 
|  | { | 
|  | runqueue_t *rq; | 
|  | int cpu = (long)data; | 
|  |  | 
|  | rq = cpu_rq(cpu); | 
|  | BUG_ON(rq->migration_thread != current); | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | struct list_head *head; | 
|  | migration_req_t *req; | 
|  |  | 
|  | if (current->flags & PF_FREEZE) | 
|  | refrigerator(PF_FREEZE); | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | if (cpu_is_offline(cpu)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | goto wait_to_die; | 
|  | } | 
|  |  | 
|  | if (rq->active_balance) { | 
|  | active_load_balance(rq, cpu); | 
|  | rq->active_balance = 0; | 
|  | } | 
|  |  | 
|  | head = &rq->migration_queue; | 
|  |  | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | continue; | 
|  | } | 
|  | req = list_entry(head->next, migration_req_t, list); | 
|  | list_del_init(head->next); | 
|  |  | 
|  | if (req->type == REQ_MOVE_TASK) { | 
|  | spin_unlock(&rq->lock); | 
|  | __migrate_task(req->task, cpu, req->dest_cpu); | 
|  | local_irq_enable(); | 
|  | } else if (req->type == REQ_SET_DOMAIN) { | 
|  | rq->sd = req->sd; | 
|  | spin_unlock_irq(&rq->lock); | 
|  | } else { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | complete(&req->done); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  |  | 
|  | wait_to_die: | 
|  | /* Wait for kthread_stop */ | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* Figure out where task on dead CPU should go, use force if neccessary. */ | 
|  | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk) | 
|  | { | 
|  | int dest_cpu; | 
|  | cpumask_t mask; | 
|  |  | 
|  | /* On same node? */ | 
|  | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
|  | cpus_and(mask, mask, tsk->cpus_allowed); | 
|  | dest_cpu = any_online_cpu(mask); | 
|  |  | 
|  | /* On any allowed CPU? */ | 
|  | if (dest_cpu == NR_CPUS) | 
|  | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  |  | 
|  | /* No more Mr. Nice Guy. */ | 
|  | if (dest_cpu == NR_CPUS) { | 
|  | cpus_setall(tsk->cpus_allowed); | 
|  | dest_cpu = any_online_cpu(tsk->cpus_allowed); | 
|  |  | 
|  | /* | 
|  | * Don't tell them about moving exiting tasks or | 
|  | * kernel threads (both mm NULL), since they never | 
|  | * leave kernel. | 
|  | */ | 
|  | if (tsk->mm && printk_ratelimit()) | 
|  | printk(KERN_INFO "process %d (%s) no " | 
|  | "longer affine to cpu%d\n", | 
|  | tsk->pid, tsk->comm, dead_cpu); | 
|  | } | 
|  | __migrate_task(tsk, dead_cpu, dest_cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While a dead CPU has no uninterruptible tasks queued at this point, | 
|  | * it might still have a nonzero ->nr_uninterruptible counter, because | 
|  | * for performance reasons the counter is not stricly tracking tasks to | 
|  | * their home CPUs. So we just add the counter to another CPU's counter, | 
|  | * to keep the global sum constant after CPU-down: | 
|  | */ | 
|  | static void migrate_nr_uninterruptible(runqueue_t *rq_src) | 
|  | { | 
|  | runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL)); | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
|  | rq_src->nr_uninterruptible = 0; | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Run through task list and migrate tasks from the dead cpu. */ | 
|  | static void migrate_live_tasks(int src_cpu) | 
|  | { | 
|  | struct task_struct *tsk, *t; | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | do_each_thread(t, tsk) { | 
|  | if (tsk == current) | 
|  | continue; | 
|  |  | 
|  | if (task_cpu(tsk) == src_cpu) | 
|  | move_task_off_dead_cpu(src_cpu, tsk); | 
|  | } while_each_thread(t, tsk); | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* Schedules idle task to be the next runnable task on current CPU. | 
|  | * It does so by boosting its priority to highest possible and adding it to | 
|  | * the _front_ of runqueue. Used by CPU offline code. | 
|  | */ | 
|  | void sched_idle_next(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | runqueue_t *rq = this_rq(); | 
|  | struct task_struct *p = rq->idle; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* cpu has to be offline */ | 
|  | BUG_ON(cpu_online(cpu)); | 
|  |  | 
|  | /* Strictly not necessary since rest of the CPUs are stopped by now | 
|  | * and interrupts disabled on current cpu. | 
|  | */ | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | /* Add idle task to _front_ of it's priority queue */ | 
|  | __activate_idle_task(p, rq); | 
|  |  | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* Ensures that the idle task is using init_mm right before its cpu goes | 
|  | * offline. | 
|  | */ | 
|  | void idle_task_exit(void) | 
|  | { | 
|  | struct mm_struct *mm = current->active_mm; | 
|  |  | 
|  | BUG_ON(cpu_online(smp_processor_id())); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | switch_mm(mm, &init_mm, current); | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | static void migrate_dead(unsigned int dead_cpu, task_t *tsk) | 
|  | { | 
|  | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  |  | 
|  | /* Must be exiting, otherwise would be on tasklist. */ | 
|  | BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD); | 
|  |  | 
|  | /* Cannot have done final schedule yet: would have vanished. */ | 
|  | BUG_ON(tsk->flags & PF_DEAD); | 
|  |  | 
|  | get_task_struct(tsk); | 
|  |  | 
|  | /* | 
|  | * Drop lock around migration; if someone else moves it, | 
|  | * that's OK.  No task can be added to this CPU, so iteration is | 
|  | * fine. | 
|  | */ | 
|  | spin_unlock_irq(&rq->lock); | 
|  | move_task_off_dead_cpu(dead_cpu, tsk); | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | put_task_struct(tsk); | 
|  | } | 
|  |  | 
|  | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
|  | static void migrate_dead_tasks(unsigned int dead_cpu) | 
|  | { | 
|  | unsigned arr, i; | 
|  | struct runqueue *rq = cpu_rq(dead_cpu); | 
|  |  | 
|  | for (arr = 0; arr < 2; arr++) { | 
|  | for (i = 0; i < MAX_PRIO; i++) { | 
|  | struct list_head *list = &rq->arrays[arr].queue[i]; | 
|  | while (!list_empty(list)) | 
|  | migrate_dead(dead_cpu, | 
|  | list_entry(list->next, task_t, | 
|  | run_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * migration_call - callback that gets triggered when a CPU is added. | 
|  | * Here we can start up the necessary migration thread for the new CPU. | 
|  | */ | 
|  | static int migration_call(struct notifier_block *nfb, unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | int cpu = (long)hcpu; | 
|  | struct task_struct *p; | 
|  | struct runqueue *rq; | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | p = kthread_create(migration_thread, hcpu, "migration/%d",cpu); | 
|  | if (IS_ERR(p)) | 
|  | return NOTIFY_BAD; | 
|  | p->flags |= PF_NOFREEZE; | 
|  | kthread_bind(p, cpu); | 
|  | /* Must be high prio: stop_machine expects to yield to it. */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | task_rq_unlock(rq, &flags); | 
|  | cpu_rq(cpu)->migration_thread = p; | 
|  | break; | 
|  | case CPU_ONLINE: | 
|  | /* Strictly unneccessary, as first user will wake it. */ | 
|  | wake_up_process(cpu_rq(cpu)->migration_thread); | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_UP_CANCELED: | 
|  | /* Unbind it from offline cpu so it can run.  Fall thru. */ | 
|  | kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id()); | 
|  | kthread_stop(cpu_rq(cpu)->migration_thread); | 
|  | cpu_rq(cpu)->migration_thread = NULL; | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | migrate_live_tasks(cpu); | 
|  | rq = cpu_rq(cpu); | 
|  | kthread_stop(rq->migration_thread); | 
|  | rq->migration_thread = NULL; | 
|  | /* Idle task back to normal (off runqueue, low prio) */ | 
|  | rq = task_rq_lock(rq->idle, &flags); | 
|  | deactivate_task(rq->idle, rq); | 
|  | rq->idle->static_prio = MAX_PRIO; | 
|  | __setscheduler(rq->idle, SCHED_NORMAL, 0); | 
|  | migrate_dead_tasks(cpu); | 
|  | task_rq_unlock(rq, &flags); | 
|  | migrate_nr_uninterruptible(rq); | 
|  | BUG_ON(rq->nr_running != 0); | 
|  |  | 
|  | /* No need to migrate the tasks: it was best-effort if | 
|  | * they didn't do lock_cpu_hotplug().  Just wake up | 
|  | * the requestors. */ | 
|  | spin_lock_irq(&rq->lock); | 
|  | while (!list_empty(&rq->migration_queue)) { | 
|  | migration_req_t *req; | 
|  | req = list_entry(rq->migration_queue.next, | 
|  | migration_req_t, list); | 
|  | BUG_ON(req->type != REQ_MOVE_TASK); | 
|  | list_del_init(&req->list); | 
|  | complete(&req->done); | 
|  | } | 
|  | spin_unlock_irq(&rq->lock); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | * happens before everything else. | 
|  | */ | 
|  | static struct notifier_block __devinitdata migration_notifier = { | 
|  | .notifier_call = migration_call, | 
|  | .priority = 10 | 
|  | }; | 
|  |  | 
|  | int __init migration_init(void) | 
|  | { | 
|  | void *cpu = (void *)(long)smp_processor_id(); | 
|  | /* Start one for boot CPU. */ | 
|  | migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
|  | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
|  | register_cpu_notifier(&migration_notifier); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define SCHED_DOMAIN_DEBUG | 
|  | #ifdef SCHED_DOMAIN_DEBUG | 
|  | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | int level = 0; | 
|  |  | 
|  | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
|  |  | 
|  | do { | 
|  | int i; | 
|  | char str[NR_CPUS]; | 
|  | struct sched_group *group = sd->groups; | 
|  | cpumask_t groupmask; | 
|  |  | 
|  | cpumask_scnprintf(str, NR_CPUS, sd->span); | 
|  | cpus_clear(groupmask); | 
|  |  | 
|  | printk(KERN_DEBUG); | 
|  | for (i = 0; i < level + 1; i++) | 
|  | printk(" "); | 
|  | printk("domain %d: ", level); | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) { | 
|  | printk("does not load-balance\n"); | 
|  | if (sd->parent) | 
|  | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | printk("span %s\n", str); | 
|  |  | 
|  | if (!cpu_isset(cpu, sd->span)) | 
|  | printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); | 
|  | if (!cpu_isset(cpu, group->cpumask)) | 
|  | printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); | 
|  |  | 
|  | printk(KERN_DEBUG); | 
|  | for (i = 0; i < level + 2; i++) | 
|  | printk(" "); | 
|  | printk("groups:"); | 
|  | do { | 
|  | if (!group) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: group is NULL\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!group->cpu_power) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: domain->cpu_power not set\n"); | 
|  | } | 
|  |  | 
|  | if (!cpus_weight(group->cpumask)) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: empty group\n"); | 
|  | } | 
|  |  | 
|  | if (cpus_intersects(groupmask, group->cpumask)) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
|  | } | 
|  |  | 
|  | cpus_or(groupmask, groupmask, group->cpumask); | 
|  |  | 
|  | cpumask_scnprintf(str, NR_CPUS, group->cpumask); | 
|  | printk(" %s", str); | 
|  |  | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  | printk("\n"); | 
|  |  | 
|  | if (!cpus_equal(sd->span, groupmask)) | 
|  | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
|  |  | 
|  | level++; | 
|  | sd = sd->parent; | 
|  |  | 
|  | if (sd) { | 
|  | if (!cpus_subset(groupmask, sd->span)) | 
|  | printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); | 
|  | } | 
|  |  | 
|  | } while (sd); | 
|  | } | 
|  | #else | 
|  | #define sched_domain_debug(sd, cpu) {} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must | 
|  | * hold the hotplug lock. | 
|  | */ | 
|  | void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | migration_req_t req; | 
|  | unsigned long flags; | 
|  | runqueue_t *rq = cpu_rq(cpu); | 
|  | int local = 1; | 
|  |  | 
|  | sched_domain_debug(sd, cpu); | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | if (cpu == smp_processor_id() || !cpu_online(cpu)) { | 
|  | rq->sd = sd; | 
|  | } else { | 
|  | init_completion(&req.done); | 
|  | req.type = REQ_SET_DOMAIN; | 
|  | req.sd = sd; | 
|  | list_add(&req.list, &rq->migration_queue); | 
|  | local = 0; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  |  | 
|  | if (!local) { | 
|  | wake_up_process(rq->migration_thread); | 
|  | wait_for_completion(&req.done); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* cpus with isolated domains */ | 
|  | cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE; | 
|  |  | 
|  | /* Setup the mask of cpus configured for isolated domains */ | 
|  | static int __init isolated_cpu_setup(char *str) | 
|  | { | 
|  | int ints[NR_CPUS], i; | 
|  |  | 
|  | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | cpus_clear(cpu_isolated_map); | 
|  | for (i = 1; i <= ints[0]; i++) | 
|  | if (ints[i] < NR_CPUS) | 
|  | cpu_set(ints[i], cpu_isolated_map); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup ("isolcpus=", isolated_cpu_setup); | 
|  |  | 
|  | /* | 
|  | * init_sched_build_groups takes an array of groups, the cpumask we wish | 
|  | * to span, and a pointer to a function which identifies what group a CPU | 
|  | * belongs to. The return value of group_fn must be a valid index into the | 
|  | * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we | 
|  | * keep track of groups covered with a cpumask_t). | 
|  | * | 
|  | * init_sched_build_groups will build a circular linked list of the groups | 
|  | * covered by the given span, and will set each group's ->cpumask correctly, | 
|  | * and ->cpu_power to 0. | 
|  | */ | 
|  | void __devinit init_sched_build_groups(struct sched_group groups[], | 
|  | cpumask_t span, int (*group_fn)(int cpu)) | 
|  | { | 
|  | struct sched_group *first = NULL, *last = NULL; | 
|  | cpumask_t covered = CPU_MASK_NONE; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, span) { | 
|  | int group = group_fn(i); | 
|  | struct sched_group *sg = &groups[group]; | 
|  | int j; | 
|  |  | 
|  | if (cpu_isset(i, covered)) | 
|  | continue; | 
|  |  | 
|  | sg->cpumask = CPU_MASK_NONE; | 
|  | sg->cpu_power = 0; | 
|  |  | 
|  | for_each_cpu_mask(j, span) { | 
|  | if (group_fn(j) != group) | 
|  | continue; | 
|  |  | 
|  | cpu_set(j, covered); | 
|  | cpu_set(j, sg->cpumask); | 
|  | } | 
|  | if (!first) | 
|  | first = sg; | 
|  | if (last) | 
|  | last->next = sg; | 
|  | last = sg; | 
|  | } | 
|  | last->next = first; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef ARCH_HAS_SCHED_DOMAIN | 
|  | extern void __devinit arch_init_sched_domains(void); | 
|  | extern void __devinit arch_destroy_sched_domains(void); | 
|  | #else | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
|  | static struct sched_group sched_group_cpus[NR_CPUS]; | 
|  | static int __devinit cpu_to_cpu_group(int cpu) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
|  | static struct sched_group sched_group_phys[NR_CPUS]; | 
|  | static int __devinit cpu_to_phys_group(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | return first_cpu(cpu_sibling_map[cpu]); | 
|  | #else | 
|  | return cpu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
|  | static struct sched_group sched_group_nodes[MAX_NUMNODES]; | 
|  | static int __devinit cpu_to_node_group(int cpu) | 
|  | { | 
|  | return cpu_to_node(cpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | 
|  | /* | 
|  | * The domains setup code relies on siblings not spanning | 
|  | * multiple nodes. Make sure the architecture has a proper | 
|  | * siblings map: | 
|  | */ | 
|  | static void check_sibling_maps(void) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | for_each_cpu_mask(j, cpu_sibling_map[i]) { | 
|  | if (cpu_to_node(i) != cpu_to_node(j)) { | 
|  | printk(KERN_INFO "warning: CPU %d siblings map " | 
|  | "to different node - isolating " | 
|  | "them.\n", i); | 
|  | cpu_sibling_map[i] = cpumask_of_cpu(i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up scheduler domains and groups.  Callers must hold the hotplug lock. | 
|  | */ | 
|  | static void __devinit arch_init_sched_domains(void) | 
|  | { | 
|  | int i; | 
|  | cpumask_t cpu_default_map; | 
|  |  | 
|  | #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA) | 
|  | check_sibling_maps(); | 
|  | #endif | 
|  | /* | 
|  | * Setup mask for cpus without special case scheduling requirements. | 
|  | * For now this just excludes isolated cpus, but could be used to | 
|  | * exclude other special cases in the future. | 
|  | */ | 
|  | cpus_complement(cpu_default_map, cpu_isolated_map); | 
|  | cpus_and(cpu_default_map, cpu_default_map, cpu_online_map); | 
|  |  | 
|  | /* | 
|  | * Set up domains. Isolated domains just stay on the dummy domain. | 
|  | */ | 
|  | for_each_cpu_mask(i, cpu_default_map) { | 
|  | int group; | 
|  | struct sched_domain *sd = NULL, *p; | 
|  | cpumask_t nodemask = node_to_cpumask(cpu_to_node(i)); | 
|  |  | 
|  | cpus_and(nodemask, nodemask, cpu_default_map); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | sd = &per_cpu(node_domains, i); | 
|  | group = cpu_to_node_group(i); | 
|  | *sd = SD_NODE_INIT; | 
|  | sd->span = cpu_default_map; | 
|  | sd->groups = &sched_group_nodes[group]; | 
|  | #endif | 
|  |  | 
|  | p = sd; | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | group = cpu_to_phys_group(i); | 
|  | *sd = SD_CPU_INIT; | 
|  | sd->span = nodemask; | 
|  | sd->parent = p; | 
|  | sd->groups = &sched_group_phys[group]; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | p = sd; | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | group = cpu_to_cpu_group(i); | 
|  | *sd = SD_SIBLING_INIT; | 
|  | sd->span = cpu_sibling_map[i]; | 
|  | cpus_and(sd->span, sd->span, cpu_default_map); | 
|  | sd->parent = p; | 
|  | sd->groups = &sched_group_cpus[group]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* Set up CPU (sibling) groups */ | 
|  | for_each_online_cpu(i) { | 
|  | cpumask_t this_sibling_map = cpu_sibling_map[i]; | 
|  | cpus_and(this_sibling_map, this_sibling_map, cpu_default_map); | 
|  | if (i != first_cpu(this_sibling_map)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(sched_group_cpus, this_sibling_map, | 
|  | &cpu_to_cpu_group); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Set up physical groups */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | cpumask_t nodemask = node_to_cpumask(i); | 
|  |  | 
|  | cpus_and(nodemask, nodemask, cpu_default_map); | 
|  | if (cpus_empty(nodemask)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(sched_group_phys, nodemask, | 
|  | &cpu_to_phys_group); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Set up node groups */ | 
|  | init_sched_build_groups(sched_group_nodes, cpu_default_map, | 
|  | &cpu_to_node_group); | 
|  | #endif | 
|  |  | 
|  | /* Calculate CPU power for physical packages and nodes */ | 
|  | for_each_cpu_mask(i, cpu_default_map) { | 
|  | int power; | 
|  | struct sched_domain *sd; | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | power = SCHED_LOAD_SCALE; | 
|  | sd->groups->cpu_power = power; | 
|  | #endif | 
|  |  | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * | 
|  | (cpus_weight(sd->groups->cpumask)-1) / 10; | 
|  | sd->groups->cpu_power = power; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (i == first_cpu(sd->groups->cpumask)) { | 
|  | /* Only add "power" once for each physical package. */ | 
|  | sd = &per_cpu(node_domains, i); | 
|  | sd->groups->cpu_power += power; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Attach the domains */ | 
|  | for_each_online_cpu(i) { | 
|  | struct sched_domain *sd; | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | #else | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | #endif | 
|  | cpu_attach_domain(sd, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void __devinit arch_destroy_sched_domains(void) | 
|  | { | 
|  | /* Do nothing: everything is statically allocated. */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* ARCH_HAS_SCHED_DOMAIN */ | 
|  |  | 
|  | /* | 
|  | * Initial dummy domain for early boot and for hotplug cpu. Being static, | 
|  | * it is initialized to zero, so all balancing flags are cleared which is | 
|  | * what we want. | 
|  | */ | 
|  | static struct sched_domain sched_domain_dummy; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | /* | 
|  | * Force a reinitialization of the sched domains hierarchy.  The domains | 
|  | * and groups cannot be updated in place without racing with the balancing | 
|  | * code, so we temporarily attach all running cpus to a "dummy" domain | 
|  | * which will prevent rebalancing while the sched domains are recalculated. | 
|  | */ | 
|  | static int update_sched_domains(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_DOWN_PREPARE: | 
|  | for_each_online_cpu(i) | 
|  | cpu_attach_domain(&sched_domain_dummy, i); | 
|  | arch_destroy_sched_domains(); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_ONLINE: | 
|  | case CPU_DEAD: | 
|  | /* | 
|  | * Fall through and re-initialise the domains. | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | /* The hotplug lock is already held by cpu_up/cpu_down */ | 
|  | arch_init_sched_domains(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | lock_cpu_hotplug(); | 
|  | arch_init_sched_domains(); | 
|  | unlock_cpu_hotplug(); | 
|  | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 
|  | hotcpu_notifier(update_sched_domains, 0); | 
|  | } | 
|  | #else | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int in_sched_functions(unsigned long addr) | 
|  | { | 
|  | /* Linker adds these: start and end of __sched functions */ | 
|  | extern char __sched_text_start[], __sched_text_end[]; | 
|  | return in_lock_functions(addr) || | 
|  | (addr >= (unsigned long)__sched_text_start | 
|  | && addr < (unsigned long)__sched_text_end); | 
|  | } | 
|  |  | 
|  | void __init sched_init(void) | 
|  | { | 
|  | runqueue_t *rq; | 
|  | int i, j, k; | 
|  |  | 
|  | for (i = 0; i < NR_CPUS; i++) { | 
|  | prio_array_t *array; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | spin_lock_init(&rq->lock); | 
|  | rq->active = rq->arrays; | 
|  | rq->expired = rq->arrays + 1; | 
|  | rq->best_expired_prio = MAX_PRIO; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | rq->sd = &sched_domain_dummy; | 
|  | rq->cpu_load = 0; | 
|  | rq->active_balance = 0; | 
|  | rq->push_cpu = 0; | 
|  | rq->migration_thread = NULL; | 
|  | INIT_LIST_HEAD(&rq->migration_queue); | 
|  | #endif | 
|  | atomic_set(&rq->nr_iowait, 0); | 
|  |  | 
|  | for (j = 0; j < 2; j++) { | 
|  | array = rq->arrays + j; | 
|  | for (k = 0; k < MAX_PRIO; k++) { | 
|  | INIT_LIST_HEAD(array->queue + k); | 
|  | __clear_bit(k, array->bitmap); | 
|  | } | 
|  | // delimiter for bitsearch | 
|  | __set_bit(MAX_PRIO, array->bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The boot idle thread does lazy MMU switching as well: | 
|  | */ | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | /* | 
|  | * Make us the idle thread. Technically, schedule() should not be | 
|  | * called from this thread, however somewhere below it might be, | 
|  | * but because we are the idle thread, we just pick up running again | 
|  | * when this runqueue becomes "idle". | 
|  | */ | 
|  | init_idle(current, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | void __might_sleep(char *file, int line) | 
|  | { | 
|  | #if defined(in_atomic) | 
|  | static unsigned long prev_jiffy;	/* ratelimiting */ | 
|  |  | 
|  | if ((in_atomic() || irqs_disabled()) && | 
|  | system_state == SYSTEM_RUNNING && !oops_in_progress) { | 
|  | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | return; | 
|  | prev_jiffy = jiffies; | 
|  | printk(KERN_ERR "Debug: sleeping function called from invalid" | 
|  | " context at %s:%d\n", file, line); | 
|  | printk("in_atomic():%d, irqs_disabled():%d\n", | 
|  | in_atomic(), irqs_disabled()); | 
|  | dump_stack(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__might_sleep); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | void normalize_rt_tasks(void) | 
|  | { | 
|  | struct task_struct *p; | 
|  | prio_array_t *array; | 
|  | unsigned long flags; | 
|  | runqueue_t *rq; | 
|  |  | 
|  | read_lock_irq(&tasklist_lock); | 
|  | for_each_process (p) { | 
|  | if (!rt_task(p)) | 
|  | continue; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  |  | 
|  | array = p->array; | 
|  | if (array) | 
|  | deactivate_task(p, task_rq(p)); | 
|  | __setscheduler(p, SCHED_NORMAL, 0); | 
|  | if (array) { | 
|  | __activate_task(p, task_rq(p)); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  |  | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  | read_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MAGIC_SYSRQ */ |