| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) Microsoft Corporation. |
| * |
| * Author: |
| * Jake Oshins <jakeo@microsoft.com> |
| * |
| * This driver acts as a paravirtual front-end for PCI Express root buses. |
| * When a PCI Express function (either an entire device or an SR-IOV |
| * Virtual Function) is being passed through to the VM, this driver exposes |
| * a new bus to the guest VM. This is modeled as a root PCI bus because |
| * no bridges are being exposed to the VM. In fact, with a "Generation 2" |
| * VM within Hyper-V, there may seem to be no PCI bus at all in the VM |
| * until a device as been exposed using this driver. |
| * |
| * Each root PCI bus has its own PCI domain, which is called "Segment" in |
| * the PCI Firmware Specifications. Thus while each device passed through |
| * to the VM using this front-end will appear at "device 0", the domain will |
| * be unique. Typically, each bus will have one PCI function on it, though |
| * this driver does support more than one. |
| * |
| * In order to map the interrupts from the device through to the guest VM, |
| * this driver also implements an IRQ Domain, which handles interrupts (either |
| * MSI or MSI-X) associated with the functions on the bus. As interrupts are |
| * set up, torn down, or reaffined, this driver communicates with the |
| * underlying hypervisor to adjust the mappings in the I/O MMU so that each |
| * interrupt will be delivered to the correct virtual processor at the right |
| * vector. This driver does not support level-triggered (line-based) |
| * interrupts, and will report that the Interrupt Line register in the |
| * function's configuration space is zero. |
| * |
| * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V |
| * facilities. For instance, the configuration space of a function exposed |
| * by Hyper-V is mapped into a single page of memory space, and the |
| * read and write handlers for config space must be aware of this mechanism. |
| * Similarly, device setup and teardown involves messages sent to and from |
| * the PCI back-end driver in Hyper-V. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/pci.h> |
| #include <linux/pci-ecam.h> |
| #include <linux/delay.h> |
| #include <linux/semaphore.h> |
| #include <linux/irq.h> |
| #include <linux/msi.h> |
| #include <linux/hyperv.h> |
| #include <linux/refcount.h> |
| #include <linux/irqdomain.h> |
| #include <linux/acpi.h> |
| #include <asm/mshyperv.h> |
| |
| /* |
| * Protocol versions. The low word is the minor version, the high word the |
| * major version. |
| */ |
| |
| #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) |
| #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) |
| #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) |
| |
| enum pci_protocol_version_t { |
| PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ |
| PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ |
| PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ |
| PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ |
| }; |
| |
| #define CPU_AFFINITY_ALL -1ULL |
| |
| /* |
| * Supported protocol versions in the order of probing - highest go |
| * first. |
| */ |
| static enum pci_protocol_version_t pci_protocol_versions[] = { |
| PCI_PROTOCOL_VERSION_1_4, |
| PCI_PROTOCOL_VERSION_1_3, |
| PCI_PROTOCOL_VERSION_1_2, |
| PCI_PROTOCOL_VERSION_1_1, |
| }; |
| |
| #define PCI_CONFIG_MMIO_LENGTH 0x2000 |
| #define CFG_PAGE_OFFSET 0x1000 |
| #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) |
| |
| #define MAX_SUPPORTED_MSI_MESSAGES 0x400 |
| |
| #define STATUS_REVISION_MISMATCH 0xC0000059 |
| |
| /* space for 32bit serial number as string */ |
| #define SLOT_NAME_SIZE 11 |
| |
| /* |
| * Size of requestor for VMbus; the value is based on the observation |
| * that having more than one request outstanding is 'rare', and so 64 |
| * should be generous in ensuring that we don't ever run out. |
| */ |
| #define HV_PCI_RQSTOR_SIZE 64 |
| |
| /* |
| * Message Types |
| */ |
| |
| enum pci_message_type { |
| /* |
| * Version 1.1 |
| */ |
| PCI_MESSAGE_BASE = 0x42490000, |
| PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, |
| PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, |
| PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, |
| PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, |
| PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, |
| PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, |
| PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, |
| PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, |
| PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, |
| PCI_EJECT = PCI_MESSAGE_BASE + 0xB, |
| PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, |
| PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, |
| PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, |
| PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, |
| PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, |
| PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, |
| PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, |
| PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, |
| PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, |
| PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, |
| PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, |
| PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, |
| PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ |
| PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, |
| PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, |
| PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, |
| PCI_MESSAGE_MAXIMUM |
| }; |
| |
| /* |
| * Structures defining the virtual PCI Express protocol. |
| */ |
| |
| union pci_version { |
| struct { |
| u16 minor_version; |
| u16 major_version; |
| } parts; |
| u32 version; |
| } __packed; |
| |
| /* |
| * Function numbers are 8-bits wide on Express, as interpreted through ARI, |
| * which is all this driver does. This representation is the one used in |
| * Windows, which is what is expected when sending this back and forth with |
| * the Hyper-V parent partition. |
| */ |
| union win_slot_encoding { |
| struct { |
| u32 dev:5; |
| u32 func:3; |
| u32 reserved:24; |
| } bits; |
| u32 slot; |
| } __packed; |
| |
| /* |
| * Pretty much as defined in the PCI Specifications. |
| */ |
| struct pci_function_description { |
| u16 v_id; /* vendor ID */ |
| u16 d_id; /* device ID */ |
| u8 rev; |
| u8 prog_intf; |
| u8 subclass; |
| u8 base_class; |
| u32 subsystem_id; |
| union win_slot_encoding win_slot; |
| u32 ser; /* serial number */ |
| } __packed; |
| |
| enum pci_device_description_flags { |
| HV_PCI_DEVICE_FLAG_NONE = 0x0, |
| HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, |
| }; |
| |
| struct pci_function_description2 { |
| u16 v_id; /* vendor ID */ |
| u16 d_id; /* device ID */ |
| u8 rev; |
| u8 prog_intf; |
| u8 subclass; |
| u8 base_class; |
| u32 subsystem_id; |
| union win_slot_encoding win_slot; |
| u32 ser; /* serial number */ |
| u32 flags; |
| u16 virtual_numa_node; |
| u16 reserved; |
| } __packed; |
| |
| /** |
| * struct hv_msi_desc |
| * @vector: IDT entry |
| * @delivery_mode: As defined in Intel's Programmer's |
| * Reference Manual, Volume 3, Chapter 8. |
| * @vector_count: Number of contiguous entries in the |
| * Interrupt Descriptor Table that are |
| * occupied by this Message-Signaled |
| * Interrupt. For "MSI", as first defined |
| * in PCI 2.2, this can be between 1 and |
| * 32. For "MSI-X," as first defined in PCI |
| * 3.0, this must be 1, as each MSI-X table |
| * entry would have its own descriptor. |
| * @reserved: Empty space |
| * @cpu_mask: All the target virtual processors. |
| */ |
| struct hv_msi_desc { |
| u8 vector; |
| u8 delivery_mode; |
| u16 vector_count; |
| u32 reserved; |
| u64 cpu_mask; |
| } __packed; |
| |
| /** |
| * struct hv_msi_desc2 - 1.2 version of hv_msi_desc |
| * @vector: IDT entry |
| * @delivery_mode: As defined in Intel's Programmer's |
| * Reference Manual, Volume 3, Chapter 8. |
| * @vector_count: Number of contiguous entries in the |
| * Interrupt Descriptor Table that are |
| * occupied by this Message-Signaled |
| * Interrupt. For "MSI", as first defined |
| * in PCI 2.2, this can be between 1 and |
| * 32. For "MSI-X," as first defined in PCI |
| * 3.0, this must be 1, as each MSI-X table |
| * entry would have its own descriptor. |
| * @processor_count: number of bits enabled in array. |
| * @processor_array: All the target virtual processors. |
| */ |
| struct hv_msi_desc2 { |
| u8 vector; |
| u8 delivery_mode; |
| u16 vector_count; |
| u16 processor_count; |
| u16 processor_array[32]; |
| } __packed; |
| |
| /* |
| * struct hv_msi_desc3 - 1.3 version of hv_msi_desc |
| * Everything is the same as in 'hv_msi_desc2' except that the size of the |
| * 'vector' field is larger to support bigger vector values. For ex: LPI |
| * vectors on ARM. |
| */ |
| struct hv_msi_desc3 { |
| u32 vector; |
| u8 delivery_mode; |
| u8 reserved; |
| u16 vector_count; |
| u16 processor_count; |
| u16 processor_array[32]; |
| } __packed; |
| |
| /** |
| * struct tran_int_desc |
| * @reserved: unused, padding |
| * @vector_count: same as in hv_msi_desc |
| * @data: This is the "data payload" value that is |
| * written by the device when it generates |
| * a message-signaled interrupt, either MSI |
| * or MSI-X. |
| * @address: This is the address to which the data |
| * payload is written on interrupt |
| * generation. |
| */ |
| struct tran_int_desc { |
| u16 reserved; |
| u16 vector_count; |
| u32 data; |
| u64 address; |
| } __packed; |
| |
| /* |
| * A generic message format for virtual PCI. |
| * Specific message formats are defined later in the file. |
| */ |
| |
| struct pci_message { |
| u32 type; |
| } __packed; |
| |
| struct pci_child_message { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| } __packed; |
| |
| struct pci_incoming_message { |
| struct vmpacket_descriptor hdr; |
| struct pci_message message_type; |
| } __packed; |
| |
| struct pci_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| } __packed; |
| |
| struct pci_packet { |
| void (*completion_func)(void *context, struct pci_response *resp, |
| int resp_packet_size); |
| void *compl_ctxt; |
| |
| struct pci_message message[]; |
| }; |
| |
| /* |
| * Specific message types supporting the PCI protocol. |
| */ |
| |
| /* |
| * Version negotiation message. Sent from the guest to the host. |
| * The guest is free to try different versions until the host |
| * accepts the version. |
| * |
| * pci_version: The protocol version requested. |
| * is_last_attempt: If TRUE, this is the last version guest will request. |
| * reservedz: Reserved field, set to zero. |
| */ |
| |
| struct pci_version_request { |
| struct pci_message message_type; |
| u32 protocol_version; |
| } __packed; |
| |
| /* |
| * Bus D0 Entry. This is sent from the guest to the host when the virtual |
| * bus (PCI Express port) is ready for action. |
| */ |
| |
| struct pci_bus_d0_entry { |
| struct pci_message message_type; |
| u32 reserved; |
| u64 mmio_base; |
| } __packed; |
| |
| struct pci_bus_relations { |
| struct pci_incoming_message incoming; |
| u32 device_count; |
| struct pci_function_description func[]; |
| } __packed; |
| |
| struct pci_bus_relations2 { |
| struct pci_incoming_message incoming; |
| u32 device_count; |
| struct pci_function_description2 func[]; |
| } __packed; |
| |
| struct pci_q_res_req_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| u32 probed_bar[PCI_STD_NUM_BARS]; |
| } __packed; |
| |
| struct pci_set_power { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u32 power_state; /* In Windows terms */ |
| u32 reserved; |
| } __packed; |
| |
| struct pci_set_power_response { |
| struct vmpacket_descriptor hdr; |
| s32 status; /* negative values are failures */ |
| union win_slot_encoding wslot; |
| u32 resultant_state; /* In Windows terms */ |
| u32 reserved; |
| } __packed; |
| |
| struct pci_resources_assigned { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u8 memory_range[0x14][6]; /* not used here */ |
| u32 msi_descriptors; |
| u32 reserved[4]; |
| } __packed; |
| |
| struct pci_resources_assigned2 { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u8 memory_range[0x14][6]; /* not used here */ |
| u32 msi_descriptor_count; |
| u8 reserved[70]; |
| } __packed; |
| |
| struct pci_create_interrupt { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct hv_msi_desc int_desc; |
| } __packed; |
| |
| struct pci_create_int_response { |
| struct pci_response response; |
| u32 reserved; |
| struct tran_int_desc int_desc; |
| } __packed; |
| |
| struct pci_create_interrupt2 { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct hv_msi_desc2 int_desc; |
| } __packed; |
| |
| struct pci_create_interrupt3 { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct hv_msi_desc3 int_desc; |
| } __packed; |
| |
| struct pci_delete_interrupt { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| struct tran_int_desc int_desc; |
| } __packed; |
| |
| /* |
| * Note: the VM must pass a valid block id, wslot and bytes_requested. |
| */ |
| struct pci_read_block { |
| struct pci_message message_type; |
| u32 block_id; |
| union win_slot_encoding wslot; |
| u32 bytes_requested; |
| } __packed; |
| |
| struct pci_read_block_response { |
| struct vmpacket_descriptor hdr; |
| u32 status; |
| u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; |
| } __packed; |
| |
| /* |
| * Note: the VM must pass a valid block id, wslot and byte_count. |
| */ |
| struct pci_write_block { |
| struct pci_message message_type; |
| u32 block_id; |
| union win_slot_encoding wslot; |
| u32 byte_count; |
| u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; |
| } __packed; |
| |
| struct pci_dev_inval_block { |
| struct pci_incoming_message incoming; |
| union win_slot_encoding wslot; |
| u64 block_mask; |
| } __packed; |
| |
| struct pci_dev_incoming { |
| struct pci_incoming_message incoming; |
| union win_slot_encoding wslot; |
| } __packed; |
| |
| struct pci_eject_response { |
| struct pci_message message_type; |
| union win_slot_encoding wslot; |
| u32 status; |
| } __packed; |
| |
| static int pci_ring_size = (4 * PAGE_SIZE); |
| |
| /* |
| * Driver specific state. |
| */ |
| |
| enum hv_pcibus_state { |
| hv_pcibus_init = 0, |
| hv_pcibus_probed, |
| hv_pcibus_installed, |
| hv_pcibus_removing, |
| hv_pcibus_maximum |
| }; |
| |
| struct hv_pcibus_device { |
| #ifdef CONFIG_X86 |
| struct pci_sysdata sysdata; |
| #elif defined(CONFIG_ARM64) |
| struct pci_config_window sysdata; |
| #endif |
| struct pci_host_bridge *bridge; |
| struct fwnode_handle *fwnode; |
| /* Protocol version negotiated with the host */ |
| enum pci_protocol_version_t protocol_version; |
| enum hv_pcibus_state state; |
| struct hv_device *hdev; |
| resource_size_t low_mmio_space; |
| resource_size_t high_mmio_space; |
| struct resource *mem_config; |
| struct resource *low_mmio_res; |
| struct resource *high_mmio_res; |
| struct completion *survey_event; |
| struct pci_bus *pci_bus; |
| spinlock_t config_lock; /* Avoid two threads writing index page */ |
| spinlock_t device_list_lock; /* Protect lists below */ |
| void __iomem *cfg_addr; |
| |
| struct list_head children; |
| struct list_head dr_list; |
| |
| struct msi_domain_info msi_info; |
| struct irq_domain *irq_domain; |
| |
| spinlock_t retarget_msi_interrupt_lock; |
| |
| struct workqueue_struct *wq; |
| |
| /* Highest slot of child device with resources allocated */ |
| int wslot_res_allocated; |
| |
| /* hypercall arg, must not cross page boundary */ |
| struct hv_retarget_device_interrupt retarget_msi_interrupt_params; |
| |
| /* |
| * Don't put anything here: retarget_msi_interrupt_params must be last |
| */ |
| }; |
| |
| /* |
| * Tracks "Device Relations" messages from the host, which must be both |
| * processed in order and deferred so that they don't run in the context |
| * of the incoming packet callback. |
| */ |
| struct hv_dr_work { |
| struct work_struct wrk; |
| struct hv_pcibus_device *bus; |
| }; |
| |
| struct hv_pcidev_description { |
| u16 v_id; /* vendor ID */ |
| u16 d_id; /* device ID */ |
| u8 rev; |
| u8 prog_intf; |
| u8 subclass; |
| u8 base_class; |
| u32 subsystem_id; |
| union win_slot_encoding win_slot; |
| u32 ser; /* serial number */ |
| u32 flags; |
| u16 virtual_numa_node; |
| }; |
| |
| struct hv_dr_state { |
| struct list_head list_entry; |
| u32 device_count; |
| struct hv_pcidev_description func[]; |
| }; |
| |
| enum hv_pcichild_state { |
| hv_pcichild_init = 0, |
| hv_pcichild_requirements, |
| hv_pcichild_resourced, |
| hv_pcichild_ejecting, |
| hv_pcichild_maximum |
| }; |
| |
| struct hv_pci_dev { |
| /* List protected by pci_rescan_remove_lock */ |
| struct list_head list_entry; |
| refcount_t refs; |
| enum hv_pcichild_state state; |
| struct pci_slot *pci_slot; |
| struct hv_pcidev_description desc; |
| bool reported_missing; |
| struct hv_pcibus_device *hbus; |
| struct work_struct wrk; |
| |
| void (*block_invalidate)(void *context, u64 block_mask); |
| void *invalidate_context; |
| |
| /* |
| * What would be observed if one wrote 0xFFFFFFFF to a BAR and then |
| * read it back, for each of the BAR offsets within config space. |
| */ |
| u32 probed_bar[PCI_STD_NUM_BARS]; |
| }; |
| |
| struct hv_pci_compl { |
| struct completion host_event; |
| s32 completion_status; |
| }; |
| |
| static void hv_pci_onchannelcallback(void *context); |
| |
| #ifdef CONFIG_X86 |
| #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED |
| #define FLOW_HANDLER handle_edge_irq |
| #define FLOW_NAME "edge" |
| |
| static int hv_pci_irqchip_init(void) |
| { |
| return 0; |
| } |
| |
| static struct irq_domain *hv_pci_get_root_domain(void) |
| { |
| return x86_vector_domain; |
| } |
| |
| static unsigned int hv_msi_get_int_vector(struct irq_data *data) |
| { |
| struct irq_cfg *cfg = irqd_cfg(data); |
| |
| return cfg->vector; |
| } |
| |
| #define hv_msi_prepare pci_msi_prepare |
| |
| /** |
| * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current |
| * affinity. |
| * @data: Describes the IRQ |
| * |
| * Build new a destination for the MSI and make a hypercall to |
| * update the Interrupt Redirection Table. "Device Logical ID" |
| * is built out of this PCI bus's instance GUID and the function |
| * number of the device. |
| */ |
| static void hv_arch_irq_unmask(struct irq_data *data) |
| { |
| struct msi_desc *msi_desc = irq_data_get_msi_desc(data); |
| struct hv_retarget_device_interrupt *params; |
| struct tran_int_desc *int_desc; |
| struct hv_pcibus_device *hbus; |
| const struct cpumask *dest; |
| cpumask_var_t tmp; |
| struct pci_bus *pbus; |
| struct pci_dev *pdev; |
| unsigned long flags; |
| u32 var_size = 0; |
| int cpu, nr_bank; |
| u64 res; |
| |
| dest = irq_data_get_effective_affinity_mask(data); |
| pdev = msi_desc_to_pci_dev(msi_desc); |
| pbus = pdev->bus; |
| hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); |
| int_desc = data->chip_data; |
| |
| spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); |
| |
| params = &hbus->retarget_msi_interrupt_params; |
| memset(params, 0, sizeof(*params)); |
| params->partition_id = HV_PARTITION_ID_SELF; |
| params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; |
| params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; |
| params->int_entry.msi_entry.data.as_uint32 = int_desc->data; |
| params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | |
| (hbus->hdev->dev_instance.b[4] << 16) | |
| (hbus->hdev->dev_instance.b[7] << 8) | |
| (hbus->hdev->dev_instance.b[6] & 0xf8) | |
| PCI_FUNC(pdev->devfn); |
| params->int_target.vector = hv_msi_get_int_vector(data); |
| |
| /* |
| * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by |
| * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a |
| * spurious interrupt storm. Not doing so does not seem to have a |
| * negative effect (yet?). |
| */ |
| |
| if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { |
| /* |
| * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the |
| * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides |
| * with >64 VP support. |
| * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED |
| * is not sufficient for this hypercall. |
| */ |
| params->int_target.flags |= |
| HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; |
| |
| if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { |
| res = 1; |
| goto exit_unlock; |
| } |
| |
| cpumask_and(tmp, dest, cpu_online_mask); |
| nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); |
| free_cpumask_var(tmp); |
| |
| if (nr_bank <= 0) { |
| res = 1; |
| goto exit_unlock; |
| } |
| |
| /* |
| * var-sized hypercall, var-size starts after vp_mask (thus |
| * vp_set.format does not count, but vp_set.valid_bank_mask |
| * does). |
| */ |
| var_size = 1 + nr_bank; |
| } else { |
| for_each_cpu_and(cpu, dest, cpu_online_mask) { |
| params->int_target.vp_mask |= |
| (1ULL << hv_cpu_number_to_vp_number(cpu)); |
| } |
| } |
| |
| res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), |
| params, NULL); |
| |
| exit_unlock: |
| spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); |
| |
| /* |
| * During hibernation, when a CPU is offlined, the kernel tries |
| * to move the interrupt to the remaining CPUs that haven't |
| * been offlined yet. In this case, the below hv_do_hypercall() |
| * always fails since the vmbus channel has been closed: |
| * refer to cpu_disable_common() -> fixup_irqs() -> |
| * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). |
| * |
| * Suppress the error message for hibernation because the failure |
| * during hibernation does not matter (at this time all the devices |
| * have been frozen). Note: the correct affinity info is still updated |
| * into the irqdata data structure in migrate_one_irq() -> |
| * irq_do_set_affinity(), so later when the VM resumes, |
| * hv_pci_restore_msi_state() is able to correctly restore the |
| * interrupt with the correct affinity. |
| */ |
| if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) |
| dev_err(&hbus->hdev->device, |
| "%s() failed: %#llx", __func__, res); |
| } |
| #elif defined(CONFIG_ARM64) |
| /* |
| * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit |
| * of room at the start to allow for SPIs to be specified through ACPI and |
| * starting with a power of two to satisfy power of 2 multi-MSI requirement. |
| */ |
| #define HV_PCI_MSI_SPI_START 64 |
| #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) |
| #define DELIVERY_MODE 0 |
| #define FLOW_HANDLER NULL |
| #define FLOW_NAME NULL |
| #define hv_msi_prepare NULL |
| |
| struct hv_pci_chip_data { |
| DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); |
| struct mutex map_lock; |
| }; |
| |
| /* Hyper-V vPCI MSI GIC IRQ domain */ |
| static struct irq_domain *hv_msi_gic_irq_domain; |
| |
| /* Hyper-V PCI MSI IRQ chip */ |
| static struct irq_chip hv_arm64_msi_irq_chip = { |
| .name = "MSI", |
| .irq_set_affinity = irq_chip_set_affinity_parent, |
| .irq_eoi = irq_chip_eoi_parent, |
| .irq_mask = irq_chip_mask_parent, |
| .irq_unmask = irq_chip_unmask_parent |
| }; |
| |
| static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) |
| { |
| return irqd->parent_data->hwirq; |
| } |
| |
| /* |
| * @nr_bm_irqs: Indicates the number of IRQs that were allocated from |
| * the bitmap. |
| * @nr_dom_irqs: Indicates the number of IRQs that were allocated from |
| * the parent domain. |
| */ |
| static void hv_pci_vec_irq_free(struct irq_domain *domain, |
| unsigned int virq, |
| unsigned int nr_bm_irqs, |
| unsigned int nr_dom_irqs) |
| { |
| struct hv_pci_chip_data *chip_data = domain->host_data; |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq); |
| int first = d->hwirq - HV_PCI_MSI_SPI_START; |
| int i; |
| |
| mutex_lock(&chip_data->map_lock); |
| bitmap_release_region(chip_data->spi_map, |
| first, |
| get_count_order(nr_bm_irqs)); |
| mutex_unlock(&chip_data->map_lock); |
| for (i = 0; i < nr_dom_irqs; i++) { |
| if (i) |
| d = irq_domain_get_irq_data(domain, virq + i); |
| irq_domain_reset_irq_data(d); |
| } |
| |
| irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); |
| } |
| |
| static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, |
| unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); |
| } |
| |
| static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, |
| unsigned int nr_irqs, |
| irq_hw_number_t *hwirq) |
| { |
| struct hv_pci_chip_data *chip_data = domain->host_data; |
| int index; |
| |
| /* Find and allocate region from the SPI bitmap */ |
| mutex_lock(&chip_data->map_lock); |
| index = bitmap_find_free_region(chip_data->spi_map, |
| HV_PCI_MSI_SPI_NR, |
| get_count_order(nr_irqs)); |
| mutex_unlock(&chip_data->map_lock); |
| if (index < 0) |
| return -ENOSPC; |
| |
| *hwirq = index + HV_PCI_MSI_SPI_START; |
| |
| return 0; |
| } |
| |
| static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, |
| unsigned int virq, |
| irq_hw_number_t hwirq) |
| { |
| struct irq_fwspec fwspec; |
| struct irq_data *d; |
| int ret; |
| |
| fwspec.fwnode = domain->parent->fwnode; |
| fwspec.param_count = 2; |
| fwspec.param[0] = hwirq; |
| fwspec.param[1] = IRQ_TYPE_EDGE_RISING; |
| |
| ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); |
| if (ret) |
| return ret; |
| |
| /* |
| * Since the interrupt specifier is not coming from ACPI or DT, the |
| * trigger type will need to be set explicitly. Otherwise, it will be |
| * set to whatever is in the GIC configuration. |
| */ |
| d = irq_domain_get_irq_data(domain->parent, virq); |
| |
| return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); |
| } |
| |
| static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, |
| unsigned int virq, unsigned int nr_irqs, |
| void *args) |
| { |
| irq_hw_number_t hwirq; |
| unsigned int i; |
| int ret; |
| |
| ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, |
| hwirq + i); |
| if (ret) { |
| hv_pci_vec_irq_free(domain, virq, nr_irqs, i); |
| return ret; |
| } |
| |
| irq_domain_set_hwirq_and_chip(domain, virq + i, |
| hwirq + i, |
| &hv_arm64_msi_irq_chip, |
| domain->host_data); |
| pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Pick the first cpu as the irq affinity that can be temporarily used for |
| * composing MSI from the hypervisor. GIC will eventually set the right |
| * affinity for the irq and the 'unmask' will retarget the interrupt to that |
| * cpu. |
| */ |
| static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, |
| struct irq_data *irqd, bool reserve) |
| { |
| int cpu = cpumask_first(cpu_present_mask); |
| |
| irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops hv_pci_domain_ops = { |
| .alloc = hv_pci_vec_irq_domain_alloc, |
| .free = hv_pci_vec_irq_domain_free, |
| .activate = hv_pci_vec_irq_domain_activate, |
| }; |
| |
| static int hv_pci_irqchip_init(void) |
| { |
| static struct hv_pci_chip_data *chip_data; |
| struct fwnode_handle *fn = NULL; |
| int ret = -ENOMEM; |
| |
| chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); |
| if (!chip_data) |
| return ret; |
| |
| mutex_init(&chip_data->map_lock); |
| fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); |
| if (!fn) |
| goto free_chip; |
| |
| /* |
| * IRQ domain once enabled, should not be removed since there is no |
| * way to ensure that all the corresponding devices are also gone and |
| * no interrupts will be generated. |
| */ |
| hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, |
| fn, &hv_pci_domain_ops, |
| chip_data); |
| |
| if (!hv_msi_gic_irq_domain) { |
| pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); |
| goto free_chip; |
| } |
| |
| return 0; |
| |
| free_chip: |
| kfree(chip_data); |
| if (fn) |
| irq_domain_free_fwnode(fn); |
| |
| return ret; |
| } |
| |
| static struct irq_domain *hv_pci_get_root_domain(void) |
| { |
| return hv_msi_gic_irq_domain; |
| } |
| |
| /* |
| * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD |
| * registers which Hyper-V already supports, so no hypercall needed. |
| */ |
| static void hv_arch_irq_unmask(struct irq_data *data) { } |
| #endif /* CONFIG_ARM64 */ |
| |
| /** |
| * hv_pci_generic_compl() - Invoked for a completion packet |
| * @context: Set up by the sender of the packet. |
| * @resp: The response packet |
| * @resp_packet_size: Size in bytes of the packet |
| * |
| * This function is used to trigger an event and report status |
| * for any message for which the completion packet contains a |
| * status and nothing else. |
| */ |
| static void hv_pci_generic_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct hv_pci_compl *comp_pkt = context; |
| |
| comp_pkt->completion_status = resp->status; |
| complete(&comp_pkt->host_event); |
| } |
| |
| static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, |
| u32 wslot); |
| |
| static void get_pcichild(struct hv_pci_dev *hpdev) |
| { |
| refcount_inc(&hpdev->refs); |
| } |
| |
| static void put_pcichild(struct hv_pci_dev *hpdev) |
| { |
| if (refcount_dec_and_test(&hpdev->refs)) |
| kfree(hpdev); |
| } |
| |
| /* |
| * There is no good way to get notified from vmbus_onoffer_rescind(), |
| * so let's use polling here, since this is not a hot path. |
| */ |
| static int wait_for_response(struct hv_device *hdev, |
| struct completion *comp) |
| { |
| while (true) { |
| if (hdev->channel->rescind) { |
| dev_warn_once(&hdev->device, "The device is gone.\n"); |
| return -ENODEV; |
| } |
| |
| if (wait_for_completion_timeout(comp, HZ / 10)) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * devfn_to_wslot() - Convert from Linux PCI slot to Windows |
| * @devfn: The Linux representation of PCI slot |
| * |
| * Windows uses a slightly different representation of PCI slot. |
| * |
| * Return: The Windows representation |
| */ |
| static u32 devfn_to_wslot(int devfn) |
| { |
| union win_slot_encoding wslot; |
| |
| wslot.slot = 0; |
| wslot.bits.dev = PCI_SLOT(devfn); |
| wslot.bits.func = PCI_FUNC(devfn); |
| |
| return wslot.slot; |
| } |
| |
| /** |
| * wslot_to_devfn() - Convert from Windows PCI slot to Linux |
| * @wslot: The Windows representation of PCI slot |
| * |
| * Windows uses a slightly different representation of PCI slot. |
| * |
| * Return: The Linux representation |
| */ |
| static int wslot_to_devfn(u32 wslot) |
| { |
| union win_slot_encoding slot_no; |
| |
| slot_no.slot = wslot; |
| return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); |
| } |
| |
| /* |
| * PCI Configuration Space for these root PCI buses is implemented as a pair |
| * of pages in memory-mapped I/O space. Writing to the first page chooses |
| * the PCI function being written or read. Once the first page has been |
| * written to, the following page maps in the entire configuration space of |
| * the function. |
| */ |
| |
| /** |
| * _hv_pcifront_read_config() - Internal PCI config read |
| * @hpdev: The PCI driver's representation of the device |
| * @where: Offset within config space |
| * @size: Size of the transfer |
| * @val: Pointer to the buffer receiving the data |
| */ |
| static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, |
| int size, u32 *val) |
| { |
| unsigned long flags; |
| void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; |
| |
| /* |
| * If the attempt is to read the IDs or the ROM BAR, simulate that. |
| */ |
| if (where + size <= PCI_COMMAND) { |
| memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); |
| } else if (where >= PCI_CLASS_REVISION && where + size <= |
| PCI_CACHE_LINE_SIZE) { |
| memcpy(val, ((u8 *)&hpdev->desc.rev) + where - |
| PCI_CLASS_REVISION, size); |
| } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= |
| PCI_ROM_ADDRESS) { |
| memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - |
| PCI_SUBSYSTEM_VENDOR_ID, size); |
| } else if (where >= PCI_ROM_ADDRESS && where + size <= |
| PCI_CAPABILITY_LIST) { |
| /* ROM BARs are unimplemented */ |
| *val = 0; |
| } else if (where >= PCI_INTERRUPT_LINE && where + size <= |
| PCI_INTERRUPT_PIN) { |
| /* |
| * Interrupt Line and Interrupt PIN are hard-wired to zero |
| * because this front-end only supports message-signaled |
| * interrupts. |
| */ |
| *val = 0; |
| } else if (where + size <= CFG_PAGE_SIZE) { |
| spin_lock_irqsave(&hpdev->hbus->config_lock, flags); |
| /* Choose the function to be read. (See comment above) */ |
| writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); |
| /* Make sure the function was chosen before we start reading. */ |
| mb(); |
| /* Read from that function's config space. */ |
| switch (size) { |
| case 1: |
| *val = readb(addr); |
| break; |
| case 2: |
| *val = readw(addr); |
| break; |
| default: |
| *val = readl(addr); |
| break; |
| } |
| /* |
| * Make sure the read was done before we release the spinlock |
| * allowing consecutive reads/writes. |
| */ |
| mb(); |
| spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); |
| } else { |
| dev_err(&hpdev->hbus->hdev->device, |
| "Attempt to read beyond a function's config space.\n"); |
| } |
| } |
| |
| static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) |
| { |
| u16 ret; |
| unsigned long flags; |
| void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + |
| PCI_VENDOR_ID; |
| |
| spin_lock_irqsave(&hpdev->hbus->config_lock, flags); |
| |
| /* Choose the function to be read. (See comment above) */ |
| writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); |
| /* Make sure the function was chosen before we start reading. */ |
| mb(); |
| /* Read from that function's config space. */ |
| ret = readw(addr); |
| /* |
| * mb() is not required here, because the spin_unlock_irqrestore() |
| * is a barrier. |
| */ |
| |
| spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * _hv_pcifront_write_config() - Internal PCI config write |
| * @hpdev: The PCI driver's representation of the device |
| * @where: Offset within config space |
| * @size: Size of the transfer |
| * @val: The data being transferred |
| */ |
| static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, |
| int size, u32 val) |
| { |
| unsigned long flags; |
| void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; |
| |
| if (where >= PCI_SUBSYSTEM_VENDOR_ID && |
| where + size <= PCI_CAPABILITY_LIST) { |
| /* SSIDs and ROM BARs are read-only */ |
| } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { |
| spin_lock_irqsave(&hpdev->hbus->config_lock, flags); |
| /* Choose the function to be written. (See comment above) */ |
| writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); |
| /* Make sure the function was chosen before we start writing. */ |
| wmb(); |
| /* Write to that function's config space. */ |
| switch (size) { |
| case 1: |
| writeb(val, addr); |
| break; |
| case 2: |
| writew(val, addr); |
| break; |
| default: |
| writel(val, addr); |
| break; |
| } |
| /* |
| * Make sure the write was done before we release the spinlock |
| * allowing consecutive reads/writes. |
| */ |
| mb(); |
| spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); |
| } else { |
| dev_err(&hpdev->hbus->hdev->device, |
| "Attempt to write beyond a function's config space.\n"); |
| } |
| } |
| |
| /** |
| * hv_pcifront_read_config() - Read configuration space |
| * @bus: PCI Bus structure |
| * @devfn: Device/function |
| * @where: Offset from base |
| * @size: Byte/word/dword |
| * @val: Value to be read |
| * |
| * Return: PCIBIOS_SUCCESSFUL on success |
| * PCIBIOS_DEVICE_NOT_FOUND on failure |
| */ |
| static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *val) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(bus->sysdata, struct hv_pcibus_device, sysdata); |
| struct hv_pci_dev *hpdev; |
| |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); |
| if (!hpdev) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| _hv_pcifront_read_config(hpdev, where, size, val); |
| |
| put_pcichild(hpdev); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| /** |
| * hv_pcifront_write_config() - Write configuration space |
| * @bus: PCI Bus structure |
| * @devfn: Device/function |
| * @where: Offset from base |
| * @size: Byte/word/dword |
| * @val: Value to be written to device |
| * |
| * Return: PCIBIOS_SUCCESSFUL on success |
| * PCIBIOS_DEVICE_NOT_FOUND on failure |
| */ |
| static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 val) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(bus->sysdata, struct hv_pcibus_device, sysdata); |
| struct hv_pci_dev *hpdev; |
| |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); |
| if (!hpdev) |
| return PCIBIOS_DEVICE_NOT_FOUND; |
| |
| _hv_pcifront_write_config(hpdev, where, size, val); |
| |
| put_pcichild(hpdev); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| /* PCIe operations */ |
| static struct pci_ops hv_pcifront_ops = { |
| .read = hv_pcifront_read_config, |
| .write = hv_pcifront_write_config, |
| }; |
| |
| /* |
| * Paravirtual backchannel |
| * |
| * Hyper-V SR-IOV provides a backchannel mechanism in software for |
| * communication between a VF driver and a PF driver. These |
| * "configuration blocks" are similar in concept to PCI configuration space, |
| * but instead of doing reads and writes in 32-bit chunks through a very slow |
| * path, packets of up to 128 bytes can be sent or received asynchronously. |
| * |
| * Nearly every SR-IOV device contains just such a communications channel in |
| * hardware, so using this one in software is usually optional. Using the |
| * software channel, however, allows driver implementers to leverage software |
| * tools that fuzz the communications channel looking for vulnerabilities. |
| * |
| * The usage model for these packets puts the responsibility for reading or |
| * writing on the VF driver. The VF driver sends a read or a write packet, |
| * indicating which "block" is being referred to by number. |
| * |
| * If the PF driver wishes to initiate communication, it can "invalidate" one or |
| * more of the first 64 blocks. This invalidation is delivered via a callback |
| * supplied by the VF driver by this driver. |
| * |
| * No protocol is implied, except that supplied by the PF and VF drivers. |
| */ |
| |
| struct hv_read_config_compl { |
| struct hv_pci_compl comp_pkt; |
| void *buf; |
| unsigned int len; |
| unsigned int bytes_returned; |
| }; |
| |
| /** |
| * hv_pci_read_config_compl() - Invoked when a response packet |
| * for a read config block operation arrives. |
| * @context: Identifies the read config operation |
| * @resp: The response packet itself |
| * @resp_packet_size: Size in bytes of the response packet |
| */ |
| static void hv_pci_read_config_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct hv_read_config_compl *comp = context; |
| struct pci_read_block_response *read_resp = |
| (struct pci_read_block_response *)resp; |
| unsigned int data_len, hdr_len; |
| |
| hdr_len = offsetof(struct pci_read_block_response, bytes); |
| if (resp_packet_size < hdr_len) { |
| comp->comp_pkt.completion_status = -1; |
| goto out; |
| } |
| |
| data_len = resp_packet_size - hdr_len; |
| if (data_len > 0 && read_resp->status == 0) { |
| comp->bytes_returned = min(comp->len, data_len); |
| memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); |
| } else { |
| comp->bytes_returned = 0; |
| } |
| |
| comp->comp_pkt.completion_status = read_resp->status; |
| out: |
| complete(&comp->comp_pkt.host_event); |
| } |
| |
| /** |
| * hv_read_config_block() - Sends a read config block request to |
| * the back-end driver running in the Hyper-V parent partition. |
| * @pdev: The PCI driver's representation for this device. |
| * @buf: Buffer into which the config block will be copied. |
| * @len: Size in bytes of buf. |
| * @block_id: Identifies the config block which has been requested. |
| * @bytes_returned: Size which came back from the back-end driver. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_read_config_block(struct pci_dev *pdev, void *buf, |
| unsigned int len, unsigned int block_id, |
| unsigned int *bytes_returned) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(pdev->bus->sysdata, struct hv_pcibus_device, |
| sysdata); |
| struct { |
| struct pci_packet pkt; |
| char buf[sizeof(struct pci_read_block)]; |
| } pkt; |
| struct hv_read_config_compl comp_pkt; |
| struct pci_read_block *read_blk; |
| int ret; |
| |
| if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) |
| return -EINVAL; |
| |
| init_completion(&comp_pkt.comp_pkt.host_event); |
| comp_pkt.buf = buf; |
| comp_pkt.len = len; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.pkt.completion_func = hv_pci_read_config_compl; |
| pkt.pkt.compl_ctxt = &comp_pkt; |
| read_blk = (struct pci_read_block *)&pkt.pkt.message; |
| read_blk->message_type.type = PCI_READ_BLOCK; |
| read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); |
| read_blk->block_id = block_id; |
| read_blk->bytes_requested = len; |
| |
| ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, |
| sizeof(*read_blk), (unsigned long)&pkt.pkt, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| return ret; |
| |
| ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); |
| if (ret) |
| return ret; |
| |
| if (comp_pkt.comp_pkt.completion_status != 0 || |
| comp_pkt.bytes_returned == 0) { |
| dev_err(&hbus->hdev->device, |
| "Read Config Block failed: 0x%x, bytes_returned=%d\n", |
| comp_pkt.comp_pkt.completion_status, |
| comp_pkt.bytes_returned); |
| return -EIO; |
| } |
| |
| *bytes_returned = comp_pkt.bytes_returned; |
| return 0; |
| } |
| |
| /** |
| * hv_pci_write_config_compl() - Invoked when a response packet for a write |
| * config block operation arrives. |
| * @context: Identifies the write config operation |
| * @resp: The response packet itself |
| * @resp_packet_size: Size in bytes of the response packet |
| */ |
| static void hv_pci_write_config_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct hv_pci_compl *comp_pkt = context; |
| |
| comp_pkt->completion_status = resp->status; |
| complete(&comp_pkt->host_event); |
| } |
| |
| /** |
| * hv_write_config_block() - Sends a write config block request to the |
| * back-end driver running in the Hyper-V parent partition. |
| * @pdev: The PCI driver's representation for this device. |
| * @buf: Buffer from which the config block will be copied. |
| * @len: Size in bytes of buf. |
| * @block_id: Identifies the config block which is being written. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_write_config_block(struct pci_dev *pdev, void *buf, |
| unsigned int len, unsigned int block_id) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(pdev->bus->sysdata, struct hv_pcibus_device, |
| sysdata); |
| struct { |
| struct pci_packet pkt; |
| char buf[sizeof(struct pci_write_block)]; |
| u32 reserved; |
| } pkt; |
| struct hv_pci_compl comp_pkt; |
| struct pci_write_block *write_blk; |
| u32 pkt_size; |
| int ret; |
| |
| if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) |
| return -EINVAL; |
| |
| init_completion(&comp_pkt.host_event); |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.pkt.completion_func = hv_pci_write_config_compl; |
| pkt.pkt.compl_ctxt = &comp_pkt; |
| write_blk = (struct pci_write_block *)&pkt.pkt.message; |
| write_blk->message_type.type = PCI_WRITE_BLOCK; |
| write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); |
| write_blk->block_id = block_id; |
| write_blk->byte_count = len; |
| memcpy(write_blk->bytes, buf, len); |
| pkt_size = offsetof(struct pci_write_block, bytes) + len; |
| /* |
| * This quirk is required on some hosts shipped around 2018, because |
| * these hosts don't check the pkt_size correctly (new hosts have been |
| * fixed since early 2019). The quirk is also safe on very old hosts |
| * and new hosts, because, on them, what really matters is the length |
| * specified in write_blk->byte_count. |
| */ |
| pkt_size += sizeof(pkt.reserved); |
| |
| ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, |
| (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| return ret; |
| |
| ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); |
| if (ret) |
| return ret; |
| |
| if (comp_pkt.completion_status != 0) { |
| dev_err(&hbus->hdev->device, |
| "Write Config Block failed: 0x%x\n", |
| comp_pkt.completion_status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hv_register_block_invalidate() - Invoked when a config block invalidation |
| * arrives from the back-end driver. |
| * @pdev: The PCI driver's representation for this device. |
| * @context: Identifies the device. |
| * @block_invalidate: Identifies all of the blocks being invalidated. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, |
| void (*block_invalidate)(void *context, |
| u64 block_mask)) |
| { |
| struct hv_pcibus_device *hbus = |
| container_of(pdev->bus->sysdata, struct hv_pcibus_device, |
| sysdata); |
| struct hv_pci_dev *hpdev; |
| |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); |
| if (!hpdev) |
| return -ENODEV; |
| |
| hpdev->block_invalidate = block_invalidate; |
| hpdev->invalidate_context = context; |
| |
| put_pcichild(hpdev); |
| return 0; |
| |
| } |
| |
| /* Interrupt management hooks */ |
| static void hv_int_desc_free(struct hv_pci_dev *hpdev, |
| struct tran_int_desc *int_desc) |
| { |
| struct pci_delete_interrupt *int_pkt; |
| struct { |
| struct pci_packet pkt; |
| u8 buffer[sizeof(struct pci_delete_interrupt)]; |
| } ctxt; |
| |
| if (!int_desc->vector_count) { |
| kfree(int_desc); |
| return; |
| } |
| memset(&ctxt, 0, sizeof(ctxt)); |
| int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; |
| int_pkt->message_type.type = |
| PCI_DELETE_INTERRUPT_MESSAGE; |
| int_pkt->wslot.slot = hpdev->desc.win_slot.slot; |
| int_pkt->int_desc = *int_desc; |
| vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), |
| 0, VM_PKT_DATA_INBAND, 0); |
| kfree(int_desc); |
| } |
| |
| /** |
| * hv_msi_free() - Free the MSI. |
| * @domain: The interrupt domain pointer |
| * @info: Extra MSI-related context |
| * @irq: Identifies the IRQ. |
| * |
| * The Hyper-V parent partition and hypervisor are tracking the |
| * messages that are in use, keeping the interrupt redirection |
| * table up to date. This callback sends a message that frees |
| * the IRT entry and related tracking nonsense. |
| */ |
| static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, |
| unsigned int irq) |
| { |
| struct hv_pcibus_device *hbus; |
| struct hv_pci_dev *hpdev; |
| struct pci_dev *pdev; |
| struct tran_int_desc *int_desc; |
| struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); |
| struct msi_desc *msi = irq_data_get_msi_desc(irq_data); |
| |
| pdev = msi_desc_to_pci_dev(msi); |
| hbus = info->data; |
| int_desc = irq_data_get_irq_chip_data(irq_data); |
| if (!int_desc) |
| return; |
| |
| irq_data->chip_data = NULL; |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); |
| if (!hpdev) { |
| kfree(int_desc); |
| return; |
| } |
| |
| hv_int_desc_free(hpdev, int_desc); |
| put_pcichild(hpdev); |
| } |
| |
| static void hv_irq_mask(struct irq_data *data) |
| { |
| pci_msi_mask_irq(data); |
| if (data->parent_data->chip->irq_mask) |
| irq_chip_mask_parent(data); |
| } |
| |
| static void hv_irq_unmask(struct irq_data *data) |
| { |
| hv_arch_irq_unmask(data); |
| |
| if (data->parent_data->chip->irq_unmask) |
| irq_chip_unmask_parent(data); |
| pci_msi_unmask_irq(data); |
| } |
| |
| struct compose_comp_ctxt { |
| struct hv_pci_compl comp_pkt; |
| struct tran_int_desc int_desc; |
| }; |
| |
| static void hv_pci_compose_compl(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct compose_comp_ctxt *comp_pkt = context; |
| struct pci_create_int_response *int_resp = |
| (struct pci_create_int_response *)resp; |
| |
| if (resp_packet_size < sizeof(*int_resp)) { |
| comp_pkt->comp_pkt.completion_status = -1; |
| goto out; |
| } |
| comp_pkt->comp_pkt.completion_status = resp->status; |
| comp_pkt->int_desc = int_resp->int_desc; |
| out: |
| complete(&comp_pkt->comp_pkt.host_event); |
| } |
| |
| static u32 hv_compose_msi_req_v1( |
| struct pci_create_interrupt *int_pkt, |
| u32 slot, u8 vector, u16 vector_count) |
| { |
| int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; |
| int_pkt->wslot.slot = slot; |
| int_pkt->int_desc.vector = vector; |
| int_pkt->int_desc.vector_count = vector_count; |
| int_pkt->int_desc.delivery_mode = DELIVERY_MODE; |
| |
| /* |
| * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in |
| * hv_irq_unmask(). |
| */ |
| int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; |
| |
| return sizeof(*int_pkt); |
| } |
| |
| /* |
| * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and |
| * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be |
| * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V |
| * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is |
| * not irrelevant because Hyper-V chooses the physical CPU to handle the |
| * interrupts based on the vCPU specified in message sent to the vPCI VSP in |
| * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, |
| * but assigning too many vPCI device interrupts to the same pCPU can cause a |
| * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V |
| * to spread out the pCPUs that it selects. |
| * |
| * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() |
| * to always return the same dummy vCPU, because a second call to |
| * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a |
| * new pCPU for the interrupt. But for the multi-MSI case, the second call to |
| * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the |
| * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that |
| * the pCPUs are spread out. All interrupts for a multi-MSI device end up using |
| * the same pCPU, even though the vCPUs will be spread out by later calls |
| * to hv_irq_unmask(), but that is the best we can do now. |
| * |
| * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* |
| * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an |
| * enhancement is planned for a future version. With that enhancement, the |
| * dummy vCPU selection won't matter, and interrupts for the same multi-MSI |
| * device will be spread across multiple pCPUs. |
| */ |
| |
| /* |
| * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten |
| * by subsequent retarget in hv_irq_unmask(). |
| */ |
| static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) |
| { |
| return cpumask_first_and(affinity, cpu_online_mask); |
| } |
| |
| /* |
| * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. |
| */ |
| static int hv_compose_multi_msi_req_get_cpu(void) |
| { |
| static DEFINE_SPINLOCK(multi_msi_cpu_lock); |
| |
| /* -1 means starting with CPU 0 */ |
| static int cpu_next = -1; |
| |
| unsigned long flags; |
| int cpu; |
| |
| spin_lock_irqsave(&multi_msi_cpu_lock, flags); |
| |
| cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, |
| false); |
| cpu = cpu_next; |
| |
| spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); |
| |
| return cpu; |
| } |
| |
| static u32 hv_compose_msi_req_v2( |
| struct pci_create_interrupt2 *int_pkt, int cpu, |
| u32 slot, u8 vector, u16 vector_count) |
| { |
| int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; |
| int_pkt->wslot.slot = slot; |
| int_pkt->int_desc.vector = vector; |
| int_pkt->int_desc.vector_count = vector_count; |
| int_pkt->int_desc.delivery_mode = DELIVERY_MODE; |
| int_pkt->int_desc.processor_array[0] = |
| hv_cpu_number_to_vp_number(cpu); |
| int_pkt->int_desc.processor_count = 1; |
| |
| return sizeof(*int_pkt); |
| } |
| |
| static u32 hv_compose_msi_req_v3( |
| struct pci_create_interrupt3 *int_pkt, int cpu, |
| u32 slot, u32 vector, u16 vector_count) |
| { |
| int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; |
| int_pkt->wslot.slot = slot; |
| int_pkt->int_desc.vector = vector; |
| int_pkt->int_desc.reserved = 0; |
| int_pkt->int_desc.vector_count = vector_count; |
| int_pkt->int_desc.delivery_mode = DELIVERY_MODE; |
| int_pkt->int_desc.processor_array[0] = |
| hv_cpu_number_to_vp_number(cpu); |
| int_pkt->int_desc.processor_count = 1; |
| |
| return sizeof(*int_pkt); |
| } |
| |
| /** |
| * hv_compose_msi_msg() - Supplies a valid MSI address/data |
| * @data: Everything about this MSI |
| * @msg: Buffer that is filled in by this function |
| * |
| * This function unpacks the IRQ looking for target CPU set, IDT |
| * vector and mode and sends a message to the parent partition |
| * asking for a mapping for that tuple in this partition. The |
| * response supplies a data value and address to which that data |
| * should be written to trigger that interrupt. |
| */ |
| static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) |
| { |
| struct hv_pcibus_device *hbus; |
| struct vmbus_channel *channel; |
| struct hv_pci_dev *hpdev; |
| struct pci_bus *pbus; |
| struct pci_dev *pdev; |
| const struct cpumask *dest; |
| struct compose_comp_ctxt comp; |
| struct tran_int_desc *int_desc; |
| struct msi_desc *msi_desc; |
| /* |
| * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 |
| * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. |
| */ |
| u16 vector_count; |
| u32 vector; |
| struct { |
| struct pci_packet pci_pkt; |
| union { |
| struct pci_create_interrupt v1; |
| struct pci_create_interrupt2 v2; |
| struct pci_create_interrupt3 v3; |
| } int_pkts; |
| } __packed ctxt; |
| bool multi_msi; |
| u64 trans_id; |
| u32 size; |
| int ret; |
| int cpu; |
| |
| msi_desc = irq_data_get_msi_desc(data); |
| multi_msi = !msi_desc->pci.msi_attrib.is_msix && |
| msi_desc->nvec_used > 1; |
| |
| /* Reuse the previous allocation */ |
| if (data->chip_data && multi_msi) { |
| int_desc = data->chip_data; |
| msg->address_hi = int_desc->address >> 32; |
| msg->address_lo = int_desc->address & 0xffffffff; |
| msg->data = int_desc->data; |
| return; |
| } |
| |
| pdev = msi_desc_to_pci_dev(msi_desc); |
| dest = irq_data_get_effective_affinity_mask(data); |
| pbus = pdev->bus; |
| hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); |
| channel = hbus->hdev->channel; |
| hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); |
| if (!hpdev) |
| goto return_null_message; |
| |
| /* Free any previous message that might have already been composed. */ |
| if (data->chip_data && !multi_msi) { |
| int_desc = data->chip_data; |
| data->chip_data = NULL; |
| hv_int_desc_free(hpdev, int_desc); |
| } |
| |
| int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); |
| if (!int_desc) |
| goto drop_reference; |
| |
| if (multi_msi) { |
| /* |
| * If this is not the first MSI of Multi MSI, we already have |
| * a mapping. Can exit early. |
| */ |
| if (msi_desc->irq != data->irq) { |
| data->chip_data = int_desc; |
| int_desc->address = msi_desc->msg.address_lo | |
| (u64)msi_desc->msg.address_hi << 32; |
| int_desc->data = msi_desc->msg.data + |
| (data->irq - msi_desc->irq); |
| msg->address_hi = msi_desc->msg.address_hi; |
| msg->address_lo = msi_desc->msg.address_lo; |
| msg->data = int_desc->data; |
| put_pcichild(hpdev); |
| return; |
| } |
| /* |
| * The vector we select here is a dummy value. The correct |
| * value gets sent to the hypervisor in unmask(). This needs |
| * to be aligned with the count, and also not zero. Multi-msi |
| * is powers of 2 up to 32, so 32 will always work here. |
| */ |
| vector = 32; |
| vector_count = msi_desc->nvec_used; |
| cpu = hv_compose_multi_msi_req_get_cpu(); |
| } else { |
| vector = hv_msi_get_int_vector(data); |
| vector_count = 1; |
| cpu = hv_compose_msi_req_get_cpu(dest); |
| } |
| |
| /* |
| * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' |
| * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly |
| * for better readability. |
| */ |
| memset(&ctxt, 0, sizeof(ctxt)); |
| init_completion(&comp.comp_pkt.host_event); |
| ctxt.pci_pkt.completion_func = hv_pci_compose_compl; |
| ctxt.pci_pkt.compl_ctxt = ∁ |
| |
| switch (hbus->protocol_version) { |
| case PCI_PROTOCOL_VERSION_1_1: |
| size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, |
| hpdev->desc.win_slot.slot, |
| (u8)vector, |
| vector_count); |
| break; |
| |
| case PCI_PROTOCOL_VERSION_1_2: |
| case PCI_PROTOCOL_VERSION_1_3: |
| size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, |
| cpu, |
| hpdev->desc.win_slot.slot, |
| (u8)vector, |
| vector_count); |
| break; |
| |
| case PCI_PROTOCOL_VERSION_1_4: |
| size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, |
| cpu, |
| hpdev->desc.win_slot.slot, |
| vector, |
| vector_count); |
| break; |
| |
| default: |
| /* As we only negotiate protocol versions known to this driver, |
| * this path should never hit. However, this is it not a hot |
| * path so we print a message to aid future updates. |
| */ |
| dev_err(&hbus->hdev->device, |
| "Unexpected vPCI protocol, update driver."); |
| goto free_int_desc; |
| } |
| |
| ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, |
| size, (unsigned long)&ctxt.pci_pkt, |
| &trans_id, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) { |
| dev_err(&hbus->hdev->device, |
| "Sending request for interrupt failed: 0x%x", |
| comp.comp_pkt.completion_status); |
| goto free_int_desc; |
| } |
| |
| /* |
| * Prevents hv_pci_onchannelcallback() from running concurrently |
| * in the tasklet. |
| */ |
| tasklet_disable_in_atomic(&channel->callback_event); |
| |
| /* |
| * Since this function is called with IRQ locks held, can't |
| * do normal wait for completion; instead poll. |
| */ |
| while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { |
| unsigned long flags; |
| |
| /* 0xFFFF means an invalid PCI VENDOR ID. */ |
| if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { |
| dev_err_once(&hbus->hdev->device, |
| "the device has gone\n"); |
| goto enable_tasklet; |
| } |
| |
| /* |
| * Make sure that the ring buffer data structure doesn't get |
| * freed while we dereference the ring buffer pointer. Test |
| * for the channel's onchannel_callback being NULL within a |
| * sched_lock critical section. See also the inline comments |
| * in vmbus_reset_channel_cb(). |
| */ |
| spin_lock_irqsave(&channel->sched_lock, flags); |
| if (unlikely(channel->onchannel_callback == NULL)) { |
| spin_unlock_irqrestore(&channel->sched_lock, flags); |
| goto enable_tasklet; |
| } |
| hv_pci_onchannelcallback(hbus); |
| spin_unlock_irqrestore(&channel->sched_lock, flags); |
| |
| if (hpdev->state == hv_pcichild_ejecting) { |
| dev_err_once(&hbus->hdev->device, |
| "the device is being ejected\n"); |
| goto enable_tasklet; |
| } |
| |
| udelay(100); |
| } |
| |
| tasklet_enable(&channel->callback_event); |
| |
| if (comp.comp_pkt.completion_status < 0) { |
| dev_err(&hbus->hdev->device, |
| "Request for interrupt failed: 0x%x", |
| comp.comp_pkt.completion_status); |
| goto free_int_desc; |
| } |
| |
| /* |
| * Record the assignment so that this can be unwound later. Using |
| * irq_set_chip_data() here would be appropriate, but the lock it takes |
| * is already held. |
| */ |
| *int_desc = comp.int_desc; |
| data->chip_data = int_desc; |
| |
| /* Pass up the result. */ |
| msg->address_hi = comp.int_desc.address >> 32; |
| msg->address_lo = comp.int_desc.address & 0xffffffff; |
| msg->data = comp.int_desc.data; |
| |
| put_pcichild(hpdev); |
| return; |
| |
| enable_tasklet: |
| tasklet_enable(&channel->callback_event); |
| /* |
| * The completion packet on the stack becomes invalid after 'return'; |
| * remove the ID from the VMbus requestor if the identifier is still |
| * mapped to/associated with the packet. (The identifier could have |
| * been 're-used', i.e., already removed and (re-)mapped.) |
| * |
| * Cf. hv_pci_onchannelcallback(). |
| */ |
| vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); |
| free_int_desc: |
| kfree(int_desc); |
| drop_reference: |
| put_pcichild(hpdev); |
| return_null_message: |
| msg->address_hi = 0; |
| msg->address_lo = 0; |
| msg->data = 0; |
| } |
| |
| /* HW Interrupt Chip Descriptor */ |
| static struct irq_chip hv_msi_irq_chip = { |
| .name = "Hyper-V PCIe MSI", |
| .irq_compose_msi_msg = hv_compose_msi_msg, |
| .irq_set_affinity = irq_chip_set_affinity_parent, |
| #ifdef CONFIG_X86 |
| .irq_ack = irq_chip_ack_parent, |
| #elif defined(CONFIG_ARM64) |
| .irq_eoi = irq_chip_eoi_parent, |
| #endif |
| .irq_mask = hv_irq_mask, |
| .irq_unmask = hv_irq_unmask, |
| }; |
| |
| static struct msi_domain_ops hv_msi_ops = { |
| .msi_prepare = hv_msi_prepare, |
| .msi_free = hv_msi_free, |
| }; |
| |
| /** |
| * hv_pcie_init_irq_domain() - Initialize IRQ domain |
| * @hbus: The root PCI bus |
| * |
| * This function creates an IRQ domain which will be used for |
| * interrupts from devices that have been passed through. These |
| * devices only support MSI and MSI-X, not line-based interrupts |
| * or simulations of line-based interrupts through PCIe's |
| * fabric-layer messages. Because interrupts are remapped, we |
| * can support multi-message MSI here. |
| * |
| * Return: '0' on success and error value on failure |
| */ |
| static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) |
| { |
| hbus->msi_info.chip = &hv_msi_irq_chip; |
| hbus->msi_info.ops = &hv_msi_ops; |
| hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | |
| MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | |
| MSI_FLAG_PCI_MSIX); |
| hbus->msi_info.handler = FLOW_HANDLER; |
| hbus->msi_info.handler_name = FLOW_NAME; |
| hbus->msi_info.data = hbus; |
| hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, |
| &hbus->msi_info, |
| hv_pci_get_root_domain()); |
| if (!hbus->irq_domain) { |
| dev_err(&hbus->hdev->device, |
| "Failed to build an MSI IRQ domain\n"); |
| return -ENODEV; |
| } |
| |
| dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); |
| |
| return 0; |
| } |
| |
| /** |
| * get_bar_size() - Get the address space consumed by a BAR |
| * @bar_val: Value that a BAR returned after -1 was written |
| * to it. |
| * |
| * This function returns the size of the BAR, rounded up to 1 |
| * page. It has to be rounded up because the hypervisor's page |
| * table entry that maps the BAR into the VM can't specify an |
| * offset within a page. The invariant is that the hypervisor |
| * must place any BARs of smaller than page length at the |
| * beginning of a page. |
| * |
| * Return: Size in bytes of the consumed MMIO space. |
| */ |
| static u64 get_bar_size(u64 bar_val) |
| { |
| return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), |
| PAGE_SIZE); |
| } |
| |
| /** |
| * survey_child_resources() - Total all MMIO requirements |
| * @hbus: Root PCI bus, as understood by this driver |
| */ |
| static void survey_child_resources(struct hv_pcibus_device *hbus) |
| { |
| struct hv_pci_dev *hpdev; |
| resource_size_t bar_size = 0; |
| unsigned long flags; |
| struct completion *event; |
| u64 bar_val; |
| int i; |
| |
| /* If nobody is waiting on the answer, don't compute it. */ |
| event = xchg(&hbus->survey_event, NULL); |
| if (!event) |
| return; |
| |
| /* If the answer has already been computed, go with it. */ |
| if (hbus->low_mmio_space || hbus->high_mmio_space) { |
| complete(event); |
| return; |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| |
| /* |
| * Due to an interesting quirk of the PCI spec, all memory regions |
| * for a child device are a power of 2 in size and aligned in memory, |
| * so it's sufficient to just add them up without tracking alignment. |
| */ |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) |
| dev_err(&hbus->hdev->device, |
| "There's an I/O BAR in this list!\n"); |
| |
| if (hpdev->probed_bar[i] != 0) { |
| /* |
| * A probed BAR has all the upper bits set that |
| * can be changed. |
| */ |
| |
| bar_val = hpdev->probed_bar[i]; |
| if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) |
| bar_val |= |
| ((u64)hpdev->probed_bar[++i] << 32); |
| else |
| bar_val |= 0xffffffff00000000ULL; |
| |
| bar_size = get_bar_size(bar_val); |
| |
| if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) |
| hbus->high_mmio_space += bar_size; |
| else |
| hbus->low_mmio_space += bar_size; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| complete(event); |
| } |
| |
| /** |
| * prepopulate_bars() - Fill in BARs with defaults |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * The core PCI driver code seems much, much happier if the BARs |
| * for a device have values upon first scan. So fill them in. |
| * The algorithm below works down from large sizes to small, |
| * attempting to pack the assignments optimally. The assumption, |
| * enforced in other parts of the code, is that the beginning of |
| * the memory-mapped I/O space will be aligned on the largest |
| * BAR size. |
| */ |
| static void prepopulate_bars(struct hv_pcibus_device *hbus) |
| { |
| resource_size_t high_size = 0; |
| resource_size_t low_size = 0; |
| resource_size_t high_base = 0; |
| resource_size_t low_base = 0; |
| resource_size_t bar_size; |
| struct hv_pci_dev *hpdev; |
| unsigned long flags; |
| u64 bar_val; |
| u32 command; |
| bool high; |
| int i; |
| |
| if (hbus->low_mmio_space) { |
| low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); |
| low_base = hbus->low_mmio_res->start; |
| } |
| |
| if (hbus->high_mmio_space) { |
| high_size = 1ULL << |
| (63 - __builtin_clzll(hbus->high_mmio_space)); |
| high_base = hbus->high_mmio_res->start; |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| |
| /* |
| * Clear the memory enable bit, in case it's already set. This occurs |
| * in the suspend path of hibernation, where the device is suspended, |
| * resumed and suspended again: see hibernation_snapshot() and |
| * hibernation_platform_enter(). |
| * |
| * If the memory enable bit is already set, Hyper-V silently ignores |
| * the below BAR updates, and the related PCI device driver can not |
| * work, because reading from the device register(s) always returns |
| * 0xFFFFFFFF (PCI_ERROR_RESPONSE). |
| */ |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); |
| command &= ~PCI_COMMAND_MEMORY; |
| _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); |
| } |
| |
| /* Pick addresses for the BARs. */ |
| do { |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| bar_val = hpdev->probed_bar[i]; |
| if (bar_val == 0) |
| continue; |
| high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; |
| if (high) { |
| bar_val |= |
| ((u64)hpdev->probed_bar[i + 1] |
| << 32); |
| } else { |
| bar_val |= 0xffffffffULL << 32; |
| } |
| bar_size = get_bar_size(bar_val); |
| if (high) { |
| if (high_size != bar_size) { |
| i++; |
| continue; |
| } |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, |
| (u32)(high_base & 0xffffff00)); |
| i++; |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, (u32)(high_base >> 32)); |
| high_base += bar_size; |
| } else { |
| if (low_size != bar_size) |
| continue; |
| _hv_pcifront_write_config(hpdev, |
| PCI_BASE_ADDRESS_0 + (4 * i), |
| 4, |
| (u32)(low_base & 0xffffff00)); |
| low_base += bar_size; |
| } |
| } |
| if (high_size <= 1 && low_size <= 1) { |
| /* |
| * No need to set the PCI_COMMAND_MEMORY bit as |
| * the core PCI driver doesn't require the bit |
| * to be pre-set. Actually here we intentionally |
| * keep the bit off so that the PCI BAR probing |
| * in the core PCI driver doesn't cause Hyper-V |
| * to unnecessarily unmap/map the virtual BARs |
| * from/to the physical BARs multiple times. |
| * This reduces the VM boot time significantly |
| * if the BAR sizes are huge. |
| */ |
| break; |
| } |
| } |
| |
| high_size >>= 1; |
| low_size >>= 1; |
| } while (high_size || low_size); |
| |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| } |
| |
| /* |
| * Assign entries in sysfs pci slot directory. |
| * |
| * Note that this function does not need to lock the children list |
| * because it is called from pci_devices_present_work which |
| * is serialized with hv_eject_device_work because they are on the |
| * same ordered workqueue. Therefore hbus->children list will not change |
| * even when pci_create_slot sleeps. |
| */ |
| static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) |
| { |
| struct hv_pci_dev *hpdev; |
| char name[SLOT_NAME_SIZE]; |
| int slot_nr; |
| |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| if (hpdev->pci_slot) |
| continue; |
| |
| slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); |
| snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); |
| hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, |
| name, NULL); |
| if (IS_ERR(hpdev->pci_slot)) { |
| pr_warn("pci_create slot %s failed\n", name); |
| hpdev->pci_slot = NULL; |
| } |
| } |
| } |
| |
| /* |
| * Remove entries in sysfs pci slot directory. |
| */ |
| static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) |
| { |
| struct hv_pci_dev *hpdev; |
| |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| if (!hpdev->pci_slot) |
| continue; |
| pci_destroy_slot(hpdev->pci_slot); |
| hpdev->pci_slot = NULL; |
| } |
| } |
| |
| /* |
| * Set NUMA node for the devices on the bus |
| */ |
| static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) |
| { |
| struct pci_dev *dev; |
| struct pci_bus *bus = hbus->bridge->bus; |
| struct hv_pci_dev *hv_dev; |
| |
| list_for_each_entry(dev, &bus->devices, bus_list) { |
| hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); |
| if (!hv_dev) |
| continue; |
| |
| if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && |
| hv_dev->desc.virtual_numa_node < num_possible_nodes()) |
| /* |
| * The kernel may boot with some NUMA nodes offline |
| * (e.g. in a KDUMP kernel) or with NUMA disabled via |
| * "numa=off". In those cases, adjust the host provided |
| * NUMA node to a valid NUMA node used by the kernel. |
| */ |
| set_dev_node(&dev->dev, |
| numa_map_to_online_node( |
| hv_dev->desc.virtual_numa_node)); |
| |
| put_pcichild(hv_dev); |
| } |
| } |
| |
| /** |
| * create_root_hv_pci_bus() - Expose a new root PCI bus |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) |
| { |
| int error; |
| struct pci_host_bridge *bridge = hbus->bridge; |
| |
| bridge->dev.parent = &hbus->hdev->device; |
| bridge->sysdata = &hbus->sysdata; |
| bridge->ops = &hv_pcifront_ops; |
| |
| error = pci_scan_root_bus_bridge(bridge); |
| if (error) |
| return error; |
| |
| pci_lock_rescan_remove(); |
| hv_pci_assign_numa_node(hbus); |
| pci_bus_assign_resources(bridge->bus); |
| hv_pci_assign_slots(hbus); |
| pci_bus_add_devices(bridge->bus); |
| pci_unlock_rescan_remove(); |
| hbus->state = hv_pcibus_installed; |
| return 0; |
| } |
| |
| struct q_res_req_compl { |
| struct completion host_event; |
| struct hv_pci_dev *hpdev; |
| }; |
| |
| /** |
| * q_resource_requirements() - Query Resource Requirements |
| * @context: The completion context. |
| * @resp: The response that came from the host. |
| * @resp_packet_size: The size in bytes of resp. |
| * |
| * This function is invoked on completion of a Query Resource |
| * Requirements packet. |
| */ |
| static void q_resource_requirements(void *context, struct pci_response *resp, |
| int resp_packet_size) |
| { |
| struct q_res_req_compl *completion = context; |
| struct pci_q_res_req_response *q_res_req = |
| (struct pci_q_res_req_response *)resp; |
| s32 status; |
| int i; |
| |
| status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; |
| if (status < 0) { |
| dev_err(&completion->hpdev->hbus->hdev->device, |
| "query resource requirements failed: %x\n", |
| status); |
| } else { |
| for (i = 0; i < PCI_STD_NUM_BARS; i++) { |
| completion->hpdev->probed_bar[i] = |
| q_res_req->probed_bar[i]; |
| } |
| } |
| |
| complete(&completion->host_event); |
| } |
| |
| /** |
| * new_pcichild_device() - Create a new child device |
| * @hbus: The internal struct tracking this root PCI bus. |
| * @desc: The information supplied so far from the host |
| * about the device. |
| * |
| * This function creates the tracking structure for a new child |
| * device and kicks off the process of figuring out what it is. |
| * |
| * Return: Pointer to the new tracking struct |
| */ |
| static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, |
| struct hv_pcidev_description *desc) |
| { |
| struct hv_pci_dev *hpdev; |
| struct pci_child_message *res_req; |
| struct q_res_req_compl comp_pkt; |
| struct { |
| struct pci_packet init_packet; |
| u8 buffer[sizeof(struct pci_child_message)]; |
| } pkt; |
| unsigned long flags; |
| int ret; |
| |
| hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); |
| if (!hpdev) |
| return NULL; |
| |
| hpdev->hbus = hbus; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| init_completion(&comp_pkt.host_event); |
| comp_pkt.hpdev = hpdev; |
| pkt.init_packet.compl_ctxt = &comp_pkt; |
| pkt.init_packet.completion_func = q_resource_requirements; |
| res_req = (struct pci_child_message *)&pkt.init_packet.message; |
| res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; |
| res_req->wslot.slot = desc->win_slot.slot; |
| |
| ret = vmbus_sendpacket(hbus->hdev->channel, res_req, |
| sizeof(struct pci_child_message), |
| (unsigned long)&pkt.init_packet, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| goto error; |
| |
| if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) |
| goto error; |
| |
| hpdev->desc = *desc; |
| refcount_set(&hpdev->refs, 1); |
| get_pcichild(hpdev); |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| |
| list_add_tail(&hpdev->list_entry, &hbus->children); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| return hpdev; |
| |
| error: |
| kfree(hpdev); |
| return NULL; |
| } |
| |
| /** |
| * get_pcichild_wslot() - Find device from slot |
| * @hbus: Root PCI bus, as understood by this driver |
| * @wslot: Location on the bus |
| * |
| * This function looks up a PCI device and returns the internal |
| * representation of it. It acquires a reference on it, so that |
| * the device won't be deleted while somebody is using it. The |
| * caller is responsible for calling put_pcichild() to release |
| * this reference. |
| * |
| * Return: Internal representation of a PCI device |
| */ |
| static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, |
| u32 wslot) |
| { |
| unsigned long flags; |
| struct hv_pci_dev *iter, *hpdev = NULL; |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each_entry(iter, &hbus->children, list_entry) { |
| if (iter->desc.win_slot.slot == wslot) { |
| hpdev = iter; |
| get_pcichild(hpdev); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| return hpdev; |
| } |
| |
| /** |
| * pci_devices_present_work() - Handle new list of child devices |
| * @work: Work struct embedded in struct hv_dr_work |
| * |
| * "Bus Relations" is the Windows term for "children of this |
| * bus." The terminology is preserved here for people trying to |
| * debug the interaction between Hyper-V and Linux. This |
| * function is called when the parent partition reports a list |
| * of functions that should be observed under this PCI Express |
| * port (bus). |
| * |
| * This function updates the list, and must tolerate being |
| * called multiple times with the same information. The typical |
| * number of child devices is one, with very atypical cases |
| * involving three or four, so the algorithms used here can be |
| * simple and inefficient. |
| * |
| * It must also treat the omission of a previously observed device as |
| * notification that the device no longer exists. |
| * |
| * Note that this function is serialized with hv_eject_device_work(), |
| * because both are pushed to the ordered workqueue hbus->wq. |
| */ |
| static void pci_devices_present_work(struct work_struct *work) |
| { |
| u32 child_no; |
| bool found; |
| struct hv_pcidev_description *new_desc; |
| struct hv_pci_dev *hpdev; |
| struct hv_pcibus_device *hbus; |
| struct list_head removed; |
| struct hv_dr_work *dr_wrk; |
| struct hv_dr_state *dr = NULL; |
| unsigned long flags; |
| |
| dr_wrk = container_of(work, struct hv_dr_work, wrk); |
| hbus = dr_wrk->bus; |
| kfree(dr_wrk); |
| |
| INIT_LIST_HEAD(&removed); |
| |
| /* Pull this off the queue and process it if it was the last one. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| while (!list_empty(&hbus->dr_list)) { |
| dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, |
| list_entry); |
| list_del(&dr->list_entry); |
| |
| /* Throw this away if the list still has stuff in it. */ |
| if (!list_empty(&hbus->dr_list)) { |
| kfree(dr); |
| continue; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (!dr) |
| return; |
| |
| /* First, mark all existing children as reported missing. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| hpdev->reported_missing = true; |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| /* Next, add back any reported devices. */ |
| for (child_no = 0; child_no < dr->device_count; child_no++) { |
| found = false; |
| new_desc = &dr->func[child_no]; |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && |
| (hpdev->desc.v_id == new_desc->v_id) && |
| (hpdev->desc.d_id == new_desc->d_id) && |
| (hpdev->desc.ser == new_desc->ser)) { |
| hpdev->reported_missing = false; |
| found = true; |
| } |
| } |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (!found) { |
| hpdev = new_pcichild_device(hbus, new_desc); |
| if (!hpdev) |
| dev_err(&hbus->hdev->device, |
| "couldn't record a child device.\n"); |
| } |
| } |
| |
| /* Move missing children to a list on the stack. */ |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| do { |
| found = false; |
| list_for_each_entry(hpdev, &hbus->children, list_entry) { |
| if (hpdev->reported_missing) { |
| found = true; |
| put_pcichild(hpdev); |
| list_move_tail(&hpdev->list_entry, &removed); |
| break; |
| } |
| } |
| } while (found); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| /* Delete everything that should no longer exist. */ |
| while (!list_empty(&removed)) { |
| hpdev = list_first_entry(&removed, struct hv_pci_dev, |
| list_entry); |
| list_del(&hpdev->list_entry); |
| |
| if (hpdev->pci_slot) |
| pci_destroy_slot(hpdev->pci_slot); |
| |
| put_pcichild(hpdev); |
| } |
| |
| switch (hbus->state) { |
| case hv_pcibus_installed: |
| /* |
| * Tell the core to rescan bus |
| * because there may have been changes. |
| */ |
| pci_lock_rescan_remove(); |
| pci_scan_child_bus(hbus->bridge->bus); |
| hv_pci_assign_numa_node(hbus); |
| hv_pci_assign_slots(hbus); |
| pci_unlock_rescan_remove(); |
| break; |
| |
| case hv_pcibus_init: |
| case hv_pcibus_probed: |
| survey_child_resources(hbus); |
| break; |
| |
| default: |
| break; |
| } |
| |
| kfree(dr); |
| } |
| |
| /** |
| * hv_pci_start_relations_work() - Queue work to start device discovery |
| * @hbus: Root PCI bus, as understood by this driver |
| * @dr: The list of children returned from host |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, |
| struct hv_dr_state *dr) |
| { |
| struct hv_dr_work *dr_wrk; |
| unsigned long flags; |
| bool pending_dr; |
| |
| if (hbus->state == hv_pcibus_removing) { |
| dev_info(&hbus->hdev->device, |
| "PCI VMBus BUS_RELATIONS: ignored\n"); |
| return -ENOENT; |
| } |
| |
| dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); |
| if (!dr_wrk) |
| return -ENOMEM; |
| |
| INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); |
| dr_wrk->bus = hbus; |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| /* |
| * If pending_dr is true, we have already queued a work, |
| * which will see the new dr. Otherwise, we need to |
| * queue a new work. |
| */ |
| pending_dr = !list_empty(&hbus->dr_list); |
| list_add_tail(&dr->list_entry, &hbus->dr_list); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (pending_dr) |
| kfree(dr_wrk); |
| else |
| queue_work(hbus->wq, &dr_wrk->wrk); |
| |
| return 0; |
| } |
| |
| /** |
| * hv_pci_devices_present() - Handle list of new children |
| * @hbus: Root PCI bus, as understood by this driver |
| * @relations: Packet from host listing children |
| * |
| * Process a new list of devices on the bus. The list of devices is |
| * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, |
| * whenever a new list of devices for this bus appears. |
| */ |
| static void hv_pci_devices_present(struct hv_pcibus_device *hbus, |
| struct pci_bus_relations *relations) |
| { |
| struct hv_dr_state *dr; |
| int i; |
| |
| dr = kzalloc(struct_size(dr, func, relations->device_count), |
| GFP_NOWAIT); |
| if (!dr) |
| return; |
| |
| dr->device_count = relations->device_count; |
| for (i = 0; i < dr->device_count; i++) { |
| dr->func[i].v_id = relations->func[i].v_id; |
| dr->func[i].d_id = relations->func[i].d_id; |
| dr->func[i].rev = relations->func[i].rev; |
| dr->func[i].prog_intf = relations->func[i].prog_intf; |
| dr->func[i].subclass = relations->func[i].subclass; |
| dr->func[i].base_class = relations->func[i].base_class; |
| dr->func[i].subsystem_id = relations->func[i].subsystem_id; |
| dr->func[i].win_slot = relations->func[i].win_slot; |
| dr->func[i].ser = relations->func[i].ser; |
| } |
| |
| if (hv_pci_start_relations_work(hbus, dr)) |
| kfree(dr); |
| } |
| |
| /** |
| * hv_pci_devices_present2() - Handle list of new children |
| * @hbus: Root PCI bus, as understood by this driver |
| * @relations: Packet from host listing children |
| * |
| * This function is the v2 version of hv_pci_devices_present() |
| */ |
| static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, |
| struct pci_bus_relations2 *relations) |
| { |
| struct hv_dr_state *dr; |
| int i; |
| |
| dr = kzalloc(struct_size(dr, func, relations->device_count), |
| GFP_NOWAIT); |
| if (!dr) |
| return; |
| |
| dr->device_count = relations->device_count; |
| for (i = 0; i < dr->device_count; i++) { |
| dr->func[i].v_id = relations->func[i].v_id; |
| dr->func[i].d_id = relations->func[i].d_id; |
| dr->func[i].rev = relations->func[i].rev; |
| dr->func[i].prog_intf = relations->func[i].prog_intf; |
| dr->func[i].subclass = relations->func[i].subclass; |
| dr->func[i].base_class = relations->func[i].base_class; |
| dr->func[i].subsystem_id = relations->func[i].subsystem_id; |
| dr->func[i].win_slot = relations->func[i].win_slot; |
| dr->func[i].ser = relations->func[i].ser; |
| dr->func[i].flags = relations->func[i].flags; |
| dr->func[i].virtual_numa_node = |
| relations->func[i].virtual_numa_node; |
| } |
| |
| if (hv_pci_start_relations_work(hbus, dr)) |
| kfree(dr); |
| } |
| |
| /** |
| * hv_eject_device_work() - Asynchronously handles ejection |
| * @work: Work struct embedded in internal device struct |
| * |
| * This function handles ejecting a device. Windows will |
| * attempt to gracefully eject a device, waiting 60 seconds to |
| * hear back from the guest OS that this completed successfully. |
| * If this timer expires, the device will be forcibly removed. |
| */ |
| static void hv_eject_device_work(struct work_struct *work) |
| { |
| struct pci_eject_response *ejct_pkt; |
| struct hv_pcibus_device *hbus; |
| struct hv_pci_dev *hpdev; |
| struct pci_dev *pdev; |
| unsigned long flags; |
| int wslot; |
| struct { |
| struct pci_packet pkt; |
| u8 buffer[sizeof(struct pci_eject_response)]; |
| } ctxt; |
| |
| hpdev = container_of(work, struct hv_pci_dev, wrk); |
| hbus = hpdev->hbus; |
| |
| WARN_ON(hpdev->state != hv_pcichild_ejecting); |
| |
| /* |
| * Ejection can come before or after the PCI bus has been set up, so |
| * attempt to find it and tear down the bus state, if it exists. This |
| * must be done without constructs like pci_domain_nr(hbus->bridge->bus) |
| * because hbus->bridge->bus may not exist yet. |
| */ |
| wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); |
| pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); |
| if (pdev) { |
| pci_lock_rescan_remove(); |
| pci_stop_and_remove_bus_device(pdev); |
| pci_dev_put(pdev); |
| pci_unlock_rescan_remove(); |
| } |
| |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_del(&hpdev->list_entry); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| if (hpdev->pci_slot) |
| pci_destroy_slot(hpdev->pci_slot); |
| |
| memset(&ctxt, 0, sizeof(ctxt)); |
| ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; |
| ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; |
| ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; |
| vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, |
| sizeof(*ejct_pkt), 0, |
| VM_PKT_DATA_INBAND, 0); |
| |
| /* For the get_pcichild() in hv_pci_eject_device() */ |
| put_pcichild(hpdev); |
| /* For the two refs got in new_pcichild_device() */ |
| put_pcichild(hpdev); |
| put_pcichild(hpdev); |
| /* hpdev has been freed. Do not use it any more. */ |
| } |
| |
| /** |
| * hv_pci_eject_device() - Handles device ejection |
| * @hpdev: Internal device tracking struct |
| * |
| * This function is invoked when an ejection packet arrives. It |
| * just schedules work so that we don't re-enter the packet |
| * delivery code handling the ejection. |
| */ |
| static void hv_pci_eject_device(struct hv_pci_dev *hpdev) |
| { |
| struct hv_pcibus_device *hbus = hpdev->hbus; |
| struct hv_device *hdev = hbus->hdev; |
| |
| if (hbus->state == hv_pcibus_removing) { |
| dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); |
| return; |
| } |
| |
| hpdev->state = hv_pcichild_ejecting; |
| get_pcichild(hpdev); |
| INIT_WORK(&hpdev->wrk, hv_eject_device_work); |
| queue_work(hbus->wq, &hpdev->wrk); |
| } |
| |
| /** |
| * hv_pci_onchannelcallback() - Handles incoming packets |
| * @context: Internal bus tracking struct |
| * |
| * This function is invoked whenever the host sends a packet to |
| * this channel (which is private to this root PCI bus). |
| */ |
| static void hv_pci_onchannelcallback(void *context) |
| { |
| const int packet_size = 0x100; |
| int ret; |
| struct hv_pcibus_device *hbus = context; |
| struct vmbus_channel *chan = hbus->hdev->channel; |
| u32 bytes_recvd; |
| u64 req_id, req_addr; |
| struct vmpacket_descriptor *desc; |
| unsigned char *buffer; |
| int bufferlen = packet_size; |
| struct pci_packet *comp_packet; |
| struct pci_response *response; |
| struct pci_incoming_message *new_message; |
| struct pci_bus_relations *bus_rel; |
| struct pci_bus_relations2 *bus_rel2; |
| struct pci_dev_inval_block *inval; |
| struct pci_dev_incoming *dev_message; |
| struct hv_pci_dev *hpdev; |
| unsigned long flags; |
| |
| buffer = kmalloc(bufferlen, GFP_ATOMIC); |
| if (!buffer) |
| return; |
| |
| while (1) { |
| ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, |
| &bytes_recvd, &req_id); |
| |
| if (ret == -ENOBUFS) { |
| kfree(buffer); |
| /* Handle large packet */ |
| bufferlen = bytes_recvd; |
| buffer = kmalloc(bytes_recvd, GFP_ATOMIC); |
| if (!buffer) |
| return; |
| continue; |
| } |
| |
| /* Zero length indicates there are no more packets. */ |
| if (ret || !bytes_recvd) |
| break; |
| |
| /* |
| * All incoming packets must be at least as large as a |
| * response. |
| */ |
| if (bytes_recvd <= sizeof(struct pci_response)) |
| continue; |
| desc = (struct vmpacket_descriptor *)buffer; |
| |
| switch (desc->type) { |
| case VM_PKT_COMP: |
| |
| lock_requestor(chan, flags); |
| req_addr = __vmbus_request_addr_match(chan, req_id, |
| VMBUS_RQST_ADDR_ANY); |
| if (req_addr == VMBUS_RQST_ERROR) { |
| unlock_requestor(chan, flags); |
| dev_err(&hbus->hdev->device, |
| "Invalid transaction ID %llx\n", |
| req_id); |
| break; |
| } |
| comp_packet = (struct pci_packet *)req_addr; |
| response = (struct pci_response *)buffer; |
| /* |
| * Call ->completion_func() within the critical section to make |
| * sure that the packet pointer is still valid during the call: |
| * here 'valid' means that there's a task still waiting for the |
| * completion, and that the packet data is still on the waiting |
| * task's stack. Cf. hv_compose_msi_msg(). |
| */ |
| comp_packet->completion_func(comp_packet->compl_ctxt, |
| response, |
| bytes_recvd); |
| unlock_requestor(chan, flags); |
| break; |
| |
| case VM_PKT_DATA_INBAND: |
| |
| new_message = (struct pci_incoming_message *)buffer; |
| switch (new_message->message_type.type) { |
| case PCI_BUS_RELATIONS: |
| |
| bus_rel = (struct pci_bus_relations *)buffer; |
| if (bytes_recvd < sizeof(*bus_rel) || |
| bytes_recvd < |
| struct_size(bus_rel, func, |
| bus_rel->device_count)) { |
| dev_err(&hbus->hdev->device, |
| "bus relations too small\n"); |
| break; |
| } |
| |
| hv_pci_devices_present(hbus, bus_rel); |
| break; |
| |
| case PCI_BUS_RELATIONS2: |
| |
| bus_rel2 = (struct pci_bus_relations2 *)buffer; |
| if (bytes_recvd < sizeof(*bus_rel2) || |
| bytes_recvd < |
| struct_size(bus_rel2, func, |
| bus_rel2->device_count)) { |
| dev_err(&hbus->hdev->device, |
| "bus relations v2 too small\n"); |
| break; |
| } |
| |
| hv_pci_devices_present2(hbus, bus_rel2); |
| break; |
| |
| case PCI_EJECT: |
| |
| dev_message = (struct pci_dev_incoming *)buffer; |
| if (bytes_recvd < sizeof(*dev_message)) { |
| dev_err(&hbus->hdev->device, |
| "eject message too small\n"); |
| break; |
| } |
| hpdev = get_pcichild_wslot(hbus, |
| dev_message->wslot.slot); |
| if (hpdev) { |
| hv_pci_eject_device(hpdev); |
| put_pcichild(hpdev); |
| } |
| break; |
| |
| case PCI_INVALIDATE_BLOCK: |
| |
| inval = (struct pci_dev_inval_block *)buffer; |
| if (bytes_recvd < sizeof(*inval)) { |
| dev_err(&hbus->hdev->device, |
| "invalidate message too small\n"); |
| break; |
| } |
| hpdev = get_pcichild_wslot(hbus, |
| inval->wslot.slot); |
| if (hpdev) { |
| if (hpdev->block_invalidate) { |
| hpdev->block_invalidate( |
| hpdev->invalidate_context, |
| inval->block_mask); |
| } |
| put_pcichild(hpdev); |
| } |
| break; |
| |
| default: |
| dev_warn(&hbus->hdev->device, |
| "Unimplemented protocol message %x\n", |
| new_message->message_type.type); |
| break; |
| } |
| break; |
| |
| default: |
| dev_err(&hbus->hdev->device, |
| "unhandled packet type %d, tid %llx len %d\n", |
| desc->type, req_id, bytes_recvd); |
| break; |
| } |
| } |
| |
| kfree(buffer); |
| } |
| |
| /** |
| * hv_pci_protocol_negotiation() - Set up protocol |
| * @hdev: VMBus's tracking struct for this root PCI bus. |
| * @version: Array of supported channel protocol versions in |
| * the order of probing - highest go first. |
| * @num_version: Number of elements in the version array. |
| * |
| * This driver is intended to support running on Windows 10 |
| * (server) and later versions. It will not run on earlier |
| * versions, as they assume that many of the operations which |
| * Linux needs accomplished with a spinlock held were done via |
| * asynchronous messaging via VMBus. Windows 10 increases the |
| * surface area of PCI emulation so that these actions can take |
| * place by suspending a virtual processor for their duration. |
| * |
| * This function negotiates the channel protocol version, |
| * failing if the host doesn't support the necessary protocol |
| * level. |
| */ |
| static int hv_pci_protocol_negotiation(struct hv_device *hdev, |
| enum pci_protocol_version_t version[], |
| int num_version) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_version_request *version_req; |
| struct hv_pci_compl comp_pkt; |
| struct pci_packet *pkt; |
| int ret; |
| int i; |
| |
| /* |
| * Initiate the handshake with the host and negotiate |
| * a version that the host can support. We start with the |
| * highest version number and go down if the host cannot |
| * support it. |
| */ |
| pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| version_req = (struct pci_version_request *)&pkt->message; |
| version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; |
| |
| for (i = 0; i < num_version; i++) { |
| version_req->protocol_version = version[i]; |
| ret = vmbus_sendpacket(hdev->channel, version_req, |
| sizeof(struct pci_version_request), |
| (unsigned long)pkt, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (!ret) |
| ret = wait_for_response(hdev, &comp_pkt.host_event); |
| |
| if (ret) { |
| dev_err(&hdev->device, |
| "PCI Pass-through VSP failed to request version: %d", |
| ret); |
| goto exit; |
| } |
| |
| if (comp_pkt.completion_status >= 0) { |
| hbus->protocol_version = version[i]; |
| dev_info(&hdev->device, |
| "PCI VMBus probing: Using version %#x\n", |
| hbus->protocol_version); |
| goto exit; |
| } |
| |
| if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { |
| dev_err(&hdev->device, |
| "PCI Pass-through VSP failed version request: %#x", |
| comp_pkt.completion_status); |
| ret = -EPROTO; |
| goto exit; |
| } |
| |
| reinit_completion(&comp_pkt.host_event); |
| } |
| |
| dev_err(&hdev->device, |
| "PCI pass-through VSP failed to find supported version"); |
| ret = -EPROTO; |
| |
| exit: |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_pci_free_bridge_windows() - Release memory regions for the |
| * bus |
| * @hbus: Root PCI bus, as understood by this driver |
| */ |
| static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) |
| { |
| /* |
| * Set the resources back to the way they looked when they |
| * were allocated by setting IORESOURCE_BUSY again. |
| */ |
| |
| if (hbus->low_mmio_space && hbus->low_mmio_res) { |
| hbus->low_mmio_res->flags |= IORESOURCE_BUSY; |
| vmbus_free_mmio(hbus->low_mmio_res->start, |
| resource_size(hbus->low_mmio_res)); |
| } |
| |
| if (hbus->high_mmio_space && hbus->high_mmio_res) { |
| hbus->high_mmio_res->flags |= IORESOURCE_BUSY; |
| vmbus_free_mmio(hbus->high_mmio_res->start, |
| resource_size(hbus->high_mmio_res)); |
| } |
| } |
| |
| /** |
| * hv_pci_allocate_bridge_windows() - Allocate memory regions |
| * for the bus |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * This function calls vmbus_allocate_mmio(), which is itself a |
| * bit of a compromise. Ideally, we might change the pnp layer |
| * in the kernel such that it comprehends either PCI devices |
| * which are "grandchildren of ACPI," with some intermediate bus |
| * node (in this case, VMBus) or change it such that it |
| * understands VMBus. The pnp layer, however, has been declared |
| * deprecated, and not subject to change. |
| * |
| * The workaround, implemented here, is to ask VMBus to allocate |
| * MMIO space for this bus. VMBus itself knows which ranges are |
| * appropriate by looking at its own ACPI objects. Then, after |
| * these ranges are claimed, they're modified to look like they |
| * would have looked if the ACPI and pnp code had allocated |
| * bridge windows. These descriptors have to exist in this form |
| * in order to satisfy the code which will get invoked when the |
| * endpoint PCI function driver calls request_mem_region() or |
| * request_mem_region_exclusive(). |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) |
| { |
| resource_size_t align; |
| int ret; |
| |
| if (hbus->low_mmio_space) { |
| align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); |
| ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, |
| (u64)(u32)0xffffffff, |
| hbus->low_mmio_space, |
| align, false); |
| if (ret) { |
| dev_err(&hbus->hdev->device, |
| "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", |
| hbus->low_mmio_space); |
| return ret; |
| } |
| |
| /* Modify this resource to become a bridge window. */ |
| hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; |
| hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; |
| pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); |
| } |
| |
| if (hbus->high_mmio_space) { |
| align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); |
| ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, |
| 0x100000000, -1, |
| hbus->high_mmio_space, align, |
| false); |
| if (ret) { |
| dev_err(&hbus->hdev->device, |
| "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", |
| hbus->high_mmio_space); |
| goto release_low_mmio; |
| } |
| |
| /* Modify this resource to become a bridge window. */ |
| hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; |
| hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; |
| pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); |
| } |
| |
| return 0; |
| |
| release_low_mmio: |
| if (hbus->low_mmio_res) { |
| vmbus_free_mmio(hbus->low_mmio_res->start, |
| resource_size(hbus->low_mmio_res)); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * hv_allocate_config_window() - Find MMIO space for PCI Config |
| * @hbus: Root PCI bus, as understood by this driver |
| * |
| * This function claims memory-mapped I/O space for accessing |
| * configuration space for the functions on this bus. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_allocate_config_window(struct hv_pcibus_device *hbus) |
| { |
| int ret; |
| |
| /* |
| * Set up a region of MMIO space to use for accessing configuration |
| * space. |
| */ |
| ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, |
| PCI_CONFIG_MMIO_LENGTH, 0x1000, false); |
| if (ret) |
| return ret; |
| |
| /* |
| * vmbus_allocate_mmio() gets used for allocating both device endpoint |
| * resource claims (those which cannot be overlapped) and the ranges |
| * which are valid for the children of this bus, which are intended |
| * to be overlapped by those children. Set the flag on this claim |
| * meaning that this region can't be overlapped. |
| */ |
| |
| hbus->mem_config->flags |= IORESOURCE_BUSY; |
| |
| return 0; |
| } |
| |
| static void hv_free_config_window(struct hv_pcibus_device *hbus) |
| { |
| vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); |
| } |
| |
| static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); |
| |
| /** |
| * hv_pci_enter_d0() - Bring the "bus" into the D0 power state |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_enter_d0(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_bus_d0_entry *d0_entry; |
| struct hv_pci_compl comp_pkt; |
| struct pci_packet *pkt; |
| int ret; |
| |
| /* |
| * Tell the host that the bus is ready to use, and moved into the |
| * powered-on state. This includes telling the host which region |
| * of memory-mapped I/O space has been chosen for configuration space |
| * access. |
| */ |
| pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| d0_entry = (struct pci_bus_d0_entry *)&pkt->message; |
| d0_entry->message_type.type = PCI_BUS_D0ENTRY; |
| d0_entry->mmio_base = hbus->mem_config->start; |
| |
| ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), |
| (unsigned long)pkt, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (!ret) |
| ret = wait_for_response(hdev, &comp_pkt.host_event); |
| |
| if (ret) |
| goto exit; |
| |
| if (comp_pkt.completion_status < 0) { |
| dev_err(&hdev->device, |
| "PCI Pass-through VSP failed D0 Entry with status %x\n", |
| comp_pkt.completion_status); |
| ret = -EPROTO; |
| goto exit; |
| } |
| |
| ret = 0; |
| |
| exit: |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_pci_query_relations() - Ask host to send list of child |
| * devices |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_query_relations(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_message message; |
| struct completion comp; |
| int ret; |
| |
| /* Ask the host to send along the list of child devices */ |
| init_completion(&comp); |
| if (cmpxchg(&hbus->survey_event, NULL, &comp)) |
| return -ENOTEMPTY; |
| |
| memset(&message, 0, sizeof(message)); |
| message.type = PCI_QUERY_BUS_RELATIONS; |
| |
| ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), |
| 0, VM_PKT_DATA_INBAND, 0); |
| if (!ret) |
| ret = wait_for_response(hdev, &comp); |
| |
| return ret; |
| } |
| |
| /** |
| * hv_send_resources_allocated() - Report local resource choices |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * The host OS is expecting to be sent a request as a message |
| * which contains all the resources that the device will use. |
| * The response contains those same resources, "translated" |
| * which is to say, the values which should be used by the |
| * hardware, when it delivers an interrupt. (MMIO resources are |
| * used in local terms.) This is nice for Windows, and lines up |
| * with the FDO/PDO split, which doesn't exist in Linux. Linux |
| * is deeply expecting to scan an emulated PCI configuration |
| * space. So this message is sent here only to drive the state |
| * machine on the host forward. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_send_resources_allocated(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_resources_assigned *res_assigned; |
| struct pci_resources_assigned2 *res_assigned2; |
| struct hv_pci_compl comp_pkt; |
| struct hv_pci_dev *hpdev; |
| struct pci_packet *pkt; |
| size_t size_res; |
| int wslot; |
| int ret; |
| |
| size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) |
| ? sizeof(*res_assigned) : sizeof(*res_assigned2); |
| |
| pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| ret = 0; |
| |
| for (wslot = 0; wslot < 256; wslot++) { |
| hpdev = get_pcichild_wslot(hbus, wslot); |
| if (!hpdev) |
| continue; |
| |
| memset(pkt, 0, sizeof(*pkt) + size_res); |
| init_completion(&comp_pkt.host_event); |
| pkt->completion_func = hv_pci_generic_compl; |
| pkt->compl_ctxt = &comp_pkt; |
| |
| if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { |
| res_assigned = |
| (struct pci_resources_assigned *)&pkt->message; |
| res_assigned->message_type.type = |
| PCI_RESOURCES_ASSIGNED; |
| res_assigned->wslot.slot = hpdev->desc.win_slot.slot; |
| } else { |
| res_assigned2 = |
| (struct pci_resources_assigned2 *)&pkt->message; |
| res_assigned2->message_type.type = |
| PCI_RESOURCES_ASSIGNED2; |
| res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; |
| } |
| put_pcichild(hpdev); |
| |
| ret = vmbus_sendpacket(hdev->channel, &pkt->message, |
| size_res, (unsigned long)pkt, |
| VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (!ret) |
| ret = wait_for_response(hdev, &comp_pkt.host_event); |
| if (ret) |
| break; |
| |
| if (comp_pkt.completion_status < 0) { |
| ret = -EPROTO; |
| dev_err(&hdev->device, |
| "resource allocated returned 0x%x", |
| comp_pkt.completion_status); |
| break; |
| } |
| |
| hbus->wslot_res_allocated = wslot; |
| } |
| |
| kfree(pkt); |
| return ret; |
| } |
| |
| /** |
| * hv_send_resources_released() - Report local resources |
| * released |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_send_resources_released(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct pci_child_message pkt; |
| struct hv_pci_dev *hpdev; |
| int wslot; |
| int ret; |
| |
| for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { |
| hpdev = get_pcichild_wslot(hbus, wslot); |
| if (!hpdev) |
| continue; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| pkt.message_type.type = PCI_RESOURCES_RELEASED; |
| pkt.wslot.slot = hpdev->desc.win_slot.slot; |
| |
| put_pcichild(hpdev); |
| |
| ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, |
| VM_PKT_DATA_INBAND, 0); |
| if (ret) |
| return ret; |
| |
| hbus->wslot_res_allocated = wslot - 1; |
| } |
| |
| hbus->wslot_res_allocated = -1; |
| |
| return 0; |
| } |
| |
| #define HVPCI_DOM_MAP_SIZE (64 * 1024) |
| static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); |
| |
| /* |
| * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 |
| * as invalid for passthrough PCI devices of this driver. |
| */ |
| #define HVPCI_DOM_INVALID 0 |
| |
| /** |
| * hv_get_dom_num() - Get a valid PCI domain number |
| * Check if the PCI domain number is in use, and return another number if |
| * it is in use. |
| * |
| * @dom: Requested domain number |
| * |
| * return: domain number on success, HVPCI_DOM_INVALID on failure |
| */ |
| static u16 hv_get_dom_num(u16 dom) |
| { |
| unsigned int i; |
| |
| if (test_and_set_bit(dom, hvpci_dom_map) == 0) |
| return dom; |
| |
| for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { |
| if (test_and_set_bit(i, hvpci_dom_map) == 0) |
| return i; |
| } |
| |
| return HVPCI_DOM_INVALID; |
| } |
| |
| /** |
| * hv_put_dom_num() - Mark the PCI domain number as free |
| * @dom: Domain number to be freed |
| */ |
| static void hv_put_dom_num(u16 dom) |
| { |
| clear_bit(dom, hvpci_dom_map); |
| } |
| |
| /** |
| * hv_pci_probe() - New VMBus channel probe, for a root PCI bus |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * @dev_id: Identifies the device itself |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_probe(struct hv_device *hdev, |
| const struct hv_vmbus_device_id *dev_id) |
| { |
| struct pci_host_bridge *bridge; |
| struct hv_pcibus_device *hbus; |
| u16 dom_req, dom; |
| char *name; |
| bool enter_d0_retry = true; |
| int ret; |
| |
| /* |
| * hv_pcibus_device contains the hypercall arguments for retargeting in |
| * hv_irq_unmask(). Those must not cross a page boundary. |
| */ |
| BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE); |
| |
| bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); |
| if (!bridge) |
| return -ENOMEM; |
| |
| /* |
| * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural |
| * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate |
| * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and |
| * alignment of hbus is important because hbus's field |
| * retarget_msi_interrupt_params must not cross a 4KB page boundary. |
| * |
| * Here we prefer kzalloc to get_zeroed_page(), because a buffer |
| * allocated by the latter is not tracked and scanned by kmemleak, and |
| * hence kmemleak reports the pointer contained in the hbus buffer |
| * (i.e. the hpdev struct, which is created in new_pcichild_device() and |
| * is tracked by hbus->children) as memory leak (false positive). |
| * |
| * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be |
| * used to allocate the hbus buffer and we can avoid the kmemleak false |
| * positive by using kmemleak_alloc() and kmemleak_free() to ask |
| * kmemleak to track and scan the hbus buffer. |
| */ |
| hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL); |
| if (!hbus) |
| return -ENOMEM; |
| |
| hbus->bridge = bridge; |
| hbus->state = hv_pcibus_init; |
| hbus->wslot_res_allocated = -1; |
| |
| /* |
| * The PCI bus "domain" is what is called "segment" in ACPI and other |
| * specs. Pull it from the instance ID, to get something usually |
| * unique. In rare cases of collision, we will find out another number |
| * not in use. |
| * |
| * Note that, since this code only runs in a Hyper-V VM, Hyper-V |
| * together with this guest driver can guarantee that (1) The only |
| * domain used by Gen1 VMs for something that looks like a physical |
| * PCI bus (which is actually emulated by the hypervisor) is domain 0. |
| * (2) There will be no overlap between domains (after fixing possible |
| * collisions) in the same VM. |
| */ |
| dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; |
| dom = hv_get_dom_num(dom_req); |
| |
| if (dom == HVPCI_DOM_INVALID) { |
| dev_err(&hdev->device, |
| "Unable to use dom# 0x%x or other numbers", dom_req); |
| ret = -EINVAL; |
| goto free_bus; |
| } |
| |
| if (dom != dom_req) |
| dev_info(&hdev->device, |
| "PCI dom# 0x%x has collision, using 0x%x", |
| dom_req, dom); |
| |
| hbus->bridge->domain_nr = dom; |
| #ifdef CONFIG_X86 |
| hbus->sysdata.domain = dom; |
| #elif defined(CONFIG_ARM64) |
| /* |
| * Set the PCI bus parent to be the corresponding VMbus |
| * device. Then the VMbus device will be assigned as the |
| * ACPI companion in pcibios_root_bridge_prepare() and |
| * pci_dma_configure() will propagate device coherence |
| * information to devices created on the bus. |
| */ |
| hbus->sysdata.parent = hdev->device.parent; |
| #endif |
| |
| hbus->hdev = hdev; |
| INIT_LIST_HEAD(&hbus->children); |
| INIT_LIST_HEAD(&hbus->dr_list); |
| spin_lock_init(&hbus->config_lock); |
| spin_lock_init(&hbus->device_list_lock); |
| spin_lock_init(&hbus->retarget_msi_interrupt_lock); |
| hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, |
| hbus->bridge->domain_nr); |
| if (!hbus->wq) { |
| ret = -ENOMEM; |
| goto free_dom; |
| } |
| |
| hdev->channel->next_request_id_callback = vmbus_next_request_id; |
| hdev->channel->request_addr_callback = vmbus_request_addr; |
| hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; |
| |
| ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, |
| hv_pci_onchannelcallback, hbus); |
| if (ret) |
| goto destroy_wq; |
| |
| hv_set_drvdata(hdev, hbus); |
| |
| ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, |
| ARRAY_SIZE(pci_protocol_versions)); |
| if (ret) |
| goto close; |
| |
| ret = hv_allocate_config_window(hbus); |
| if (ret) |
| goto close; |
| |
| hbus->cfg_addr = ioremap(hbus->mem_config->start, |
| PCI_CONFIG_MMIO_LENGTH); |
| if (!hbus->cfg_addr) { |
| dev_err(&hdev->device, |
| "Unable to map a virtual address for config space\n"); |
| ret = -ENOMEM; |
| goto free_config; |
| } |
| |
| name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); |
| if (!name) { |
| ret = -ENOMEM; |
| goto unmap; |
| } |
| |
| hbus->fwnode = irq_domain_alloc_named_fwnode(name); |
| kfree(name); |
| if (!hbus->fwnode) { |
| ret = -ENOMEM; |
| goto unmap; |
| } |
| |
| ret = hv_pcie_init_irq_domain(hbus); |
| if (ret) |
| goto free_fwnode; |
| |
| retry: |
| ret = hv_pci_query_relations(hdev); |
| if (ret) |
| goto free_irq_domain; |
| |
| ret = hv_pci_enter_d0(hdev); |
| /* |
| * In certain case (Kdump) the pci device of interest was |
| * not cleanly shut down and resource is still held on host |
| * side, the host could return invalid device status. |
| * We need to explicitly request host to release the resource |
| * and try to enter D0 again. |
| * Since the hv_pci_bus_exit() call releases structures |
| * of all its child devices, we need to start the retry from |
| * hv_pci_query_relations() call, requesting host to send |
| * the synchronous child device relations message before this |
| * information is needed in hv_send_resources_allocated() |
| * call later. |
| */ |
| if (ret == -EPROTO && enter_d0_retry) { |
| enter_d0_retry = false; |
| |
| dev_err(&hdev->device, "Retrying D0 Entry\n"); |
| |
| /* |
| * Hv_pci_bus_exit() calls hv_send_resources_released() |
| * to free up resources of its child devices. |
| * In the kdump kernel we need to set the |
| * wslot_res_allocated to 255 so it scans all child |
| * devices to release resources allocated in the |
| * normal kernel before panic happened. |
| */ |
| hbus->wslot_res_allocated = 255; |
| ret = hv_pci_bus_exit(hdev, true); |
| |
| if (ret == 0) |
| goto retry; |
| |
| dev_err(&hdev->device, |
| "Retrying D0 failed with ret %d\n", ret); |
| } |
| if (ret) |
| goto free_irq_domain; |
| |
| ret = hv_pci_allocate_bridge_windows(hbus); |
| if (ret) |
| goto exit_d0; |
| |
| ret = hv_send_resources_allocated(hdev); |
| if (ret) |
| goto free_windows; |
| |
| prepopulate_bars(hbus); |
| |
| hbus->state = hv_pcibus_probed; |
| |
| ret = create_root_hv_pci_bus(hbus); |
| if (ret) |
| goto free_windows; |
| |
| return 0; |
| |
| free_windows: |
| hv_pci_free_bridge_windows(hbus); |
| exit_d0: |
| (void) hv_pci_bus_exit(hdev, true); |
| free_irq_domain: |
| irq_domain_remove(hbus->irq_domain); |
| free_fwnode: |
| irq_domain_free_fwnode(hbus->fwnode); |
| unmap: |
| iounmap(hbus->cfg_addr); |
| free_config: |
| hv_free_config_window(hbus); |
| close: |
| vmbus_close(hdev->channel); |
| destroy_wq: |
| destroy_workqueue(hbus->wq); |
| free_dom: |
| hv_put_dom_num(hbus->bridge->domain_nr); |
| free_bus: |
| kfree(hbus); |
| return ret; |
| } |
| |
| static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| struct vmbus_channel *chan = hdev->channel; |
| struct { |
| struct pci_packet teardown_packet; |
| u8 buffer[sizeof(struct pci_message)]; |
| } pkt; |
| struct hv_pci_compl comp_pkt; |
| struct hv_pci_dev *hpdev, *tmp; |
| unsigned long flags; |
| u64 trans_id; |
| int ret; |
| |
| /* |
| * After the host sends the RESCIND_CHANNEL message, it doesn't |
| * access the per-channel ringbuffer any longer. |
| */ |
| if (chan->rescind) |
| return 0; |
| |
| if (!keep_devs) { |
| struct list_head removed; |
| |
| /* Move all present children to the list on stack */ |
| INIT_LIST_HEAD(&removed); |
| spin_lock_irqsave(&hbus->device_list_lock, flags); |
| list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) |
| list_move_tail(&hpdev->list_entry, &removed); |
| spin_unlock_irqrestore(&hbus->device_list_lock, flags); |
| |
| /* Remove all children in the list */ |
| list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { |
| list_del(&hpdev->list_entry); |
| if (hpdev->pci_slot) |
| pci_destroy_slot(hpdev->pci_slot); |
| /* For the two refs got in new_pcichild_device() */ |
| put_pcichild(hpdev); |
| put_pcichild(hpdev); |
| } |
| } |
| |
| ret = hv_send_resources_released(hdev); |
| if (ret) { |
| dev_err(&hdev->device, |
| "Couldn't send resources released packet(s)\n"); |
| return ret; |
| } |
| |
| memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); |
| init_completion(&comp_pkt.host_event); |
| pkt.teardown_packet.completion_func = hv_pci_generic_compl; |
| pkt.teardown_packet.compl_ctxt = &comp_pkt; |
| pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; |
| |
| ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, |
| sizeof(struct pci_message), |
| (unsigned long)&pkt.teardown_packet, |
| &trans_id, VM_PKT_DATA_INBAND, |
| VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); |
| if (ret) |
| return ret; |
| |
| if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { |
| /* |
| * The completion packet on the stack becomes invalid after |
| * 'return'; remove the ID from the VMbus requestor if the |
| * identifier is still mapped to/associated with the packet. |
| * |
| * Cf. hv_pci_onchannelcallback(). |
| */ |
| vmbus_request_addr_match(chan, trans_id, |
| (unsigned long)&pkt.teardown_packet); |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hv_pci_remove() - Remove routine for this VMBus channel |
| * @hdev: VMBus's tracking struct for this root PCI bus |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| static int hv_pci_remove(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus; |
| int ret; |
| |
| hbus = hv_get_drvdata(hdev); |
| if (hbus->state == hv_pcibus_installed) { |
| tasklet_disable(&hdev->channel->callback_event); |
| hbus->state = hv_pcibus_removing; |
| tasklet_enable(&hdev->channel->callback_event); |
| destroy_workqueue(hbus->wq); |
| hbus->wq = NULL; |
| /* |
| * At this point, no work is running or can be scheduled |
| * on hbus-wq. We can't race with hv_pci_devices_present() |
| * or hv_pci_eject_device(), it's safe to proceed. |
| */ |
| |
| /* Remove the bus from PCI's point of view. */ |
| pci_lock_rescan_remove(); |
| pci_stop_root_bus(hbus->bridge->bus); |
| hv_pci_remove_slots(hbus); |
| pci_remove_root_bus(hbus->bridge->bus); |
| pci_unlock_rescan_remove(); |
| } |
| |
| ret = hv_pci_bus_exit(hdev, false); |
| |
| vmbus_close(hdev->channel); |
| |
| iounmap(hbus->cfg_addr); |
| hv_free_config_window(hbus); |
| hv_pci_free_bridge_windows(hbus); |
| irq_domain_remove(hbus->irq_domain); |
| irq_domain_free_fwnode(hbus->fwnode); |
| |
| hv_put_dom_num(hbus->bridge->domain_nr); |
| |
| kfree(hbus); |
| return ret; |
| } |
| |
| static int hv_pci_suspend(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| enum hv_pcibus_state old_state; |
| int ret; |
| |
| /* |
| * hv_pci_suspend() must make sure there are no pending work items |
| * before calling vmbus_close(), since it runs in a process context |
| * as a callback in dpm_suspend(). When it starts to run, the channel |
| * callback hv_pci_onchannelcallback(), which runs in a tasklet |
| * context, can be still running concurrently and scheduling new work |
| * items onto hbus->wq in hv_pci_devices_present() and |
| * hv_pci_eject_device(), and the work item handlers can access the |
| * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. |
| * the work item handler pci_devices_present_work() -> |
| * new_pcichild_device() writes to the vmbus channel. |
| * |
| * To eliminate the race, hv_pci_suspend() disables the channel |
| * callback tasklet, sets hbus->state to hv_pcibus_removing, and |
| * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, |
| * it knows that no new work item can be scheduled, and then it flushes |
| * hbus->wq and safely closes the vmbus channel. |
| */ |
| tasklet_disable(&hdev->channel->callback_event); |
| |
| /* Change the hbus state to prevent new work items. */ |
| old_state = hbus->state; |
| if (hbus->state == hv_pcibus_installed) |
| hbus->state = hv_pcibus_removing; |
| |
| tasklet_enable(&hdev->channel->callback_event); |
| |
| if (old_state != hv_pcibus_installed) |
| return -EINVAL; |
| |
| flush_workqueue(hbus->wq); |
| |
| ret = hv_pci_bus_exit(hdev, true); |
| if (ret) |
| return ret; |
| |
| vmbus_close(hdev->channel); |
| |
| return 0; |
| } |
| |
| static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) |
| { |
| struct irq_data *irq_data; |
| struct msi_desc *entry; |
| int ret = 0; |
| |
| msi_lock_descs(&pdev->dev); |
| msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { |
| irq_data = irq_get_irq_data(entry->irq); |
| if (WARN_ON_ONCE(!irq_data)) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| hv_compose_msi_msg(irq_data, &entry->msg); |
| } |
| msi_unlock_descs(&pdev->dev); |
| |
| return ret; |
| } |
| |
| /* |
| * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() |
| * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V |
| * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() |
| * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping |
| * Table entries. |
| */ |
| static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) |
| { |
| pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); |
| } |
| |
| static int hv_pci_resume(struct hv_device *hdev) |
| { |
| struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); |
| enum pci_protocol_version_t version[1]; |
| int ret; |
| |
| hbus->state = hv_pcibus_init; |
| |
| hdev->channel->next_request_id_callback = vmbus_next_request_id; |
| hdev->channel->request_addr_callback = vmbus_request_addr; |
| hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; |
| |
| ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, |
| hv_pci_onchannelcallback, hbus); |
| if (ret) |
| return ret; |
| |
| /* Only use the version that was in use before hibernation. */ |
| version[0] = hbus->protocol_version; |
| ret = hv_pci_protocol_negotiation(hdev, version, 1); |
| if (ret) |
| goto out; |
| |
| ret = hv_pci_query_relations(hdev); |
| if (ret) |
| goto out; |
| |
| ret = hv_pci_enter_d0(hdev); |
| if (ret) |
| goto out; |
| |
| ret = hv_send_resources_allocated(hdev); |
| if (ret) |
| goto out; |
| |
| prepopulate_bars(hbus); |
| |
| hv_pci_restore_msi_state(hbus); |
| |
| hbus->state = hv_pcibus_installed; |
| return 0; |
| out: |
| vmbus_close(hdev->channel); |
| return ret; |
| } |
| |
| static const struct hv_vmbus_device_id hv_pci_id_table[] = { |
| /* PCI Pass-through Class ID */ |
| /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ |
| { HV_PCIE_GUID, }, |
| { }, |
| }; |
| |
| MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); |
| |
| static struct hv_driver hv_pci_drv = { |
| .name = "hv_pci", |
| .id_table = hv_pci_id_table, |
| .probe = hv_pci_probe, |
| .remove = hv_pci_remove, |
| .suspend = hv_pci_suspend, |
| .resume = hv_pci_resume, |
| }; |
| |
| static void __exit exit_hv_pci_drv(void) |
| { |
| vmbus_driver_unregister(&hv_pci_drv); |
| |
| hvpci_block_ops.read_block = NULL; |
| hvpci_block_ops.write_block = NULL; |
| hvpci_block_ops.reg_blk_invalidate = NULL; |
| } |
| |
| static int __init init_hv_pci_drv(void) |
| { |
| int ret; |
| |
| if (!hv_is_hyperv_initialized()) |
| return -ENODEV; |
| |
| ret = hv_pci_irqchip_init(); |
| if (ret) |
| return ret; |
| |
| /* Set the invalid domain number's bit, so it will not be used */ |
| set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); |
| |
| /* Initialize PCI block r/w interface */ |
| hvpci_block_ops.read_block = hv_read_config_block; |
| hvpci_block_ops.write_block = hv_write_config_block; |
| hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; |
| |
| return vmbus_driver_register(&hv_pci_drv); |
| } |
| |
| module_init(init_hv_pci_drv); |
| module_exit(exit_hv_pci_drv); |
| |
| MODULE_DESCRIPTION("Hyper-V PCI"); |
| MODULE_LICENSE("GPL v2"); |