| // SPDX-License-Identifier: GPL-2.0 |
| // |
| // Register map access API - SPI AVMM support |
| // |
| // Copyright (C) 2018-2020 Intel Corporation. All rights reserved. |
| |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/spi/spi.h> |
| |
| /* |
| * This driver implements the regmap operations for a generic SPI |
| * master to access the registers of the spi slave chip which has an |
| * Avalone bus in it. |
| * |
| * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated |
| * in the spi slave chip. The IP acts as a bridge to convert encoded streams of |
| * bytes from the host to the internal register read/write on Avalon bus. In |
| * order to issue register access requests to the slave chip, the host should |
| * send formatted bytes that conform to the transfer protocol. |
| * The transfer protocol contains 3 layers: transaction layer, packet layer |
| * and physical layer. |
| * |
| * Reference Documents could be found at: |
| * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html |
| * |
| * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general |
| * introduction to the protocol. |
| * |
| * Chapter "Avalon Packets to Transactions Converter Core" describes |
| * the transaction layer. |
| * |
| * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores" |
| * describes the packet layer. |
| * |
| * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the |
| * physical layer. |
| * |
| * |
| * When host issues a regmap read/write, the driver will transform the request |
| * to byte stream layer by layer. It formats the register addr, value and |
| * length to the transaction layer request, then converts the request to packet |
| * layer bytes stream and then to physical layer bytes stream. Finally the |
| * driver sends the formatted byte stream over SPI bus to the slave chip. |
| * |
| * The spi-avmm IP on the slave chip decodes the byte stream and initiates |
| * register read/write on its internal Avalon bus, and then encodes the |
| * response to byte stream and sends back to host. |
| * |
| * The driver receives the byte stream, reverses the 3 layers transformation, |
| * and finally gets the response value (read out data for register read, |
| * successful written size for register write). |
| */ |
| |
| #define PKT_SOP 0x7a |
| #define PKT_EOP 0x7b |
| #define PKT_CHANNEL 0x7c |
| #define PKT_ESC 0x7d |
| |
| #define PHY_IDLE 0x4a |
| #define PHY_ESC 0x4d |
| |
| #define TRANS_CODE_WRITE 0x0 |
| #define TRANS_CODE_SEQ_WRITE 0x4 |
| #define TRANS_CODE_READ 0x10 |
| #define TRANS_CODE_SEQ_READ 0x14 |
| #define TRANS_CODE_NO_TRANS 0x7f |
| |
| #define SPI_AVMM_XFER_TIMEOUT (msecs_to_jiffies(200)) |
| |
| /* slave's register addr is 32 bits */ |
| #define SPI_AVMM_REG_SIZE 4UL |
| /* slave's register value is 32 bits */ |
| #define SPI_AVMM_VAL_SIZE 4UL |
| |
| /* |
| * max rx size could be larger. But considering the buffer consuming, |
| * it is proper that we limit 1KB xfer at max. |
| */ |
| #define MAX_READ_CNT 256UL |
| #define MAX_WRITE_CNT 1UL |
| |
| struct trans_req_header { |
| u8 code; |
| u8 rsvd; |
| __be16 size; |
| __be32 addr; |
| } __packed; |
| |
| struct trans_resp_header { |
| u8 r_code; |
| u8 rsvd; |
| __be16 size; |
| } __packed; |
| |
| #define TRANS_REQ_HD_SIZE (sizeof(struct trans_req_header)) |
| #define TRANS_RESP_HD_SIZE (sizeof(struct trans_resp_header)) |
| |
| /* |
| * In transaction layer, |
| * the write request format is: Transaction request header + data |
| * the read request format is: Transaction request header |
| * the write response format is: Transaction response header |
| * the read response format is: pure data, no Transaction response header |
| */ |
| #define TRANS_WR_TX_SIZE(n) (TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n)) |
| #define TRANS_RD_TX_SIZE TRANS_REQ_HD_SIZE |
| #define TRANS_TX_MAX TRANS_WR_TX_SIZE(MAX_WRITE_CNT) |
| |
| #define TRANS_RD_RX_SIZE(n) (SPI_AVMM_VAL_SIZE * (n)) |
| #define TRANS_WR_RX_SIZE TRANS_RESP_HD_SIZE |
| #define TRANS_RX_MAX TRANS_RD_RX_SIZE(MAX_READ_CNT) |
| |
| /* tx & rx share one transaction layer buffer */ |
| #define TRANS_BUF_SIZE ((TRANS_TX_MAX > TRANS_RX_MAX) ? \ |
| TRANS_TX_MAX : TRANS_RX_MAX) |
| |
| /* |
| * In tx phase, the host prepares all the phy layer bytes of a request in the |
| * phy buffer and sends them in a batch. |
| * |
| * The packet layer and physical layer defines several special chars for |
| * various purpose, when a transaction layer byte hits one of these special |
| * chars, it should be escaped. The escape rule is, "Escape char first, |
| * following the byte XOR'ed with 0x20". |
| * |
| * This macro defines the max possible length of the phy data. In the worst |
| * case, all transaction layer bytes need to be escaped (so the data length |
| * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally |
| * we should make sure the length is aligned to SPI BPW. |
| */ |
| #define PHY_TX_MAX ALIGN(2 * TRANS_TX_MAX + 4, 4) |
| |
| /* |
| * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max |
| * length of the rx bit stream is unpredictable. So the driver reads the words |
| * one by one, and parses each word immediately into transaction layer buffer. |
| * Only one word length of phy buffer is used for rx. |
| */ |
| #define PHY_BUF_SIZE PHY_TX_MAX |
| |
| /** |
| * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge |
| * |
| * @spi: spi slave associated with this bridge. |
| * @word_len: bytes of word for spi transfer. |
| * @trans_len: length of valid data in trans_buf. |
| * @phy_len: length of valid data in phy_buf. |
| * @trans_buf: the bridge buffer for transaction layer data. |
| * @phy_buf: the bridge buffer for physical layer data. |
| * @swap_words: the word swapping cb for phy data. NULL if not needed. |
| * |
| * As a device's registers are implemented on the AVMM bus address space, it |
| * requires the driver to issue formatted requests to spi slave to AVMM bus |
| * master bridge to perform register access. |
| */ |
| struct spi_avmm_bridge { |
| struct spi_device *spi; |
| unsigned char word_len; |
| unsigned int trans_len; |
| unsigned int phy_len; |
| /* bridge buffer used in translation between protocol layers */ |
| char trans_buf[TRANS_BUF_SIZE]; |
| char phy_buf[PHY_BUF_SIZE]; |
| void (*swap_words)(char *buf, unsigned int len); |
| }; |
| |
| static void br_swap_words_32(char *buf, unsigned int len) |
| { |
| u32 *p = (u32 *)buf; |
| unsigned int count; |
| |
| count = len / 4; |
| while (count--) { |
| *p = swab32p(p); |
| p++; |
| } |
| } |
| |
| /* |
| * Format transaction layer data in br->trans_buf according to the register |
| * access request, Store valid transaction layer data length in br->trans_len. |
| */ |
| static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg, |
| u32 *wr_val, u32 count) |
| { |
| struct trans_req_header *header; |
| unsigned int trans_len; |
| u8 code; |
| __le32 *data; |
| int i; |
| |
| if (is_read) { |
| if (count == 1) |
| code = TRANS_CODE_READ; |
| else |
| code = TRANS_CODE_SEQ_READ; |
| } else { |
| if (count == 1) |
| code = TRANS_CODE_WRITE; |
| else |
| code = TRANS_CODE_SEQ_WRITE; |
| } |
| |
| header = (struct trans_req_header *)br->trans_buf; |
| header->code = code; |
| header->rsvd = 0; |
| header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE); |
| header->addr = cpu_to_be32(reg); |
| |
| trans_len = TRANS_REQ_HD_SIZE; |
| |
| if (!is_read) { |
| trans_len += SPI_AVMM_VAL_SIZE * count; |
| if (trans_len > sizeof(br->trans_buf)) |
| return -ENOMEM; |
| |
| data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE); |
| |
| for (i = 0; i < count; i++) |
| *data++ = cpu_to_le32(*wr_val++); |
| } |
| |
| /* Store valid trans data length for next layer */ |
| br->trans_len = trans_len; |
| |
| return 0; |
| } |
| |
| /* |
| * Convert transaction layer data (in br->trans_buf) to phy layer data, store |
| * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy |
| * layer data length in br->phy_len. |
| * |
| * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded |
| * with PHY_IDLE, then the slave will just drop them. |
| * |
| * The driver will not simply pad 4a at the tail. The concern is that driver |
| * will not store MISO data during tx phase, if the driver pads 4a at the tail, |
| * it is possible that if the slave is fast enough to response at the padding |
| * time. As a result these rx bytes are lost. In the following case, 7a,7c,00 |
| * will lost. |
| * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|... |
| * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|... |
| * |
| * So the driver moves EOP and bytes after EOP to the end of the aligned size, |
| * then fill the hole with PHY_IDLE. As following: |
| * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40| |
| * after pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40| |
| * Then if the slave will not get the entire packet before the tx phase is |
| * over, it can't responsed to anything either. |
| */ |
| static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br) |
| { |
| char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL; |
| unsigned int aligned_phy_len, move_size; |
| bool need_esc = false; |
| |
| tb = br->trans_buf; |
| tb_end = tb + br->trans_len; |
| pb = br->phy_buf; |
| pb_limit = pb + ARRAY_SIZE(br->phy_buf); |
| |
| *pb++ = PKT_SOP; |
| |
| /* |
| * The driver doesn't support multiple channels so the channel number |
| * is always 0. |
| */ |
| *pb++ = PKT_CHANNEL; |
| *pb++ = 0x0; |
| |
| for (; pb < pb_limit && tb < tb_end; pb++) { |
| if (need_esc) { |
| *pb = *tb++ ^ 0x20; |
| need_esc = false; |
| continue; |
| } |
| |
| /* EOP should be inserted before the last valid char */ |
| if (tb == tb_end - 1 && !pb_eop) { |
| *pb = PKT_EOP; |
| pb_eop = pb; |
| continue; |
| } |
| |
| /* |
| * insert an ESCAPE char if the data value equals any special |
| * char. |
| */ |
| switch (*tb) { |
| case PKT_SOP: |
| case PKT_EOP: |
| case PKT_CHANNEL: |
| case PKT_ESC: |
| *pb = PKT_ESC; |
| need_esc = true; |
| break; |
| case PHY_IDLE: |
| case PHY_ESC: |
| *pb = PHY_ESC; |
| need_esc = true; |
| break; |
| default: |
| *pb = *tb++; |
| break; |
| } |
| } |
| |
| /* The phy buffer is used out but transaction layer data remains */ |
| if (tb < tb_end) |
| return -ENOMEM; |
| |
| /* Store valid phy data length for spi transfer */ |
| br->phy_len = pb - br->phy_buf; |
| |
| if (br->word_len == 1) |
| return 0; |
| |
| /* Do phy buf padding if word_len > 1 byte. */ |
| aligned_phy_len = ALIGN(br->phy_len, br->word_len); |
| if (aligned_phy_len > sizeof(br->phy_buf)) |
| return -ENOMEM; |
| |
| if (aligned_phy_len == br->phy_len) |
| return 0; |
| |
| /* move EOP and bytes after EOP to the end of aligned size */ |
| move_size = pb - pb_eop; |
| memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size); |
| |
| /* fill the hole with PHY_IDLEs */ |
| memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len); |
| |
| /* update the phy data length */ |
| br->phy_len = aligned_phy_len; |
| |
| return 0; |
| } |
| |
| /* |
| * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will |
| * ignore rx in tx phase. |
| */ |
| static int br_do_tx(struct spi_avmm_bridge *br) |
| { |
| /* reorder words for spi transfer */ |
| if (br->swap_words) |
| br->swap_words(br->phy_buf, br->phy_len); |
| |
| /* send all data in phy_buf */ |
| return spi_write(br->spi, br->phy_buf, br->phy_len); |
| } |
| |
| /* |
| * This function read the rx byte stream from SPI word by word and convert |
| * them to transaction layer data in br->trans_buf. It also stores the length |
| * of rx transaction layer data in br->trans_len |
| * |
| * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot |
| * prepare a fixed length buffer to receive all of the rx data in a batch. We |
| * have to read word by word and convert them to transaction layer data at |
| * once. |
| */ |
| static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br) |
| { |
| bool eop_found = false, channel_found = false, esc_found = false; |
| bool valid_word = false, last_try = false; |
| struct device *dev = &br->spi->dev; |
| char *pb, *tb_limit, *tb = NULL; |
| unsigned long poll_timeout; |
| int ret, i; |
| |
| tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf); |
| pb = br->phy_buf; |
| poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT; |
| while (tb < tb_limit) { |
| ret = spi_read(br->spi, pb, br->word_len); |
| if (ret) |
| return ret; |
| |
| /* reorder the word back */ |
| if (br->swap_words) |
| br->swap_words(pb, br->word_len); |
| |
| valid_word = false; |
| for (i = 0; i < br->word_len; i++) { |
| /* drop everything before first SOP */ |
| if (!tb && pb[i] != PKT_SOP) |
| continue; |
| |
| /* drop PHY_IDLE */ |
| if (pb[i] == PHY_IDLE) |
| continue; |
| |
| valid_word = true; |
| |
| /* |
| * We don't support multiple channels, so error out if |
| * a non-zero channel number is found. |
| */ |
| if (channel_found) { |
| if (pb[i] != 0) { |
| dev_err(dev, "%s channel num != 0\n", |
| __func__); |
| return -EFAULT; |
| } |
| |
| channel_found = false; |
| continue; |
| } |
| |
| switch (pb[i]) { |
| case PKT_SOP: |
| /* |
| * reset the parsing if a second SOP appears. |
| */ |
| tb = br->trans_buf; |
| eop_found = false; |
| channel_found = false; |
| esc_found = false; |
| break; |
| case PKT_EOP: |
| /* |
| * No special char is expected after ESC char. |
| * No special char (except ESC & PHY_IDLE) is |
| * expected after EOP char. |
| * |
| * The special chars are all dropped. |
| */ |
| if (esc_found || eop_found) |
| return -EFAULT; |
| |
| eop_found = true; |
| break; |
| case PKT_CHANNEL: |
| if (esc_found || eop_found) |
| return -EFAULT; |
| |
| channel_found = true; |
| break; |
| case PKT_ESC: |
| case PHY_ESC: |
| if (esc_found) |
| return -EFAULT; |
| |
| esc_found = true; |
| break; |
| default: |
| /* Record the normal byte in trans_buf. */ |
| if (esc_found) { |
| *tb++ = pb[i] ^ 0x20; |
| esc_found = false; |
| } else { |
| *tb++ = pb[i]; |
| } |
| |
| /* |
| * We get the last normal byte after EOP, it is |
| * time we finish. Normally the function should |
| * return here. |
| */ |
| if (eop_found) { |
| br->trans_len = tb - br->trans_buf; |
| return 0; |
| } |
| } |
| } |
| |
| if (valid_word) { |
| /* update poll timeout when we get valid word */ |
| poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT; |
| last_try = false; |
| } else { |
| /* |
| * We timeout when rx keeps invalid for some time. But |
| * it is possible we are scheduled out for long time |
| * after a spi_read. So when we are scheduled in, a SW |
| * timeout happens. But actually HW may have worked fine and |
| * has been ready long time ago. So we need to do an extra |
| * read, if we get a valid word then we could continue rx, |
| * otherwise real a HW issue happens. |
| */ |
| if (last_try) |
| return -ETIMEDOUT; |
| |
| if (time_after(jiffies, poll_timeout)) |
| last_try = true; |
| } |
| } |
| |
| /* |
| * We have used out all transfer layer buffer but cannot find the end |
| * of the byte stream. |
| */ |
| dev_err(dev, "%s transfer buffer is full but rx doesn't end\n", |
| __func__); |
| |
| return -EFAULT; |
| } |
| |
| /* |
| * For read transactions, the avmm bus will directly return register values |
| * without transaction response header. |
| */ |
| static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br, |
| u32 *val, unsigned int expected_count) |
| { |
| unsigned int i, trans_len = br->trans_len; |
| __le32 *data; |
| |
| if (expected_count * SPI_AVMM_VAL_SIZE != trans_len) |
| return -EFAULT; |
| |
| data = (__le32 *)br->trans_buf; |
| for (i = 0; i < expected_count; i++) |
| *val++ = le32_to_cpu(*data++); |
| |
| return 0; |
| } |
| |
| /* |
| * For write transactions, the slave will return a transaction response |
| * header. |
| */ |
| static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br, |
| unsigned int expected_count) |
| { |
| unsigned int trans_len = br->trans_len; |
| struct trans_resp_header *resp; |
| u8 code; |
| u16 val_len; |
| |
| if (trans_len != TRANS_RESP_HD_SIZE) |
| return -EFAULT; |
| |
| resp = (struct trans_resp_header *)br->trans_buf; |
| |
| code = resp->r_code ^ 0x80; |
| val_len = be16_to_cpu(resp->size); |
| if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE) |
| return -EFAULT; |
| |
| /* error out if the trans code doesn't align with the val size */ |
| if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) || |
| (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int do_reg_access(void *context, bool is_read, unsigned int reg, |
| unsigned int *value, unsigned int count) |
| { |
| struct spi_avmm_bridge *br = context; |
| int ret; |
| |
| /* invalidate bridge buffers first */ |
| br->trans_len = 0; |
| br->phy_len = 0; |
| |
| ret = br_trans_tx_prepare(br, is_read, reg, value, count); |
| if (ret) |
| return ret; |
| |
| ret = br_pkt_phy_tx_prepare(br); |
| if (ret) |
| return ret; |
| |
| ret = br_do_tx(br); |
| if (ret) |
| return ret; |
| |
| ret = br_do_rx_and_pkt_phy_parse(br); |
| if (ret) |
| return ret; |
| |
| if (is_read) |
| return br_rd_trans_rx_parse(br, value, count); |
| else |
| return br_wr_trans_rx_parse(br, count); |
| } |
| |
| static int regmap_spi_avmm_gather_write(void *context, |
| const void *reg_buf, size_t reg_len, |
| const void *val_buf, size_t val_len) |
| { |
| if (reg_len != SPI_AVMM_REG_SIZE) |
| return -EINVAL; |
| |
| if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE)) |
| return -EINVAL; |
| |
| return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf, |
| val_len / SPI_AVMM_VAL_SIZE); |
| } |
| |
| static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes) |
| { |
| if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE) |
| return -EINVAL; |
| |
| return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE, |
| data + SPI_AVMM_REG_SIZE, |
| bytes - SPI_AVMM_REG_SIZE); |
| } |
| |
| static int regmap_spi_avmm_read(void *context, |
| const void *reg_buf, size_t reg_len, |
| void *val_buf, size_t val_len) |
| { |
| if (reg_len != SPI_AVMM_REG_SIZE) |
| return -EINVAL; |
| |
| if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE)) |
| return -EINVAL; |
| |
| return do_reg_access(context, true, *(u32 *)reg_buf, val_buf, |
| (val_len / SPI_AVMM_VAL_SIZE)); |
| } |
| |
| static struct spi_avmm_bridge * |
| spi_avmm_bridge_ctx_gen(struct spi_device *spi) |
| { |
| struct spi_avmm_bridge *br; |
| |
| if (!spi) |
| return ERR_PTR(-ENODEV); |
| |
| /* Only support BPW == 8 or 32 now. Try 32 BPW first. */ |
| spi->mode = SPI_MODE_1; |
| spi->bits_per_word = 32; |
| if (spi_setup(spi)) { |
| spi->bits_per_word = 8; |
| if (spi_setup(spi)) |
| return ERR_PTR(-EINVAL); |
| } |
| |
| br = kzalloc(sizeof(*br), GFP_KERNEL); |
| if (!br) |
| return ERR_PTR(-ENOMEM); |
| |
| br->spi = spi; |
| br->word_len = spi->bits_per_word / 8; |
| if (br->word_len == 4) { |
| /* |
| * The protocol requires little endian byte order but MSB |
| * first. So driver needs to swap the byte order word by word |
| * if word length > 1. |
| */ |
| br->swap_words = br_swap_words_32; |
| } |
| |
| return br; |
| } |
| |
| static void spi_avmm_bridge_ctx_free(void *context) |
| { |
| kfree(context); |
| } |
| |
| static const struct regmap_bus regmap_spi_avmm_bus = { |
| .write = regmap_spi_avmm_write, |
| .gather_write = regmap_spi_avmm_gather_write, |
| .read = regmap_spi_avmm_read, |
| .reg_format_endian_default = REGMAP_ENDIAN_NATIVE, |
| .val_format_endian_default = REGMAP_ENDIAN_NATIVE, |
| .max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT, |
| .max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT, |
| .free_context = spi_avmm_bridge_ctx_free, |
| }; |
| |
| struct regmap *__regmap_init_spi_avmm(struct spi_device *spi, |
| const struct regmap_config *config, |
| struct lock_class_key *lock_key, |
| const char *lock_name) |
| { |
| struct spi_avmm_bridge *bridge; |
| struct regmap *map; |
| |
| bridge = spi_avmm_bridge_ctx_gen(spi); |
| if (IS_ERR(bridge)) |
| return ERR_CAST(bridge); |
| |
| map = __regmap_init(&spi->dev, ®map_spi_avmm_bus, |
| bridge, config, lock_key, lock_name); |
| if (IS_ERR(map)) { |
| spi_avmm_bridge_ctx_free(bridge); |
| return ERR_CAST(map); |
| } |
| |
| return map; |
| } |
| EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm); |
| |
| struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi, |
| const struct regmap_config *config, |
| struct lock_class_key *lock_key, |
| const char *lock_name) |
| { |
| struct spi_avmm_bridge *bridge; |
| struct regmap *map; |
| |
| bridge = spi_avmm_bridge_ctx_gen(spi); |
| if (IS_ERR(bridge)) |
| return ERR_CAST(bridge); |
| |
| map = __devm_regmap_init(&spi->dev, ®map_spi_avmm_bus, |
| bridge, config, lock_key, lock_name); |
| if (IS_ERR(map)) { |
| spi_avmm_bridge_ctx_free(bridge); |
| return ERR_CAST(map); |
| } |
| |
| return map; |
| } |
| EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm); |
| |
| MODULE_LICENSE("GPL v2"); |