| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * I2C Link Layer for ST21NFCA HCI based Driver |
| * Copyright (C) 2014 STMicroelectronics SAS. All rights reserved. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/crc-ccitt.h> |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_gpio.h> |
| #include <linux/acpi.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <linux/nfc.h> |
| #include <linux/firmware.h> |
| |
| #include <asm/unaligned.h> |
| |
| #include <net/nfc/hci.h> |
| #include <net/nfc/llc.h> |
| #include <net/nfc/nfc.h> |
| |
| #include "st21nfca.h" |
| |
| /* |
| * Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF. |
| * Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism |
| * called byte stuffing has been introduced. |
| * |
| * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING |
| * - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte) |
| * - xor byte with ST21NFCA_BYTE_STUFFING_MASK |
| */ |
| #define ST21NFCA_SOF_EOF 0x7e |
| #define ST21NFCA_BYTE_STUFFING_MASK 0x20 |
| #define ST21NFCA_ESCAPE_BYTE_STUFFING 0x7d |
| |
| /* SOF + 00 */ |
| #define ST21NFCA_FRAME_HEADROOM 2 |
| |
| /* 2 bytes crc + EOF */ |
| #define ST21NFCA_FRAME_TAILROOM 3 |
| #define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \ |
| buf[1] == 0) |
| |
| #define ST21NFCA_HCI_DRIVER_NAME "st21nfca_hci" |
| #define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c" |
| |
| struct st21nfca_i2c_phy { |
| struct i2c_client *i2c_dev; |
| struct nfc_hci_dev *hdev; |
| |
| struct gpio_desc *gpiod_ena; |
| struct st21nfca_se_status se_status; |
| |
| struct sk_buff *pending_skb; |
| int current_read_len; |
| /* |
| * crc might have fail because i2c macro |
| * is disable due to other interface activity |
| */ |
| int crc_trials; |
| |
| int powered; |
| int run_mode; |
| |
| /* |
| * < 0 if hardware error occured (e.g. i2c err) |
| * and prevents normal operation. |
| */ |
| int hard_fault; |
| struct mutex phy_lock; |
| }; |
| |
| static const u8 len_seq[] = { 16, 24, 12, 29 }; |
| static const u16 wait_tab[] = { 2, 3, 5, 15, 20, 40}; |
| |
| #define I2C_DUMP_SKB(info, skb) \ |
| do { \ |
| pr_debug("%s:\n", info); \ |
| print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET, \ |
| 16, 1, (skb)->data, (skb)->len, 0); \ |
| } while (0) |
| |
| /* |
| * In order to get the CLF in a known state we generate an internal reboot |
| * using a proprietary command. |
| * Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF |
| * fill buffer. |
| */ |
| static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy) |
| { |
| u16 wait_reboot[] = { 50, 300, 1000 }; |
| char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E }; |
| u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE]; |
| int i, r = -1; |
| |
| for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) { |
| r = i2c_master_send(phy->i2c_dev, reboot_cmd, |
| sizeof(reboot_cmd)); |
| if (r < 0) |
| msleep(wait_reboot[i]); |
| } |
| if (r < 0) |
| return r; |
| |
| /* CLF is spending about 20ms to do an internal reboot */ |
| msleep(20); |
| r = -1; |
| for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) { |
| r = i2c_master_recv(phy->i2c_dev, tmp, |
| ST21NFCA_HCI_LLC_MAX_SIZE); |
| if (r < 0) |
| msleep(wait_reboot[i]); |
| } |
| if (r < 0) |
| return r; |
| |
| for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE && |
| tmp[i] == ST21NFCA_SOF_EOF; i++) |
| ; |
| |
| if (r != ST21NFCA_HCI_LLC_MAX_SIZE) |
| return -ENODEV; |
| |
| usleep_range(1000, 1500); |
| return 0; |
| } |
| |
| static int st21nfca_hci_i2c_enable(void *phy_id) |
| { |
| struct st21nfca_i2c_phy *phy = phy_id; |
| |
| gpiod_set_value(phy->gpiod_ena, 1); |
| phy->powered = 1; |
| phy->run_mode = ST21NFCA_HCI_MODE; |
| |
| usleep_range(10000, 15000); |
| |
| return 0; |
| } |
| |
| static void st21nfca_hci_i2c_disable(void *phy_id) |
| { |
| struct st21nfca_i2c_phy *phy = phy_id; |
| |
| gpiod_set_value(phy->gpiod_ena, 0); |
| |
| phy->powered = 0; |
| } |
| |
| static void st21nfca_hci_add_len_crc(struct sk_buff *skb) |
| { |
| u16 crc; |
| u8 tmp; |
| |
| *(u8 *)skb_push(skb, 1) = 0; |
| |
| crc = crc_ccitt(0xffff, skb->data, skb->len); |
| crc = ~crc; |
| |
| tmp = crc & 0x00ff; |
| skb_put_u8(skb, tmp); |
| |
| tmp = (crc >> 8) & 0x00ff; |
| skb_put_u8(skb, tmp); |
| } |
| |
| static void st21nfca_hci_remove_len_crc(struct sk_buff *skb) |
| { |
| skb_pull(skb, ST21NFCA_FRAME_HEADROOM); |
| skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM); |
| } |
| |
| /* |
| * Writing a frame must not return the number of written bytes. |
| * It must return either zero for success, or <0 for error. |
| * In addition, it must not alter the skb |
| */ |
| static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb) |
| { |
| int r = -1, i, j; |
| struct st21nfca_i2c_phy *phy = phy_id; |
| struct i2c_client *client = phy->i2c_dev; |
| u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2]; |
| |
| I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb); |
| |
| if (phy->hard_fault != 0) |
| return phy->hard_fault; |
| |
| /* |
| * Compute CRC before byte stuffing computation on frame |
| * Note st21nfca_hci_add_len_crc is doing a byte stuffing |
| * on its own value |
| */ |
| st21nfca_hci_add_len_crc(skb); |
| |
| /* add ST21NFCA_SOF_EOF on tail */ |
| skb_put_u8(skb, ST21NFCA_SOF_EOF); |
| /* add ST21NFCA_SOF_EOF on head */ |
| *(u8 *)skb_push(skb, 1) = ST21NFCA_SOF_EOF; |
| |
| /* |
| * Compute byte stuffing |
| * if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING |
| * insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte) |
| * xor byte with ST21NFCA_BYTE_STUFFING_MASK |
| */ |
| tmp[0] = skb->data[0]; |
| for (i = 1, j = 1; i < skb->len - 1; i++, j++) { |
| if (skb->data[i] == ST21NFCA_SOF_EOF |
| || skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) { |
| tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING; |
| j++; |
| tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK; |
| } else { |
| tmp[j] = skb->data[i]; |
| } |
| } |
| tmp[j] = skb->data[i]; |
| j++; |
| |
| /* |
| * Manage sleep mode |
| * Try 3 times to send data with delay between each |
| */ |
| mutex_lock(&phy->phy_lock); |
| for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) { |
| r = i2c_master_send(client, tmp, j); |
| if (r < 0) |
| msleep(wait_tab[i]); |
| } |
| mutex_unlock(&phy->phy_lock); |
| |
| if (r >= 0) { |
| if (r != j) |
| r = -EREMOTEIO; |
| else |
| r = 0; |
| } |
| |
| st21nfca_hci_remove_len_crc(skb); |
| |
| return r; |
| } |
| |
| static int get_frame_size(u8 *buf, int buflen) |
| { |
| int len = 0; |
| |
| if (buf[len + 1] == ST21NFCA_SOF_EOF) |
| return 0; |
| |
| for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++) |
| ; |
| |
| return len; |
| } |
| |
| static int check_crc(u8 *buf, int buflen) |
| { |
| u16 crc; |
| |
| crc = crc_ccitt(0xffff, buf, buflen - 2); |
| crc = ~crc; |
| |
| if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) { |
| pr_err(ST21NFCA_HCI_DRIVER_NAME |
| ": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1], |
| buf[buflen - 2]); |
| |
| pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__); |
| print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE, |
| 16, 2, buf, buflen, false); |
| return -EPERM; |
| } |
| return 0; |
| } |
| |
| /* |
| * Prepare received data for upper layer. |
| * Received data include byte stuffing, crc and sof/eof |
| * which is not usable by hci part. |
| * returns: |
| * frame size without sof/eof, header and byte stuffing |
| * -EBADMSG : frame was incorrect and discarded |
| */ |
| static int st21nfca_hci_i2c_repack(struct sk_buff *skb) |
| { |
| int i, j, r, size; |
| |
| if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0)) |
| return -EBADMSG; |
| |
| size = get_frame_size(skb->data, skb->len); |
| if (size > 0) { |
| skb_trim(skb, size); |
| /* remove ST21NFCA byte stuffing for upper layer */ |
| for (i = 1, j = 0; i < skb->len; i++) { |
| if (skb->data[i + j] == |
| (u8) ST21NFCA_ESCAPE_BYTE_STUFFING) { |
| skb->data[i] = skb->data[i + j + 1] |
| | ST21NFCA_BYTE_STUFFING_MASK; |
| i++; |
| j++; |
| } |
| skb->data[i] = skb->data[i + j]; |
| } |
| /* remove byte stuffing useless byte */ |
| skb_trim(skb, i - j); |
| /* remove ST21NFCA_SOF_EOF from head */ |
| skb_pull(skb, 1); |
| |
| r = check_crc(skb->data, skb->len); |
| if (r != 0) { |
| i = 0; |
| return -EBADMSG; |
| } |
| |
| /* remove headbyte */ |
| skb_pull(skb, 1); |
| /* remove crc. Byte Stuffing is already removed here */ |
| skb_trim(skb, skb->len - 2); |
| return skb->len; |
| } |
| return 0; |
| } |
| |
| /* |
| * Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees |
| * that i2c bus will be flushed and that next read will start on a new frame. |
| * returned skb contains only LLC header and payload. |
| * returns: |
| * frame size : if received frame is complete (find ST21NFCA_SOF_EOF at |
| * end of read) |
| * -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF |
| * at end of read) |
| * -EREMOTEIO : i2c read error (fatal) |
| * -EBADMSG : frame was incorrect and discarded |
| * (value returned from st21nfca_hci_i2c_repack) |
| * -EIO : if no ST21NFCA_SOF_EOF is found after reaching |
| * the read length end sequence |
| */ |
| static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy, |
| struct sk_buff *skb) |
| { |
| int r, i; |
| u8 len; |
| u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD]; |
| struct i2c_client *client = phy->i2c_dev; |
| |
| if (phy->current_read_len < ARRAY_SIZE(len_seq)) { |
| len = len_seq[phy->current_read_len]; |
| |
| /* |
| * Add retry mecanism |
| * Operation on I2C interface may fail in case of operation on |
| * RF or SWP interface |
| */ |
| r = 0; |
| mutex_lock(&phy->phy_lock); |
| for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) { |
| r = i2c_master_recv(client, buf, len); |
| if (r < 0) |
| msleep(wait_tab[i]); |
| } |
| mutex_unlock(&phy->phy_lock); |
| |
| if (r != len) { |
| phy->current_read_len = 0; |
| return -EREMOTEIO; |
| } |
| |
| /* |
| * The first read sequence does not start with SOF. |
| * Data is corrupeted so we drop it. |
| */ |
| if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) { |
| skb_trim(skb, 0); |
| phy->current_read_len = 0; |
| return -EIO; |
| } else if (phy->current_read_len && IS_START_OF_FRAME(buf)) { |
| /* |
| * Previous frame transmission was interrupted and |
| * the frame got repeated. |
| * Received frame start with ST21NFCA_SOF_EOF + 00. |
| */ |
| skb_trim(skb, 0); |
| phy->current_read_len = 0; |
| } |
| |
| skb_put_data(skb, buf, len); |
| |
| if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) { |
| phy->current_read_len = 0; |
| return st21nfca_hci_i2c_repack(skb); |
| } |
| phy->current_read_len++; |
| return -EAGAIN; |
| } |
| return -EIO; |
| } |
| |
| /* |
| * Reads an shdlc frame from the chip. This is not as straightforward as it |
| * seems. The frame format is data-crc, and corruption can occur anywhere |
| * while transiting on i2c bus, such that we could read an invalid data. |
| * The tricky case is when we read a corrupted data or crc. We must detect |
| * this here in order to determine that data can be transmitted to the hci |
| * core. This is the reason why we check the crc here. |
| * The CLF will repeat a frame until we send a RR on that frame. |
| * |
| * On ST21NFCA, IRQ goes in idle when read starts. As no size information are |
| * available in the incoming data, other IRQ might come. Every IRQ will trigger |
| * a read sequence with different length and will fill the current frame. |
| * The reception is complete once we reach a ST21NFCA_SOF_EOF. |
| */ |
| static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id) |
| { |
| struct st21nfca_i2c_phy *phy = phy_id; |
| struct i2c_client *client; |
| |
| int r; |
| |
| if (!phy || irq != phy->i2c_dev->irq) { |
| WARN_ON_ONCE(1); |
| return IRQ_NONE; |
| } |
| |
| client = phy->i2c_dev; |
| dev_dbg(&client->dev, "IRQ\n"); |
| |
| if (phy->hard_fault != 0) |
| return IRQ_HANDLED; |
| |
| r = st21nfca_hci_i2c_read(phy, phy->pending_skb); |
| if (r == -EREMOTEIO) { |
| phy->hard_fault = r; |
| |
| nfc_hci_recv_frame(phy->hdev, NULL); |
| |
| return IRQ_HANDLED; |
| } else if (r == -EAGAIN || r == -EIO) { |
| return IRQ_HANDLED; |
| } else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) { |
| /* |
| * With ST21NFCA, only one interface (I2C, RF or SWP) |
| * may be active at a time. |
| * Having incorrect crc is usually due to i2c macrocell |
| * deactivation in the middle of a transmission. |
| * It may generate corrupted data on i2c. |
| * We give sometime to get i2c back. |
| * The complete frame will be repeated. |
| */ |
| msleep(wait_tab[phy->crc_trials]); |
| phy->crc_trials++; |
| phy->current_read_len = 0; |
| kfree_skb(phy->pending_skb); |
| } else if (r > 0) { |
| /* |
| * We succeeded to read data from the CLF and |
| * data is valid. |
| * Reset counter. |
| */ |
| nfc_hci_recv_frame(phy->hdev, phy->pending_skb); |
| phy->crc_trials = 0; |
| } else { |
| kfree_skb(phy->pending_skb); |
| } |
| |
| phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL); |
| if (phy->pending_skb == NULL) { |
| phy->hard_fault = -ENOMEM; |
| nfc_hci_recv_frame(phy->hdev, NULL); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct nfc_phy_ops i2c_phy_ops = { |
| .write = st21nfca_hci_i2c_write, |
| .enable = st21nfca_hci_i2c_enable, |
| .disable = st21nfca_hci_i2c_disable, |
| }; |
| |
| static const struct acpi_gpio_params enable_gpios = { 1, 0, false }; |
| |
| static const struct acpi_gpio_mapping acpi_st21nfca_gpios[] = { |
| { "enable-gpios", &enable_gpios, 1 }, |
| {}, |
| }; |
| |
| static int st21nfca_hci_i2c_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct device *dev = &client->dev; |
| struct st21nfca_i2c_phy *phy; |
| int r; |
| |
| if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { |
| nfc_err(&client->dev, "Need I2C_FUNC_I2C\n"); |
| return -ENODEV; |
| } |
| |
| phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy), |
| GFP_KERNEL); |
| if (!phy) |
| return -ENOMEM; |
| |
| phy->i2c_dev = client; |
| phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL); |
| if (phy->pending_skb == NULL) |
| return -ENOMEM; |
| |
| phy->current_read_len = 0; |
| phy->crc_trials = 0; |
| mutex_init(&phy->phy_lock); |
| i2c_set_clientdata(client, phy); |
| |
| r = devm_acpi_dev_add_driver_gpios(dev, acpi_st21nfca_gpios); |
| if (r) |
| dev_dbg(dev, "Unable to add GPIO mapping table\n"); |
| |
| /* Get EN GPIO from resource provider */ |
| phy->gpiod_ena = devm_gpiod_get(dev, "enable", GPIOD_OUT_LOW); |
| if (IS_ERR(phy->gpiod_ena)) { |
| nfc_err(dev, "Unable to get ENABLE GPIO\n"); |
| return PTR_ERR(phy->gpiod_ena); |
| } |
| |
| phy->se_status.is_ese_present = |
| device_property_read_bool(&client->dev, "ese-present"); |
| phy->se_status.is_uicc_present = |
| device_property_read_bool(&client->dev, "uicc-present"); |
| |
| r = st21nfca_hci_platform_init(phy); |
| if (r < 0) { |
| nfc_err(&client->dev, "Unable to reboot st21nfca\n"); |
| return r; |
| } |
| |
| r = devm_request_threaded_irq(&client->dev, client->irq, NULL, |
| st21nfca_hci_irq_thread_fn, |
| IRQF_ONESHOT, |
| ST21NFCA_HCI_DRIVER_NAME, phy); |
| if (r < 0) { |
| nfc_err(&client->dev, "Unable to register IRQ handler\n"); |
| return r; |
| } |
| |
| return st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME, |
| ST21NFCA_FRAME_HEADROOM, |
| ST21NFCA_FRAME_TAILROOM, |
| ST21NFCA_HCI_LLC_MAX_PAYLOAD, |
| &phy->hdev, |
| &phy->se_status); |
| } |
| |
| static int st21nfca_hci_i2c_remove(struct i2c_client *client) |
| { |
| struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client); |
| |
| st21nfca_hci_remove(phy->hdev); |
| |
| if (phy->powered) |
| st21nfca_hci_i2c_disable(phy); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id st21nfca_hci_i2c_id_table[] = { |
| {ST21NFCA_HCI_DRIVER_NAME, 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table); |
| |
| static const struct acpi_device_id st21nfca_hci_i2c_acpi_match[] __maybe_unused = { |
| {"SMO2100", 0}, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(acpi, st21nfca_hci_i2c_acpi_match); |
| |
| static const struct of_device_id of_st21nfca_i2c_match[] __maybe_unused = { |
| { .compatible = "st,st21nfca-i2c", }, |
| { .compatible = "st,st21nfca_i2c", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, of_st21nfca_i2c_match); |
| |
| static struct i2c_driver st21nfca_hci_i2c_driver = { |
| .driver = { |
| .name = ST21NFCA_HCI_I2C_DRIVER_NAME, |
| .of_match_table = of_match_ptr(of_st21nfca_i2c_match), |
| .acpi_match_table = ACPI_PTR(st21nfca_hci_i2c_acpi_match), |
| }, |
| .probe = st21nfca_hci_i2c_probe, |
| .id_table = st21nfca_hci_i2c_id_table, |
| .remove = st21nfca_hci_i2c_remove, |
| }; |
| module_i2c_driver(st21nfca_hci_i2c_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION(DRIVER_DESC); |