| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "alloc_foreground.h" |
| #include "bkey_methods.h" |
| #include "btree_cache.h" |
| #include "btree_gc.h" |
| #include "btree_update.h" |
| #include "btree_update_interior.h" |
| #include "btree_io.h" |
| #include "btree_iter.h" |
| #include "btree_locking.h" |
| #include "buckets.h" |
| #include "error.h" |
| #include "extents.h" |
| #include "journal.h" |
| #include "journal_reclaim.h" |
| #include "keylist.h" |
| #include "recovery.h" |
| #include "replicas.h" |
| #include "super-io.h" |
| #include "trace.h" |
| |
| #include <linux/random.h> |
| |
| static void bch2_btree_insert_node(struct btree_update *, struct btree_trans *, |
| struct btree_path *, struct btree *, |
| struct keylist *, unsigned); |
| static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); |
| |
| /* Debug code: */ |
| |
| /* |
| * Verify that child nodes correctly span parent node's range: |
| */ |
| static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) |
| { |
| #ifdef CONFIG_BCACHEFS_DEBUG |
| struct bpos next_node = b->data->min_key; |
| struct btree_node_iter iter; |
| struct bkey_s_c k; |
| struct bkey_s_c_btree_ptr_v2 bp; |
| struct bkey unpacked; |
| struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; |
| |
| BUG_ON(!b->c.level); |
| |
| if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) |
| return; |
| |
| bch2_btree_node_iter_init_from_start(&iter, b); |
| |
| while (1) { |
| k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); |
| if (k.k->type != KEY_TYPE_btree_ptr_v2) |
| break; |
| bp = bkey_s_c_to_btree_ptr_v2(k); |
| |
| if (bpos_cmp(next_node, bp.v->min_key)) { |
| bch2_dump_btree_node(c, b); |
| bch2_bpos_to_text(&buf1, next_node); |
| bch2_bpos_to_text(&buf2, bp.v->min_key); |
| panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); |
| } |
| |
| bch2_btree_node_iter_advance(&iter, b); |
| |
| if (bch2_btree_node_iter_end(&iter)) { |
| if (bpos_cmp(k.k->p, b->key.k.p)) { |
| bch2_dump_btree_node(c, b); |
| bch2_bpos_to_text(&buf1, b->key.k.p); |
| bch2_bpos_to_text(&buf2, k.k->p); |
| panic("expected end %s got %s\n", buf1.buf, buf2.buf); |
| } |
| break; |
| } |
| |
| next_node = bpos_successor(k.k->p); |
| } |
| #endif |
| } |
| |
| /* Calculate ideal packed bkey format for new btree nodes: */ |
| |
| void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) |
| { |
| struct bkey_packed *k; |
| struct bset_tree *t; |
| struct bkey uk; |
| |
| for_each_bset(b, t) |
| bset_tree_for_each_key(b, t, k) |
| if (!bkey_deleted(k)) { |
| uk = bkey_unpack_key(b, k); |
| bch2_bkey_format_add_key(s, &uk); |
| } |
| } |
| |
| static struct bkey_format bch2_btree_calc_format(struct btree *b) |
| { |
| struct bkey_format_state s; |
| |
| bch2_bkey_format_init(&s); |
| bch2_bkey_format_add_pos(&s, b->data->min_key); |
| bch2_bkey_format_add_pos(&s, b->data->max_key); |
| __bch2_btree_calc_format(&s, b); |
| |
| return bch2_bkey_format_done(&s); |
| } |
| |
| static size_t btree_node_u64s_with_format(struct btree *b, |
| struct bkey_format *new_f) |
| { |
| struct bkey_format *old_f = &b->format; |
| |
| /* stupid integer promotion rules */ |
| ssize_t delta = |
| (((int) new_f->key_u64s - old_f->key_u64s) * |
| (int) b->nr.packed_keys) + |
| (((int) new_f->key_u64s - BKEY_U64s) * |
| (int) b->nr.unpacked_keys); |
| |
| BUG_ON(delta + b->nr.live_u64s < 0); |
| |
| return b->nr.live_u64s + delta; |
| } |
| |
| /** |
| * btree_node_format_fits - check if we could rewrite node with a new format |
| * |
| * This assumes all keys can pack with the new format -- it just checks if |
| * the re-packed keys would fit inside the node itself. |
| */ |
| bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, |
| struct bkey_format *new_f) |
| { |
| size_t u64s = btree_node_u64s_with_format(b, new_f); |
| |
| return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); |
| } |
| |
| /* Btree node freeing/allocation: */ |
| |
| static void __btree_node_free(struct bch_fs *c, struct btree *b) |
| { |
| trace_btree_node_free(c, b); |
| |
| BUG_ON(btree_node_dirty(b)); |
| BUG_ON(btree_node_need_write(b)); |
| BUG_ON(b == btree_node_root(c, b)); |
| BUG_ON(b->ob.nr); |
| BUG_ON(!list_empty(&b->write_blocked)); |
| BUG_ON(b->will_make_reachable); |
| |
| clear_btree_node_noevict(b); |
| |
| mutex_lock(&c->btree_cache.lock); |
| list_move(&b->list, &c->btree_cache.freeable); |
| mutex_unlock(&c->btree_cache.lock); |
| } |
| |
| static void bch2_btree_node_free_inmem(struct btree_trans *trans, |
| struct btree *b) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path *path; |
| |
| trans_for_each_path(trans, path) |
| BUG_ON(path->l[b->c.level].b == b && |
| path->l[b->c.level].lock_seq == b->c.lock.state.seq); |
| |
| six_lock_write(&b->c.lock, NULL, NULL); |
| |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| __btree_node_free(c, b); |
| |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| } |
| |
| static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, |
| struct disk_reservation *res, |
| struct closure *cl, |
| bool interior_node, |
| unsigned flags) |
| { |
| struct write_point *wp; |
| struct btree *b; |
| __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; |
| struct open_buckets ob = { .nr = 0 }; |
| struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; |
| unsigned nr_reserve; |
| enum alloc_reserve alloc_reserve; |
| int ret; |
| |
| if (flags & BTREE_INSERT_USE_RESERVE) { |
| nr_reserve = 0; |
| alloc_reserve = RESERVE_btree_movinggc; |
| } else { |
| nr_reserve = BTREE_NODE_RESERVE; |
| alloc_reserve = RESERVE_btree; |
| } |
| |
| mutex_lock(&c->btree_reserve_cache_lock); |
| if (c->btree_reserve_cache_nr > nr_reserve) { |
| struct btree_alloc *a = |
| &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; |
| |
| ob = a->ob; |
| bkey_copy(&tmp.k, &a->k); |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| goto mem_alloc; |
| } |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| |
| retry: |
| ret = bch2_alloc_sectors_start(c, |
| c->opts.metadata_target ?: |
| c->opts.foreground_target, |
| 0, |
| writepoint_ptr(&c->btree_write_point), |
| &devs_have, |
| res->nr_replicas, |
| c->opts.metadata_replicas_required, |
| alloc_reserve, 0, cl, &wp); |
| if (unlikely(ret)) |
| return ERR_PTR(ret); |
| |
| if (wp->sectors_free < btree_sectors(c)) { |
| struct open_bucket *ob; |
| unsigned i; |
| |
| open_bucket_for_each(c, &wp->ptrs, ob, i) |
| if (ob->sectors_free < btree_sectors(c)) |
| ob->sectors_free = 0; |
| |
| bch2_alloc_sectors_done(c, wp); |
| goto retry; |
| } |
| |
| bkey_btree_ptr_v2_init(&tmp.k); |
| bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); |
| |
| bch2_open_bucket_get(c, wp, &ob); |
| bch2_alloc_sectors_done(c, wp); |
| mem_alloc: |
| b = bch2_btree_node_mem_alloc(c, interior_node); |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| |
| /* we hold cannibalize_lock: */ |
| BUG_ON(IS_ERR(b)); |
| BUG_ON(b->ob.nr); |
| |
| bkey_copy(&b->key, &tmp.k); |
| b->ob = ob; |
| |
| return b; |
| } |
| |
| static struct btree *bch2_btree_node_alloc(struct btree_update *as, unsigned level) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *b; |
| struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; |
| int ret; |
| |
| BUG_ON(level >= BTREE_MAX_DEPTH); |
| BUG_ON(!p->nr); |
| |
| b = p->b[--p->nr]; |
| |
| six_lock_intent(&b->c.lock, NULL, NULL); |
| six_lock_write(&b->c.lock, NULL, NULL); |
| |
| set_btree_node_accessed(b); |
| set_btree_node_dirty_acct(c, b); |
| set_btree_node_need_write(b); |
| |
| bch2_bset_init_first(b, &b->data->keys); |
| b->c.level = level; |
| b->c.btree_id = as->btree_id; |
| b->version_ondisk = c->sb.version; |
| |
| memset(&b->nr, 0, sizeof(b->nr)); |
| b->data->magic = cpu_to_le64(bset_magic(c)); |
| memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); |
| b->data->flags = 0; |
| SET_BTREE_NODE_ID(b->data, as->btree_id); |
| SET_BTREE_NODE_LEVEL(b->data, level); |
| |
| if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { |
| struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); |
| |
| bp->v.mem_ptr = 0; |
| bp->v.seq = b->data->keys.seq; |
| bp->v.sectors_written = 0; |
| } |
| |
| SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); |
| |
| bch2_btree_build_aux_trees(b); |
| |
| ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); |
| BUG_ON(ret); |
| |
| trace_btree_node_alloc(c, b); |
| return b; |
| } |
| |
| static void btree_set_min(struct btree *b, struct bpos pos) |
| { |
| if (b->key.k.type == KEY_TYPE_btree_ptr_v2) |
| bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; |
| b->data->min_key = pos; |
| } |
| |
| static void btree_set_max(struct btree *b, struct bpos pos) |
| { |
| b->key.k.p = pos; |
| b->data->max_key = pos; |
| } |
| |
| struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *as, |
| struct btree *b, |
| struct bkey_format format) |
| { |
| struct btree *n; |
| |
| n = bch2_btree_node_alloc(as, b->c.level); |
| |
| SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); |
| |
| btree_set_min(n, b->data->min_key); |
| btree_set_max(n, b->data->max_key); |
| |
| n->data->format = format; |
| btree_node_set_format(n, format); |
| |
| bch2_btree_sort_into(as->c, n, b); |
| |
| btree_node_reset_sib_u64s(n); |
| |
| n->key.k.p = b->key.k.p; |
| return n; |
| } |
| |
| static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bkey_format new_f = bch2_btree_calc_format(b); |
| |
| /* |
| * The keys might expand with the new format - if they wouldn't fit in |
| * the btree node anymore, use the old format for now: |
| */ |
| if (!bch2_btree_node_format_fits(as->c, b, &new_f)) |
| new_f = b->format; |
| |
| return __bch2_btree_node_alloc_replacement(as, b, new_f); |
| } |
| |
| static struct btree *__btree_root_alloc(struct btree_update *as, unsigned level) |
| { |
| struct btree *b = bch2_btree_node_alloc(as, level); |
| |
| btree_set_min(b, POS_MIN); |
| btree_set_max(b, SPOS_MAX); |
| b->data->format = bch2_btree_calc_format(b); |
| |
| btree_node_set_format(b, b->data->format); |
| bch2_btree_build_aux_trees(b); |
| |
| bch2_btree_update_add_new_node(as, b); |
| six_unlock_write(&b->c.lock); |
| |
| return b; |
| } |
| |
| static void bch2_btree_reserve_put(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| struct prealloc_nodes *p; |
| |
| mutex_lock(&c->btree_reserve_cache_lock); |
| |
| for (p = as->prealloc_nodes; |
| p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); |
| p++) { |
| while (p->nr) { |
| struct btree *b = p->b[--p->nr]; |
| |
| six_lock_intent(&b->c.lock, NULL, NULL); |
| six_lock_write(&b->c.lock, NULL, NULL); |
| |
| if (c->btree_reserve_cache_nr < |
| ARRAY_SIZE(c->btree_reserve_cache)) { |
| struct btree_alloc *a = |
| &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; |
| |
| a->ob = b->ob; |
| b->ob.nr = 0; |
| bkey_copy(&a->k, &b->key); |
| } else { |
| bch2_open_buckets_put(c, &b->ob); |
| } |
| |
| __btree_node_free(c, b); |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| } |
| } |
| |
| mutex_unlock(&c->btree_reserve_cache_lock); |
| } |
| |
| static int bch2_btree_reserve_get(struct btree_update *as, |
| unsigned nr_nodes[2], |
| unsigned flags, |
| struct closure *cl) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *b; |
| unsigned interior; |
| int ret = 0; |
| |
| BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); |
| |
| /* |
| * Protects reaping from the btree node cache and using the btree node |
| * open bucket reserve: |
| * |
| * BTREE_INSERT_NOWAIT only applies to btree node allocation, not |
| * blocking on this lock: |
| */ |
| ret = bch2_btree_cache_cannibalize_lock(c, cl); |
| if (ret) |
| return ret; |
| |
| for (interior = 0; interior < 2; interior++) { |
| struct prealloc_nodes *p = as->prealloc_nodes + interior; |
| |
| while (p->nr < nr_nodes[interior]) { |
| b = __bch2_btree_node_alloc(c, &as->disk_res, |
| flags & BTREE_INSERT_NOWAIT ? NULL : cl, |
| interior, flags); |
| if (IS_ERR(b)) { |
| ret = PTR_ERR(b); |
| goto err; |
| } |
| |
| p->b[p->nr++] = b; |
| } |
| } |
| err: |
| bch2_btree_cache_cannibalize_unlock(c); |
| return ret; |
| } |
| |
| /* Asynchronous interior node update machinery */ |
| |
| static void bch2_btree_update_free(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| |
| if (as->took_gc_lock) |
| up_read(&c->gc_lock); |
| as->took_gc_lock = false; |
| |
| bch2_journal_preres_put(&c->journal, &as->journal_preres); |
| |
| bch2_journal_pin_drop(&c->journal, &as->journal); |
| bch2_journal_pin_flush(&c->journal, &as->journal); |
| bch2_disk_reservation_put(c, &as->disk_res); |
| bch2_btree_reserve_put(as); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], |
| as->start_time); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_del(&as->unwritten_list); |
| list_del(&as->list); |
| |
| closure_debug_destroy(&as->cl); |
| mempool_free(as, &c->btree_interior_update_pool); |
| |
| /* |
| * Have to do the wakeup with btree_interior_update_lock still held, |
| * since being on btree_interior_update_list is our ref on @c: |
| */ |
| closure_wake_up(&c->btree_interior_update_wait); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void btree_update_will_delete_key(struct btree_update *as, |
| struct bkey_i *k) |
| { |
| BUG_ON(bch2_keylist_u64s(&as->old_keys) + k->k.u64s > |
| ARRAY_SIZE(as->_old_keys)); |
| bch2_keylist_add(&as->old_keys, k); |
| } |
| |
| static void btree_update_will_add_key(struct btree_update *as, |
| struct bkey_i *k) |
| { |
| BUG_ON(bch2_keylist_u64s(&as->new_keys) + k->k.u64s > |
| ARRAY_SIZE(as->_new_keys)); |
| bch2_keylist_add(&as->new_keys, k); |
| } |
| |
| /* |
| * The transactional part of an interior btree node update, where we journal the |
| * update we did to the interior node and update alloc info: |
| */ |
| static int btree_update_nodes_written_trans(struct btree_trans *trans, |
| struct btree_update *as) |
| { |
| struct bkey_i *k; |
| int ret; |
| |
| ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); |
| if (ret) |
| return ret; |
| |
| memcpy(&darray_top(trans->extra_journal_entries), |
| as->journal_entries, |
| as->journal_u64s * sizeof(u64)); |
| trans->extra_journal_entries.nr += as->journal_u64s; |
| |
| trans->journal_pin = &as->journal; |
| |
| for_each_keylist_key(&as->new_keys, k) { |
| ret = bch2_trans_mark_new(trans, k, 0); |
| if (ret) |
| return ret; |
| } |
| |
| for_each_keylist_key(&as->old_keys, k) { |
| ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(k), 0); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void btree_update_nodes_written(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *b = as->b; |
| struct btree_trans trans; |
| u64 journal_seq = 0; |
| unsigned i; |
| int ret; |
| |
| /* |
| * If we're already in an error state, it might be because a btree node |
| * was never written, and we might be trying to free that same btree |
| * node here, but it won't have been marked as allocated and we'll see |
| * spurious disk usage inconsistencies in the transactional part below |
| * if we don't skip it: |
| */ |
| ret = bch2_journal_error(&c->journal); |
| if (ret) |
| goto err; |
| |
| /* |
| * Wait for any in flight writes to finish before we free the old nodes |
| * on disk: |
| */ |
| for (i = 0; i < as->nr_old_nodes; i++) { |
| struct btree *old = as->old_nodes[i]; |
| __le64 seq; |
| |
| six_lock_read(&old->c.lock, NULL, NULL); |
| seq = old->data ? old->data->keys.seq : 0; |
| six_unlock_read(&old->c.lock); |
| |
| if (seq == as->old_nodes_seq[i]) |
| wait_on_bit_io(&old->flags, BTREE_NODE_write_in_flight_inner, |
| TASK_UNINTERRUPTIBLE); |
| } |
| |
| /* |
| * We did an update to a parent node where the pointers we added pointed |
| * to child nodes that weren't written yet: now, the child nodes have |
| * been written so we can write out the update to the interior node. |
| */ |
| |
| /* |
| * We can't call into journal reclaim here: we'd block on the journal |
| * reclaim lock, but we may need to release the open buckets we have |
| * pinned in order for other btree updates to make forward progress, and |
| * journal reclaim does btree updates when flushing bkey_cached entries, |
| * which may require allocations as well. |
| */ |
| bch2_trans_init(&trans, c, 0, 512); |
| ret = __bch2_trans_do(&trans, &as->disk_res, &journal_seq, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_NOCHECK_RW| |
| BTREE_INSERT_JOURNAL_RECLAIM| |
| JOURNAL_WATERMARK_reserved, |
| btree_update_nodes_written_trans(&trans, as)); |
| bch2_trans_exit(&trans); |
| |
| bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, |
| "error %i in btree_update_nodes_written()", ret); |
| err: |
| if (b) { |
| /* |
| * @b is the node we did the final insert into: |
| * |
| * On failure to get a journal reservation, we still have to |
| * unblock the write and allow most of the write path to happen |
| * so that shutdown works, but the i->journal_seq mechanism |
| * won't work to prevent the btree write from being visible (we |
| * didn't get a journal sequence number) - instead |
| * __bch2_btree_node_write() doesn't do the actual write if |
| * we're in journal error state: |
| */ |
| |
| six_lock_intent(&b->c.lock, NULL, NULL); |
| six_lock_write(&b->c.lock, NULL, NULL); |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| list_del(&as->write_blocked_list); |
| if (list_empty(&b->write_blocked)) |
| clear_btree_node_write_blocked(b); |
| |
| /* |
| * Node might have been freed, recheck under |
| * btree_interior_update_lock: |
| */ |
| if (as->b == b) { |
| struct bset *i = btree_bset_last(b); |
| |
| BUG_ON(!b->c.level); |
| BUG_ON(!btree_node_dirty(b)); |
| |
| if (!ret) { |
| i->journal_seq = cpu_to_le64( |
| max(journal_seq, |
| le64_to_cpu(i->journal_seq))); |
| |
| bch2_btree_add_journal_pin(c, b, journal_seq); |
| } else { |
| /* |
| * If we didn't get a journal sequence number we |
| * can't write this btree node, because recovery |
| * won't know to ignore this write: |
| */ |
| set_btree_node_never_write(b); |
| } |
| } |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| six_unlock_write(&b->c.lock); |
| |
| btree_node_write_if_need(c, b, SIX_LOCK_intent); |
| six_unlock_intent(&b->c.lock); |
| } |
| |
| bch2_journal_pin_drop(&c->journal, &as->journal); |
| |
| bch2_journal_preres_put(&c->journal, &as->journal_preres); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| for (i = 0; i < as->nr_new_nodes; i++) { |
| b = as->new_nodes[i]; |
| |
| BUG_ON(b->will_make_reachable != (unsigned long) as); |
| b->will_make_reachable = 0; |
| clear_btree_node_will_make_reachable(b); |
| } |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| for (i = 0; i < as->nr_new_nodes; i++) { |
| b = as->new_nodes[i]; |
| |
| six_lock_read(&b->c.lock, NULL, NULL); |
| btree_node_write_if_need(c, b, SIX_LOCK_read); |
| six_unlock_read(&b->c.lock); |
| } |
| |
| for (i = 0; i < as->nr_open_buckets; i++) |
| bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); |
| |
| bch2_btree_update_free(as); |
| } |
| |
| static void btree_interior_update_work(struct work_struct *work) |
| { |
| struct bch_fs *c = |
| container_of(work, struct bch_fs, btree_interior_update_work); |
| struct btree_update *as; |
| |
| while (1) { |
| mutex_lock(&c->btree_interior_update_lock); |
| as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, |
| struct btree_update, unwritten_list); |
| if (as && !as->nodes_written) |
| as = NULL; |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| if (!as) |
| break; |
| |
| btree_update_nodes_written(as); |
| } |
| } |
| |
| static void btree_update_set_nodes_written(struct closure *cl) |
| { |
| struct btree_update *as = container_of(cl, struct btree_update, cl); |
| struct bch_fs *c = as->c; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| as->nodes_written = true; |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); |
| } |
| |
| /* |
| * We're updating @b with pointers to nodes that haven't finished writing yet: |
| * block @b from being written until @as completes |
| */ |
| static void btree_update_updated_node(struct btree_update *as, struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); |
| |
| BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); |
| BUG_ON(!btree_node_dirty(b)); |
| |
| as->mode = BTREE_INTERIOR_UPDATING_NODE; |
| as->b = b; |
| |
| set_btree_node_write_blocked(b); |
| list_add(&as->write_blocked_list, &b->write_blocked); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| static void btree_update_reparent(struct btree_update *as, |
| struct btree_update *child) |
| { |
| struct bch_fs *c = as->c; |
| |
| lockdep_assert_held(&c->btree_interior_update_lock); |
| |
| child->b = NULL; |
| child->mode = BTREE_INTERIOR_UPDATING_AS; |
| |
| bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); |
| } |
| |
| static void btree_update_updated_root(struct btree_update *as, struct btree *b) |
| { |
| struct bkey_i *insert = &b->key; |
| struct bch_fs *c = as->c; |
| |
| BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); |
| |
| BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > |
| ARRAY_SIZE(as->journal_entries)); |
| |
| as->journal_u64s += |
| journal_entry_set((void *) &as->journal_entries[as->journal_u64s], |
| BCH_JSET_ENTRY_btree_root, |
| b->c.btree_id, b->c.level, |
| insert, insert->k.u64s); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); |
| |
| as->mode = BTREE_INTERIOR_UPDATING_ROOT; |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| /* |
| * bch2_btree_update_add_new_node: |
| * |
| * This causes @as to wait on @b to be written, before it gets to |
| * bch2_btree_update_nodes_written |
| * |
| * Additionally, it sets b->will_make_reachable to prevent any additional writes |
| * to @b from happening besides the first until @b is reachable on disk |
| * |
| * And it adds @b to the list of @as's new nodes, so that we can update sector |
| * counts in bch2_btree_update_nodes_written: |
| */ |
| static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| |
| closure_get(&as->cl); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); |
| BUG_ON(b->will_make_reachable); |
| |
| as->new_nodes[as->nr_new_nodes++] = b; |
| b->will_make_reachable = 1UL|(unsigned long) as; |
| set_btree_node_will_make_reachable(b); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| btree_update_will_add_key(as, &b->key); |
| } |
| |
| /* |
| * returns true if @b was a new node |
| */ |
| static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) |
| { |
| struct btree_update *as; |
| unsigned long v; |
| unsigned i; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| /* |
| * When b->will_make_reachable != 0, it owns a ref on as->cl that's |
| * dropped when it gets written by bch2_btree_complete_write - the |
| * xchg() is for synchronization with bch2_btree_complete_write: |
| */ |
| v = xchg(&b->will_make_reachable, 0); |
| clear_btree_node_will_make_reachable(b); |
| as = (struct btree_update *) (v & ~1UL); |
| |
| if (!as) { |
| mutex_unlock(&c->btree_interior_update_lock); |
| return; |
| } |
| |
| for (i = 0; i < as->nr_new_nodes; i++) |
| if (as->new_nodes[i] == b) |
| goto found; |
| |
| BUG(); |
| found: |
| array_remove_item(as->new_nodes, as->nr_new_nodes, i); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| if (v & 1) |
| closure_put(&as->cl); |
| } |
| |
| static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) |
| { |
| while (b->ob.nr) |
| as->open_buckets[as->nr_open_buckets++] = |
| b->ob.v[--b->ob.nr]; |
| } |
| |
| /* |
| * @b is being split/rewritten: it may have pointers to not-yet-written btree |
| * nodes and thus outstanding btree_updates - redirect @b's |
| * btree_updates to point to this btree_update: |
| */ |
| static void bch2_btree_interior_update_will_free_node(struct btree_update *as, |
| struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| struct btree_update *p, *n; |
| struct btree_write *w; |
| |
| set_btree_node_dying(b); |
| |
| if (btree_node_fake(b)) |
| return; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| |
| /* |
| * Does this node have any btree_update operations preventing |
| * it from being written? |
| * |
| * If so, redirect them to point to this btree_update: we can |
| * write out our new nodes, but we won't make them visible until those |
| * operations complete |
| */ |
| list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { |
| list_del_init(&p->write_blocked_list); |
| btree_update_reparent(as, p); |
| |
| /* |
| * for flush_held_btree_writes() waiting on updates to flush or |
| * nodes to be writeable: |
| */ |
| closure_wake_up(&c->btree_interior_update_wait); |
| } |
| |
| clear_btree_node_dirty_acct(c, b); |
| clear_btree_node_need_write(b); |
| |
| /* |
| * Does this node have unwritten data that has a pin on the journal? |
| * |
| * If so, transfer that pin to the btree_update operation - |
| * note that if we're freeing multiple nodes, we only need to keep the |
| * oldest pin of any of the nodes we're freeing. We'll release the pin |
| * when the new nodes are persistent and reachable on disk: |
| */ |
| w = btree_current_write(b); |
| bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); |
| bch2_journal_pin_drop(&c->journal, &w->journal); |
| |
| w = btree_prev_write(b); |
| bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); |
| bch2_journal_pin_drop(&c->journal, &w->journal); |
| |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * Is this a node that isn't reachable on disk yet? |
| * |
| * Nodes that aren't reachable yet have writes blocked until they're |
| * reachable - now that we've cancelled any pending writes and moved |
| * things waiting on that write to wait on this update, we can drop this |
| * node from the list of nodes that the other update is making |
| * reachable, prior to freeing it: |
| */ |
| btree_update_drop_new_node(c, b); |
| |
| btree_update_will_delete_key(as, &b->key); |
| |
| as->old_nodes[as->nr_old_nodes] = b; |
| as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; |
| as->nr_old_nodes++; |
| } |
| |
| static void bch2_btree_update_done(struct btree_update *as) |
| { |
| struct bch_fs *c = as->c; |
| u64 start_time = as->start_time; |
| |
| BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); |
| |
| if (as->took_gc_lock) |
| up_read(&as->c->gc_lock); |
| as->took_gc_lock = false; |
| |
| bch2_btree_reserve_put(as); |
| |
| continue_at(&as->cl, btree_update_set_nodes_written, |
| as->c->btree_interior_update_worker); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], |
| start_time); |
| } |
| |
| static struct btree_update * |
| bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, |
| unsigned level, bool split, unsigned flags) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_update *as; |
| u64 start_time = local_clock(); |
| int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) |
| ? BCH_DISK_RESERVATION_NOFAIL : 0; |
| unsigned nr_nodes[2] = { 0, 0 }; |
| unsigned update_level = level; |
| int journal_flags = flags & JOURNAL_WATERMARK_MASK; |
| int ret = 0; |
| |
| BUG_ON(!path->should_be_locked); |
| |
| if (flags & BTREE_INSERT_JOURNAL_RECLAIM) |
| journal_flags |= JOURNAL_RES_GET_NONBLOCK; |
| |
| while (1) { |
| nr_nodes[!!update_level] += 1 + split; |
| update_level++; |
| |
| if (!btree_path_node(path, update_level)) |
| break; |
| |
| /* |
| * XXX: figure out how far we might need to split, |
| * instead of locking/reserving all the way to the root: |
| */ |
| split = update_level + 1 < BTREE_MAX_DEPTH; |
| } |
| |
| /* Might have to allocate a new root: */ |
| if (update_level < BTREE_MAX_DEPTH) |
| nr_nodes[1] += 1; |
| |
| if (!bch2_btree_path_upgrade(trans, path, U8_MAX)) { |
| trace_trans_restart_iter_upgrade(trans->fn, _RET_IP_, |
| path->btree_id, &path->pos); |
| ret = btree_trans_restart(trans); |
| return ERR_PTR(ret); |
| } |
| |
| if (flags & BTREE_INSERT_GC_LOCK_HELD) |
| lockdep_assert_held(&c->gc_lock); |
| else if (!down_read_trylock(&c->gc_lock)) { |
| bch2_trans_unlock(trans); |
| down_read(&c->gc_lock); |
| if (!bch2_trans_relock(trans)) { |
| up_read(&c->gc_lock); |
| return ERR_PTR(-EINTR); |
| } |
| } |
| |
| as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); |
| memset(as, 0, sizeof(*as)); |
| closure_init(&as->cl, NULL); |
| as->c = c; |
| as->start_time = start_time; |
| as->mode = BTREE_INTERIOR_NO_UPDATE; |
| as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); |
| as->btree_id = path->btree_id; |
| INIT_LIST_HEAD(&as->list); |
| INIT_LIST_HEAD(&as->unwritten_list); |
| INIT_LIST_HEAD(&as->write_blocked_list); |
| bch2_keylist_init(&as->old_keys, as->_old_keys); |
| bch2_keylist_init(&as->new_keys, as->_new_keys); |
| bch2_keylist_init(&as->parent_keys, as->inline_keys); |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_add_tail(&as->list, &c->btree_interior_update_list); |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| /* |
| * We don't want to allocate if we're in an error state, that can cause |
| * deadlock on emergency shutdown due to open buckets getting stuck in |
| * the btree_reserve_cache after allocator shutdown has cleared it out. |
| * This check needs to come after adding us to the btree_interior_update |
| * list but before calling bch2_btree_reserve_get, to synchronize with |
| * __bch2_fs_read_only(). |
| */ |
| ret = bch2_journal_error(&c->journal); |
| if (ret) |
| goto err; |
| |
| ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, |
| BTREE_UPDATE_JOURNAL_RES, |
| journal_flags|JOURNAL_RES_GET_NONBLOCK); |
| if (ret) { |
| bch2_trans_unlock(trans); |
| |
| ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, |
| BTREE_UPDATE_JOURNAL_RES, |
| journal_flags); |
| if (ret) { |
| trace_trans_restart_journal_preres_get(trans->fn, _RET_IP_); |
| btree_trans_restart(trans); |
| goto err; |
| } |
| |
| ret = bch2_trans_relock(trans); |
| if (ret) |
| goto err; |
| } |
| |
| ret = bch2_disk_reservation_get(c, &as->disk_res, |
| (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), |
| c->opts.metadata_replicas, |
| disk_res_flags); |
| if (ret) |
| goto err; |
| |
| ret = bch2_btree_reserve_get(as, nr_nodes, flags, NULL); |
| if (ret) { |
| struct closure cl; |
| |
| closure_init_stack(&cl); |
| |
| bch2_trans_unlock(trans); |
| |
| do { |
| ret = bch2_btree_reserve_get(as, nr_nodes, flags, &cl); |
| closure_sync(&cl); |
| } while (ret == -EAGAIN); |
| } |
| |
| if (ret) { |
| trace_btree_reserve_get_fail(trans->fn, _RET_IP_, |
| nr_nodes[0] + nr_nodes[1]); |
| goto err; |
| } |
| |
| if (!bch2_trans_relock(trans)) { |
| ret = -EINTR; |
| goto err; |
| } |
| |
| return as; |
| err: |
| bch2_btree_update_free(as); |
| return ERR_PTR(ret); |
| } |
| |
| /* Btree root updates: */ |
| |
| static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) |
| { |
| /* Root nodes cannot be reaped */ |
| mutex_lock(&c->btree_cache.lock); |
| list_del_init(&b->list); |
| mutex_unlock(&c->btree_cache.lock); |
| |
| mutex_lock(&c->btree_root_lock); |
| BUG_ON(btree_node_root(c, b) && |
| (b->c.level < btree_node_root(c, b)->c.level || |
| !btree_node_dying(btree_node_root(c, b)))); |
| |
| btree_node_root(c, b) = b; |
| mutex_unlock(&c->btree_root_lock); |
| |
| bch2_recalc_btree_reserve(c); |
| } |
| |
| /** |
| * bch_btree_set_root - update the root in memory and on disk |
| * |
| * To ensure forward progress, the current task must not be holding any |
| * btree node write locks. However, you must hold an intent lock on the |
| * old root. |
| * |
| * Note: This allocates a journal entry but doesn't add any keys to |
| * it. All the btree roots are part of every journal write, so there |
| * is nothing new to be done. This just guarantees that there is a |
| * journal write. |
| */ |
| static void bch2_btree_set_root(struct btree_update *as, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *old; |
| |
| trace_btree_set_root(c, b); |
| BUG_ON(!b->written); |
| |
| old = btree_node_root(c, b); |
| |
| /* |
| * Ensure no one is using the old root while we switch to the |
| * new root: |
| */ |
| bch2_btree_node_lock_write(trans, path, old); |
| |
| bch2_btree_set_root_inmem(c, b); |
| |
| btree_update_updated_root(as, b); |
| |
| /* |
| * Unlock old root after new root is visible: |
| * |
| * The new root isn't persistent, but that's ok: we still have |
| * an intent lock on the new root, and any updates that would |
| * depend on the new root would have to update the new root. |
| */ |
| bch2_btree_node_unlock_write(trans, path, old); |
| } |
| |
| /* Interior node updates: */ |
| |
| static void bch2_insert_fixup_btree_ptr(struct btree_update *as, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct btree_node_iter *node_iter, |
| struct bkey_i *insert) |
| { |
| struct bch_fs *c = as->c; |
| struct bkey_packed *k; |
| const char *invalid; |
| |
| BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && |
| !btree_ptr_sectors_written(insert)); |
| |
| if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) |
| bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); |
| |
| invalid = bch2_bkey_invalid(c, bkey_i_to_s_c(insert), btree_node_type(b)) ?: |
| bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert)); |
| if (invalid) { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); |
| bch2_fs_inconsistent(c, "inserting invalid bkey %s: %s", buf.buf, invalid); |
| printbuf_exit(&buf); |
| dump_stack(); |
| } |
| |
| BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > |
| ARRAY_SIZE(as->journal_entries)); |
| |
| as->journal_u64s += |
| journal_entry_set((void *) &as->journal_entries[as->journal_u64s], |
| BCH_JSET_ENTRY_btree_keys, |
| b->c.btree_id, b->c.level, |
| insert, insert->k.u64s); |
| |
| while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && |
| bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) |
| bch2_btree_node_iter_advance(node_iter, b); |
| |
| bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); |
| set_btree_node_dirty_acct(c, b); |
| set_btree_node_need_write(b); |
| } |
| |
| static void |
| __bch2_btree_insert_keys_interior(struct btree_update *as, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct btree_node_iter node_iter, |
| struct keylist *keys) |
| { |
| struct bkey_i *insert = bch2_keylist_front(keys); |
| struct bkey_packed *k; |
| |
| BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); |
| |
| while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && |
| (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) |
| ; |
| |
| while (!bch2_keylist_empty(keys)) { |
| bch2_insert_fixup_btree_ptr(as, trans, path, b, |
| &node_iter, bch2_keylist_front(keys)); |
| bch2_keylist_pop_front(keys); |
| } |
| } |
| |
| /* |
| * Move keys from n1 (original replacement node, now lower node) to n2 (higher |
| * node) |
| */ |
| static struct btree *__btree_split_node(struct btree_update *as, |
| struct btree *n1) |
| { |
| struct bkey_format_state s; |
| size_t nr_packed = 0, nr_unpacked = 0; |
| struct btree *n2; |
| struct bset *set1, *set2; |
| struct bkey_packed *k, *set2_start, *set2_end, *out, *prev = NULL; |
| struct bpos n1_pos; |
| |
| n2 = bch2_btree_node_alloc(as, n1->c.level); |
| bch2_btree_update_add_new_node(as, n2); |
| |
| n2->data->max_key = n1->data->max_key; |
| n2->data->format = n1->format; |
| SET_BTREE_NODE_SEQ(n2->data, BTREE_NODE_SEQ(n1->data)); |
| n2->key.k.p = n1->key.k.p; |
| |
| set1 = btree_bset_first(n1); |
| set2 = btree_bset_first(n2); |
| |
| /* |
| * Has to be a linear search because we don't have an auxiliary |
| * search tree yet |
| */ |
| k = set1->start; |
| while (1) { |
| struct bkey_packed *n = bkey_next(k); |
| |
| if (n == vstruct_last(set1)) |
| break; |
| if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) |
| break; |
| |
| if (bkey_packed(k)) |
| nr_packed++; |
| else |
| nr_unpacked++; |
| |
| prev = k; |
| k = n; |
| } |
| |
| BUG_ON(!prev); |
| set2_start = k; |
| set2_end = vstruct_last(set1); |
| |
| set1->u64s = cpu_to_le16((u64 *) set2_start - set1->_data); |
| set_btree_bset_end(n1, n1->set); |
| |
| n1->nr.live_u64s = le16_to_cpu(set1->u64s); |
| n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); |
| n1->nr.packed_keys = nr_packed; |
| n1->nr.unpacked_keys = nr_unpacked; |
| |
| n1_pos = bkey_unpack_pos(n1, prev); |
| if (as->c->sb.version < bcachefs_metadata_version_snapshot) |
| n1_pos.snapshot = U32_MAX; |
| |
| btree_set_max(n1, n1_pos); |
| btree_set_min(n2, bpos_successor(n1->key.k.p)); |
| |
| bch2_bkey_format_init(&s); |
| bch2_bkey_format_add_pos(&s, n2->data->min_key); |
| bch2_bkey_format_add_pos(&s, n2->data->max_key); |
| |
| for (k = set2_start; k != set2_end; k = bkey_next(k)) { |
| struct bkey uk = bkey_unpack_key(n1, k); |
| bch2_bkey_format_add_key(&s, &uk); |
| } |
| |
| n2->data->format = bch2_bkey_format_done(&s); |
| btree_node_set_format(n2, n2->data->format); |
| |
| out = set2->start; |
| memset(&n2->nr, 0, sizeof(n2->nr)); |
| |
| for (k = set2_start; k != set2_end; k = bkey_next(k)) { |
| BUG_ON(!bch2_bkey_transform(&n2->format, out, bkey_packed(k) |
| ? &n1->format : &bch2_bkey_format_current, k)); |
| out->format = KEY_FORMAT_LOCAL_BTREE; |
| btree_keys_account_key_add(&n2->nr, 0, out); |
| out = bkey_next(out); |
| } |
| |
| set2->u64s = cpu_to_le16((u64 *) out - set2->_data); |
| set_btree_bset_end(n2, n2->set); |
| |
| BUG_ON(!set1->u64s); |
| BUG_ON(!set2->u64s); |
| |
| btree_node_reset_sib_u64s(n1); |
| btree_node_reset_sib_u64s(n2); |
| |
| bch2_verify_btree_nr_keys(n1); |
| bch2_verify_btree_nr_keys(n2); |
| |
| if (n1->c.level) { |
| btree_node_interior_verify(as->c, n1); |
| btree_node_interior_verify(as->c, n2); |
| } |
| |
| return n2; |
| } |
| |
| /* |
| * For updates to interior nodes, we've got to do the insert before we split |
| * because the stuff we're inserting has to be inserted atomically. Post split, |
| * the keys might have to go in different nodes and the split would no longer be |
| * atomic. |
| * |
| * Worse, if the insert is from btree node coalescing, if we do the insert after |
| * we do the split (and pick the pivot) - the pivot we pick might be between |
| * nodes that were coalesced, and thus in the middle of a child node post |
| * coalescing: |
| */ |
| static void btree_split_insert_keys(struct btree_update *as, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct keylist *keys) |
| { |
| struct btree_node_iter node_iter; |
| struct bkey_i *k = bch2_keylist_front(keys); |
| struct bkey_packed *src, *dst, *n; |
| struct bset *i; |
| |
| bch2_btree_node_iter_init(&node_iter, b, &k->k.p); |
| |
| __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); |
| |
| /* |
| * We can't tolerate whiteouts here - with whiteouts there can be |
| * duplicate keys, and it would be rather bad if we picked a duplicate |
| * for the pivot: |
| */ |
| i = btree_bset_first(b); |
| src = dst = i->start; |
| while (src != vstruct_last(i)) { |
| n = bkey_next(src); |
| if (!bkey_deleted(src)) { |
| memmove_u64s_down(dst, src, src->u64s); |
| dst = bkey_next(dst); |
| } |
| src = n; |
| } |
| |
| /* Also clear out the unwritten whiteouts area: */ |
| b->whiteout_u64s = 0; |
| |
| i->u64s = cpu_to_le16((u64 *) dst - i->_data); |
| set_btree_bset_end(b, b->set); |
| |
| BUG_ON(b->nsets != 1 || |
| b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); |
| |
| btree_node_interior_verify(as->c, b); |
| } |
| |
| static void btree_split(struct btree_update *as, struct btree_trans *trans, |
| struct btree_path *path, struct btree *b, |
| struct keylist *keys, unsigned flags) |
| { |
| struct bch_fs *c = as->c; |
| struct btree *parent = btree_node_parent(path, b); |
| struct btree *n1, *n2 = NULL, *n3 = NULL; |
| u64 start_time = local_clock(); |
| |
| BUG_ON(!parent && (b != btree_node_root(c, b))); |
| BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level)); |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| |
| n1 = bch2_btree_node_alloc_replacement(as, b); |
| bch2_btree_update_add_new_node(as, n1); |
| |
| if (keys) |
| btree_split_insert_keys(as, trans, path, n1, keys); |
| |
| if (bset_u64s(&n1->set[0]) > BTREE_SPLIT_THRESHOLD(c)) { |
| trace_btree_split(c, b); |
| |
| n2 = __btree_split_node(as, n1); |
| |
| bch2_btree_build_aux_trees(n2); |
| bch2_btree_build_aux_trees(n1); |
| six_unlock_write(&n2->c.lock); |
| six_unlock_write(&n1->c.lock); |
| |
| bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); |
| bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); |
| |
| /* |
| * Note that on recursive parent_keys == keys, so we |
| * can't start adding new keys to parent_keys before emptying it |
| * out (which we did with btree_split_insert_keys() above) |
| */ |
| bch2_keylist_add(&as->parent_keys, &n1->key); |
| bch2_keylist_add(&as->parent_keys, &n2->key); |
| |
| if (!parent) { |
| /* Depth increases, make a new root */ |
| n3 = __btree_root_alloc(as, b->c.level + 1); |
| |
| n3->sib_u64s[0] = U16_MAX; |
| n3->sib_u64s[1] = U16_MAX; |
| |
| btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); |
| |
| bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); |
| } |
| } else { |
| trace_btree_compact(c, b); |
| |
| bch2_btree_build_aux_trees(n1); |
| six_unlock_write(&n1->c.lock); |
| |
| bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); |
| |
| if (parent) |
| bch2_keylist_add(&as->parent_keys, &n1->key); |
| } |
| |
| /* New nodes all written, now make them visible: */ |
| |
| if (parent) { |
| /* Split a non root node */ |
| bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); |
| } else if (n3) { |
| bch2_btree_set_root(as, trans, path, n3); |
| } else { |
| /* Root filled up but didn't need to be split */ |
| bch2_btree_set_root(as, trans, path, n1); |
| } |
| |
| bch2_btree_update_get_open_buckets(as, n1); |
| if (n2) |
| bch2_btree_update_get_open_buckets(as, n2); |
| if (n3) |
| bch2_btree_update_get_open_buckets(as, n3); |
| |
| /* Successful split, update the path to point to the new nodes: */ |
| |
| six_lock_increment(&b->c.lock, SIX_LOCK_intent); |
| if (n3) |
| bch2_trans_node_add(trans, n3); |
| if (n2) |
| bch2_trans_node_add(trans, n2); |
| bch2_trans_node_add(trans, n1); |
| |
| /* |
| * The old node must be freed (in memory) _before_ unlocking the new |
| * nodes - else another thread could re-acquire a read lock on the old |
| * node after another thread has locked and updated the new node, thus |
| * seeing stale data: |
| */ |
| bch2_btree_node_free_inmem(trans, b); |
| |
| if (n3) |
| six_unlock_intent(&n3->c.lock); |
| if (n2) |
| six_unlock_intent(&n2->c.lock); |
| six_unlock_intent(&n1->c.lock); |
| |
| bch2_trans_verify_locks(trans); |
| |
| bch2_time_stats_update(&c->times[n2 |
| ? BCH_TIME_btree_node_split |
| : BCH_TIME_btree_node_compact], |
| start_time); |
| } |
| |
| static void |
| bch2_btree_insert_keys_interior(struct btree_update *as, |
| struct btree_trans *trans, |
| struct btree_path *path, |
| struct btree *b, |
| struct keylist *keys) |
| { |
| struct btree_path *linked; |
| |
| __bch2_btree_insert_keys_interior(as, trans, path, b, |
| path->l[b->c.level].iter, keys); |
| |
| btree_update_updated_node(as, b); |
| |
| trans_for_each_path_with_node(trans, b, linked) |
| bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); |
| |
| bch2_trans_verify_paths(trans); |
| } |
| |
| /** |
| * bch_btree_insert_node - insert bkeys into a given btree node |
| * |
| * @iter: btree iterator |
| * @keys: list of keys to insert |
| * @hook: insert callback |
| * @persistent: if not null, @persistent will wait on journal write |
| * |
| * Inserts as many keys as it can into a given btree node, splitting it if full. |
| * If a split occurred, this function will return early. This can only happen |
| * for leaf nodes -- inserts into interior nodes have to be atomic. |
| */ |
| static void bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, |
| struct btree_path *path, struct btree *b, |
| struct keylist *keys, unsigned flags) |
| { |
| struct bch_fs *c = as->c; |
| int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); |
| int old_live_u64s = b->nr.live_u64s; |
| int live_u64s_added, u64s_added; |
| |
| lockdep_assert_held(&c->gc_lock); |
| BUG_ON(!btree_node_intent_locked(path, btree_node_root(c, b)->c.level)); |
| BUG_ON(!b->c.level); |
| BUG_ON(!as || as->b); |
| bch2_verify_keylist_sorted(keys); |
| |
| bch2_btree_node_lock_for_insert(trans, path, b); |
| |
| if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { |
| bch2_btree_node_unlock_write(trans, path, b); |
| goto split; |
| } |
| |
| btree_node_interior_verify(c, b); |
| |
| bch2_btree_insert_keys_interior(as, trans, path, b, keys); |
| |
| live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; |
| u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; |
| |
| if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) |
| b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); |
| if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) |
| b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); |
| |
| if (u64s_added > live_u64s_added && |
| bch2_maybe_compact_whiteouts(c, b)) |
| bch2_trans_node_reinit_iter(trans, b); |
| |
| bch2_btree_node_unlock_write(trans, path, b); |
| |
| btree_node_interior_verify(c, b); |
| return; |
| split: |
| btree_split(as, trans, path, b, keys, flags); |
| } |
| |
| int bch2_btree_split_leaf(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned flags) |
| { |
| struct btree *b = path_l(path)->b; |
| struct btree_update *as; |
| unsigned l; |
| int ret = 0; |
| |
| as = bch2_btree_update_start(trans, path, path->level, |
| true, flags); |
| if (IS_ERR(as)) |
| return PTR_ERR(as); |
| |
| btree_split(as, trans, path, b, NULL, flags); |
| bch2_btree_update_done(as); |
| |
| for (l = path->level + 1; btree_path_node(path, l) && !ret; l++) |
| ret = bch2_foreground_maybe_merge(trans, path, l, flags); |
| |
| return ret; |
| } |
| |
| int __bch2_foreground_maybe_merge(struct btree_trans *trans, |
| struct btree_path *path, |
| unsigned level, |
| unsigned flags, |
| enum btree_node_sibling sib) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_path *sib_path = NULL; |
| struct btree_update *as; |
| struct bkey_format_state new_s; |
| struct bkey_format new_f; |
| struct bkey_i delete; |
| struct btree *b, *m, *n, *prev, *next, *parent; |
| struct bpos sib_pos; |
| size_t sib_u64s; |
| u64 start_time = local_clock(); |
| int ret = 0; |
| |
| BUG_ON(!path->should_be_locked); |
| BUG_ON(!btree_node_locked(path, level)); |
| |
| b = path->l[level].b; |
| |
| if ((sib == btree_prev_sib && !bpos_cmp(b->data->min_key, POS_MIN)) || |
| (sib == btree_next_sib && !bpos_cmp(b->data->max_key, SPOS_MAX))) { |
| b->sib_u64s[sib] = U16_MAX; |
| return 0; |
| } |
| |
| sib_pos = sib == btree_prev_sib |
| ? bpos_predecessor(b->data->min_key) |
| : bpos_successor(b->data->max_key); |
| |
| sib_path = bch2_path_get(trans, path->btree_id, sib_pos, |
| U8_MAX, level, BTREE_ITER_INTENT); |
| ret = bch2_btree_path_traverse(trans, sib_path, false); |
| if (ret) |
| goto err; |
| |
| sib_path->should_be_locked = true; |
| |
| m = sib_path->l[level].b; |
| |
| if (btree_node_parent(path, b) != |
| btree_node_parent(sib_path, m)) { |
| b->sib_u64s[sib] = U16_MAX; |
| goto out; |
| } |
| |
| if (sib == btree_prev_sib) { |
| prev = m; |
| next = b; |
| } else { |
| prev = b; |
| next = m; |
| } |
| |
| if (bkey_cmp(bpos_successor(prev->data->max_key), next->data->min_key)) { |
| struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; |
| |
| bch2_bpos_to_text(&buf1, prev->data->max_key); |
| bch2_bpos_to_text(&buf2, next->data->min_key); |
| bch_err(c, |
| "btree topology error in btree merge:\n" |
| " prev ends at %s\n" |
| " next starts at %s", |
| buf1.buf, buf2.buf); |
| printbuf_exit(&buf1); |
| printbuf_exit(&buf2); |
| bch2_topology_error(c); |
| ret = -EIO; |
| goto err; |
| } |
| |
| bch2_bkey_format_init(&new_s); |
| bch2_bkey_format_add_pos(&new_s, prev->data->min_key); |
| __bch2_btree_calc_format(&new_s, prev); |
| __bch2_btree_calc_format(&new_s, next); |
| bch2_bkey_format_add_pos(&new_s, next->data->max_key); |
| new_f = bch2_bkey_format_done(&new_s); |
| |
| sib_u64s = btree_node_u64s_with_format(b, &new_f) + |
| btree_node_u64s_with_format(m, &new_f); |
| |
| if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { |
| sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); |
| sib_u64s /= 2; |
| sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); |
| } |
| |
| sib_u64s = min(sib_u64s, btree_max_u64s(c)); |
| sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); |
| b->sib_u64s[sib] = sib_u64s; |
| |
| if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) |
| goto out; |
| |
| parent = btree_node_parent(path, b); |
| as = bch2_btree_update_start(trans, path, level, false, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_USE_RESERVE| |
| flags); |
| ret = PTR_ERR_OR_ZERO(as); |
| if (ret) |
| goto err; |
| |
| trace_btree_merge(c, b); |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| bch2_btree_interior_update_will_free_node(as, m); |
| |
| n = bch2_btree_node_alloc(as, b->c.level); |
| bch2_btree_update_add_new_node(as, n); |
| |
| SET_BTREE_NODE_SEQ(n->data, |
| max(BTREE_NODE_SEQ(b->data), |
| BTREE_NODE_SEQ(m->data)) + 1); |
| |
| btree_set_min(n, prev->data->min_key); |
| btree_set_max(n, next->data->max_key); |
| n->data->format = new_f; |
| |
| btree_node_set_format(n, new_f); |
| |
| bch2_btree_sort_into(c, n, prev); |
| bch2_btree_sort_into(c, n, next); |
| |
| bch2_btree_build_aux_trees(n); |
| six_unlock_write(&n->c.lock); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); |
| |
| bkey_init(&delete.k); |
| delete.k.p = prev->key.k.p; |
| bch2_keylist_add(&as->parent_keys, &delete); |
| bch2_keylist_add(&as->parent_keys, &n->key); |
| |
| bch2_trans_verify_paths(trans); |
| |
| bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); |
| |
| bch2_trans_verify_paths(trans); |
| |
| bch2_btree_update_get_open_buckets(as, n); |
| |
| six_lock_increment(&b->c.lock, SIX_LOCK_intent); |
| six_lock_increment(&m->c.lock, SIX_LOCK_intent); |
| |
| bch2_trans_node_add(trans, n); |
| |
| bch2_trans_verify_paths(trans); |
| |
| bch2_btree_node_free_inmem(trans, b); |
| bch2_btree_node_free_inmem(trans, m); |
| |
| six_unlock_intent(&n->c.lock); |
| |
| bch2_btree_update_done(as); |
| |
| bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); |
| out: |
| err: |
| bch2_path_put(trans, sib_path, true); |
| bch2_trans_verify_locks(trans); |
| return ret; |
| } |
| |
| /** |
| * bch_btree_node_rewrite - Rewrite/move a btree node |
| */ |
| int bch2_btree_node_rewrite(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct btree *b, |
| unsigned flags) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree *n, *parent; |
| struct btree_update *as; |
| int ret; |
| |
| flags |= BTREE_INSERT_NOFAIL; |
| |
| parent = btree_node_parent(iter->path, b); |
| as = bch2_btree_update_start(trans, iter->path, b->c.level, |
| false, flags); |
| ret = PTR_ERR_OR_ZERO(as); |
| if (ret) { |
| trace_btree_gc_rewrite_node_fail(c, b); |
| goto out; |
| } |
| |
| bch2_btree_interior_update_will_free_node(as, b); |
| |
| n = bch2_btree_node_alloc_replacement(as, b); |
| bch2_btree_update_add_new_node(as, n); |
| |
| bch2_btree_build_aux_trees(n); |
| six_unlock_write(&n->c.lock); |
| |
| trace_btree_gc_rewrite_node(c, b); |
| |
| bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); |
| |
| if (parent) { |
| bch2_keylist_add(&as->parent_keys, &n->key); |
| bch2_btree_insert_node(as, trans, iter->path, parent, |
| &as->parent_keys, flags); |
| } else { |
| bch2_btree_set_root(as, trans, iter->path, n); |
| } |
| |
| bch2_btree_update_get_open_buckets(as, n); |
| |
| six_lock_increment(&b->c.lock, SIX_LOCK_intent); |
| bch2_trans_node_add(trans, n); |
| bch2_btree_node_free_inmem(trans, b); |
| six_unlock_intent(&n->c.lock); |
| |
| bch2_btree_update_done(as); |
| out: |
| bch2_btree_path_downgrade(iter->path); |
| return ret; |
| } |
| |
| struct async_btree_rewrite { |
| struct bch_fs *c; |
| struct work_struct work; |
| enum btree_id btree_id; |
| unsigned level; |
| struct bpos pos; |
| __le64 seq; |
| }; |
| |
| static int async_btree_node_rewrite_trans(struct btree_trans *trans, |
| struct async_btree_rewrite *a) |
| { |
| struct btree_iter iter; |
| struct btree *b; |
| int ret; |
| |
| bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, |
| BTREE_MAX_DEPTH, a->level, 0); |
| b = bch2_btree_iter_peek_node(&iter); |
| ret = PTR_ERR_OR_ZERO(b); |
| if (ret) |
| goto out; |
| |
| if (!b || b->data->keys.seq != a->seq) |
| goto out; |
| |
| ret = bch2_btree_node_rewrite(trans, &iter, b, 0); |
| out : |
| bch2_trans_iter_exit(trans, &iter); |
| |
| return ret; |
| } |
| |
| void async_btree_node_rewrite_work(struct work_struct *work) |
| { |
| struct async_btree_rewrite *a = |
| container_of(work, struct async_btree_rewrite, work); |
| struct bch_fs *c = a->c; |
| |
| bch2_trans_do(c, NULL, NULL, 0, |
| async_btree_node_rewrite_trans(&trans, a)); |
| percpu_ref_put(&c->writes); |
| kfree(a); |
| } |
| |
| void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) |
| { |
| struct async_btree_rewrite *a; |
| |
| if (!percpu_ref_tryget(&c->writes)) |
| return; |
| |
| a = kmalloc(sizeof(*a), GFP_NOFS); |
| if (!a) { |
| percpu_ref_put(&c->writes); |
| return; |
| } |
| |
| a->c = c; |
| a->btree_id = b->c.btree_id; |
| a->level = b->c.level; |
| a->pos = b->key.k.p; |
| a->seq = b->data->keys.seq; |
| |
| INIT_WORK(&a->work, async_btree_node_rewrite_work); |
| queue_work(c->btree_interior_update_worker, &a->work); |
| } |
| |
| static int __bch2_btree_node_update_key(struct btree_trans *trans, |
| struct btree_iter *iter, |
| struct btree *b, struct btree *new_hash, |
| struct bkey_i *new_key, |
| bool skip_triggers) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_iter iter2 = { NULL }; |
| struct btree *parent; |
| int ret; |
| |
| if (!skip_triggers) { |
| ret = bch2_trans_mark_new(trans, new_key, 0); |
| if (ret) |
| return ret; |
| |
| ret = bch2_trans_mark_old(trans, bkey_i_to_s_c(&b->key), 0); |
| if (ret) |
| return ret; |
| } |
| |
| if (new_hash) { |
| bkey_copy(&new_hash->key, new_key); |
| ret = bch2_btree_node_hash_insert(&c->btree_cache, |
| new_hash, b->c.level, b->c.btree_id); |
| BUG_ON(ret); |
| } |
| |
| parent = btree_node_parent(iter->path, b); |
| if (parent) { |
| bch2_trans_copy_iter(&iter2, iter); |
| |
| iter2.path = bch2_btree_path_make_mut(trans, iter2.path, |
| iter2.flags & BTREE_ITER_INTENT); |
| |
| BUG_ON(iter2.path->level != b->c.level); |
| BUG_ON(bpos_cmp(iter2.path->pos, new_key->k.p)); |
| |
| btree_node_unlock(iter2.path, iter2.path->level); |
| path_l(iter2.path)->b = BTREE_ITER_NO_NODE_UP; |
| iter2.path->level++; |
| btree_path_set_dirty(iter2.path, BTREE_ITER_NEED_TRAVERSE); |
| |
| trans->paths_sorted = false; |
| |
| ret = bch2_btree_iter_traverse(&iter2) ?: |
| bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); |
| if (ret) |
| goto err; |
| } else { |
| BUG_ON(btree_node_root(c, b) != b); |
| |
| ret = darray_make_room(&trans->extra_journal_entries, |
| jset_u64s(new_key->k.u64s)); |
| if (ret) |
| return ret; |
| |
| journal_entry_set((void *) &darray_top(trans->extra_journal_entries), |
| BCH_JSET_ENTRY_btree_root, |
| b->c.btree_id, b->c.level, |
| new_key, new_key->k.u64s); |
| trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); |
| } |
| |
| ret = bch2_trans_commit(trans, NULL, NULL, |
| BTREE_INSERT_NOFAIL| |
| BTREE_INSERT_NOCHECK_RW| |
| BTREE_INSERT_USE_RESERVE| |
| BTREE_INSERT_JOURNAL_RECLAIM| |
| JOURNAL_WATERMARK_reserved); |
| if (ret) |
| goto err; |
| |
| bch2_btree_node_lock_write(trans, iter->path, b); |
| |
| if (new_hash) { |
| mutex_lock(&c->btree_cache.lock); |
| bch2_btree_node_hash_remove(&c->btree_cache, new_hash); |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| |
| bkey_copy(&b->key, new_key); |
| ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); |
| BUG_ON(ret); |
| mutex_unlock(&c->btree_cache.lock); |
| } else { |
| bkey_copy(&b->key, new_key); |
| } |
| |
| bch2_btree_node_unlock_write(trans, iter->path, b); |
| out: |
| bch2_trans_iter_exit(trans, &iter2); |
| return ret; |
| err: |
| if (new_hash) { |
| mutex_lock(&c->btree_cache.lock); |
| bch2_btree_node_hash_remove(&c->btree_cache, b); |
| mutex_unlock(&c->btree_cache.lock); |
| } |
| goto out; |
| } |
| |
| int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, |
| struct btree *b, struct bkey_i *new_key, |
| bool skip_triggers) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree *new_hash = NULL; |
| struct btree_path *path = iter->path; |
| struct closure cl; |
| int ret = 0; |
| |
| if (!btree_node_intent_locked(path, b->c.level) && |
| !bch2_btree_path_upgrade(trans, path, b->c.level + 1)) { |
| btree_trans_restart(trans); |
| return -EINTR; |
| } |
| |
| closure_init_stack(&cl); |
| |
| /* |
| * check btree_ptr_hash_val() after @b is locked by |
| * btree_iter_traverse(): |
| */ |
| if (btree_ptr_hash_val(new_key) != b->hash_val) { |
| ret = bch2_btree_cache_cannibalize_lock(c, &cl); |
| if (ret) { |
| bch2_trans_unlock(trans); |
| closure_sync(&cl); |
| if (!bch2_trans_relock(trans)) |
| return -EINTR; |
| } |
| |
| new_hash = bch2_btree_node_mem_alloc(c, false); |
| } |
| |
| path->intent_ref++; |
| ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, |
| new_key, skip_triggers); |
| --path->intent_ref; |
| |
| if (new_hash) { |
| mutex_lock(&c->btree_cache.lock); |
| list_move(&new_hash->list, &c->btree_cache.freeable); |
| mutex_unlock(&c->btree_cache.lock); |
| |
| six_unlock_write(&new_hash->c.lock); |
| six_unlock_intent(&new_hash->c.lock); |
| } |
| closure_sync(&cl); |
| bch2_btree_cache_cannibalize_unlock(c); |
| return ret; |
| } |
| |
| int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, |
| struct btree *b, struct bkey_i *new_key, |
| bool skip_triggers) |
| { |
| struct btree_iter iter; |
| int ret; |
| |
| bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, |
| BTREE_MAX_DEPTH, b->c.level, |
| BTREE_ITER_INTENT); |
| ret = bch2_btree_iter_traverse(&iter); |
| if (ret) |
| goto out; |
| |
| /* has node been freed? */ |
| if (iter.path->l[b->c.level].b != b) { |
| /* node has been freed: */ |
| BUG_ON(!btree_node_dying(b)); |
| goto out; |
| } |
| |
| BUG_ON(!btree_node_hashed(b)); |
| |
| ret = bch2_btree_node_update_key(trans, &iter, b, new_key, skip_triggers); |
| out: |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| /* Init code: */ |
| |
| /* |
| * Only for filesystem bringup, when first reading the btree roots or allocating |
| * btree roots when initializing a new filesystem: |
| */ |
| void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) |
| { |
| BUG_ON(btree_node_root(c, b)); |
| |
| bch2_btree_set_root_inmem(c, b); |
| } |
| |
| void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) |
| { |
| struct closure cl; |
| struct btree *b; |
| int ret; |
| |
| closure_init_stack(&cl); |
| |
| do { |
| ret = bch2_btree_cache_cannibalize_lock(c, &cl); |
| closure_sync(&cl); |
| } while (ret); |
| |
| b = bch2_btree_node_mem_alloc(c, false); |
| bch2_btree_cache_cannibalize_unlock(c); |
| |
| set_btree_node_fake(b); |
| set_btree_node_need_rewrite(b); |
| b->c.level = 0; |
| b->c.btree_id = id; |
| |
| bkey_btree_ptr_init(&b->key); |
| b->key.k.p = SPOS_MAX; |
| *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; |
| |
| bch2_bset_init_first(b, &b->data->keys); |
| bch2_btree_build_aux_trees(b); |
| |
| b->data->flags = 0; |
| btree_set_min(b, POS_MIN); |
| btree_set_max(b, SPOS_MAX); |
| b->data->format = bch2_btree_calc_format(b); |
| btree_node_set_format(b, b->data->format); |
| |
| ret = bch2_btree_node_hash_insert(&c->btree_cache, b, |
| b->c.level, b->c.btree_id); |
| BUG_ON(ret); |
| |
| bch2_btree_set_root_inmem(c, b); |
| |
| six_unlock_write(&b->c.lock); |
| six_unlock_intent(&b->c.lock); |
| } |
| |
| void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| struct btree_update *as; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_for_each_entry(as, &c->btree_interior_update_list, list) |
| pr_buf(out, "%p m %u w %u r %u j %llu\n", |
| as, |
| as->mode, |
| as->nodes_written, |
| atomic_read(&as->cl.remaining) & CLOSURE_REMAINING_MASK, |
| as->journal.seq); |
| mutex_unlock(&c->btree_interior_update_lock); |
| } |
| |
| size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *c) |
| { |
| size_t ret = 0; |
| struct list_head *i; |
| |
| mutex_lock(&c->btree_interior_update_lock); |
| list_for_each(i, &c->btree_interior_update_list) |
| ret++; |
| mutex_unlock(&c->btree_interior_update_lock); |
| |
| return ret; |
| } |
| |
| void bch2_journal_entries_to_btree_roots(struct bch_fs *c, struct jset *jset) |
| { |
| struct btree_root *r; |
| struct jset_entry *entry; |
| |
| mutex_lock(&c->btree_root_lock); |
| |
| vstruct_for_each(jset, entry) |
| if (entry->type == BCH_JSET_ENTRY_btree_root) { |
| r = &c->btree_roots[entry->btree_id]; |
| r->level = entry->level; |
| r->alive = true; |
| bkey_copy(&r->key, &entry->start[0]); |
| } |
| |
| mutex_unlock(&c->btree_root_lock); |
| } |
| |
| struct jset_entry * |
| bch2_btree_roots_to_journal_entries(struct bch_fs *c, |
| struct jset_entry *start, |
| struct jset_entry *end) |
| { |
| struct jset_entry *entry; |
| unsigned long have = 0; |
| unsigned i; |
| |
| for (entry = start; entry < end; entry = vstruct_next(entry)) |
| if (entry->type == BCH_JSET_ENTRY_btree_root) |
| __set_bit(entry->btree_id, &have); |
| |
| mutex_lock(&c->btree_root_lock); |
| |
| for (i = 0; i < BTREE_ID_NR; i++) |
| if (c->btree_roots[i].alive && !test_bit(i, &have)) { |
| journal_entry_set(end, |
| BCH_JSET_ENTRY_btree_root, |
| i, c->btree_roots[i].level, |
| &c->btree_roots[i].key, |
| c->btree_roots[i].key.u64s); |
| end = vstruct_next(end); |
| } |
| |
| mutex_unlock(&c->btree_root_lock); |
| |
| return end; |
| } |
| |
| void bch2_fs_btree_interior_update_exit(struct bch_fs *c) |
| { |
| if (c->btree_interior_update_worker) |
| destroy_workqueue(c->btree_interior_update_worker); |
| mempool_exit(&c->btree_interior_update_pool); |
| } |
| |
| int bch2_fs_btree_interior_update_init(struct bch_fs *c) |
| { |
| mutex_init(&c->btree_reserve_cache_lock); |
| INIT_LIST_HEAD(&c->btree_interior_update_list); |
| INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); |
| mutex_init(&c->btree_interior_update_lock); |
| INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); |
| |
| c->btree_interior_update_worker = |
| alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); |
| if (!c->btree_interior_update_worker) |
| return -ENOMEM; |
| |
| return mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, |
| sizeof(struct btree_update)); |
| } |