| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 - 2017 Intel Deutschland GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <linuxwifi@intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH |
| * Copyright(c) 2016 - 2017 Intel Deutschland GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| *****************************************************************************/ |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/etherdevice.h> |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include "iwl-drv.h" |
| #include "iwl-modparams.h" |
| #include "iwl-nvm-parse.h" |
| #include "iwl-prph.h" |
| #include "iwl-io.h" |
| #include "iwl-csr.h" |
| |
| /* NVM offsets (in words) definitions */ |
| enum wkp_nvm_offsets { |
| /* NVM HW-Section offset (in words) definitions */ |
| HW_ADDR = 0x15, |
| |
| /* NVM SW-Section offset (in words) definitions */ |
| NVM_SW_SECTION = 0x1C0, |
| NVM_VERSION = 0, |
| RADIO_CFG = 1, |
| SKU = 2, |
| N_HW_ADDRS = 3, |
| NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION, |
| |
| /* NVM calibration section offset (in words) definitions */ |
| NVM_CALIB_SECTION = 0x2B8, |
| XTAL_CALIB = 0x316 - NVM_CALIB_SECTION |
| }; |
| |
| enum ext_nvm_offsets { |
| /* NVM HW-Section offset (in words) definitions */ |
| MAC_ADDRESS_OVERRIDE_EXT_NVM = 1, |
| |
| /* NVM SW-Section offset (in words) definitions */ |
| NVM_VERSION_EXT_NVM = 0, |
| RADIO_CFG_FAMILY_EXT_NVM = 0, |
| SKU_FAMILY_8000 = 2, |
| N_HW_ADDRS_FAMILY_8000 = 3, |
| |
| /* NVM REGULATORY -Section offset (in words) definitions */ |
| NVM_CHANNELS_EXTENDED = 0, |
| NVM_LAR_OFFSET_OLD = 0x4C7, |
| NVM_LAR_OFFSET = 0x507, |
| NVM_LAR_ENABLED = 0x7, |
| }; |
| |
| /* SKU Capabilities (actual values from NVM definition) */ |
| enum nvm_sku_bits { |
| NVM_SKU_CAP_BAND_24GHZ = BIT(0), |
| NVM_SKU_CAP_BAND_52GHZ = BIT(1), |
| NVM_SKU_CAP_11N_ENABLE = BIT(2), |
| NVM_SKU_CAP_11AC_ENABLE = BIT(3), |
| NVM_SKU_CAP_MIMO_DISABLE = BIT(5), |
| }; |
| |
| /* |
| * These are the channel numbers in the order that they are stored in the NVM |
| */ |
| static const u8 iwl_nvm_channels[] = { |
| /* 2.4 GHz */ |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| /* 5 GHz */ |
| 36, 40, 44 , 48, 52, 56, 60, 64, |
| 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 149, 153, 157, 161, 165 |
| }; |
| |
| static const u8 iwl_ext_nvm_channels[] = { |
| /* 2.4 GHz */ |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| /* 5 GHz */ |
| 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, |
| 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, |
| 149, 153, 157, 161, 165, 169, 173, 177, 181 |
| }; |
| |
| #define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels) |
| #define IWL_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels) |
| #define NUM_2GHZ_CHANNELS 14 |
| #define NUM_2GHZ_CHANNELS_EXT 14 |
| #define FIRST_2GHZ_HT_MINUS 5 |
| #define LAST_2GHZ_HT_PLUS 9 |
| #define LAST_5GHZ_HT 165 |
| #define LAST_5GHZ_HT_FAMILY_8000 181 |
| #define N_HW_ADDR_MASK 0xF |
| |
| /* rate data (static) */ |
| static struct ieee80211_rate iwl_cfg80211_rates[] = { |
| { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, }, |
| { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3, |
| .flags = IEEE80211_RATE_SHORT_PREAMBLE, }, |
| { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, }, |
| { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, }, |
| { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, }, |
| { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, }, |
| { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, }, |
| { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, }, |
| { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, }, |
| { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, }, |
| }; |
| #define RATES_24_OFFS 0 |
| #define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates) |
| #define RATES_52_OFFS 4 |
| #define N_RATES_52 (N_RATES_24 - RATES_52_OFFS) |
| |
| /** |
| * enum iwl_nvm_channel_flags - channel flags in NVM |
| * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo |
| * @NVM_CHANNEL_IBSS: usable as an IBSS channel |
| * @NVM_CHANNEL_ACTIVE: active scanning allowed |
| * @NVM_CHANNEL_RADAR: radar detection required |
| * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed |
| * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS |
| * on same channel on 2.4 or same UNII band on 5.2 |
| * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?) |
| * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) |
| * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) |
| * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) |
| */ |
| enum iwl_nvm_channel_flags { |
| NVM_CHANNEL_VALID = BIT(0), |
| NVM_CHANNEL_IBSS = BIT(1), |
| NVM_CHANNEL_ACTIVE = BIT(3), |
| NVM_CHANNEL_RADAR = BIT(4), |
| NVM_CHANNEL_INDOOR_ONLY = BIT(5), |
| NVM_CHANNEL_GO_CONCURRENT = BIT(6), |
| NVM_CHANNEL_WIDE = BIT(8), |
| NVM_CHANNEL_40MHZ = BIT(9), |
| NVM_CHANNEL_80MHZ = BIT(10), |
| NVM_CHANNEL_160MHZ = BIT(11), |
| }; |
| |
| #define CHECK_AND_PRINT_I(x) \ |
| ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "") |
| |
| static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz, |
| u16 nvm_flags, const struct iwl_cfg *cfg) |
| { |
| u32 flags = IEEE80211_CHAN_NO_HT40; |
| u32 last_5ghz_ht = LAST_5GHZ_HT; |
| |
| if (cfg->ext_nvm) |
| last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; |
| |
| if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if (ch_num <= LAST_2GHZ_HT_PLUS) |
| flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| if (ch_num >= FIRST_2GHZ_HT_MINUS) |
| flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) |
| flags &= ~IEEE80211_CHAN_NO_HT40PLUS; |
| else |
| flags &= ~IEEE80211_CHAN_NO_HT40MINUS; |
| } |
| if (!(nvm_flags & NVM_CHANNEL_80MHZ)) |
| flags |= IEEE80211_CHAN_NO_80MHZ; |
| if (!(nvm_flags & NVM_CHANNEL_160MHZ)) |
| flags |= IEEE80211_CHAN_NO_160MHZ; |
| |
| if (!(nvm_flags & NVM_CHANNEL_IBSS)) |
| flags |= IEEE80211_CHAN_NO_IR; |
| |
| if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) |
| flags |= IEEE80211_CHAN_NO_IR; |
| |
| if (nvm_flags & NVM_CHANNEL_RADAR) |
| flags |= IEEE80211_CHAN_RADAR; |
| |
| if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) |
| flags |= IEEE80211_CHAN_INDOOR_ONLY; |
| |
| /* Set the GO concurrent flag only in case that NO_IR is set. |
| * Otherwise it is meaningless |
| */ |
| if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && |
| (flags & IEEE80211_CHAN_NO_IR)) |
| flags |= IEEE80211_CHAN_IR_CONCURRENT; |
| |
| return flags; |
| } |
| |
| static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| const __le16 * const nvm_ch_flags, |
| bool lar_supported) |
| { |
| int ch_idx; |
| int n_channels = 0; |
| struct ieee80211_channel *channel; |
| u16 ch_flags; |
| bool is_5ghz; |
| int num_of_ch, num_2ghz_channels; |
| const u8 *nvm_chan; |
| |
| if (!cfg->ext_nvm) { |
| num_of_ch = IWL_NUM_CHANNELS; |
| nvm_chan = &iwl_nvm_channels[0]; |
| num_2ghz_channels = NUM_2GHZ_CHANNELS; |
| } else { |
| num_of_ch = IWL_NUM_CHANNELS_EXT; |
| nvm_chan = &iwl_ext_nvm_channels[0]; |
| num_2ghz_channels = NUM_2GHZ_CHANNELS_EXT; |
| } |
| |
| for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { |
| ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx); |
| |
| if (ch_idx >= num_2ghz_channels && |
| !data->sku_cap_band_52GHz_enable) |
| continue; |
| |
| if (ch_flags & NVM_CHANNEL_160MHZ) |
| data->vht160_supported = true; |
| |
| if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) { |
| /* |
| * Channels might become valid later if lar is |
| * supported, hence we still want to add them to |
| * the list of supported channels to cfg80211. |
| */ |
| IWL_DEBUG_EEPROM(dev, |
| "Ch. %d Flags %x [%sGHz] - No traffic\n", |
| nvm_chan[ch_idx], |
| ch_flags, |
| (ch_idx >= num_2ghz_channels) ? |
| "5.2" : "2.4"); |
| continue; |
| } |
| |
| channel = &data->channels[n_channels]; |
| n_channels++; |
| |
| channel->hw_value = nvm_chan[ch_idx]; |
| channel->band = (ch_idx < num_2ghz_channels) ? |
| NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; |
| channel->center_freq = |
| ieee80211_channel_to_frequency( |
| channel->hw_value, channel->band); |
| |
| /* Initialize regulatory-based run-time data */ |
| |
| /* |
| * Default value - highest tx power value. max_power |
| * is not used in mvm, and is used for backwards compatibility |
| */ |
| channel->max_power = IWL_DEFAULT_MAX_TX_POWER; |
| is_5ghz = channel->band == NL80211_BAND_5GHZ; |
| |
| /* don't put limitations in case we're using LAR */ |
| if (!lar_supported) |
| channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx], |
| ch_idx, is_5ghz, |
| ch_flags, cfg); |
| else |
| channel->flags = 0; |
| |
| IWL_DEBUG_EEPROM(dev, |
| "Ch. %d [%sGHz] flags 0x%x %s%s%s%s%s%s%s%s%s%s(%ddBm): Ad-Hoc %ssupported\n", |
| channel->hw_value, |
| is_5ghz ? "5.2" : "2.4", |
| ch_flags, |
| CHECK_AND_PRINT_I(VALID), |
| CHECK_AND_PRINT_I(IBSS), |
| CHECK_AND_PRINT_I(ACTIVE), |
| CHECK_AND_PRINT_I(RADAR), |
| CHECK_AND_PRINT_I(INDOOR_ONLY), |
| CHECK_AND_PRINT_I(GO_CONCURRENT), |
| CHECK_AND_PRINT_I(WIDE), |
| CHECK_AND_PRINT_I(40MHZ), |
| CHECK_AND_PRINT_I(80MHZ), |
| CHECK_AND_PRINT_I(160MHZ), |
| channel->max_power, |
| ((ch_flags & NVM_CHANNEL_IBSS) && |
| !(ch_flags & NVM_CHANNEL_RADAR)) |
| ? "" : "not "); |
| } |
| |
| return n_channels; |
| } |
| |
| static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| struct ieee80211_sta_vht_cap *vht_cap, |
| u8 tx_chains, u8 rx_chains) |
| { |
| int num_rx_ants = num_of_ant(rx_chains); |
| int num_tx_ants = num_of_ant(tx_chains); |
| unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?: |
| IEEE80211_VHT_MAX_AMPDU_1024K); |
| |
| vht_cap->vht_supported = true; |
| |
| vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 | |
| IEEE80211_VHT_CAP_RXSTBC_1 | |
| IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | |
| 3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT | |
| max_ampdu_exponent << |
| IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; |
| |
| if (data->vht160_supported) |
| vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | |
| IEEE80211_VHT_CAP_SHORT_GI_160; |
| |
| if (cfg->vht_mu_mimo_supported) |
| vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; |
| |
| if (cfg->ht_params->ldpc) |
| vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; |
| |
| if (data->sku_cap_mimo_disabled) { |
| num_rx_ants = 1; |
| num_tx_ants = 1; |
| } |
| |
| if (num_tx_ants > 1) |
| vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; |
| else |
| vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN; |
| |
| switch (iwlwifi_mod_params.amsdu_size) { |
| case IWL_AMSDU_DEF: |
| if (cfg->mq_rx_supported) |
| vht_cap->cap |= |
| IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; |
| else |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; |
| break; |
| case IWL_AMSDU_4K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895; |
| break; |
| case IWL_AMSDU_8K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991; |
| break; |
| case IWL_AMSDU_12K: |
| vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454; |
| break; |
| default: |
| break; |
| } |
| |
| vht_cap->vht_mcs.rx_mcs_map = |
| cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | |
| IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | |
| IEEE80211_VHT_MCS_NOT_SUPPORTED << 14); |
| |
| if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) { |
| vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN; |
| /* this works because NOT_SUPPORTED == 3 */ |
| vht_cap->vht_mcs.rx_mcs_map |= |
| cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2); |
| } |
| |
| vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map; |
| } |
| |
| void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, const __le16 *nvm_ch_flags, |
| u8 tx_chains, u8 rx_chains, bool lar_supported) |
| { |
| int n_channels; |
| int n_used = 0; |
| struct ieee80211_supported_band *sband; |
| |
| n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags, |
| lar_supported); |
| sband = &data->bands[NL80211_BAND_2GHZ]; |
| sband->band = NL80211_BAND_2GHZ; |
| sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS]; |
| sband->n_bitrates = N_RATES_24; |
| n_used += iwl_init_sband_channels(data, sband, n_channels, |
| NL80211_BAND_2GHZ); |
| iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_2GHZ, |
| tx_chains, rx_chains); |
| |
| sband = &data->bands[NL80211_BAND_5GHZ]; |
| sband->band = NL80211_BAND_5GHZ; |
| sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS]; |
| sband->n_bitrates = N_RATES_52; |
| n_used += iwl_init_sband_channels(data, sband, n_channels, |
| NL80211_BAND_5GHZ); |
| iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, NL80211_BAND_5GHZ, |
| tx_chains, rx_chains); |
| if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac) |
| iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap, |
| tx_chains, rx_chains); |
| |
| if (n_channels != n_used) |
| IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n", |
| n_used, n_channels); |
| } |
| IWL_EXPORT_SYMBOL(iwl_init_sbands); |
| |
| static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw, |
| const __le16 *phy_sku) |
| { |
| if (!cfg->ext_nvm) |
| return le16_to_cpup(nvm_sw + SKU); |
| |
| return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000)); |
| } |
| |
| static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw) |
| { |
| if (!cfg->ext_nvm) |
| return le16_to_cpup(nvm_sw + NVM_VERSION); |
| else |
| return le32_to_cpup((__le32 *)(nvm_sw + |
| NVM_VERSION_EXT_NVM)); |
| } |
| |
| static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw, |
| const __le16 *phy_sku) |
| { |
| if (!cfg->ext_nvm) |
| return le16_to_cpup(nvm_sw + RADIO_CFG); |
| |
| return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM)); |
| |
| } |
| |
| static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw) |
| { |
| int n_hw_addr; |
| |
| if (!cfg->ext_nvm) |
| return le16_to_cpup(nvm_sw + N_HW_ADDRS); |
| |
| n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000)); |
| |
| return n_hw_addr & N_HW_ADDR_MASK; |
| } |
| |
| static void iwl_set_radio_cfg(const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| u32 radio_cfg) |
| { |
| if (!cfg->ext_nvm) { |
| data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg); |
| data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg); |
| data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg); |
| data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg); |
| return; |
| } |
| |
| /* set the radio configuration for family 8000 */ |
| data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg); |
| data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg); |
| data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg); |
| data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg); |
| data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); |
| data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); |
| } |
| |
| static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest) |
| { |
| const u8 *hw_addr; |
| |
| hw_addr = (const u8 *)&mac_addr0; |
| dest[0] = hw_addr[3]; |
| dest[1] = hw_addr[2]; |
| dest[2] = hw_addr[1]; |
| dest[3] = hw_addr[0]; |
| |
| hw_addr = (const u8 *)&mac_addr1; |
| dest[4] = hw_addr[1]; |
| dest[5] = hw_addr[0]; |
| } |
| |
| void iwl_set_hw_address_from_csr(struct iwl_trans *trans, |
| struct iwl_nvm_data *data) |
| { |
| __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP)); |
| __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP)); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| /* |
| * If the OEM fused a valid address, use it instead of the one in the |
| * OTP |
| */ |
| if (is_valid_ether_addr(data->hw_addr)) |
| return; |
| |
| mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP)); |
| mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP)); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| } |
| IWL_EXPORT_SYMBOL(iwl_set_hw_address_from_csr); |
| |
| static void iwl_set_hw_address_family_8000(struct iwl_trans *trans, |
| const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, |
| const __le16 *mac_override, |
| const __le16 *nvm_hw) |
| { |
| const u8 *hw_addr; |
| |
| if (mac_override) { |
| static const u8 reserved_mac[] = { |
| 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 |
| }; |
| |
| hw_addr = (const u8 *)(mac_override + |
| MAC_ADDRESS_OVERRIDE_EXT_NVM); |
| |
| /* |
| * Store the MAC address from MAO section. |
| * No byte swapping is required in MAO section |
| */ |
| memcpy(data->hw_addr, hw_addr, ETH_ALEN); |
| |
| /* |
| * Force the use of the OTP MAC address in case of reserved MAC |
| * address in the NVM, or if address is given but invalid. |
| */ |
| if (is_valid_ether_addr(data->hw_addr) && |
| memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0) |
| return; |
| |
| IWL_ERR(trans, |
| "mac address from nvm override section is not valid\n"); |
| } |
| |
| if (nvm_hw) { |
| /* read the mac address from WFMP registers */ |
| __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans, |
| WFMP_MAC_ADDR_0)); |
| __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans, |
| WFMP_MAC_ADDR_1)); |
| |
| iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr); |
| |
| return; |
| } |
| |
| IWL_ERR(trans, "mac address is not found\n"); |
| } |
| |
| static int iwl_set_hw_address(struct iwl_trans *trans, |
| const struct iwl_cfg *cfg, |
| struct iwl_nvm_data *data, const __le16 *nvm_hw, |
| const __le16 *mac_override) |
| { |
| if (cfg->mac_addr_from_csr) { |
| iwl_set_hw_address_from_csr(trans, data); |
| } else if (!cfg->ext_nvm) { |
| const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR); |
| |
| /* The byte order is little endian 16 bit, meaning 214365 */ |
| data->hw_addr[0] = hw_addr[1]; |
| data->hw_addr[1] = hw_addr[0]; |
| data->hw_addr[2] = hw_addr[3]; |
| data->hw_addr[3] = hw_addr[2]; |
| data->hw_addr[4] = hw_addr[5]; |
| data->hw_addr[5] = hw_addr[4]; |
| } else { |
| iwl_set_hw_address_family_8000(trans, cfg, data, |
| mac_override, nvm_hw); |
| } |
| |
| if (!is_valid_ether_addr(data->hw_addr)) { |
| IWL_ERR(trans, "no valid mac address was found\n"); |
| return -EINVAL; |
| } |
| |
| IWL_INFO(trans, "base HW address: %pM\n", data->hw_addr); |
| |
| return 0; |
| } |
| |
| struct iwl_nvm_data * |
| iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg, |
| const __le16 *nvm_hw, const __le16 *nvm_sw, |
| const __le16 *nvm_calib, const __le16 *regulatory, |
| const __le16 *mac_override, const __le16 *phy_sku, |
| u8 tx_chains, u8 rx_chains, bool lar_fw_supported) |
| { |
| struct device *dev = trans->dev; |
| struct iwl_nvm_data *data; |
| bool lar_enabled; |
| u32 sku, radio_cfg; |
| u16 lar_config; |
| const __le16 *ch_section; |
| |
| if (!cfg->ext_nvm) |
| data = kzalloc(sizeof(*data) + |
| sizeof(struct ieee80211_channel) * |
| IWL_NUM_CHANNELS, |
| GFP_KERNEL); |
| else |
| data = kzalloc(sizeof(*data) + |
| sizeof(struct ieee80211_channel) * |
| IWL_NUM_CHANNELS_EXT, |
| GFP_KERNEL); |
| if (!data) |
| return NULL; |
| |
| data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw); |
| |
| radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku); |
| iwl_set_radio_cfg(cfg, data, radio_cfg); |
| if (data->valid_tx_ant) |
| tx_chains &= data->valid_tx_ant; |
| if (data->valid_rx_ant) |
| rx_chains &= data->valid_rx_ant; |
| |
| sku = iwl_get_sku(cfg, nvm_sw, phy_sku); |
| data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ; |
| data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ; |
| data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE; |
| if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL) |
| data->sku_cap_11n_enable = false; |
| data->sku_cap_11ac_enable = data->sku_cap_11n_enable && |
| (sku & NVM_SKU_CAP_11AC_ENABLE); |
| data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE; |
| |
| data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw); |
| |
| if (!cfg->ext_nvm) { |
| /* Checking for required sections */ |
| if (!nvm_calib) { |
| IWL_ERR(trans, |
| "Can't parse empty Calib NVM sections\n"); |
| kfree(data); |
| return NULL; |
| } |
| /* in family 8000 Xtal calibration values moved to OTP */ |
| data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB); |
| data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1); |
| lar_enabled = true; |
| ch_section = &nvm_sw[NVM_CHANNELS]; |
| } else { |
| u16 lar_offset = data->nvm_version < 0xE39 ? |
| NVM_LAR_OFFSET_OLD : |
| NVM_LAR_OFFSET; |
| |
| lar_config = le16_to_cpup(regulatory + lar_offset); |
| data->lar_enabled = !!(lar_config & |
| NVM_LAR_ENABLED); |
| lar_enabled = data->lar_enabled; |
| ch_section = ®ulatory[NVM_CHANNELS_EXTENDED]; |
| } |
| |
| /* If no valid mac address was found - bail out */ |
| if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) { |
| kfree(data); |
| return NULL; |
| } |
| |
| iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains, |
| lar_fw_supported && lar_enabled); |
| data->calib_version = 255; |
| |
| return data; |
| } |
| IWL_EXPORT_SYMBOL(iwl_parse_nvm_data); |
| |
| static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan, |
| int ch_idx, u16 nvm_flags, |
| const struct iwl_cfg *cfg) |
| { |
| u32 flags = NL80211_RRF_NO_HT40; |
| u32 last_5ghz_ht = LAST_5GHZ_HT; |
| |
| if (cfg->ext_nvm) |
| last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000; |
| |
| if (ch_idx < NUM_2GHZ_CHANNELS && |
| (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS) |
| flags &= ~NL80211_RRF_NO_HT40PLUS; |
| if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS) |
| flags &= ~NL80211_RRF_NO_HT40MINUS; |
| } else if (nvm_chan[ch_idx] <= last_5ghz_ht && |
| (nvm_flags & NVM_CHANNEL_40MHZ)) { |
| if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0) |
| flags &= ~NL80211_RRF_NO_HT40PLUS; |
| else |
| flags &= ~NL80211_RRF_NO_HT40MINUS; |
| } |
| |
| if (!(nvm_flags & NVM_CHANNEL_80MHZ)) |
| flags |= NL80211_RRF_NO_80MHZ; |
| if (!(nvm_flags & NVM_CHANNEL_160MHZ)) |
| flags |= NL80211_RRF_NO_160MHZ; |
| |
| if (!(nvm_flags & NVM_CHANNEL_ACTIVE)) |
| flags |= NL80211_RRF_NO_IR; |
| |
| if (nvm_flags & NVM_CHANNEL_RADAR) |
| flags |= NL80211_RRF_DFS; |
| |
| if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY) |
| flags |= NL80211_RRF_NO_OUTDOOR; |
| |
| /* Set the GO concurrent flag only in case that NO_IR is set. |
| * Otherwise it is meaningless |
| */ |
| if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) && |
| (flags & NL80211_RRF_NO_IR)) |
| flags |= NL80211_RRF_GO_CONCURRENT; |
| |
| return flags; |
| } |
| |
| struct ieee80211_regdomain * |
| iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg, |
| int num_of_ch, __le32 *channels, u16 fw_mcc) |
| { |
| int ch_idx; |
| u16 ch_flags; |
| u32 reg_rule_flags, prev_reg_rule_flags = 0; |
| const u8 *nvm_chan = cfg->ext_nvm ? |
| iwl_ext_nvm_channels : iwl_nvm_channels; |
| struct ieee80211_regdomain *regd; |
| int size_of_regd; |
| struct ieee80211_reg_rule *rule; |
| enum nl80211_band band; |
| int center_freq, prev_center_freq = 0; |
| int valid_rules = 0; |
| bool new_rule; |
| int max_num_ch = cfg->ext_nvm ? |
| IWL_NUM_CHANNELS_EXT : IWL_NUM_CHANNELS; |
| |
| if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES)) |
| return ERR_PTR(-EINVAL); |
| |
| if (WARN_ON(num_of_ch > max_num_ch)) |
| num_of_ch = max_num_ch; |
| |
| IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n", |
| num_of_ch); |
| |
| /* build a regdomain rule for every valid channel */ |
| size_of_regd = |
| sizeof(struct ieee80211_regdomain) + |
| num_of_ch * sizeof(struct ieee80211_reg_rule); |
| |
| regd = kzalloc(size_of_regd, GFP_KERNEL); |
| if (!regd) |
| return ERR_PTR(-ENOMEM); |
| |
| for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) { |
| ch_flags = (u16)__le32_to_cpup(channels + ch_idx); |
| band = (ch_idx < NUM_2GHZ_CHANNELS) ? |
| NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; |
| center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx], |
| band); |
| new_rule = false; |
| |
| if (!(ch_flags & NVM_CHANNEL_VALID)) { |
| IWL_DEBUG_DEV(dev, IWL_DL_LAR, |
| "Ch. %d Flags %x [%sGHz] - No traffic\n", |
| nvm_chan[ch_idx], |
| ch_flags, |
| (ch_idx >= NUM_2GHZ_CHANNELS) ? |
| "5.2" : "2.4"); |
| continue; |
| } |
| |
| reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx, |
| ch_flags, cfg); |
| |
| /* we can't continue the same rule */ |
| if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags || |
| center_freq - prev_center_freq > 20) { |
| valid_rules++; |
| new_rule = true; |
| } |
| |
| rule = ®d->reg_rules[valid_rules - 1]; |
| |
| if (new_rule) |
| rule->freq_range.start_freq_khz = |
| MHZ_TO_KHZ(center_freq - 10); |
| |
| rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10); |
| |
| /* this doesn't matter - not used by FW */ |
| rule->power_rule.max_antenna_gain = DBI_TO_MBI(6); |
| rule->power_rule.max_eirp = |
| DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER); |
| |
| rule->flags = reg_rule_flags; |
| |
| /* rely on auto-calculation to merge BW of contiguous chans */ |
| rule->flags |= NL80211_RRF_AUTO_BW; |
| rule->freq_range.max_bandwidth_khz = 0; |
| |
| prev_center_freq = center_freq; |
| prev_reg_rule_flags = reg_rule_flags; |
| |
| IWL_DEBUG_DEV(dev, IWL_DL_LAR, |
| "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x) reg_flags 0x%x: %s\n", |
| center_freq, |
| band == NL80211_BAND_5GHZ ? "5.2" : "2.4", |
| CHECK_AND_PRINT_I(VALID), |
| CHECK_AND_PRINT_I(ACTIVE), |
| CHECK_AND_PRINT_I(RADAR), |
| CHECK_AND_PRINT_I(WIDE), |
| CHECK_AND_PRINT_I(40MHZ), |
| CHECK_AND_PRINT_I(80MHZ), |
| CHECK_AND_PRINT_I(160MHZ), |
| CHECK_AND_PRINT_I(INDOOR_ONLY), |
| CHECK_AND_PRINT_I(GO_CONCURRENT), |
| ch_flags, reg_rule_flags, |
| ((ch_flags & NVM_CHANNEL_ACTIVE) && |
| !(ch_flags & NVM_CHANNEL_RADAR)) |
| ? "Ad-Hoc" : ""); |
| } |
| |
| regd->n_reg_rules = valid_rules; |
| |
| /* set alpha2 from FW. */ |
| regd->alpha2[0] = fw_mcc >> 8; |
| regd->alpha2[1] = fw_mcc & 0xff; |
| |
| return regd; |
| } |
| IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info); |
| |
| #ifdef CONFIG_ACPI |
| #define WRDD_METHOD "WRDD" |
| #define WRDD_WIFI (0x07) |
| #define WRDD_WIGIG (0x10) |
| |
| static u32 iwl_wrdd_get_mcc(struct device *dev, union acpi_object *wrdd) |
| { |
| union acpi_object *mcc_pkg, *domain_type, *mcc_value; |
| u32 i; |
| |
| if (wrdd->type != ACPI_TYPE_PACKAGE || |
| wrdd->package.count < 2 || |
| wrdd->package.elements[0].type != ACPI_TYPE_INTEGER || |
| wrdd->package.elements[0].integer.value != 0) { |
| IWL_DEBUG_EEPROM(dev, "Unsupported wrdd structure\n"); |
| return 0; |
| } |
| |
| for (i = 1 ; i < wrdd->package.count ; ++i) { |
| mcc_pkg = &wrdd->package.elements[i]; |
| |
| if (mcc_pkg->type != ACPI_TYPE_PACKAGE || |
| mcc_pkg->package.count < 2 || |
| mcc_pkg->package.elements[0].type != ACPI_TYPE_INTEGER || |
| mcc_pkg->package.elements[1].type != ACPI_TYPE_INTEGER) { |
| mcc_pkg = NULL; |
| continue; |
| } |
| |
| domain_type = &mcc_pkg->package.elements[0]; |
| if (domain_type->integer.value == WRDD_WIFI) |
| break; |
| |
| mcc_pkg = NULL; |
| } |
| |
| if (mcc_pkg) { |
| mcc_value = &mcc_pkg->package.elements[1]; |
| return mcc_value->integer.value; |
| } |
| |
| return 0; |
| } |
| |
| int iwl_get_bios_mcc(struct device *dev, char *mcc) |
| { |
| acpi_handle root_handle; |
| acpi_handle handle; |
| struct acpi_buffer wrdd = {ACPI_ALLOCATE_BUFFER, NULL}; |
| acpi_status status; |
| u32 mcc_val; |
| |
| root_handle = ACPI_HANDLE(dev); |
| if (!root_handle) { |
| IWL_DEBUG_EEPROM(dev, |
| "Could not retrieve root port ACPI handle\n"); |
| return -ENOENT; |
| } |
| |
| /* Get the method's handle */ |
| status = acpi_get_handle(root_handle, (acpi_string)WRDD_METHOD, |
| &handle); |
| if (ACPI_FAILURE(status)) { |
| IWL_DEBUG_EEPROM(dev, "WRD method not found\n"); |
| return -ENOENT; |
| } |
| |
| /* Call WRDD with no arguments */ |
| status = acpi_evaluate_object(handle, NULL, NULL, &wrdd); |
| if (ACPI_FAILURE(status)) { |
| IWL_DEBUG_EEPROM(dev, "WRDC invocation failed (0x%x)\n", |
| status); |
| return -ENOENT; |
| } |
| |
| mcc_val = iwl_wrdd_get_mcc(dev, wrdd.pointer); |
| kfree(wrdd.pointer); |
| if (!mcc_val) |
| return -ENOENT; |
| |
| mcc[0] = (mcc_val >> 8) & 0xff; |
| mcc[1] = mcc_val & 0xff; |
| mcc[2] = '\0'; |
| return 0; |
| } |
| IWL_EXPORT_SYMBOL(iwl_get_bios_mcc); |
| #endif |