| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. |
| * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-core.h" |
| #include "dm-rq.h" |
| #include "dm-uevent.h" |
| #include "dm-ima.h" |
| |
| #include <linux/bio-integrity.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/blkpg.h> |
| #include <linux/bio.h> |
| #include <linux/mempool.h> |
| #include <linux/dax.h> |
| #include <linux/slab.h> |
| #include <linux/idr.h> |
| #include <linux/uio.h> |
| #include <linux/hdreg.h> |
| #include <linux/delay.h> |
| #include <linux/wait.h> |
| #include <linux/pr.h> |
| #include <linux/refcount.h> |
| #include <linux/part_stat.h> |
| #include <linux/blk-crypto.h> |
| #include <linux/blk-crypto-profile.h> |
| |
| #define DM_MSG_PREFIX "core" |
| |
| /* |
| * Cookies are numeric values sent with CHANGE and REMOVE |
| * uevents while resuming, removing or renaming the device. |
| */ |
| #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" |
| #define DM_COOKIE_LENGTH 24 |
| |
| /* |
| * For REQ_POLLED fs bio, this flag is set if we link mapped underlying |
| * dm_io into one list, and reuse bio->bi_private as the list head. Before |
| * ending this fs bio, we will recover its ->bi_private. |
| */ |
| #define REQ_DM_POLL_LIST REQ_DRV |
| |
| static const char *_name = DM_NAME; |
| |
| static unsigned int major; |
| static unsigned int _major; |
| |
| static DEFINE_IDR(_minor_idr); |
| |
| static DEFINE_SPINLOCK(_minor_lock); |
| |
| static void do_deferred_remove(struct work_struct *w); |
| |
| static DECLARE_WORK(deferred_remove_work, do_deferred_remove); |
| |
| static struct workqueue_struct *deferred_remove_workqueue; |
| |
| atomic_t dm_global_event_nr = ATOMIC_INIT(0); |
| DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); |
| |
| void dm_issue_global_event(void) |
| { |
| atomic_inc(&dm_global_event_nr); |
| wake_up(&dm_global_eventq); |
| } |
| |
| DEFINE_STATIC_KEY_FALSE(stats_enabled); |
| DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); |
| DEFINE_STATIC_KEY_FALSE(zoned_enabled); |
| |
| /* |
| * One of these is allocated (on-stack) per original bio. |
| */ |
| struct clone_info { |
| struct dm_table *map; |
| struct bio *bio; |
| struct dm_io *io; |
| sector_t sector; |
| unsigned int sector_count; |
| bool is_abnormal_io:1; |
| bool submit_as_polled:1; |
| }; |
| |
| static inline struct dm_target_io *clone_to_tio(struct bio *clone) |
| { |
| return container_of(clone, struct dm_target_io, clone); |
| } |
| |
| void *dm_per_bio_data(struct bio *bio, size_t data_size) |
| { |
| if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) |
| return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; |
| return (char *)bio - DM_IO_BIO_OFFSET - data_size; |
| } |
| EXPORT_SYMBOL_GPL(dm_per_bio_data); |
| |
| struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) |
| { |
| struct dm_io *io = (struct dm_io *)((char *)data + data_size); |
| |
| if (io->magic == DM_IO_MAGIC) |
| return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); |
| BUG_ON(io->magic != DM_TIO_MAGIC); |
| return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); |
| } |
| EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); |
| |
| unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) |
| { |
| return container_of(bio, struct dm_target_io, clone)->target_bio_nr; |
| } |
| EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); |
| |
| #define MINOR_ALLOCED ((void *)-1) |
| |
| #define DM_NUMA_NODE NUMA_NO_NODE |
| static int dm_numa_node = DM_NUMA_NODE; |
| |
| #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) |
| static int swap_bios = DEFAULT_SWAP_BIOS; |
| static int get_swap_bios(void) |
| { |
| int latch = READ_ONCE(swap_bios); |
| |
| if (unlikely(latch <= 0)) |
| latch = DEFAULT_SWAP_BIOS; |
| return latch; |
| } |
| |
| struct table_device { |
| struct list_head list; |
| refcount_t count; |
| struct dm_dev dm_dev; |
| }; |
| |
| /* |
| * Bio-based DM's mempools' reserved IOs set by the user. |
| */ |
| #define RESERVED_BIO_BASED_IOS 16 |
| static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; |
| |
| static int __dm_get_module_param_int(int *module_param, int min, int max) |
| { |
| int param = READ_ONCE(*module_param); |
| int modified_param = 0; |
| bool modified = true; |
| |
| if (param < min) |
| modified_param = min; |
| else if (param > max) |
| modified_param = max; |
| else |
| modified = false; |
| |
| if (modified) { |
| (void)cmpxchg(module_param, param, modified_param); |
| param = modified_param; |
| } |
| |
| return param; |
| } |
| |
| unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) |
| { |
| unsigned int param = READ_ONCE(*module_param); |
| unsigned int modified_param = 0; |
| |
| if (!param) |
| modified_param = def; |
| else if (param > max) |
| modified_param = max; |
| |
| if (modified_param) { |
| (void)cmpxchg(module_param, param, modified_param); |
| param = modified_param; |
| } |
| |
| return param; |
| } |
| |
| unsigned int dm_get_reserved_bio_based_ios(void) |
| { |
| return __dm_get_module_param(&reserved_bio_based_ios, |
| RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); |
| } |
| EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); |
| |
| static unsigned int dm_get_numa_node(void) |
| { |
| return __dm_get_module_param_int(&dm_numa_node, |
| DM_NUMA_NODE, num_online_nodes() - 1); |
| } |
| |
| static int __init local_init(void) |
| { |
| int r; |
| |
| r = dm_uevent_init(); |
| if (r) |
| return r; |
| |
| deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); |
| if (!deferred_remove_workqueue) { |
| r = -ENOMEM; |
| goto out_uevent_exit; |
| } |
| |
| _major = major; |
| r = register_blkdev(_major, _name); |
| if (r < 0) |
| goto out_free_workqueue; |
| |
| if (!_major) |
| _major = r; |
| |
| return 0; |
| |
| out_free_workqueue: |
| destroy_workqueue(deferred_remove_workqueue); |
| out_uevent_exit: |
| dm_uevent_exit(); |
| |
| return r; |
| } |
| |
| static void local_exit(void) |
| { |
| destroy_workqueue(deferred_remove_workqueue); |
| |
| unregister_blkdev(_major, _name); |
| dm_uevent_exit(); |
| |
| _major = 0; |
| |
| DMINFO("cleaned up"); |
| } |
| |
| static int (*_inits[])(void) __initdata = { |
| local_init, |
| dm_target_init, |
| dm_linear_init, |
| dm_stripe_init, |
| dm_io_init, |
| dm_kcopyd_init, |
| dm_interface_init, |
| dm_statistics_init, |
| }; |
| |
| static void (*_exits[])(void) = { |
| local_exit, |
| dm_target_exit, |
| dm_linear_exit, |
| dm_stripe_exit, |
| dm_io_exit, |
| dm_kcopyd_exit, |
| dm_interface_exit, |
| dm_statistics_exit, |
| }; |
| |
| static int __init dm_init(void) |
| { |
| const int count = ARRAY_SIZE(_inits); |
| int r, i; |
| |
| #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) |
| DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." |
| " Duplicate IMA measurements will not be recorded in the IMA log."); |
| #endif |
| |
| for (i = 0; i < count; i++) { |
| r = _inits[i](); |
| if (r) |
| goto bad; |
| } |
| |
| return 0; |
| bad: |
| while (i--) |
| _exits[i](); |
| |
| return r; |
| } |
| |
| static void __exit dm_exit(void) |
| { |
| int i = ARRAY_SIZE(_exits); |
| |
| while (i--) |
| _exits[i](); |
| |
| /* |
| * Should be empty by this point. |
| */ |
| idr_destroy(&_minor_idr); |
| } |
| |
| /* |
| * Block device functions |
| */ |
| int dm_deleting_md(struct mapped_device *md) |
| { |
| return test_bit(DMF_DELETING, &md->flags); |
| } |
| |
| static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) |
| { |
| struct mapped_device *md; |
| |
| spin_lock(&_minor_lock); |
| |
| md = disk->private_data; |
| if (!md) |
| goto out; |
| |
| if (test_bit(DMF_FREEING, &md->flags) || |
| dm_deleting_md(md)) { |
| md = NULL; |
| goto out; |
| } |
| |
| dm_get(md); |
| atomic_inc(&md->open_count); |
| out: |
| spin_unlock(&_minor_lock); |
| |
| return md ? 0 : -ENXIO; |
| } |
| |
| static void dm_blk_close(struct gendisk *disk) |
| { |
| struct mapped_device *md; |
| |
| spin_lock(&_minor_lock); |
| |
| md = disk->private_data; |
| if (WARN_ON(!md)) |
| goto out; |
| |
| if (atomic_dec_and_test(&md->open_count) && |
| (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) |
| queue_work(deferred_remove_workqueue, &deferred_remove_work); |
| |
| dm_put(md); |
| out: |
| spin_unlock(&_minor_lock); |
| } |
| |
| int dm_open_count(struct mapped_device *md) |
| { |
| return atomic_read(&md->open_count); |
| } |
| |
| /* |
| * Guarantees nothing is using the device before it's deleted. |
| */ |
| int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) |
| { |
| int r = 0; |
| |
| spin_lock(&_minor_lock); |
| |
| if (dm_open_count(md)) { |
| r = -EBUSY; |
| if (mark_deferred) |
| set_bit(DMF_DEFERRED_REMOVE, &md->flags); |
| } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) |
| r = -EEXIST; |
| else |
| set_bit(DMF_DELETING, &md->flags); |
| |
| spin_unlock(&_minor_lock); |
| |
| return r; |
| } |
| |
| int dm_cancel_deferred_remove(struct mapped_device *md) |
| { |
| int r = 0; |
| |
| spin_lock(&_minor_lock); |
| |
| if (test_bit(DMF_DELETING, &md->flags)) |
| r = -EBUSY; |
| else |
| clear_bit(DMF_DEFERRED_REMOVE, &md->flags); |
| |
| spin_unlock(&_minor_lock); |
| |
| return r; |
| } |
| |
| static void do_deferred_remove(struct work_struct *w) |
| { |
| dm_deferred_remove(); |
| } |
| |
| static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| { |
| struct mapped_device *md = bdev->bd_disk->private_data; |
| |
| return dm_get_geometry(md, geo); |
| } |
| |
| static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, |
| struct block_device **bdev) |
| { |
| struct dm_target *ti; |
| struct dm_table *map; |
| int r; |
| |
| retry: |
| r = -ENOTTY; |
| map = dm_get_live_table(md, srcu_idx); |
| if (!map || !dm_table_get_size(map)) |
| return r; |
| |
| /* We only support devices that have a single target */ |
| if (map->num_targets != 1) |
| return r; |
| |
| ti = dm_table_get_target(map, 0); |
| if (!ti->type->prepare_ioctl) |
| return r; |
| |
| if (dm_suspended_md(md)) |
| return -EAGAIN; |
| |
| r = ti->type->prepare_ioctl(ti, bdev); |
| if (r == -ENOTCONN && !fatal_signal_pending(current)) { |
| dm_put_live_table(md, *srcu_idx); |
| fsleep(10000); |
| goto retry; |
| } |
| |
| return r; |
| } |
| |
| static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) |
| { |
| dm_put_live_table(md, srcu_idx); |
| } |
| |
| static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct mapped_device *md = bdev->bd_disk->private_data; |
| int r, srcu_idx; |
| |
| r = dm_prepare_ioctl(md, &srcu_idx, &bdev); |
| if (r < 0) |
| goto out; |
| |
| if (r > 0) { |
| /* |
| * Target determined this ioctl is being issued against a |
| * subset of the parent bdev; require extra privileges. |
| */ |
| if (!capable(CAP_SYS_RAWIO)) { |
| DMDEBUG_LIMIT( |
| "%s: sending ioctl %x to DM device without required privilege.", |
| current->comm, cmd); |
| r = -ENOIOCTLCMD; |
| goto out; |
| } |
| } |
| |
| if (!bdev->bd_disk->fops->ioctl) |
| r = -ENOTTY; |
| else |
| r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); |
| out: |
| dm_unprepare_ioctl(md, srcu_idx); |
| return r; |
| } |
| |
| u64 dm_start_time_ns_from_clone(struct bio *bio) |
| { |
| return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); |
| } |
| EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); |
| |
| static inline bool bio_is_flush_with_data(struct bio *bio) |
| { |
| return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); |
| } |
| |
| static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) |
| { |
| /* |
| * If REQ_PREFLUSH set, don't account payload, it will be |
| * submitted (and accounted) after this flush completes. |
| */ |
| if (bio_is_flush_with_data(bio)) |
| return 0; |
| if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) |
| return io->sectors; |
| return bio_sectors(bio); |
| } |
| |
| static void dm_io_acct(struct dm_io *io, bool end) |
| { |
| struct bio *bio = io->orig_bio; |
| |
| if (dm_io_flagged(io, DM_IO_BLK_STAT)) { |
| if (!end) |
| bdev_start_io_acct(bio->bi_bdev, bio_op(bio), |
| io->start_time); |
| else |
| bdev_end_io_acct(bio->bi_bdev, bio_op(bio), |
| dm_io_sectors(io, bio), |
| io->start_time); |
| } |
| |
| if (static_branch_unlikely(&stats_enabled) && |
| unlikely(dm_stats_used(&io->md->stats))) { |
| sector_t sector; |
| |
| if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) |
| sector = bio_end_sector(bio) - io->sector_offset; |
| else |
| sector = bio->bi_iter.bi_sector; |
| |
| dm_stats_account_io(&io->md->stats, bio_data_dir(bio), |
| sector, dm_io_sectors(io, bio), |
| end, io->start_time, &io->stats_aux); |
| } |
| } |
| |
| static void __dm_start_io_acct(struct dm_io *io) |
| { |
| dm_io_acct(io, false); |
| } |
| |
| static void dm_start_io_acct(struct dm_io *io, struct bio *clone) |
| { |
| /* |
| * Ensure IO accounting is only ever started once. |
| */ |
| if (dm_io_flagged(io, DM_IO_ACCOUNTED)) |
| return; |
| |
| /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ |
| if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { |
| dm_io_set_flag(io, DM_IO_ACCOUNTED); |
| } else { |
| unsigned long flags; |
| /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ |
| spin_lock_irqsave(&io->lock, flags); |
| if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { |
| spin_unlock_irqrestore(&io->lock, flags); |
| return; |
| } |
| dm_io_set_flag(io, DM_IO_ACCOUNTED); |
| spin_unlock_irqrestore(&io->lock, flags); |
| } |
| |
| __dm_start_io_acct(io); |
| } |
| |
| static void dm_end_io_acct(struct dm_io *io) |
| { |
| dm_io_acct(io, true); |
| } |
| |
| static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) |
| { |
| struct dm_io *io; |
| struct dm_target_io *tio; |
| struct bio *clone; |
| |
| clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); |
| if (unlikely(!clone)) |
| return NULL; |
| tio = clone_to_tio(clone); |
| tio->flags = 0; |
| dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); |
| tio->io = NULL; |
| |
| io = container_of(tio, struct dm_io, tio); |
| io->magic = DM_IO_MAGIC; |
| io->status = BLK_STS_OK; |
| |
| /* one ref is for submission, the other is for completion */ |
| atomic_set(&io->io_count, 2); |
| this_cpu_inc(*md->pending_io); |
| io->orig_bio = bio; |
| io->md = md; |
| spin_lock_init(&io->lock); |
| io->start_time = jiffies; |
| io->flags = 0; |
| if (blk_queue_io_stat(md->queue)) |
| dm_io_set_flag(io, DM_IO_BLK_STAT); |
| |
| if (static_branch_unlikely(&stats_enabled) && |
| unlikely(dm_stats_used(&md->stats))) |
| dm_stats_record_start(&md->stats, &io->stats_aux); |
| |
| return io; |
| } |
| |
| static void free_io(struct dm_io *io) |
| { |
| bio_put(&io->tio.clone); |
| } |
| |
| static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, |
| unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) |
| { |
| struct mapped_device *md = ci->io->md; |
| struct dm_target_io *tio; |
| struct bio *clone; |
| |
| if (!ci->io->tio.io) { |
| /* the dm_target_io embedded in ci->io is available */ |
| tio = &ci->io->tio; |
| /* alloc_io() already initialized embedded clone */ |
| clone = &tio->clone; |
| } else { |
| clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, |
| &md->mempools->bs); |
| if (!clone) |
| return NULL; |
| |
| /* REQ_DM_POLL_LIST shouldn't be inherited */ |
| clone->bi_opf &= ~REQ_DM_POLL_LIST; |
| |
| tio = clone_to_tio(clone); |
| tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ |
| } |
| |
| tio->magic = DM_TIO_MAGIC; |
| tio->io = ci->io; |
| tio->ti = ti; |
| tio->target_bio_nr = target_bio_nr; |
| tio->len_ptr = len; |
| tio->old_sector = 0; |
| |
| /* Set default bdev, but target must bio_set_dev() before issuing IO */ |
| clone->bi_bdev = md->disk->part0; |
| if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) |
| bio_set_dev(clone, md->disk->part0); |
| |
| if (len) { |
| clone->bi_iter.bi_size = to_bytes(*len); |
| if (bio_integrity(clone)) |
| bio_integrity_trim(clone); |
| } |
| |
| return clone; |
| } |
| |
| static void free_tio(struct bio *clone) |
| { |
| if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) |
| return; |
| bio_put(clone); |
| } |
| |
| /* |
| * Add the bio to the list of deferred io. |
| */ |
| static void queue_io(struct mapped_device *md, struct bio *bio) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&md->deferred_lock, flags); |
| bio_list_add(&md->deferred, bio); |
| spin_unlock_irqrestore(&md->deferred_lock, flags); |
| queue_work(md->wq, &md->work); |
| } |
| |
| /* |
| * Everyone (including functions in this file), should use this |
| * function to access the md->map field, and make sure they call |
| * dm_put_live_table() when finished. |
| */ |
| struct dm_table *dm_get_live_table(struct mapped_device *md, |
| int *srcu_idx) __acquires(md->io_barrier) |
| { |
| *srcu_idx = srcu_read_lock(&md->io_barrier); |
| |
| return srcu_dereference(md->map, &md->io_barrier); |
| } |
| |
| void dm_put_live_table(struct mapped_device *md, |
| int srcu_idx) __releases(md->io_barrier) |
| { |
| srcu_read_unlock(&md->io_barrier, srcu_idx); |
| } |
| |
| void dm_sync_table(struct mapped_device *md) |
| { |
| synchronize_srcu(&md->io_barrier); |
| synchronize_rcu_expedited(); |
| } |
| |
| /* |
| * A fast alternative to dm_get_live_table/dm_put_live_table. |
| * The caller must not block between these two functions. |
| */ |
| static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) |
| { |
| rcu_read_lock(); |
| return rcu_dereference(md->map); |
| } |
| |
| static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) |
| { |
| rcu_read_unlock(); |
| } |
| |
| static char *_dm_claim_ptr = "I belong to device-mapper"; |
| |
| /* |
| * Open a table device so we can use it as a map destination. |
| */ |
| static struct table_device *open_table_device(struct mapped_device *md, |
| dev_t dev, blk_mode_t mode) |
| { |
| struct table_device *td; |
| struct file *bdev_file; |
| struct block_device *bdev; |
| u64 part_off; |
| int r; |
| |
| td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); |
| if (!td) |
| return ERR_PTR(-ENOMEM); |
| refcount_set(&td->count, 1); |
| |
| bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); |
| if (IS_ERR(bdev_file)) { |
| r = PTR_ERR(bdev_file); |
| goto out_free_td; |
| } |
| |
| bdev = file_bdev(bdev_file); |
| |
| /* |
| * We can be called before the dm disk is added. In that case we can't |
| * register the holder relation here. It will be done once add_disk was |
| * called. |
| */ |
| if (md->disk->slave_dir) { |
| r = bd_link_disk_holder(bdev, md->disk); |
| if (r) |
| goto out_blkdev_put; |
| } |
| |
| td->dm_dev.mode = mode; |
| td->dm_dev.bdev = bdev; |
| td->dm_dev.bdev_file = bdev_file; |
| td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, |
| NULL, NULL); |
| format_dev_t(td->dm_dev.name, dev); |
| list_add(&td->list, &md->table_devices); |
| return td; |
| |
| out_blkdev_put: |
| __fput_sync(bdev_file); |
| out_free_td: |
| kfree(td); |
| return ERR_PTR(r); |
| } |
| |
| /* |
| * Close a table device that we've been using. |
| */ |
| static void close_table_device(struct table_device *td, struct mapped_device *md) |
| { |
| if (md->disk->slave_dir) |
| bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); |
| |
| /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ |
| if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) |
| fput(td->dm_dev.bdev_file); |
| else |
| __fput_sync(td->dm_dev.bdev_file); |
| |
| put_dax(td->dm_dev.dax_dev); |
| list_del(&td->list); |
| kfree(td); |
| } |
| |
| static struct table_device *find_table_device(struct list_head *l, dev_t dev, |
| blk_mode_t mode) |
| { |
| struct table_device *td; |
| |
| list_for_each_entry(td, l, list) |
| if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) |
| return td; |
| |
| return NULL; |
| } |
| |
| int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, |
| struct dm_dev **result) |
| { |
| struct table_device *td; |
| |
| mutex_lock(&md->table_devices_lock); |
| td = find_table_device(&md->table_devices, dev, mode); |
| if (!td) { |
| td = open_table_device(md, dev, mode); |
| if (IS_ERR(td)) { |
| mutex_unlock(&md->table_devices_lock); |
| return PTR_ERR(td); |
| } |
| } else { |
| refcount_inc(&td->count); |
| } |
| mutex_unlock(&md->table_devices_lock); |
| |
| *result = &td->dm_dev; |
| return 0; |
| } |
| |
| void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) |
| { |
| struct table_device *td = container_of(d, struct table_device, dm_dev); |
| |
| mutex_lock(&md->table_devices_lock); |
| if (refcount_dec_and_test(&td->count)) |
| close_table_device(td, md); |
| mutex_unlock(&md->table_devices_lock); |
| } |
| |
| /* |
| * Get the geometry associated with a dm device |
| */ |
| int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) |
| { |
| *geo = md->geometry; |
| |
| return 0; |
| } |
| |
| /* |
| * Set the geometry of a device. |
| */ |
| int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) |
| { |
| sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; |
| |
| if (geo->start > sz) { |
| DMERR("Start sector is beyond the geometry limits."); |
| return -EINVAL; |
| } |
| |
| md->geometry = *geo; |
| |
| return 0; |
| } |
| |
| static int __noflush_suspending(struct mapped_device *md) |
| { |
| return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| } |
| |
| static void dm_requeue_add_io(struct dm_io *io, bool first_stage) |
| { |
| struct mapped_device *md = io->md; |
| |
| if (first_stage) { |
| struct dm_io *next = md->requeue_list; |
| |
| md->requeue_list = io; |
| io->next = next; |
| } else { |
| bio_list_add_head(&md->deferred, io->orig_bio); |
| } |
| } |
| |
| static void dm_kick_requeue(struct mapped_device *md, bool first_stage) |
| { |
| if (first_stage) |
| queue_work(md->wq, &md->requeue_work); |
| else |
| queue_work(md->wq, &md->work); |
| } |
| |
| /* |
| * Return true if the dm_io's original bio is requeued. |
| * io->status is updated with error if requeue disallowed. |
| */ |
| static bool dm_handle_requeue(struct dm_io *io, bool first_stage) |
| { |
| struct bio *bio = io->orig_bio; |
| bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); |
| bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && |
| (bio->bi_opf & REQ_POLLED)); |
| struct mapped_device *md = io->md; |
| bool requeued = false; |
| |
| if (handle_requeue || handle_polled_eagain) { |
| unsigned long flags; |
| |
| if (bio->bi_opf & REQ_POLLED) { |
| /* |
| * Upper layer won't help us poll split bio |
| * (io->orig_bio may only reflect a subset of the |
| * pre-split original) so clear REQ_POLLED. |
| */ |
| bio_clear_polled(bio); |
| } |
| |
| /* |
| * Target requested pushing back the I/O or |
| * polled IO hit BLK_STS_AGAIN. |
| */ |
| spin_lock_irqsave(&md->deferred_lock, flags); |
| if ((__noflush_suspending(md) && |
| !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || |
| handle_polled_eagain || first_stage) { |
| dm_requeue_add_io(io, first_stage); |
| requeued = true; |
| } else { |
| /* |
| * noflush suspend was interrupted or this is |
| * a write to a zoned target. |
| */ |
| io->status = BLK_STS_IOERR; |
| } |
| spin_unlock_irqrestore(&md->deferred_lock, flags); |
| } |
| |
| if (requeued) |
| dm_kick_requeue(md, first_stage); |
| |
| return requeued; |
| } |
| |
| static void __dm_io_complete(struct dm_io *io, bool first_stage) |
| { |
| struct bio *bio = io->orig_bio; |
| struct mapped_device *md = io->md; |
| blk_status_t io_error; |
| bool requeued; |
| |
| requeued = dm_handle_requeue(io, first_stage); |
| if (requeued && first_stage) |
| return; |
| |
| io_error = io->status; |
| if (dm_io_flagged(io, DM_IO_ACCOUNTED)) |
| dm_end_io_acct(io); |
| else if (!io_error) { |
| /* |
| * Must handle target that DM_MAPIO_SUBMITTED only to |
| * then bio_endio() rather than dm_submit_bio_remap() |
| */ |
| __dm_start_io_acct(io); |
| dm_end_io_acct(io); |
| } |
| free_io(io); |
| smp_wmb(); |
| this_cpu_dec(*md->pending_io); |
| |
| /* nudge anyone waiting on suspend queue */ |
| if (unlikely(wq_has_sleeper(&md->wait))) |
| wake_up(&md->wait); |
| |
| /* Return early if the original bio was requeued */ |
| if (requeued) |
| return; |
| |
| if (bio_is_flush_with_data(bio)) { |
| /* |
| * Preflush done for flush with data, reissue |
| * without REQ_PREFLUSH. |
| */ |
| bio->bi_opf &= ~REQ_PREFLUSH; |
| queue_io(md, bio); |
| } else { |
| /* done with normal IO or empty flush */ |
| if (io_error) |
| bio->bi_status = io_error; |
| bio_endio(bio); |
| } |
| } |
| |
| static void dm_wq_requeue_work(struct work_struct *work) |
| { |
| struct mapped_device *md = container_of(work, struct mapped_device, |
| requeue_work); |
| unsigned long flags; |
| struct dm_io *io; |
| |
| /* reuse deferred lock to simplify dm_handle_requeue */ |
| spin_lock_irqsave(&md->deferred_lock, flags); |
| io = md->requeue_list; |
| md->requeue_list = NULL; |
| spin_unlock_irqrestore(&md->deferred_lock, flags); |
| |
| while (io) { |
| struct dm_io *next = io->next; |
| |
| dm_io_rewind(io, &md->disk->bio_split); |
| |
| io->next = NULL; |
| __dm_io_complete(io, false); |
| io = next; |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * Two staged requeue: |
| * |
| * 1) io->orig_bio points to the real original bio, and the part mapped to |
| * this io must be requeued, instead of other parts of the original bio. |
| * |
| * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. |
| */ |
| static void dm_io_complete(struct dm_io *io) |
| { |
| bool first_requeue; |
| |
| /* |
| * Only dm_io that has been split needs two stage requeue, otherwise |
| * we may run into long bio clone chain during suspend and OOM could |
| * be triggered. |
| * |
| * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they |
| * also aren't handled via the first stage requeue. |
| */ |
| if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) |
| first_requeue = true; |
| else |
| first_requeue = false; |
| |
| __dm_io_complete(io, first_requeue); |
| } |
| |
| /* |
| * Decrements the number of outstanding ios that a bio has been |
| * cloned into, completing the original io if necc. |
| */ |
| static inline void __dm_io_dec_pending(struct dm_io *io) |
| { |
| if (atomic_dec_and_test(&io->io_count)) |
| dm_io_complete(io); |
| } |
| |
| static void dm_io_set_error(struct dm_io *io, blk_status_t error) |
| { |
| unsigned long flags; |
| |
| /* Push-back supersedes any I/O errors */ |
| spin_lock_irqsave(&io->lock, flags); |
| if (!(io->status == BLK_STS_DM_REQUEUE && |
| __noflush_suspending(io->md))) { |
| io->status = error; |
| } |
| spin_unlock_irqrestore(&io->lock, flags); |
| } |
| |
| static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) |
| { |
| if (unlikely(error)) |
| dm_io_set_error(io, error); |
| |
| __dm_io_dec_pending(io); |
| } |
| |
| /* |
| * The queue_limits are only valid as long as you have a reference |
| * count on 'md'. But _not_ imposing verification to avoid atomic_read(), |
| */ |
| static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) |
| { |
| return &md->queue->limits; |
| } |
| |
| void disable_discard(struct mapped_device *md) |
| { |
| struct queue_limits *limits = dm_get_queue_limits(md); |
| |
| /* device doesn't really support DISCARD, disable it */ |
| limits->max_hw_discard_sectors = 0; |
| } |
| |
| void disable_write_zeroes(struct mapped_device *md) |
| { |
| struct queue_limits *limits = dm_get_queue_limits(md); |
| |
| /* device doesn't really support WRITE ZEROES, disable it */ |
| limits->max_write_zeroes_sectors = 0; |
| } |
| |
| static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) |
| { |
| return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); |
| } |
| |
| static void clone_endio(struct bio *bio) |
| { |
| blk_status_t error = bio->bi_status; |
| struct dm_target_io *tio = clone_to_tio(bio); |
| struct dm_target *ti = tio->ti; |
| dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; |
| struct dm_io *io = tio->io; |
| struct mapped_device *md = io->md; |
| |
| if (unlikely(error == BLK_STS_TARGET)) { |
| if (bio_op(bio) == REQ_OP_DISCARD && |
| !bdev_max_discard_sectors(bio->bi_bdev)) |
| disable_discard(md); |
| else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && |
| !bdev_write_zeroes_sectors(bio->bi_bdev)) |
| disable_write_zeroes(md); |
| } |
| |
| if (static_branch_unlikely(&zoned_enabled) && |
| unlikely(bdev_is_zoned(bio->bi_bdev))) |
| dm_zone_endio(io, bio); |
| |
| if (endio) { |
| int r = endio(ti, bio, &error); |
| |
| switch (r) { |
| case DM_ENDIO_REQUEUE: |
| if (static_branch_unlikely(&zoned_enabled)) { |
| /* |
| * Requeuing writes to a sequential zone of a zoned |
| * target will break the sequential write pattern: |
| * fail such IO. |
| */ |
| if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) |
| error = BLK_STS_IOERR; |
| else |
| error = BLK_STS_DM_REQUEUE; |
| } else |
| error = BLK_STS_DM_REQUEUE; |
| fallthrough; |
| case DM_ENDIO_DONE: |
| break; |
| case DM_ENDIO_INCOMPLETE: |
| /* The target will handle the io */ |
| return; |
| default: |
| DMCRIT("unimplemented target endio return value: %d", r); |
| BUG(); |
| } |
| } |
| |
| if (static_branch_unlikely(&swap_bios_enabled) && |
| likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) |
| up(&md->swap_bios_semaphore); |
| |
| free_tio(bio); |
| dm_io_dec_pending(io, error); |
| } |
| |
| /* |
| * Return maximum size of I/O possible at the supplied sector up to the current |
| * target boundary. |
| */ |
| static inline sector_t max_io_len_target_boundary(struct dm_target *ti, |
| sector_t target_offset) |
| { |
| return ti->len - target_offset; |
| } |
| |
| static sector_t __max_io_len(struct dm_target *ti, sector_t sector, |
| unsigned int max_granularity, |
| unsigned int max_sectors) |
| { |
| sector_t target_offset = dm_target_offset(ti, sector); |
| sector_t len = max_io_len_target_boundary(ti, target_offset); |
| |
| /* |
| * Does the target need to split IO even further? |
| * - varied (per target) IO splitting is a tenet of DM; this |
| * explains why stacked chunk_sectors based splitting via |
| * bio_split_to_limits() isn't possible here. |
| */ |
| if (!max_granularity) |
| return len; |
| return min_t(sector_t, len, |
| min(max_sectors ? : queue_max_sectors(ti->table->md->queue), |
| blk_boundary_sectors_left(target_offset, max_granularity))); |
| } |
| |
| static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) |
| { |
| return __max_io_len(ti, sector, ti->max_io_len, 0); |
| } |
| |
| int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) |
| { |
| if (len > UINT_MAX) { |
| DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", |
| (unsigned long long)len, UINT_MAX); |
| ti->error = "Maximum size of target IO is too large"; |
| return -EINVAL; |
| } |
| |
| ti->max_io_len = (uint32_t) len; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); |
| |
| static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, |
| sector_t sector, int *srcu_idx) |
| __acquires(md->io_barrier) |
| { |
| struct dm_table *map; |
| struct dm_target *ti; |
| |
| map = dm_get_live_table(md, srcu_idx); |
| if (!map) |
| return NULL; |
| |
| ti = dm_table_find_target(map, sector); |
| if (!ti) |
| return NULL; |
| |
| return ti; |
| } |
| |
| static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, |
| long nr_pages, enum dax_access_mode mode, void **kaddr, |
| pfn_t *pfn) |
| { |
| struct mapped_device *md = dax_get_private(dax_dev); |
| sector_t sector = pgoff * PAGE_SECTORS; |
| struct dm_target *ti; |
| long len, ret = -EIO; |
| int srcu_idx; |
| |
| ti = dm_dax_get_live_target(md, sector, &srcu_idx); |
| |
| if (!ti) |
| goto out; |
| if (!ti->type->direct_access) |
| goto out; |
| len = max_io_len(ti, sector) / PAGE_SECTORS; |
| if (len < 1) |
| goto out; |
| nr_pages = min(len, nr_pages); |
| ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); |
| |
| out: |
| dm_put_live_table(md, srcu_idx); |
| |
| return ret; |
| } |
| |
| static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, |
| size_t nr_pages) |
| { |
| struct mapped_device *md = dax_get_private(dax_dev); |
| sector_t sector = pgoff * PAGE_SECTORS; |
| struct dm_target *ti; |
| int ret = -EIO; |
| int srcu_idx; |
| |
| ti = dm_dax_get_live_target(md, sector, &srcu_idx); |
| |
| if (!ti) |
| goto out; |
| if (WARN_ON(!ti->type->dax_zero_page_range)) { |
| /* |
| * ->zero_page_range() is mandatory dax operation. If we are |
| * here, something is wrong. |
| */ |
| goto out; |
| } |
| ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); |
| out: |
| dm_put_live_table(md, srcu_idx); |
| |
| return ret; |
| } |
| |
| static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, |
| void *addr, size_t bytes, struct iov_iter *i) |
| { |
| struct mapped_device *md = dax_get_private(dax_dev); |
| sector_t sector = pgoff * PAGE_SECTORS; |
| struct dm_target *ti; |
| int srcu_idx; |
| long ret = 0; |
| |
| ti = dm_dax_get_live_target(md, sector, &srcu_idx); |
| if (!ti || !ti->type->dax_recovery_write) |
| goto out; |
| |
| ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); |
| out: |
| dm_put_live_table(md, srcu_idx); |
| return ret; |
| } |
| |
| /* |
| * A target may call dm_accept_partial_bio only from the map routine. It is |
| * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management |
| * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by |
| * __send_duplicate_bios(). |
| * |
| * dm_accept_partial_bio informs the dm that the target only wants to process |
| * additional n_sectors sectors of the bio and the rest of the data should be |
| * sent in a next bio. |
| * |
| * A diagram that explains the arithmetics: |
| * +--------------------+---------------+-------+ |
| * | 1 | 2 | 3 | |
| * +--------------------+---------------+-------+ |
| * |
| * <-------------- *tio->len_ptr ---------------> |
| * <----- bio_sectors -----> |
| * <-- n_sectors --> |
| * |
| * Region 1 was already iterated over with bio_advance or similar function. |
| * (it may be empty if the target doesn't use bio_advance) |
| * Region 2 is the remaining bio size that the target wants to process. |
| * (it may be empty if region 1 is non-empty, although there is no reason |
| * to make it empty) |
| * The target requires that region 3 is to be sent in the next bio. |
| * |
| * If the target wants to receive multiple copies of the bio (via num_*bios, etc), |
| * the partially processed part (the sum of regions 1+2) must be the same for all |
| * copies of the bio. |
| */ |
| void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) |
| { |
| struct dm_target_io *tio = clone_to_tio(bio); |
| struct dm_io *io = tio->io; |
| unsigned int bio_sectors = bio_sectors(bio); |
| |
| BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); |
| BUG_ON(op_is_zone_mgmt(bio_op(bio))); |
| BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); |
| BUG_ON(bio_sectors > *tio->len_ptr); |
| BUG_ON(n_sectors > bio_sectors); |
| |
| *tio->len_ptr -= bio_sectors - n_sectors; |
| bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; |
| |
| /* |
| * __split_and_process_bio() may have already saved mapped part |
| * for accounting but it is being reduced so update accordingly. |
| */ |
| dm_io_set_flag(io, DM_IO_WAS_SPLIT); |
| io->sectors = n_sectors; |
| io->sector_offset = bio_sectors(io->orig_bio); |
| } |
| EXPORT_SYMBOL_GPL(dm_accept_partial_bio); |
| |
| /* |
| * @clone: clone bio that DM core passed to target's .map function |
| * @tgt_clone: clone of @clone bio that target needs submitted |
| * |
| * Targets should use this interface to submit bios they take |
| * ownership of when returning DM_MAPIO_SUBMITTED. |
| * |
| * Target should also enable ti->accounts_remapped_io |
| */ |
| void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) |
| { |
| struct dm_target_io *tio = clone_to_tio(clone); |
| struct dm_io *io = tio->io; |
| |
| /* establish bio that will get submitted */ |
| if (!tgt_clone) |
| tgt_clone = clone; |
| |
| /* |
| * Account io->origin_bio to DM dev on behalf of target |
| * that took ownership of IO with DM_MAPIO_SUBMITTED. |
| */ |
| dm_start_io_acct(io, clone); |
| |
| trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), |
| tio->old_sector); |
| submit_bio_noacct(tgt_clone); |
| } |
| EXPORT_SYMBOL_GPL(dm_submit_bio_remap); |
| |
| static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) |
| { |
| mutex_lock(&md->swap_bios_lock); |
| while (latch < md->swap_bios) { |
| cond_resched(); |
| down(&md->swap_bios_semaphore); |
| md->swap_bios--; |
| } |
| while (latch > md->swap_bios) { |
| cond_resched(); |
| up(&md->swap_bios_semaphore); |
| md->swap_bios++; |
| } |
| mutex_unlock(&md->swap_bios_lock); |
| } |
| |
| static void __map_bio(struct bio *clone) |
| { |
| struct dm_target_io *tio = clone_to_tio(clone); |
| struct dm_target *ti = tio->ti; |
| struct dm_io *io = tio->io; |
| struct mapped_device *md = io->md; |
| int r; |
| |
| clone->bi_end_io = clone_endio; |
| |
| /* |
| * Map the clone. |
| */ |
| tio->old_sector = clone->bi_iter.bi_sector; |
| |
| if (static_branch_unlikely(&swap_bios_enabled) && |
| unlikely(swap_bios_limit(ti, clone))) { |
| int latch = get_swap_bios(); |
| |
| if (unlikely(latch != md->swap_bios)) |
| __set_swap_bios_limit(md, latch); |
| down(&md->swap_bios_semaphore); |
| } |
| |
| if (likely(ti->type->map == linear_map)) |
| r = linear_map(ti, clone); |
| else if (ti->type->map == stripe_map) |
| r = stripe_map(ti, clone); |
| else |
| r = ti->type->map(ti, clone); |
| |
| switch (r) { |
| case DM_MAPIO_SUBMITTED: |
| /* target has assumed ownership of this io */ |
| if (!ti->accounts_remapped_io) |
| dm_start_io_acct(io, clone); |
| break; |
| case DM_MAPIO_REMAPPED: |
| dm_submit_bio_remap(clone, NULL); |
| break; |
| case DM_MAPIO_KILL: |
| case DM_MAPIO_REQUEUE: |
| if (static_branch_unlikely(&swap_bios_enabled) && |
| unlikely(swap_bios_limit(ti, clone))) |
| up(&md->swap_bios_semaphore); |
| free_tio(clone); |
| if (r == DM_MAPIO_KILL) |
| dm_io_dec_pending(io, BLK_STS_IOERR); |
| else |
| dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); |
| break; |
| default: |
| DMCRIT("unimplemented target map return value: %d", r); |
| BUG(); |
| } |
| } |
| |
| static void setup_split_accounting(struct clone_info *ci, unsigned int len) |
| { |
| struct dm_io *io = ci->io; |
| |
| if (ci->sector_count > len) { |
| /* |
| * Split needed, save the mapped part for accounting. |
| * NOTE: dm_accept_partial_bio() will update accordingly. |
| */ |
| dm_io_set_flag(io, DM_IO_WAS_SPLIT); |
| io->sectors = len; |
| io->sector_offset = bio_sectors(ci->bio); |
| } |
| } |
| |
| static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, |
| struct dm_target *ti, unsigned int num_bios, |
| unsigned *len, gfp_t gfp_flag) |
| { |
| struct bio *bio; |
| int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1; |
| |
| for (; try < 2; try++) { |
| int bio_nr; |
| |
| if (try && num_bios > 1) |
| mutex_lock(&ci->io->md->table_devices_lock); |
| for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { |
| bio = alloc_tio(ci, ti, bio_nr, len, |
| try ? GFP_NOIO : GFP_NOWAIT); |
| if (!bio) |
| break; |
| |
| bio_list_add(blist, bio); |
| } |
| if (try && num_bios > 1) |
| mutex_unlock(&ci->io->md->table_devices_lock); |
| if (bio_nr == num_bios) |
| return; |
| |
| while ((bio = bio_list_pop(blist))) |
| free_tio(bio); |
| } |
| } |
| |
| static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, |
| unsigned int num_bios, unsigned int *len, |
| gfp_t gfp_flag) |
| { |
| struct bio_list blist = BIO_EMPTY_LIST; |
| struct bio *clone; |
| unsigned int ret = 0; |
| |
| if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ |
| return 0; |
| |
| /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ |
| if (len) |
| setup_split_accounting(ci, *len); |
| |
| /* |
| * Using alloc_multiple_bios(), even if num_bios is 1, to consistently |
| * support allocating using GFP_NOWAIT with GFP_NOIO fallback. |
| */ |
| alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag); |
| while ((clone = bio_list_pop(&blist))) { |
| if (num_bios > 1) |
| dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); |
| __map_bio(clone); |
| ret += 1; |
| } |
| |
| return ret; |
| } |
| |
| static void __send_empty_flush(struct clone_info *ci) |
| { |
| struct dm_table *t = ci->map; |
| struct bio flush_bio; |
| |
| /* |
| * Use an on-stack bio for this, it's safe since we don't |
| * need to reference it after submit. It's just used as |
| * the basis for the clone(s). |
| */ |
| bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, |
| REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); |
| |
| ci->bio = &flush_bio; |
| ci->sector_count = 0; |
| ci->io->tio.clone.bi_iter.bi_size = 0; |
| |
| if (!t->flush_bypasses_map) { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| unsigned int bios; |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (unlikely(ti->num_flush_bios == 0)) |
| continue; |
| |
| atomic_add(ti->num_flush_bios, &ci->io->io_count); |
| bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, |
| NULL, GFP_NOWAIT); |
| atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); |
| } |
| } else { |
| /* |
| * Note that there's no need to grab t->devices_lock here |
| * because the targets that support flush optimization don't |
| * modify the list of devices. |
| */ |
| struct list_head *devices = dm_table_get_devices(t); |
| unsigned int len = 0; |
| struct dm_dev_internal *dd; |
| list_for_each_entry(dd, devices, list) { |
| struct bio *clone; |
| /* |
| * Note that the structure dm_target_io is not |
| * associated with any target (because the device may be |
| * used by multiple targets), so we set tio->ti = NULL. |
| * We must check for NULL in the I/O processing path, to |
| * avoid NULL pointer dereference. |
| */ |
| clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); |
| atomic_add(1, &ci->io->io_count); |
| bio_set_dev(clone, dd->dm_dev->bdev); |
| clone->bi_end_io = clone_endio; |
| dm_submit_bio_remap(clone, NULL); |
| } |
| } |
| |
| /* |
| * alloc_io() takes one extra reference for submission, so the |
| * reference won't reach 0 without the following subtraction |
| */ |
| atomic_sub(1, &ci->io->io_count); |
| |
| bio_uninit(ci->bio); |
| } |
| |
| static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, |
| unsigned int num_bios, unsigned int max_granularity, |
| unsigned int max_sectors) |
| { |
| unsigned int len, bios; |
| |
| len = min_t(sector_t, ci->sector_count, |
| __max_io_len(ti, ci->sector, max_granularity, max_sectors)); |
| |
| atomic_add(num_bios, &ci->io->io_count); |
| bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO); |
| /* |
| * alloc_io() takes one extra reference for submission, so the |
| * reference won't reach 0 without the following (+1) subtraction |
| */ |
| atomic_sub(num_bios - bios + 1, &ci->io->io_count); |
| |
| ci->sector += len; |
| ci->sector_count -= len; |
| } |
| |
| static bool is_abnormal_io(struct bio *bio) |
| { |
| switch (bio_op(bio)) { |
| case REQ_OP_READ: |
| case REQ_OP_WRITE: |
| case REQ_OP_FLUSH: |
| return false; |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| case REQ_OP_WRITE_ZEROES: |
| case REQ_OP_ZONE_RESET_ALL: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static blk_status_t __process_abnormal_io(struct clone_info *ci, |
| struct dm_target *ti) |
| { |
| unsigned int num_bios = 0; |
| unsigned int max_granularity = 0; |
| unsigned int max_sectors = 0; |
| struct queue_limits *limits = dm_get_queue_limits(ti->table->md); |
| |
| switch (bio_op(ci->bio)) { |
| case REQ_OP_DISCARD: |
| num_bios = ti->num_discard_bios; |
| max_sectors = limits->max_discard_sectors; |
| if (ti->max_discard_granularity) |
| max_granularity = max_sectors; |
| break; |
| case REQ_OP_SECURE_ERASE: |
| num_bios = ti->num_secure_erase_bios; |
| max_sectors = limits->max_secure_erase_sectors; |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| num_bios = ti->num_write_zeroes_bios; |
| max_sectors = limits->max_write_zeroes_sectors; |
| break; |
| default: |
| break; |
| } |
| |
| /* |
| * Even though the device advertised support for this type of |
| * request, that does not mean every target supports it, and |
| * reconfiguration might also have changed that since the |
| * check was performed. |
| */ |
| if (unlikely(!num_bios)) |
| return BLK_STS_NOTSUPP; |
| |
| __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); |
| |
| return BLK_STS_OK; |
| } |
| |
| /* |
| * Reuse ->bi_private as dm_io list head for storing all dm_io instances |
| * associated with this bio, and this bio's bi_private needs to be |
| * stored in dm_io->data before the reuse. |
| * |
| * bio->bi_private is owned by fs or upper layer, so block layer won't |
| * touch it after splitting. Meantime it won't be changed by anyone after |
| * bio is submitted. So this reuse is safe. |
| */ |
| static inline struct dm_io **dm_poll_list_head(struct bio *bio) |
| { |
| return (struct dm_io **)&bio->bi_private; |
| } |
| |
| static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) |
| { |
| struct dm_io **head = dm_poll_list_head(bio); |
| |
| if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { |
| bio->bi_opf |= REQ_DM_POLL_LIST; |
| /* |
| * Save .bi_private into dm_io, so that we can reuse |
| * .bi_private as dm_io list head for storing dm_io list |
| */ |
| io->data = bio->bi_private; |
| |
| /* tell block layer to poll for completion */ |
| bio->bi_cookie = ~BLK_QC_T_NONE; |
| |
| io->next = NULL; |
| } else { |
| /* |
| * bio recursed due to split, reuse original poll list, |
| * and save bio->bi_private too. |
| */ |
| io->data = (*head)->data; |
| io->next = *head; |
| } |
| |
| *head = io; |
| } |
| |
| /* |
| * Select the correct strategy for processing a non-flush bio. |
| */ |
| static blk_status_t __split_and_process_bio(struct clone_info *ci) |
| { |
| struct bio *clone; |
| struct dm_target *ti; |
| unsigned int len; |
| |
| ti = dm_table_find_target(ci->map, ci->sector); |
| if (unlikely(!ti)) |
| return BLK_STS_IOERR; |
| |
| if (unlikely(ci->is_abnormal_io)) |
| return __process_abnormal_io(ci, ti); |
| |
| /* |
| * Only support bio polling for normal IO, and the target io is |
| * exactly inside the dm_io instance (verified in dm_poll_dm_io) |
| */ |
| ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); |
| |
| len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); |
| setup_split_accounting(ci, len); |
| |
| if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { |
| if (unlikely(!dm_target_supports_nowait(ti->type))) |
| return BLK_STS_NOTSUPP; |
| |
| clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); |
| if (unlikely(!clone)) |
| return BLK_STS_AGAIN; |
| } else { |
| clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); |
| } |
| __map_bio(clone); |
| |
| ci->sector += len; |
| ci->sector_count -= len; |
| |
| return BLK_STS_OK; |
| } |
| |
| static void init_clone_info(struct clone_info *ci, struct dm_io *io, |
| struct dm_table *map, struct bio *bio, bool is_abnormal) |
| { |
| ci->map = map; |
| ci->io = io; |
| ci->bio = bio; |
| ci->is_abnormal_io = is_abnormal; |
| ci->submit_as_polled = false; |
| ci->sector = bio->bi_iter.bi_sector; |
| ci->sector_count = bio_sectors(bio); |
| |
| /* Shouldn't happen but sector_count was being set to 0 so... */ |
| if (static_branch_unlikely(&zoned_enabled) && |
| WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) |
| ci->sector_count = 0; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static inline bool dm_zone_bio_needs_split(struct mapped_device *md, |
| struct bio *bio) |
| { |
| /* |
| * For mapped device that need zone append emulation, we must |
| * split any large BIO that straddles zone boundaries. |
| */ |
| return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && |
| !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); |
| } |
| static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) |
| { |
| return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); |
| } |
| |
| static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, |
| struct dm_target *ti) |
| { |
| struct bio_list blist = BIO_EMPTY_LIST; |
| struct mapped_device *md = ci->io->md; |
| unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; |
| unsigned long *need_reset; |
| unsigned int i, nr_zones, nr_reset; |
| unsigned int num_bios = 0; |
| blk_status_t sts = BLK_STS_OK; |
| sector_t sector = ti->begin; |
| struct bio *clone; |
| int ret; |
| |
| nr_zones = ti->len >> ilog2(zone_sectors); |
| need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); |
| if (!need_reset) |
| return BLK_STS_RESOURCE; |
| |
| ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, |
| nr_zones, need_reset); |
| if (ret) { |
| sts = BLK_STS_IOERR; |
| goto free_bitmap; |
| } |
| |
| /* If we have no zone to reset, we are done. */ |
| nr_reset = bitmap_weight(need_reset, nr_zones); |
| if (!nr_reset) |
| goto free_bitmap; |
| |
| atomic_add(nr_zones, &ci->io->io_count); |
| |
| for (i = 0; i < nr_zones; i++) { |
| |
| if (!test_bit(i, need_reset)) { |
| sector += zone_sectors; |
| continue; |
| } |
| |
| if (bio_list_empty(&blist)) { |
| /* This may take a while, so be nice to others */ |
| if (num_bios) |
| cond_resched(); |
| |
| /* |
| * We may need to reset thousands of zones, so let's |
| * not go crazy with the clone allocation. |
| */ |
| alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), |
| NULL, GFP_NOIO); |
| } |
| |
| /* Get a clone and change it to a regular reset operation. */ |
| clone = bio_list_pop(&blist); |
| clone->bi_opf &= ~REQ_OP_MASK; |
| clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; |
| clone->bi_iter.bi_sector = sector; |
| clone->bi_iter.bi_size = 0; |
| __map_bio(clone); |
| |
| sector += zone_sectors; |
| num_bios++; |
| nr_reset--; |
| } |
| |
| WARN_ON_ONCE(!bio_list_empty(&blist)); |
| atomic_sub(nr_zones - num_bios, &ci->io->io_count); |
| ci->sector_count = 0; |
| |
| free_bitmap: |
| bitmap_free(need_reset); |
| |
| return sts; |
| } |
| |
| static void __send_zone_reset_all_native(struct clone_info *ci, |
| struct dm_target *ti) |
| { |
| unsigned int bios; |
| |
| atomic_add(1, &ci->io->io_count); |
| bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO); |
| atomic_sub(1 - bios, &ci->io->io_count); |
| |
| ci->sector_count = 0; |
| } |
| |
| static blk_status_t __send_zone_reset_all(struct clone_info *ci) |
| { |
| struct dm_table *t = ci->map; |
| blk_status_t sts = BLK_STS_OK; |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (ti->zone_reset_all_supported) { |
| __send_zone_reset_all_native(ci, ti); |
| continue; |
| } |
| |
| sts = __send_zone_reset_all_emulated(ci, ti); |
| if (sts != BLK_STS_OK) |
| break; |
| } |
| |
| /* Release the reference that alloc_io() took for submission. */ |
| atomic_sub(1, &ci->io->io_count); |
| |
| return sts; |
| } |
| |
| #else |
| static inline bool dm_zone_bio_needs_split(struct mapped_device *md, |
| struct bio *bio) |
| { |
| return false; |
| } |
| static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) |
| { |
| return false; |
| } |
| static blk_status_t __send_zone_reset_all(struct clone_info *ci) |
| { |
| return BLK_STS_NOTSUPP; |
| } |
| #endif |
| |
| /* |
| * Entry point to split a bio into clones and submit them to the targets. |
| */ |
| static void dm_split_and_process_bio(struct mapped_device *md, |
| struct dm_table *map, struct bio *bio) |
| { |
| struct clone_info ci; |
| struct dm_io *io; |
| blk_status_t error = BLK_STS_OK; |
| bool is_abnormal, need_split; |
| |
| is_abnormal = is_abnormal_io(bio); |
| if (static_branch_unlikely(&zoned_enabled)) { |
| /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */ |
| need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) && |
| (is_abnormal || dm_zone_bio_needs_split(md, bio)); |
| } else { |
| need_split = is_abnormal; |
| } |
| |
| if (unlikely(need_split)) { |
| /* |
| * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) |
| * otherwise associated queue_limits won't be imposed. |
| * Also split the BIO for mapped devices needing zone append |
| * emulation to ensure that the BIO does not cross zone |
| * boundaries. |
| */ |
| bio = bio_split_to_limits(bio); |
| if (!bio) |
| return; |
| } |
| |
| /* |
| * Use the block layer zone write plugging for mapped devices that |
| * need zone append emulation (e.g. dm-crypt). |
| */ |
| if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) |
| return; |
| |
| /* Only support nowait for normal IO */ |
| if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { |
| io = alloc_io(md, bio, GFP_NOWAIT); |
| if (unlikely(!io)) { |
| /* Unable to do anything without dm_io. */ |
| bio_wouldblock_error(bio); |
| return; |
| } |
| } else { |
| io = alloc_io(md, bio, GFP_NOIO); |
| } |
| init_clone_info(&ci, io, map, bio, is_abnormal); |
| |
| if (bio->bi_opf & REQ_PREFLUSH) { |
| __send_empty_flush(&ci); |
| /* dm_io_complete submits any data associated with flush */ |
| goto out; |
| } |
| |
| if (static_branch_unlikely(&zoned_enabled) && |
| (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { |
| error = __send_zone_reset_all(&ci); |
| goto out; |
| } |
| |
| error = __split_and_process_bio(&ci); |
| if (error || !ci.sector_count) |
| goto out; |
| /* |
| * Remainder must be passed to submit_bio_noacct() so it gets handled |
| * *after* bios already submitted have been completely processed. |
| */ |
| bio_trim(bio, io->sectors, ci.sector_count); |
| trace_block_split(bio, bio->bi_iter.bi_sector); |
| bio_inc_remaining(bio); |
| submit_bio_noacct(bio); |
| out: |
| /* |
| * Drop the extra reference count for non-POLLED bio, and hold one |
| * reference for POLLED bio, which will be released in dm_poll_bio |
| * |
| * Add every dm_io instance into the dm_io list head which is stored |
| * in bio->bi_private, so that dm_poll_bio can poll them all. |
| */ |
| if (error || !ci.submit_as_polled) { |
| /* |
| * In case of submission failure, the extra reference for |
| * submitting io isn't consumed yet |
| */ |
| if (error) |
| atomic_dec(&io->io_count); |
| dm_io_dec_pending(io, error); |
| } else |
| dm_queue_poll_io(bio, io); |
| } |
| |
| static void dm_submit_bio(struct bio *bio) |
| { |
| struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; |
| int srcu_idx; |
| struct dm_table *map; |
| |
| map = dm_get_live_table(md, &srcu_idx); |
| |
| /* If suspended, or map not yet available, queue this IO for later */ |
| if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || |
| unlikely(!map)) { |
| if (bio->bi_opf & REQ_NOWAIT) |
| bio_wouldblock_error(bio); |
| else if (bio->bi_opf & REQ_RAHEAD) |
| bio_io_error(bio); |
| else |
| queue_io(md, bio); |
| goto out; |
| } |
| |
| dm_split_and_process_bio(md, map, bio); |
| out: |
| dm_put_live_table(md, srcu_idx); |
| } |
| |
| static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, |
| unsigned int flags) |
| { |
| WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); |
| |
| /* don't poll if the mapped io is done */ |
| if (atomic_read(&io->io_count) > 1) |
| bio_poll(&io->tio.clone, iob, flags); |
| |
| /* bio_poll holds the last reference */ |
| return atomic_read(&io->io_count) == 1; |
| } |
| |
| static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, |
| unsigned int flags) |
| { |
| struct dm_io **head = dm_poll_list_head(bio); |
| struct dm_io *list = *head; |
| struct dm_io *tmp = NULL; |
| struct dm_io *curr, *next; |
| |
| /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ |
| if (!(bio->bi_opf & REQ_DM_POLL_LIST)) |
| return 0; |
| |
| WARN_ON_ONCE(!list); |
| |
| /* |
| * Restore .bi_private before possibly completing dm_io. |
| * |
| * bio_poll() is only possible once @bio has been completely |
| * submitted via submit_bio_noacct()'s depth-first submission. |
| * So there is no dm_queue_poll_io() race associated with |
| * clearing REQ_DM_POLL_LIST here. |
| */ |
| bio->bi_opf &= ~REQ_DM_POLL_LIST; |
| bio->bi_private = list->data; |
| |
| for (curr = list, next = curr->next; curr; curr = next, next = |
| curr ? curr->next : NULL) { |
| if (dm_poll_dm_io(curr, iob, flags)) { |
| /* |
| * clone_endio() has already occurred, so no |
| * error handling is needed here. |
| */ |
| __dm_io_dec_pending(curr); |
| } else { |
| curr->next = tmp; |
| tmp = curr; |
| } |
| } |
| |
| /* Not done? */ |
| if (tmp) { |
| bio->bi_opf |= REQ_DM_POLL_LIST; |
| /* Reset bio->bi_private to dm_io list head */ |
| *head = tmp; |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| *--------------------------------------------------------------- |
| * An IDR is used to keep track of allocated minor numbers. |
| *--------------------------------------------------------------- |
| */ |
| static void free_minor(int minor) |
| { |
| spin_lock(&_minor_lock); |
| idr_remove(&_minor_idr, minor); |
| spin_unlock(&_minor_lock); |
| } |
| |
| /* |
| * See if the device with a specific minor # is free. |
| */ |
| static int specific_minor(int minor) |
| { |
| int r; |
| |
| if (minor >= (1 << MINORBITS)) |
| return -EINVAL; |
| |
| idr_preload(GFP_KERNEL); |
| spin_lock(&_minor_lock); |
| |
| r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); |
| |
| spin_unlock(&_minor_lock); |
| idr_preload_end(); |
| if (r < 0) |
| return r == -ENOSPC ? -EBUSY : r; |
| return 0; |
| } |
| |
| static int next_free_minor(int *minor) |
| { |
| int r; |
| |
| idr_preload(GFP_KERNEL); |
| spin_lock(&_minor_lock); |
| |
| r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); |
| |
| spin_unlock(&_minor_lock); |
| idr_preload_end(); |
| if (r < 0) |
| return r; |
| *minor = r; |
| return 0; |
| } |
| |
| static const struct block_device_operations dm_blk_dops; |
| static const struct block_device_operations dm_rq_blk_dops; |
| static const struct dax_operations dm_dax_ops; |
| |
| static void dm_wq_work(struct work_struct *work); |
| |
| #ifdef CONFIG_BLK_INLINE_ENCRYPTION |
| static void dm_queue_destroy_crypto_profile(struct request_queue *q) |
| { |
| dm_destroy_crypto_profile(q->crypto_profile); |
| } |
| |
| #else /* CONFIG_BLK_INLINE_ENCRYPTION */ |
| |
| static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) |
| { |
| } |
| #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ |
| |
| static void cleanup_mapped_device(struct mapped_device *md) |
| { |
| if (md->wq) |
| destroy_workqueue(md->wq); |
| dm_free_md_mempools(md->mempools); |
| |
| if (md->dax_dev) { |
| dax_remove_host(md->disk); |
| kill_dax(md->dax_dev); |
| put_dax(md->dax_dev); |
| md->dax_dev = NULL; |
| } |
| |
| if (md->disk) { |
| spin_lock(&_minor_lock); |
| md->disk->private_data = NULL; |
| spin_unlock(&_minor_lock); |
| if (dm_get_md_type(md) != DM_TYPE_NONE) { |
| struct table_device *td; |
| |
| dm_sysfs_exit(md); |
| list_for_each_entry(td, &md->table_devices, list) { |
| bd_unlink_disk_holder(td->dm_dev.bdev, |
| md->disk); |
| } |
| |
| /* |
| * Hold lock to make sure del_gendisk() won't concurrent |
| * with open/close_table_device(). |
| */ |
| mutex_lock(&md->table_devices_lock); |
| del_gendisk(md->disk); |
| mutex_unlock(&md->table_devices_lock); |
| } |
| dm_queue_destroy_crypto_profile(md->queue); |
| put_disk(md->disk); |
| } |
| |
| if (md->pending_io) { |
| free_percpu(md->pending_io); |
| md->pending_io = NULL; |
| } |
| |
| cleanup_srcu_struct(&md->io_barrier); |
| |
| mutex_destroy(&md->suspend_lock); |
| mutex_destroy(&md->type_lock); |
| mutex_destroy(&md->table_devices_lock); |
| mutex_destroy(&md->swap_bios_lock); |
| |
| dm_mq_cleanup_mapped_device(md); |
| } |
| |
| /* |
| * Allocate and initialise a blank device with a given minor. |
| */ |
| static struct mapped_device *alloc_dev(int minor) |
| { |
| int r, numa_node_id = dm_get_numa_node(); |
| struct dax_device *dax_dev; |
| struct mapped_device *md; |
| void *old_md; |
| |
| md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); |
| if (!md) { |
| DMERR("unable to allocate device, out of memory."); |
| return NULL; |
| } |
| |
| if (!try_module_get(THIS_MODULE)) |
| goto bad_module_get; |
| |
| /* get a minor number for the dev */ |
| if (minor == DM_ANY_MINOR) |
| r = next_free_minor(&minor); |
| else |
| r = specific_minor(minor); |
| if (r < 0) |
| goto bad_minor; |
| |
| r = init_srcu_struct(&md->io_barrier); |
| if (r < 0) |
| goto bad_io_barrier; |
| |
| md->numa_node_id = numa_node_id; |
| md->init_tio_pdu = false; |
| md->type = DM_TYPE_NONE; |
| mutex_init(&md->suspend_lock); |
| mutex_init(&md->type_lock); |
| mutex_init(&md->table_devices_lock); |
| spin_lock_init(&md->deferred_lock); |
| atomic_set(&md->holders, 1); |
| atomic_set(&md->open_count, 0); |
| atomic_set(&md->event_nr, 0); |
| atomic_set(&md->uevent_seq, 0); |
| INIT_LIST_HEAD(&md->uevent_list); |
| INIT_LIST_HEAD(&md->table_devices); |
| spin_lock_init(&md->uevent_lock); |
| |
| /* |
| * default to bio-based until DM table is loaded and md->type |
| * established. If request-based table is loaded: blk-mq will |
| * override accordingly. |
| */ |
| md->disk = blk_alloc_disk(NULL, md->numa_node_id); |
| if (IS_ERR(md->disk)) |
| goto bad; |
| md->queue = md->disk->queue; |
| |
| init_waitqueue_head(&md->wait); |
| INIT_WORK(&md->work, dm_wq_work); |
| INIT_WORK(&md->requeue_work, dm_wq_requeue_work); |
| init_waitqueue_head(&md->eventq); |
| init_completion(&md->kobj_holder.completion); |
| |
| md->requeue_list = NULL; |
| md->swap_bios = get_swap_bios(); |
| sema_init(&md->swap_bios_semaphore, md->swap_bios); |
| mutex_init(&md->swap_bios_lock); |
| |
| md->disk->major = _major; |
| md->disk->first_minor = minor; |
| md->disk->minors = 1; |
| md->disk->flags |= GENHD_FL_NO_PART; |
| md->disk->fops = &dm_blk_dops; |
| md->disk->private_data = md; |
| sprintf(md->disk->disk_name, "dm-%d", minor); |
| |
| dax_dev = alloc_dax(md, &dm_dax_ops); |
| if (IS_ERR(dax_dev)) { |
| if (PTR_ERR(dax_dev) != -EOPNOTSUPP) |
| goto bad; |
| } else { |
| set_dax_nocache(dax_dev); |
| set_dax_nomc(dax_dev); |
| md->dax_dev = dax_dev; |
| if (dax_add_host(dax_dev, md->disk)) |
| goto bad; |
| } |
| |
| format_dev_t(md->name, MKDEV(_major, minor)); |
| |
| md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); |
| if (!md->wq) |
| goto bad; |
| |
| md->pending_io = alloc_percpu(unsigned long); |
| if (!md->pending_io) |
| goto bad; |
| |
| r = dm_stats_init(&md->stats); |
| if (r < 0) |
| goto bad; |
| |
| /* Populate the mapping, nobody knows we exist yet */ |
| spin_lock(&_minor_lock); |
| old_md = idr_replace(&_minor_idr, md, minor); |
| spin_unlock(&_minor_lock); |
| |
| BUG_ON(old_md != MINOR_ALLOCED); |
| |
| return md; |
| |
| bad: |
| cleanup_mapped_device(md); |
| bad_io_barrier: |
| free_minor(minor); |
| bad_minor: |
| module_put(THIS_MODULE); |
| bad_module_get: |
| kvfree(md); |
| return NULL; |
| } |
| |
| static void unlock_fs(struct mapped_device *md); |
| |
| static void free_dev(struct mapped_device *md) |
| { |
| int minor = MINOR(disk_devt(md->disk)); |
| |
| unlock_fs(md); |
| |
| cleanup_mapped_device(md); |
| |
| WARN_ON_ONCE(!list_empty(&md->table_devices)); |
| dm_stats_cleanup(&md->stats); |
| free_minor(minor); |
| |
| module_put(THIS_MODULE); |
| kvfree(md); |
| } |
| |
| /* |
| * Bind a table to the device. |
| */ |
| static void event_callback(void *context) |
| { |
| unsigned long flags; |
| LIST_HEAD(uevents); |
| struct mapped_device *md = context; |
| |
| spin_lock_irqsave(&md->uevent_lock, flags); |
| list_splice_init(&md->uevent_list, &uevents); |
| spin_unlock_irqrestore(&md->uevent_lock, flags); |
| |
| dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); |
| |
| atomic_inc(&md->event_nr); |
| wake_up(&md->eventq); |
| dm_issue_global_event(); |
| } |
| |
| /* |
| * Returns old map, which caller must destroy. |
| */ |
| static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, |
| struct queue_limits *limits) |
| { |
| struct dm_table *old_map; |
| sector_t size; |
| int ret; |
| |
| lockdep_assert_held(&md->suspend_lock); |
| |
| size = dm_table_get_size(t); |
| |
| /* |
| * Wipe any geometry if the size of the table changed. |
| */ |
| if (size != dm_get_size(md)) |
| memset(&md->geometry, 0, sizeof(md->geometry)); |
| |
| set_capacity(md->disk, size); |
| |
| dm_table_event_callback(t, event_callback, md); |
| |
| if (dm_table_request_based(t)) { |
| /* |
| * Leverage the fact that request-based DM targets are |
| * immutable singletons - used to optimize dm_mq_queue_rq. |
| */ |
| md->immutable_target = dm_table_get_immutable_target(t); |
| |
| /* |
| * There is no need to reload with request-based dm because the |
| * size of front_pad doesn't change. |
| * |
| * Note for future: If you are to reload bioset, prep-ed |
| * requests in the queue may refer to bio from the old bioset, |
| * so you must walk through the queue to unprep. |
| */ |
| if (!md->mempools) { |
| md->mempools = t->mempools; |
| t->mempools = NULL; |
| } |
| } else { |
| /* |
| * The md may already have mempools that need changing. |
| * If so, reload bioset because front_pad may have changed |
| * because a different table was loaded. |
| */ |
| dm_free_md_mempools(md->mempools); |
| md->mempools = t->mempools; |
| t->mempools = NULL; |
| } |
| |
| ret = dm_table_set_restrictions(t, md->queue, limits); |
| if (ret) { |
| old_map = ERR_PTR(ret); |
| goto out; |
| } |
| |
| old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); |
| rcu_assign_pointer(md->map, (void *)t); |
| md->immutable_target_type = dm_table_get_immutable_target_type(t); |
| |
| if (old_map) |
| dm_sync_table(md); |
| out: |
| return old_map; |
| } |
| |
| /* |
| * Returns unbound table for the caller to free. |
| */ |
| static struct dm_table *__unbind(struct mapped_device *md) |
| { |
| struct dm_table *map = rcu_dereference_protected(md->map, 1); |
| |
| if (!map) |
| return NULL; |
| |
| dm_table_event_callback(map, NULL, NULL); |
| RCU_INIT_POINTER(md->map, NULL); |
| dm_sync_table(md); |
| |
| return map; |
| } |
| |
| /* |
| * Constructor for a new device. |
| */ |
| int dm_create(int minor, struct mapped_device **result) |
| { |
| struct mapped_device *md; |
| |
| md = alloc_dev(minor); |
| if (!md) |
| return -ENXIO; |
| |
| dm_ima_reset_data(md); |
| |
| *result = md; |
| return 0; |
| } |
| |
| /* |
| * Functions to manage md->type. |
| * All are required to hold md->type_lock. |
| */ |
| void dm_lock_md_type(struct mapped_device *md) |
| { |
| mutex_lock(&md->type_lock); |
| } |
| |
| void dm_unlock_md_type(struct mapped_device *md) |
| { |
| mutex_unlock(&md->type_lock); |
| } |
| |
| void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) |
| { |
| BUG_ON(!mutex_is_locked(&md->type_lock)); |
| md->type = type; |
| } |
| |
| enum dm_queue_mode dm_get_md_type(struct mapped_device *md) |
| { |
| return md->type; |
| } |
| |
| struct target_type *dm_get_immutable_target_type(struct mapped_device *md) |
| { |
| return md->immutable_target_type; |
| } |
| |
| /* |
| * Setup the DM device's queue based on md's type |
| */ |
| int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) |
| { |
| enum dm_queue_mode type = dm_table_get_type(t); |
| struct queue_limits limits; |
| struct table_device *td; |
| int r; |
| |
| WARN_ON_ONCE(type == DM_TYPE_NONE); |
| |
| if (type == DM_TYPE_REQUEST_BASED) { |
| md->disk->fops = &dm_rq_blk_dops; |
| r = dm_mq_init_request_queue(md, t); |
| if (r) { |
| DMERR("Cannot initialize queue for request-based dm mapped device"); |
| return r; |
| } |
| } |
| |
| r = dm_calculate_queue_limits(t, &limits); |
| if (r) { |
| DMERR("Cannot calculate initial queue limits"); |
| return r; |
| } |
| r = dm_table_set_restrictions(t, md->queue, &limits); |
| if (r) |
| return r; |
| |
| /* |
| * Hold lock to make sure add_disk() and del_gendisk() won't concurrent |
| * with open_table_device() and close_table_device(). |
| */ |
| mutex_lock(&md->table_devices_lock); |
| r = add_disk(md->disk); |
| mutex_unlock(&md->table_devices_lock); |
| if (r) |
| return r; |
| |
| /* |
| * Register the holder relationship for devices added before the disk |
| * was live. |
| */ |
| list_for_each_entry(td, &md->table_devices, list) { |
| r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); |
| if (r) |
| goto out_undo_holders; |
| } |
| |
| r = dm_sysfs_init(md); |
| if (r) |
| goto out_undo_holders; |
| |
| md->type = type; |
| return 0; |
| |
| out_undo_holders: |
| list_for_each_entry_continue_reverse(td, &md->table_devices, list) |
| bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); |
| mutex_lock(&md->table_devices_lock); |
| del_gendisk(md->disk); |
| mutex_unlock(&md->table_devices_lock); |
| return r; |
| } |
| |
| struct mapped_device *dm_get_md(dev_t dev) |
| { |
| struct mapped_device *md; |
| unsigned int minor = MINOR(dev); |
| |
| if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) |
| return NULL; |
| |
| spin_lock(&_minor_lock); |
| |
| md = idr_find(&_minor_idr, minor); |
| if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || |
| test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { |
| md = NULL; |
| goto out; |
| } |
| dm_get(md); |
| out: |
| spin_unlock(&_minor_lock); |
| |
| return md; |
| } |
| EXPORT_SYMBOL_GPL(dm_get_md); |
| |
| void *dm_get_mdptr(struct mapped_device *md) |
| { |
| return md->interface_ptr; |
| } |
| |
| void dm_set_mdptr(struct mapped_device *md, void *ptr) |
| { |
| md->interface_ptr = ptr; |
| } |
| |
| void dm_get(struct mapped_device *md) |
| { |
| atomic_inc(&md->holders); |
| BUG_ON(test_bit(DMF_FREEING, &md->flags)); |
| } |
| |
| int dm_hold(struct mapped_device *md) |
| { |
| spin_lock(&_minor_lock); |
| if (test_bit(DMF_FREEING, &md->flags)) { |
| spin_unlock(&_minor_lock); |
| return -EBUSY; |
| } |
| dm_get(md); |
| spin_unlock(&_minor_lock); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(dm_hold); |
| |
| const char *dm_device_name(struct mapped_device *md) |
| { |
| return md->name; |
| } |
| EXPORT_SYMBOL_GPL(dm_device_name); |
| |
| static void __dm_destroy(struct mapped_device *md, bool wait) |
| { |
| struct dm_table *map; |
| int srcu_idx; |
| |
| might_sleep(); |
| |
| spin_lock(&_minor_lock); |
| idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); |
| set_bit(DMF_FREEING, &md->flags); |
| spin_unlock(&_minor_lock); |
| |
| blk_mark_disk_dead(md->disk); |
| |
| /* |
| * Take suspend_lock so that presuspend and postsuspend methods |
| * do not race with internal suspend. |
| */ |
| mutex_lock(&md->suspend_lock); |
| map = dm_get_live_table(md, &srcu_idx); |
| if (!dm_suspended_md(md)) { |
| dm_table_presuspend_targets(map); |
| set_bit(DMF_SUSPENDED, &md->flags); |
| set_bit(DMF_POST_SUSPENDING, &md->flags); |
| dm_table_postsuspend_targets(map); |
| } |
| /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ |
| dm_put_live_table(md, srcu_idx); |
| mutex_unlock(&md->suspend_lock); |
| |
| /* |
| * Rare, but there may be I/O requests still going to complete, |
| * for example. Wait for all references to disappear. |
| * No one should increment the reference count of the mapped_device, |
| * after the mapped_device state becomes DMF_FREEING. |
| */ |
| if (wait) |
| while (atomic_read(&md->holders)) |
| fsleep(1000); |
| else if (atomic_read(&md->holders)) |
| DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", |
| dm_device_name(md), atomic_read(&md->holders)); |
| |
| dm_table_destroy(__unbind(md)); |
| free_dev(md); |
| } |
| |
| void dm_destroy(struct mapped_device *md) |
| { |
| __dm_destroy(md, true); |
| } |
| |
| void dm_destroy_immediate(struct mapped_device *md) |
| { |
| __dm_destroy(md, false); |
| } |
| |
| void dm_put(struct mapped_device *md) |
| { |
| atomic_dec(&md->holders); |
| } |
| EXPORT_SYMBOL_GPL(dm_put); |
| |
| static bool dm_in_flight_bios(struct mapped_device *md) |
| { |
| int cpu; |
| unsigned long sum = 0; |
| |
| for_each_possible_cpu(cpu) |
| sum += *per_cpu_ptr(md->pending_io, cpu); |
| |
| return sum != 0; |
| } |
| |
| static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) |
| { |
| int r = 0; |
| DEFINE_WAIT(wait); |
| |
| while (true) { |
| prepare_to_wait(&md->wait, &wait, task_state); |
| |
| if (!dm_in_flight_bios(md)) |
| break; |
| |
| if (signal_pending_state(task_state, current)) { |
| r = -EINTR; |
| break; |
| } |
| |
| io_schedule(); |
| } |
| finish_wait(&md->wait, &wait); |
| |
| smp_rmb(); |
| |
| return r; |
| } |
| |
| static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) |
| { |
| int r = 0; |
| |
| if (!queue_is_mq(md->queue)) |
| return dm_wait_for_bios_completion(md, task_state); |
| |
| while (true) { |
| if (!blk_mq_queue_inflight(md->queue)) |
| break; |
| |
| if (signal_pending_state(task_state, current)) { |
| r = -EINTR; |
| break; |
| } |
| |
| fsleep(5000); |
| } |
| |
| return r; |
| } |
| |
| /* |
| * Process the deferred bios |
| */ |
| static void dm_wq_work(struct work_struct *work) |
| { |
| struct mapped_device *md = container_of(work, struct mapped_device, work); |
| struct bio *bio; |
| |
| while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { |
| spin_lock_irq(&md->deferred_lock); |
| bio = bio_list_pop(&md->deferred); |
| spin_unlock_irq(&md->deferred_lock); |
| |
| if (!bio) |
| break; |
| |
| submit_bio_noacct(bio); |
| cond_resched(); |
| } |
| } |
| |
| static void dm_queue_flush(struct mapped_device *md) |
| { |
| clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); |
| smp_mb__after_atomic(); |
| queue_work(md->wq, &md->work); |
| } |
| |
| /* |
| * Swap in a new table, returning the old one for the caller to destroy. |
| */ |
| struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) |
| { |
| struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); |
| struct queue_limits limits; |
| int r; |
| |
| mutex_lock(&md->suspend_lock); |
| |
| /* device must be suspended */ |
| if (!dm_suspended_md(md)) |
| goto out; |
| |
| /* |
| * If the new table has no data devices, retain the existing limits. |
| * This helps multipath with queue_if_no_path if all paths disappear, |
| * then new I/O is queued based on these limits, and then some paths |
| * reappear. |
| */ |
| if (dm_table_has_no_data_devices(table)) { |
| live_map = dm_get_live_table_fast(md); |
| if (live_map) |
| limits = md->queue->limits; |
| dm_put_live_table_fast(md); |
| } |
| |
| if (!live_map) { |
| r = dm_calculate_queue_limits(table, &limits); |
| if (r) { |
| map = ERR_PTR(r); |
| goto out; |
| } |
| } |
| |
| map = __bind(md, table, &limits); |
| dm_issue_global_event(); |
| |
| out: |
| mutex_unlock(&md->suspend_lock); |
| return map; |
| } |
| |
| /* |
| * Functions to lock and unlock any filesystem running on the |
| * device. |
| */ |
| static int lock_fs(struct mapped_device *md) |
| { |
| int r; |
| |
| WARN_ON(test_bit(DMF_FROZEN, &md->flags)); |
| |
| r = bdev_freeze(md->disk->part0); |
| if (!r) |
| set_bit(DMF_FROZEN, &md->flags); |
| return r; |
| } |
| |
| static void unlock_fs(struct mapped_device *md) |
| { |
| if (!test_bit(DMF_FROZEN, &md->flags)) |
| return; |
| bdev_thaw(md->disk->part0); |
| clear_bit(DMF_FROZEN, &md->flags); |
| } |
| |
| /* |
| * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG |
| * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE |
| * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY |
| * |
| * If __dm_suspend returns 0, the device is completely quiescent |
| * now. There is no request-processing activity. All new requests |
| * are being added to md->deferred list. |
| */ |
| static int __dm_suspend(struct mapped_device *md, struct dm_table *map, |
| unsigned int suspend_flags, unsigned int task_state, |
| int dmf_suspended_flag) |
| { |
| bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; |
| bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; |
| int r; |
| |
| lockdep_assert_held(&md->suspend_lock); |
| |
| /* |
| * DMF_NOFLUSH_SUSPENDING must be set before presuspend. |
| * This flag is cleared before dm_suspend returns. |
| */ |
| if (noflush) |
| set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| else |
| DMDEBUG("%s: suspending with flush", dm_device_name(md)); |
| |
| /* |
| * This gets reverted if there's an error later and the targets |
| * provide the .presuspend_undo hook. |
| */ |
| dm_table_presuspend_targets(map); |
| |
| /* |
| * Flush I/O to the device. |
| * Any I/O submitted after lock_fs() may not be flushed. |
| * noflush takes precedence over do_lockfs. |
| * (lock_fs() flushes I/Os and waits for them to complete.) |
| */ |
| if (!noflush && do_lockfs) { |
| r = lock_fs(md); |
| if (r) { |
| dm_table_presuspend_undo_targets(map); |
| return r; |
| } |
| } |
| |
| /* |
| * Here we must make sure that no processes are submitting requests |
| * to target drivers i.e. no one may be executing |
| * dm_split_and_process_bio from dm_submit_bio. |
| * |
| * To get all processes out of dm_split_and_process_bio in dm_submit_bio, |
| * we take the write lock. To prevent any process from reentering |
| * dm_split_and_process_bio from dm_submit_bio and quiesce the thread |
| * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call |
| * flush_workqueue(md->wq). |
| */ |
| set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); |
| if (map) |
| synchronize_srcu(&md->io_barrier); |
| |
| /* |
| * Stop md->queue before flushing md->wq in case request-based |
| * dm defers requests to md->wq from md->queue. |
| */ |
| if (dm_request_based(md)) |
| dm_stop_queue(md->queue); |
| |
| flush_workqueue(md->wq); |
| |
| /* |
| * At this point no more requests are entering target request routines. |
| * We call dm_wait_for_completion to wait for all existing requests |
| * to finish. |
| */ |
| r = dm_wait_for_completion(md, task_state); |
| if (!r) |
| set_bit(dmf_suspended_flag, &md->flags); |
| |
| if (noflush) |
| clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); |
| if (map) |
| synchronize_srcu(&md->io_barrier); |
| |
| /* were we interrupted ? */ |
| if (r < 0) { |
| dm_queue_flush(md); |
| |
| if (dm_request_based(md)) |
| dm_start_queue(md->queue); |
| |
| unlock_fs(md); |
| dm_table_presuspend_undo_targets(map); |
| /* pushback list is already flushed, so skip flush */ |
| } |
| |
| return r; |
| } |
| |
| /* |
| * We need to be able to change a mapping table under a mounted |
| * filesystem. For example we might want to move some data in |
| * the background. Before the table can be swapped with |
| * dm_bind_table, dm_suspend must be called to flush any in |
| * flight bios and ensure that any further io gets deferred. |
| */ |
| /* |
| * Suspend mechanism in request-based dm. |
| * |
| * 1. Flush all I/Os by lock_fs() if needed. |
| * 2. Stop dispatching any I/O by stopping the request_queue. |
| * 3. Wait for all in-flight I/Os to be completed or requeued. |
| * |
| * To abort suspend, start the request_queue. |
| */ |
| int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) |
| { |
| struct dm_table *map = NULL; |
| int r = 0; |
| |
| retry: |
| mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); |
| |
| if (dm_suspended_md(md)) { |
| r = -EINVAL; |
| goto out_unlock; |
| } |
| |
| if (dm_suspended_internally_md(md)) { |
| /* already internally suspended, wait for internal resume */ |
| mutex_unlock(&md->suspend_lock); |
| r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); |
| if (r) |
| return r; |
| goto retry; |
| } |
| |
| map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); |
| if (!map) { |
| /* avoid deadlock with fs/namespace.c:do_mount() */ |
| suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; |
| } |
| |
| r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); |
| if (r) |
| goto out_unlock; |
| |
| set_bit(DMF_POST_SUSPENDING, &md->flags); |
| dm_table_postsuspend_targets(map); |
| clear_bit(DMF_POST_SUSPENDING, &md->flags); |
| |
| out_unlock: |
| mutex_unlock(&md->suspend_lock); |
| return r; |
| } |
| |
| static int __dm_resume(struct mapped_device *md, struct dm_table *map) |
| { |
| if (map) { |
| int r = dm_table_resume_targets(map); |
| |
| if (r) |
| return r; |
| } |
| |
| dm_queue_flush(md); |
| |
| /* |
| * Flushing deferred I/Os must be done after targets are resumed |
| * so that mapping of targets can work correctly. |
| * Request-based dm is queueing the deferred I/Os in its request_queue. |
| */ |
| if (dm_request_based(md)) |
| dm_start_queue(md->queue); |
| |
| unlock_fs(md); |
| |
| return 0; |
| } |
| |
| int dm_resume(struct mapped_device *md) |
| { |
| int r; |
| struct dm_table *map = NULL; |
| |
| retry: |
| r = -EINVAL; |
| mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); |
| |
| if (!dm_suspended_md(md)) |
| goto out; |
| |
| if (dm_suspended_internally_md(md)) { |
| /* already internally suspended, wait for internal resume */ |
| mutex_unlock(&md->suspend_lock); |
| r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); |
| if (r) |
| return r; |
| goto retry; |
| } |
| |
| map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); |
| if (!map || !dm_table_get_size(map)) |
| goto out; |
| |
| r = __dm_resume(md, map); |
| if (r) |
| goto out; |
| |
| clear_bit(DMF_SUSPENDED, &md->flags); |
| out: |
| mutex_unlock(&md->suspend_lock); |
| |
| return r; |
| } |
| |
| /* |
| * Internal suspend/resume works like userspace-driven suspend. It waits |
| * until all bios finish and prevents issuing new bios to the target drivers. |
| * It may be used only from the kernel. |
| */ |
| |
| static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) |
| { |
| struct dm_table *map = NULL; |
| |
| lockdep_assert_held(&md->suspend_lock); |
| |
| if (md->internal_suspend_count++) |
| return; /* nested internal suspend */ |
| |
| if (dm_suspended_md(md)) { |
| set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); |
| return; /* nest suspend */ |
| } |
| |
| map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); |
| |
| /* |
| * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is |
| * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend |
| * would require changing .presuspend to return an error -- avoid this |
| * until there is a need for more elaborate variants of internal suspend. |
| */ |
| (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, |
| DMF_SUSPENDED_INTERNALLY); |
| |
| set_bit(DMF_POST_SUSPENDING, &md->flags); |
| dm_table_postsuspend_targets(map); |
| clear_bit(DMF_POST_SUSPENDING, &md->flags); |
| } |
| |
| static void __dm_internal_resume(struct mapped_device *md) |
| { |
| int r; |
| struct dm_table *map; |
| |
| BUG_ON(!md->internal_suspend_count); |
| |
| if (--md->internal_suspend_count) |
| return; /* resume from nested internal suspend */ |
| |
| if (dm_suspended_md(md)) |
| goto done; /* resume from nested suspend */ |
| |
| map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); |
| r = __dm_resume(md, map); |
| if (r) { |
| /* |
| * If a preresume method of some target failed, we are in a |
| * tricky situation. We can't return an error to the caller. We |
| * can't fake success because then the "resume" and |
| * "postsuspend" methods would not be paired correctly, and it |
| * would break various targets, for example it would cause list |
| * corruption in the "origin" target. |
| * |
| * So, we fake normal suspend here, to make sure that the |
| * "resume" and "postsuspend" methods will be paired correctly. |
| */ |
| DMERR("Preresume method failed: %d", r); |
| set_bit(DMF_SUSPENDED, &md->flags); |
| } |
| done: |
| clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); |
| smp_mb__after_atomic(); |
| wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); |
| } |
| |
| void dm_internal_suspend_noflush(struct mapped_device *md) |
| { |
| mutex_lock(&md->suspend_lock); |
| __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); |
| mutex_unlock(&md->suspend_lock); |
| } |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); |
| |
| void dm_internal_resume(struct mapped_device *md) |
| { |
| mutex_lock(&md->suspend_lock); |
| __dm_internal_resume(md); |
| mutex_unlock(&md->suspend_lock); |
| } |
| EXPORT_SYMBOL_GPL(dm_internal_resume); |
| |
| /* |
| * Fast variants of internal suspend/resume hold md->suspend_lock, |
| * which prevents interaction with userspace-driven suspend. |
| */ |
| |
| void dm_internal_suspend_fast(struct mapped_device *md) |
| { |
| mutex_lock(&md->suspend_lock); |
| if (dm_suspended_md(md) || dm_suspended_internally_md(md)) |
| return; |
| |
| set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); |
| synchronize_srcu(&md->io_barrier); |
| flush_workqueue(md->wq); |
| dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); |
| } |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); |
| |
| void dm_internal_resume_fast(struct mapped_device *md) |
| { |
| if (dm_suspended_md(md) || dm_suspended_internally_md(md)) |
| goto done; |
| |
| dm_queue_flush(md); |
| |
| done: |
| mutex_unlock(&md->suspend_lock); |
| } |
| EXPORT_SYMBOL_GPL(dm_internal_resume_fast); |
| |
| /* |
| *--------------------------------------------------------------- |
| * Event notification. |
| *--------------------------------------------------------------- |
| */ |
| int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, |
| unsigned int cookie, bool need_resize_uevent) |
| { |
| int r; |
| unsigned int noio_flag; |
| char udev_cookie[DM_COOKIE_LENGTH]; |
| char *envp[3] = { NULL, NULL, NULL }; |
| char **envpp = envp; |
| if (cookie) { |
| snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", |
| DM_COOKIE_ENV_VAR_NAME, cookie); |
| *envpp++ = udev_cookie; |
| } |
| if (need_resize_uevent) { |
| *envpp++ = "RESIZE=1"; |
| } |
| |
| noio_flag = memalloc_noio_save(); |
| |
| r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); |
| |
| memalloc_noio_restore(noio_flag); |
| |
| return r; |
| } |
| |
| uint32_t dm_next_uevent_seq(struct mapped_device *md) |
| { |
| return atomic_add_return(1, &md->uevent_seq); |
| } |
| |
| uint32_t dm_get_event_nr(struct mapped_device *md) |
| { |
| return atomic_read(&md->event_nr); |
| } |
| |
| int dm_wait_event(struct mapped_device *md, int event_nr) |
| { |
| return wait_event_interruptible(md->eventq, |
| (event_nr != atomic_read(&md->event_nr))); |
| } |
| |
| void dm_uevent_add(struct mapped_device *md, struct list_head *elist) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&md->uevent_lock, flags); |
| list_add(elist, &md->uevent_list); |
| spin_unlock_irqrestore(&md->uevent_lock, flags); |
| } |
| |
| /* |
| * The gendisk is only valid as long as you have a reference |
| * count on 'md'. |
| */ |
| struct gendisk *dm_disk(struct mapped_device *md) |
| { |
| return md->disk; |
| } |
| EXPORT_SYMBOL_GPL(dm_disk); |
| |
| struct kobject *dm_kobject(struct mapped_device *md) |
| { |
| return &md->kobj_holder.kobj; |
| } |
| |
| struct mapped_device *dm_get_from_kobject(struct kobject *kobj) |
| { |
| struct mapped_device *md; |
| |
| md = container_of(kobj, struct mapped_device, kobj_holder.kobj); |
| |
| spin_lock(&_minor_lock); |
| if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { |
| md = NULL; |
| goto out; |
| } |
| dm_get(md); |
| out: |
| spin_unlock(&_minor_lock); |
| |
| return md; |
| } |
| |
| int dm_suspended_md(struct mapped_device *md) |
| { |
| return test_bit(DMF_SUSPENDED, &md->flags); |
| } |
| |
| static int dm_post_suspending_md(struct mapped_device *md) |
| { |
| return test_bit(DMF_POST_SUSPENDING, &md->flags); |
| } |
| |
| int dm_suspended_internally_md(struct mapped_device *md) |
| { |
| return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); |
| } |
| |
| int dm_test_deferred_remove_flag(struct mapped_device *md) |
| { |
| return test_bit(DMF_DEFERRED_REMOVE, &md->flags); |
| } |
| |
| int dm_suspended(struct dm_target *ti) |
| { |
| return dm_suspended_md(ti->table->md); |
| } |
| EXPORT_SYMBOL_GPL(dm_suspended); |
| |
| int dm_post_suspending(struct dm_target *ti) |
| { |
| return dm_post_suspending_md(ti->table->md); |
| } |
| EXPORT_SYMBOL_GPL(dm_post_suspending); |
| |
| int dm_noflush_suspending(struct dm_target *ti) |
| { |
| return __noflush_suspending(ti->table->md); |
| } |
| EXPORT_SYMBOL_GPL(dm_noflush_suspending); |
| |
| void dm_free_md_mempools(struct dm_md_mempools *pools) |
| { |
| if (!pools) |
| return; |
| |
| bioset_exit(&pools->bs); |
| bioset_exit(&pools->io_bs); |
| |
| kfree(pools); |
| } |
| |
| struct dm_pr { |
| u64 old_key; |
| u64 new_key; |
| u32 flags; |
| bool abort; |
| bool fail_early; |
| int ret; |
| enum pr_type type; |
| struct pr_keys *read_keys; |
| struct pr_held_reservation *rsv; |
| }; |
| |
| static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, |
| struct dm_pr *pr) |
| { |
| struct mapped_device *md = bdev->bd_disk->private_data; |
| struct dm_table *table; |
| struct dm_target *ti; |
| int ret = -ENOTTY, srcu_idx; |
| |
| table = dm_get_live_table(md, &srcu_idx); |
| if (!table || !dm_table_get_size(table)) |
| goto out; |
| |
| /* We only support devices that have a single target */ |
| if (table->num_targets != 1) |
| goto out; |
| ti = dm_table_get_target(table, 0); |
| |
| if (dm_suspended_md(md)) { |
| ret = -EAGAIN; |
| goto out; |
| } |
| |
| ret = -EINVAL; |
| if (!ti->type->iterate_devices) |
| goto out; |
| |
| ti->type->iterate_devices(ti, fn, pr); |
| ret = 0; |
| out: |
| dm_put_live_table(md, srcu_idx); |
| return ret; |
| } |
| |
| /* |
| * For register / unregister we need to manually call out to every path. |
| */ |
| static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| int ret; |
| |
| if (!ops || !ops->pr_register) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); |
| if (!ret) |
| return 0; |
| |
| if (!pr->ret) |
| pr->ret = ret; |
| |
| if (pr->fail_early) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, |
| u32 flags) |
| { |
| struct dm_pr pr = { |
| .old_key = old_key, |
| .new_key = new_key, |
| .flags = flags, |
| .fail_early = true, |
| .ret = 0, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_register, &pr); |
| if (ret) { |
| /* Didn't even get to register a path */ |
| return ret; |
| } |
| |
| if (!pr.ret) |
| return 0; |
| ret = pr.ret; |
| |
| if (!new_key) |
| return ret; |
| |
| /* unregister all paths if we failed to register any path */ |
| pr.old_key = new_key; |
| pr.new_key = 0; |
| pr.flags = 0; |
| pr.fail_early = false; |
| (void) dm_call_pr(bdev, __dm_pr_register, &pr); |
| return ret; |
| } |
| |
| |
| static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| |
| if (!ops || !ops->pr_reserve) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); |
| if (!pr->ret) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, |
| u32 flags) |
| { |
| struct dm_pr pr = { |
| .old_key = key, |
| .flags = flags, |
| .type = type, |
| .fail_early = false, |
| .ret = 0, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); |
| if (ret) |
| return ret; |
| |
| return pr.ret; |
| } |
| |
| /* |
| * If there is a non-All Registrants type of reservation, the release must be |
| * sent down the holding path. For the cases where there is no reservation or |
| * the path is not the holder the device will also return success, so we must |
| * try each path to make sure we got the correct path. |
| */ |
| static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| |
| if (!ops || !ops->pr_release) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); |
| if (pr->ret) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) |
| { |
| struct dm_pr pr = { |
| .old_key = key, |
| .type = type, |
| .fail_early = false, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_release, &pr); |
| if (ret) |
| return ret; |
| |
| return pr.ret; |
| } |
| |
| static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| |
| if (!ops || !ops->pr_preempt) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, |
| pr->abort); |
| if (!pr->ret) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, |
| enum pr_type type, bool abort) |
| { |
| struct dm_pr pr = { |
| .new_key = new_key, |
| .old_key = old_key, |
| .type = type, |
| .fail_early = false, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); |
| if (ret) |
| return ret; |
| |
| return pr.ret; |
| } |
| |
| static int dm_pr_clear(struct block_device *bdev, u64 key) |
| { |
| struct mapped_device *md = bdev->bd_disk->private_data; |
| const struct pr_ops *ops; |
| int r, srcu_idx; |
| |
| r = dm_prepare_ioctl(md, &srcu_idx, &bdev); |
| if (r < 0) |
| goto out; |
| |
| ops = bdev->bd_disk->fops->pr_ops; |
| if (ops && ops->pr_clear) |
| r = ops->pr_clear(bdev, key); |
| else |
| r = -EOPNOTSUPP; |
| out: |
| dm_unprepare_ioctl(md, srcu_idx); |
| return r; |
| } |
| |
| static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| |
| if (!ops || !ops->pr_read_keys) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); |
| if (!pr->ret) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) |
| { |
| struct dm_pr pr = { |
| .read_keys = keys, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); |
| if (ret) |
| return ret; |
| |
| return pr.ret; |
| } |
| |
| static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct dm_pr *pr = data; |
| const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; |
| |
| if (!ops || !ops->pr_read_reservation) { |
| pr->ret = -EOPNOTSUPP; |
| return -1; |
| } |
| |
| pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); |
| if (!pr->ret) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int dm_pr_read_reservation(struct block_device *bdev, |
| struct pr_held_reservation *rsv) |
| { |
| struct dm_pr pr = { |
| .rsv = rsv, |
| }; |
| int ret; |
| |
| ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); |
| if (ret) |
| return ret; |
| |
| return pr.ret; |
| } |
| |
| static const struct pr_ops dm_pr_ops = { |
| .pr_register = dm_pr_register, |
| .pr_reserve = dm_pr_reserve, |
| .pr_release = dm_pr_release, |
| .pr_preempt = dm_pr_preempt, |
| .pr_clear = dm_pr_clear, |
| .pr_read_keys = dm_pr_read_keys, |
| .pr_read_reservation = dm_pr_read_reservation, |
| }; |
| |
| static const struct block_device_operations dm_blk_dops = { |
| .submit_bio = dm_submit_bio, |
| .poll_bio = dm_poll_bio, |
| .open = dm_blk_open, |
| .release = dm_blk_close, |
| .ioctl = dm_blk_ioctl, |
| .getgeo = dm_blk_getgeo, |
| .report_zones = dm_blk_report_zones, |
| .pr_ops = &dm_pr_ops, |
| .owner = THIS_MODULE |
| }; |
| |
| static const struct block_device_operations dm_rq_blk_dops = { |
| .open = dm_blk_open, |
| .release = dm_blk_close, |
| .ioctl = dm_blk_ioctl, |
| .getgeo = dm_blk_getgeo, |
| .pr_ops = &dm_pr_ops, |
| .owner = THIS_MODULE |
| }; |
| |
| static const struct dax_operations dm_dax_ops = { |
| .direct_access = dm_dax_direct_access, |
| .zero_page_range = dm_dax_zero_page_range, |
| .recovery_write = dm_dax_recovery_write, |
| }; |
| |
| /* |
| * module hooks |
| */ |
| module_init(dm_init); |
| module_exit(dm_exit); |
| |
| module_param(major, uint, 0); |
| MODULE_PARM_DESC(major, "The major number of the device mapper"); |
| |
| module_param(reserved_bio_based_ios, uint, 0644); |
| MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); |
| |
| module_param(dm_numa_node, int, 0644); |
| MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); |
| |
| module_param(swap_bios, int, 0644); |
| MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); |
| |
| MODULE_DESCRIPTION(DM_NAME " driver"); |
| MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); |
| MODULE_LICENSE("GPL"); |