| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) Qu Wenruo 2017. All rights reserved. |
| */ |
| |
| /* |
| * The module is used to catch unexpected/corrupted tree block data. |
| * Such behavior can be caused either by a fuzzed image or bugs. |
| * |
| * The objective is to do leaf/node validation checks when tree block is read |
| * from disk, and check *every* possible member, so other code won't |
| * need to checking them again. |
| * |
| * Due to the potential and unwanted damage, every checker needs to be |
| * carefully reviewed otherwise so it does not prevent mount of valid images. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/stddef.h> |
| #include <linux/error-injection.h> |
| #include "messages.h" |
| #include "ctree.h" |
| #include "tree-checker.h" |
| #include "compression.h" |
| #include "volumes.h" |
| #include "misc.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "file-item.h" |
| #include "inode-item.h" |
| #include "dir-item.h" |
| #include "extent-tree.h" |
| |
| /* |
| * Error message should follow the following format: |
| * corrupt <type>: <identifier>, <reason>[, <bad_value>] |
| * |
| * @type: leaf or node |
| * @identifier: the necessary info to locate the leaf/node. |
| * It's recommended to decode key.objecitd/offset if it's |
| * meaningful. |
| * @reason: describe the error |
| * @bad_value: optional, it's recommended to output bad value and its |
| * expected value (range). |
| * |
| * Since comma is used to separate the components, only space is allowed |
| * inside each component. |
| */ |
| |
| /* |
| * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. |
| * Allows callers to customize the output. |
| */ |
| __printf(3, 4) |
| __cold |
| static void generic_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| const struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(fs_info, |
| "corrupt %s: root=%llu block=%llu slot=%d, %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); |
| va_end(args); |
| } |
| |
| /* |
| * Customized reporter for extent data item, since its key objectid and |
| * offset has its own meaning. |
| */ |
| __printf(3, 4) |
| __cold |
| static void file_extent_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| const struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_key key; |
| struct va_format vaf; |
| va_list args; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(fs_info, |
| "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, |
| key.objectid, key.offset, &vaf); |
| va_end(args); |
| } |
| |
| /* |
| * Return 0 if the btrfs_file_extent_##name is aligned to @alignment |
| * Else return 1 |
| */ |
| #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ |
| ({ \ |
| if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ |
| (alignment)))) \ |
| file_extent_err((leaf), (slot), \ |
| "invalid %s for file extent, have %llu, should be aligned to %u", \ |
| (#name), btrfs_file_extent_##name((leaf), (fi)), \ |
| (alignment)); \ |
| (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ |
| }) |
| |
| static u64 file_extent_end(struct extent_buffer *leaf, |
| struct btrfs_key *key, |
| struct btrfs_file_extent_item *extent) |
| { |
| u64 end; |
| u64 len; |
| |
| if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { |
| len = btrfs_file_extent_ram_bytes(leaf, extent); |
| end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); |
| } else { |
| len = btrfs_file_extent_num_bytes(leaf, extent); |
| end = key->offset + len; |
| } |
| return end; |
| } |
| |
| /* |
| * Customized report for dir_item, the only new important information is |
| * key->objectid, which represents inode number |
| */ |
| __printf(3, 4) |
| __cold |
| static void dir_item_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| const struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_key key; |
| struct va_format vaf; |
| va_list args; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(fs_info, |
| "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, |
| key.objectid, &vaf); |
| va_end(args); |
| } |
| |
| /* |
| * This functions checks prev_key->objectid, to ensure current key and prev_key |
| * share the same objectid as inode number. |
| * |
| * This is to detect missing INODE_ITEM in subvolume trees. |
| * |
| * Return true if everything is OK or we don't need to check. |
| * Return false if anything is wrong. |
| */ |
| static bool check_prev_ino(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot, |
| struct btrfs_key *prev_key) |
| { |
| /* No prev key, skip check */ |
| if (slot == 0) |
| return true; |
| |
| /* Only these key->types needs to be checked */ |
| ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || |
| key->type == BTRFS_INODE_REF_KEY || |
| key->type == BTRFS_DIR_INDEX_KEY || |
| key->type == BTRFS_DIR_ITEM_KEY || |
| key->type == BTRFS_EXTENT_DATA_KEY); |
| |
| /* |
| * Only subvolume trees along with their reloc trees need this check. |
| * Things like log tree doesn't follow this ino requirement. |
| */ |
| if (!is_fstree(btrfs_header_owner(leaf))) |
| return true; |
| |
| if (key->objectid == prev_key->objectid) |
| return true; |
| |
| /* Error found */ |
| dir_item_err(leaf, slot, |
| "invalid previous key objectid, have %llu expect %llu", |
| prev_key->objectid, key->objectid); |
| return false; |
| } |
| static int check_extent_data_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot, |
| struct btrfs_key *prev_key) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_file_extent_item *fi; |
| u32 sectorsize = fs_info->sectorsize; |
| u32 item_size = btrfs_item_size(leaf, slot); |
| u64 extent_end; |
| |
| if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { |
| file_extent_err(leaf, slot, |
| "unaligned file_offset for file extent, have %llu should be aligned to %u", |
| key->offset, sectorsize); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * Previous key must have the same key->objectid (ino). |
| * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. |
| * But if objectids mismatch, it means we have a missing |
| * INODE_ITEM. |
| */ |
| if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) |
| return -EUCLEAN; |
| |
| fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); |
| |
| /* |
| * Make sure the item contains at least inline header, so the file |
| * extent type is not some garbage. |
| */ |
| if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { |
| file_extent_err(leaf, slot, |
| "invalid item size, have %u expect [%zu, %u)", |
| item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, |
| SZ_4K); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_file_extent_type(leaf, fi) >= |
| BTRFS_NR_FILE_EXTENT_TYPES)) { |
| file_extent_err(leaf, slot, |
| "invalid type for file extent, have %u expect range [0, %u]", |
| btrfs_file_extent_type(leaf, fi), |
| BTRFS_NR_FILE_EXTENT_TYPES - 1); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * Support for new compression/encryption must introduce incompat flag, |
| * and must be caught in open_ctree(). |
| */ |
| if (unlikely(btrfs_file_extent_compression(leaf, fi) >= |
| BTRFS_NR_COMPRESS_TYPES)) { |
| file_extent_err(leaf, slot, |
| "invalid compression for file extent, have %u expect range [0, %u]", |
| btrfs_file_extent_compression(leaf, fi), |
| BTRFS_NR_COMPRESS_TYPES - 1); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { |
| file_extent_err(leaf, slot, |
| "invalid encryption for file extent, have %u expect 0", |
| btrfs_file_extent_encryption(leaf, fi)); |
| return -EUCLEAN; |
| } |
| if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { |
| /* Inline extent must have 0 as key offset */ |
| if (unlikely(key->offset)) { |
| file_extent_err(leaf, slot, |
| "invalid file_offset for inline file extent, have %llu expect 0", |
| key->offset); |
| return -EUCLEAN; |
| } |
| |
| /* Compressed inline extent has no on-disk size, skip it */ |
| if (btrfs_file_extent_compression(leaf, fi) != |
| BTRFS_COMPRESS_NONE) |
| return 0; |
| |
| /* Uncompressed inline extent size must match item size */ |
| if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + |
| btrfs_file_extent_ram_bytes(leaf, fi))) { |
| file_extent_err(leaf, slot, |
| "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", |
| item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + |
| btrfs_file_extent_ram_bytes(leaf, fi)); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| /* Regular or preallocated extent has fixed item size */ |
| if (unlikely(item_size != sizeof(*fi))) { |
| file_extent_err(leaf, slot, |
| "invalid item size for reg/prealloc file extent, have %u expect %zu", |
| item_size, sizeof(*fi)); |
| return -EUCLEAN; |
| } |
| if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || |
| CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || |
| CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || |
| CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || |
| CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) |
| return -EUCLEAN; |
| |
| /* Catch extent end overflow */ |
| if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), |
| key->offset, &extent_end))) { |
| file_extent_err(leaf, slot, |
| "extent end overflow, have file offset %llu extent num bytes %llu", |
| key->offset, |
| btrfs_file_extent_num_bytes(leaf, fi)); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * Check that no two consecutive file extent items, in the same leaf, |
| * present ranges that overlap each other. |
| */ |
| if (slot > 0 && |
| prev_key->objectid == key->objectid && |
| prev_key->type == BTRFS_EXTENT_DATA_KEY) { |
| struct btrfs_file_extent_item *prev_fi; |
| u64 prev_end; |
| |
| prev_fi = btrfs_item_ptr(leaf, slot - 1, |
| struct btrfs_file_extent_item); |
| prev_end = file_extent_end(leaf, prev_key, prev_fi); |
| if (unlikely(prev_end > key->offset)) { |
| file_extent_err(leaf, slot - 1, |
| "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", |
| prev_end, key->offset); |
| return -EUCLEAN; |
| } |
| } |
| |
| /* |
| * For non-compressed data extents, ram_bytes should match its |
| * disk_num_bytes. |
| * However we do not really utilize ram_bytes in this case, so this check |
| * is only optional for DEBUG builds for developers to catch the |
| * unexpected behaviors. |
| */ |
| if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && |
| btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && |
| btrfs_file_extent_disk_bytenr(leaf, fi)) { |
| if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != |
| btrfs_file_extent_disk_num_bytes(leaf, fi))) |
| file_extent_err(leaf, slot, |
| "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", |
| btrfs_file_extent_ram_bytes(leaf, fi), |
| btrfs_file_extent_disk_num_bytes(leaf, fi)); |
| } |
| |
| return 0; |
| } |
| |
| static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, |
| int slot, struct btrfs_key *prev_key) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| u32 sectorsize = fs_info->sectorsize; |
| const u32 csumsize = fs_info->csum_size; |
| |
| if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { |
| generic_err(leaf, slot, |
| "invalid key objectid for csum item, have %llu expect %llu", |
| key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { |
| generic_err(leaf, slot, |
| "unaligned key offset for csum item, have %llu should be aligned to %u", |
| key->offset, sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { |
| generic_err(leaf, slot, |
| "unaligned item size for csum item, have %u should be aligned to %u", |
| btrfs_item_size(leaf, slot), csumsize); |
| return -EUCLEAN; |
| } |
| if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { |
| u64 prev_csum_end; |
| u32 prev_item_size; |
| |
| prev_item_size = btrfs_item_size(leaf, slot - 1); |
| prev_csum_end = (prev_item_size / csumsize) * sectorsize; |
| prev_csum_end += prev_key->offset; |
| if (unlikely(prev_csum_end > key->offset)) { |
| generic_err(leaf, slot - 1, |
| "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", |
| prev_csum_end, key->offset); |
| return -EUCLEAN; |
| } |
| } |
| return 0; |
| } |
| |
| /* Inode item error output has the same format as dir_item_err() */ |
| #define inode_item_err(eb, slot, fmt, ...) \ |
| dir_item_err(eb, slot, fmt, __VA_ARGS__) |
| |
| static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, |
| int slot) |
| { |
| struct btrfs_key item_key; |
| bool is_inode_item; |
| |
| btrfs_item_key_to_cpu(leaf, &item_key, slot); |
| is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); |
| |
| /* For XATTR_ITEM, location key should be all 0 */ |
| if (item_key.type == BTRFS_XATTR_ITEM_KEY) { |
| if (unlikely(key->objectid != 0 || key->type != 0 || |
| key->offset != 0)) |
| return -EUCLEAN; |
| return 0; |
| } |
| |
| if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || |
| key->objectid > BTRFS_LAST_FREE_OBJECTID) && |
| key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && |
| key->objectid != BTRFS_FREE_INO_OBJECTID)) { |
| if (is_inode_item) { |
| generic_err(leaf, slot, |
| "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", |
| key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, |
| BTRFS_FIRST_FREE_OBJECTID, |
| BTRFS_LAST_FREE_OBJECTID, |
| BTRFS_FREE_INO_OBJECTID); |
| } else { |
| dir_item_err(leaf, slot, |
| "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", |
| key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, |
| BTRFS_FIRST_FREE_OBJECTID, |
| BTRFS_LAST_FREE_OBJECTID, |
| BTRFS_FREE_INO_OBJECTID); |
| } |
| return -EUCLEAN; |
| } |
| if (unlikely(key->offset != 0)) { |
| if (is_inode_item) |
| inode_item_err(leaf, slot, |
| "invalid key offset: has %llu expect 0", |
| key->offset); |
| else |
| dir_item_err(leaf, slot, |
| "invalid location key offset:has %llu expect 0", |
| key->offset); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, |
| int slot) |
| { |
| struct btrfs_key item_key; |
| bool is_root_item; |
| |
| btrfs_item_key_to_cpu(leaf, &item_key, slot); |
| is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); |
| |
| /* |
| * Bad rootid for reloc trees. |
| * |
| * Reloc trees are only for subvolume trees, other trees only need |
| * to be COWed to be relocated. |
| */ |
| if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && |
| !is_fstree(key->offset))) { |
| generic_err(leaf, slot, |
| "invalid reloc tree for root %lld, root id is not a subvolume tree", |
| key->offset); |
| return -EUCLEAN; |
| } |
| |
| /* No such tree id */ |
| if (unlikely(key->objectid == 0)) { |
| if (is_root_item) |
| generic_err(leaf, slot, "invalid root id 0"); |
| else |
| dir_item_err(leaf, slot, |
| "invalid location key root id 0"); |
| return -EUCLEAN; |
| } |
| |
| /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ |
| if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { |
| dir_item_err(leaf, slot, |
| "invalid location key objectid, have %llu expect [%llu, %llu]", |
| key->objectid, BTRFS_FIRST_FREE_OBJECTID, |
| BTRFS_LAST_FREE_OBJECTID); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * ROOT_ITEM with non-zero offset means this is a snapshot, created at |
| * @offset transid. |
| * Furthermore, for location key in DIR_ITEM, its offset is always -1. |
| * |
| * So here we only check offset for reloc tree whose key->offset must |
| * be a valid tree. |
| */ |
| if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && |
| key->offset == 0)) { |
| generic_err(leaf, slot, "invalid root id 0 for reloc tree"); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| static int check_dir_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, struct btrfs_key *prev_key, |
| int slot) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_dir_item *di; |
| u32 item_size = btrfs_item_size(leaf, slot); |
| u32 cur = 0; |
| |
| if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) |
| return -EUCLEAN; |
| |
| di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); |
| while (cur < item_size) { |
| struct btrfs_key location_key; |
| u32 name_len; |
| u32 data_len; |
| u32 max_name_len; |
| u32 total_size; |
| u32 name_hash; |
| u8 dir_type; |
| int ret; |
| |
| /* header itself should not cross item boundary */ |
| if (unlikely(cur + sizeof(*di) > item_size)) { |
| dir_item_err(leaf, slot, |
| "dir item header crosses item boundary, have %zu boundary %u", |
| cur + sizeof(*di), item_size); |
| return -EUCLEAN; |
| } |
| |
| /* Location key check */ |
| btrfs_dir_item_key_to_cpu(leaf, di, &location_key); |
| if (location_key.type == BTRFS_ROOT_ITEM_KEY) { |
| ret = check_root_key(leaf, &location_key, slot); |
| if (unlikely(ret < 0)) |
| return ret; |
| } else if (location_key.type == BTRFS_INODE_ITEM_KEY || |
| location_key.type == 0) { |
| ret = check_inode_key(leaf, &location_key, slot); |
| if (unlikely(ret < 0)) |
| return ret; |
| } else { |
| dir_item_err(leaf, slot, |
| "invalid location key type, have %u, expect %u or %u", |
| location_key.type, BTRFS_ROOT_ITEM_KEY, |
| BTRFS_INODE_ITEM_KEY); |
| return -EUCLEAN; |
| } |
| |
| /* dir type check */ |
| dir_type = btrfs_dir_ftype(leaf, di); |
| if (unlikely(dir_type >= BTRFS_FT_MAX)) { |
| dir_item_err(leaf, slot, |
| "invalid dir item type, have %u expect [0, %u)", |
| dir_type, BTRFS_FT_MAX); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && |
| dir_type != BTRFS_FT_XATTR)) { |
| dir_item_err(leaf, slot, |
| "invalid dir item type for XATTR key, have %u expect %u", |
| dir_type, BTRFS_FT_XATTR); |
| return -EUCLEAN; |
| } |
| if (unlikely(dir_type == BTRFS_FT_XATTR && |
| key->type != BTRFS_XATTR_ITEM_KEY)) { |
| dir_item_err(leaf, slot, |
| "xattr dir type found for non-XATTR key"); |
| return -EUCLEAN; |
| } |
| if (dir_type == BTRFS_FT_XATTR) |
| max_name_len = XATTR_NAME_MAX; |
| else |
| max_name_len = BTRFS_NAME_LEN; |
| |
| /* Name/data length check */ |
| name_len = btrfs_dir_name_len(leaf, di); |
| data_len = btrfs_dir_data_len(leaf, di); |
| if (unlikely(name_len > max_name_len)) { |
| dir_item_err(leaf, slot, |
| "dir item name len too long, have %u max %u", |
| name_len, max_name_len); |
| return -EUCLEAN; |
| } |
| if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { |
| dir_item_err(leaf, slot, |
| "dir item name and data len too long, have %u max %u", |
| name_len + data_len, |
| BTRFS_MAX_XATTR_SIZE(fs_info)); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { |
| dir_item_err(leaf, slot, |
| "dir item with invalid data len, have %u expect 0", |
| data_len); |
| return -EUCLEAN; |
| } |
| |
| total_size = sizeof(*di) + name_len + data_len; |
| |
| /* header and name/data should not cross item boundary */ |
| if (unlikely(cur + total_size > item_size)) { |
| dir_item_err(leaf, slot, |
| "dir item data crosses item boundary, have %u boundary %u", |
| cur + total_size, item_size); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * Special check for XATTR/DIR_ITEM, as key->offset is name |
| * hash, should match its name |
| */ |
| if (key->type == BTRFS_DIR_ITEM_KEY || |
| key->type == BTRFS_XATTR_ITEM_KEY) { |
| char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; |
| |
| read_extent_buffer(leaf, namebuf, |
| (unsigned long)(di + 1), name_len); |
| name_hash = btrfs_name_hash(namebuf, name_len); |
| if (unlikely(key->offset != name_hash)) { |
| dir_item_err(leaf, slot, |
| "name hash mismatch with key, have 0x%016x expect 0x%016llx", |
| name_hash, key->offset); |
| return -EUCLEAN; |
| } |
| } |
| cur += total_size; |
| di = (struct btrfs_dir_item *)((void *)di + total_size); |
| } |
| return 0; |
| } |
| |
| __printf(3, 4) |
| __cold |
| static void block_group_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| const struct btrfs_fs_info *fs_info = eb->fs_info; |
| struct btrfs_key key; |
| struct va_format vaf; |
| va_list args; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(fs_info, |
| "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, |
| key.objectid, key.offset, &vaf); |
| va_end(args); |
| } |
| |
| static int check_block_group_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_block_group_item bgi; |
| u32 item_size = btrfs_item_size(leaf, slot); |
| u64 chunk_objectid; |
| u64 flags; |
| u64 type; |
| |
| /* |
| * Here we don't really care about alignment since extent allocator can |
| * handle it. We care more about the size. |
| */ |
| if (unlikely(key->offset == 0)) { |
| block_group_err(leaf, slot, |
| "invalid block group size 0"); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(item_size != sizeof(bgi))) { |
| block_group_err(leaf, slot, |
| "invalid item size, have %u expect %zu", |
| item_size, sizeof(bgi)); |
| return -EUCLEAN; |
| } |
| |
| read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), |
| sizeof(bgi)); |
| chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| /* |
| * We don't init the nr_global_roots until we load the global |
| * roots, so this could be 0 at mount time. If it's 0 we'll |
| * just assume we're fine, and later we'll check against our |
| * actual value. |
| */ |
| if (unlikely(fs_info->nr_global_roots && |
| chunk_objectid >= fs_info->nr_global_roots)) { |
| block_group_err(leaf, slot, |
| "invalid block group global root id, have %llu, needs to be <= %llu", |
| chunk_objectid, |
| fs_info->nr_global_roots); |
| return -EUCLEAN; |
| } |
| } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { |
| block_group_err(leaf, slot, |
| "invalid block group chunk objectid, have %llu expect %llu", |
| btrfs_stack_block_group_chunk_objectid(&bgi), |
| BTRFS_FIRST_CHUNK_TREE_OBJECTID); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { |
| block_group_err(leaf, slot, |
| "invalid block group used, have %llu expect [0, %llu)", |
| btrfs_stack_block_group_used(&bgi), key->offset); |
| return -EUCLEAN; |
| } |
| |
| flags = btrfs_stack_block_group_flags(&bgi); |
| if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { |
| block_group_err(leaf, slot, |
| "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", |
| flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, |
| hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); |
| return -EUCLEAN; |
| } |
| |
| type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; |
| if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && |
| type != BTRFS_BLOCK_GROUP_METADATA && |
| type != BTRFS_BLOCK_GROUP_SYSTEM && |
| type != (BTRFS_BLOCK_GROUP_METADATA | |
| BTRFS_BLOCK_GROUP_DATA))) { |
| block_group_err(leaf, slot, |
| "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", |
| type, hweight64(type), |
| BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, |
| BTRFS_BLOCK_GROUP_SYSTEM, |
| BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| __printf(4, 5) |
| __cold |
| static void chunk_err(const struct extent_buffer *leaf, |
| const struct btrfs_chunk *chunk, u64 logical, |
| const char *fmt, ...) |
| { |
| const struct btrfs_fs_info *fs_info = leaf->fs_info; |
| bool is_sb; |
| struct va_format vaf; |
| va_list args; |
| int i; |
| int slot = -1; |
| |
| /* Only superblock eb is able to have such small offset */ |
| is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); |
| |
| if (!is_sb) { |
| /* |
| * Get the slot number by iterating through all slots, this |
| * would provide better readability. |
| */ |
| for (i = 0; i < btrfs_header_nritems(leaf); i++) { |
| if (btrfs_item_ptr_offset(leaf, i) == |
| (unsigned long)chunk) { |
| slot = i; |
| break; |
| } |
| } |
| } |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| if (is_sb) |
| btrfs_crit(fs_info, |
| "corrupt superblock syschunk array: chunk_start=%llu, %pV", |
| logical, &vaf); |
| else |
| btrfs_crit(fs_info, |
| "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", |
| BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, |
| logical, &vaf); |
| va_end(args); |
| } |
| |
| /* |
| * The common chunk check which could also work on super block sys chunk array. |
| * |
| * Return -EUCLEAN if anything is corrupted. |
| * Return 0 if everything is OK. |
| */ |
| int btrfs_check_chunk_valid(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, u64 logical) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| u64 length; |
| u64 chunk_end; |
| u64 stripe_len; |
| u16 num_stripes; |
| u16 sub_stripes; |
| u64 type; |
| u64 features; |
| bool mixed = false; |
| int raid_index; |
| int nparity; |
| int ncopies; |
| |
| length = btrfs_chunk_length(leaf, chunk); |
| stripe_len = btrfs_chunk_stripe_len(leaf, chunk); |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); |
| type = btrfs_chunk_type(leaf, chunk); |
| raid_index = btrfs_bg_flags_to_raid_index(type); |
| ncopies = btrfs_raid_array[raid_index].ncopies; |
| nparity = btrfs_raid_array[raid_index].nparity; |
| |
| if (unlikely(!num_stripes)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk num_stripes, have %u", num_stripes); |
| return -EUCLEAN; |
| } |
| if (unlikely(num_stripes < ncopies)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk num_stripes < ncopies, have %u < %d", |
| num_stripes, ncopies); |
| return -EUCLEAN; |
| } |
| if (unlikely(nparity && num_stripes == nparity)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk num_stripes == nparity, have %u == %d", |
| num_stripes, nparity); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk logical, have %llu should aligned to %u", |
| logical, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk sectorsize, have %u expect %u", |
| btrfs_chunk_sector_size(leaf, chunk), |
| fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk length, have %llu", length); |
| return -EUCLEAN; |
| } |
| if (unlikely(check_add_overflow(logical, length, &chunk_end))) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk logical start and length, have logical start %llu length %llu", |
| logical, length); |
| return -EUCLEAN; |
| } |
| if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk stripe length: %llu", |
| stripe_len); |
| return -EUCLEAN; |
| } |
| /* |
| * We artificially limit the chunk size, so that the number of stripes |
| * inside a chunk can be fit into a U32. The current limit (256G) is |
| * way too large for real world usage anyway, and it's also much larger |
| * than our existing limit (10G). |
| * |
| * Thus it should be a good way to catch obvious bitflips. |
| */ |
| if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { |
| chunk_err(leaf, chunk, logical, |
| "chunk length too large: have %llu limit %llu", |
| length, btrfs_stripe_nr_to_offset(U32_MAX)); |
| return -EUCLEAN; |
| } |
| if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | |
| BTRFS_BLOCK_GROUP_PROFILE_MASK))) { |
| chunk_err(leaf, chunk, logical, |
| "unrecognized chunk type: 0x%llx", |
| ~(BTRFS_BLOCK_GROUP_TYPE_MASK | |
| BTRFS_BLOCK_GROUP_PROFILE_MASK) & |
| btrfs_chunk_type(leaf, chunk)); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && |
| (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { |
| chunk_err(leaf, chunk, logical, |
| "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", |
| type & BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| return -EUCLEAN; |
| } |
| if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { |
| chunk_err(leaf, chunk, logical, |
| "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", |
| type, BTRFS_BLOCK_GROUP_TYPE_MASK); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && |
| (type & (BTRFS_BLOCK_GROUP_METADATA | |
| BTRFS_BLOCK_GROUP_DATA)))) { |
| chunk_err(leaf, chunk, logical, |
| "system chunk with data or metadata type: 0x%llx", |
| type); |
| return -EUCLEAN; |
| } |
| |
| features = btrfs_super_incompat_flags(fs_info->super_copy); |
| if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = true; |
| |
| if (!mixed) { |
| if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && |
| (type & BTRFS_BLOCK_GROUP_DATA))) { |
| chunk_err(leaf, chunk, logical, |
| "mixed chunk type in non-mixed mode: 0x%llx", type); |
| return -EUCLEAN; |
| } |
| } |
| |
| if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && |
| sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || |
| (type & BTRFS_BLOCK_GROUP_RAID1 && |
| num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || |
| (type & BTRFS_BLOCK_GROUP_RAID1C3 && |
| num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || |
| (type & BTRFS_BLOCK_GROUP_RAID1C4 && |
| num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || |
| (type & BTRFS_BLOCK_GROUP_RAID5 && |
| num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || |
| (type & BTRFS_BLOCK_GROUP_RAID6 && |
| num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || |
| (type & BTRFS_BLOCK_GROUP_DUP && |
| num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || |
| ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && |
| num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { |
| chunk_err(leaf, chunk, logical, |
| "invalid num_stripes:sub_stripes %u:%u for profile %llu", |
| num_stripes, sub_stripes, |
| type & BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| return -EUCLEAN; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Enhanced version of chunk item checker. |
| * |
| * The common btrfs_check_chunk_valid() doesn't check item size since it needs |
| * to work on super block sys_chunk_array which doesn't have full item ptr. |
| */ |
| static int check_leaf_chunk_item(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_key *key, int slot) |
| { |
| int num_stripes; |
| |
| if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { |
| chunk_err(leaf, chunk, key->offset, |
| "invalid chunk item size: have %u expect [%zu, %u)", |
| btrfs_item_size(leaf, slot), |
| sizeof(struct btrfs_chunk), |
| BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); |
| return -EUCLEAN; |
| } |
| |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| /* Let btrfs_check_chunk_valid() handle this error type */ |
| if (num_stripes == 0) |
| goto out; |
| |
| if (unlikely(btrfs_chunk_item_size(num_stripes) != |
| btrfs_item_size(leaf, slot))) { |
| chunk_err(leaf, chunk, key->offset, |
| "invalid chunk item size: have %u expect %lu", |
| btrfs_item_size(leaf, slot), |
| btrfs_chunk_item_size(num_stripes)); |
| return -EUCLEAN; |
| } |
| out: |
| return btrfs_check_chunk_valid(leaf, chunk, key->offset); |
| } |
| |
| __printf(3, 4) |
| __cold |
| static void dev_item_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| struct btrfs_key key; |
| struct va_format vaf; |
| va_list args; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(eb->fs_info, |
| "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, |
| key.objectid, &vaf); |
| va_end(args); |
| } |
| |
| static int check_dev_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot) |
| { |
| struct btrfs_dev_item *ditem; |
| const u32 item_size = btrfs_item_size(leaf, slot); |
| |
| if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { |
| dev_item_err(leaf, slot, |
| "invalid objectid: has=%llu expect=%llu", |
| key->objectid, BTRFS_DEV_ITEMS_OBJECTID); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(item_size != sizeof(*ditem))) { |
| dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", |
| item_size, sizeof(*ditem)); |
| return -EUCLEAN; |
| } |
| |
| ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); |
| if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { |
| dev_item_err(leaf, slot, |
| "devid mismatch: key has=%llu item has=%llu", |
| key->offset, btrfs_device_id(leaf, ditem)); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * For device total_bytes, we don't have reliable way to check it, as |
| * it can be 0 for device removal. Device size check can only be done |
| * by dev extents check. |
| */ |
| if (unlikely(btrfs_device_bytes_used(leaf, ditem) > |
| btrfs_device_total_bytes(leaf, ditem))) { |
| dev_item_err(leaf, slot, |
| "invalid bytes used: have %llu expect [0, %llu]", |
| btrfs_device_bytes_used(leaf, ditem), |
| btrfs_device_total_bytes(leaf, ditem)); |
| return -EUCLEAN; |
| } |
| /* |
| * Remaining members like io_align/type/gen/dev_group aren't really |
| * utilized. Skip them to make later usage of them easier. |
| */ |
| return 0; |
| } |
| |
| static int check_inode_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_inode_item *iitem; |
| u64 super_gen = btrfs_super_generation(fs_info->super_copy); |
| u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); |
| const u32 item_size = btrfs_item_size(leaf, slot); |
| u32 mode; |
| int ret; |
| u32 flags; |
| u32 ro_flags; |
| |
| ret = check_inode_key(leaf, key, slot); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| if (unlikely(item_size != sizeof(*iitem))) { |
| generic_err(leaf, slot, "invalid item size: has %u expect %zu", |
| item_size, sizeof(*iitem)); |
| return -EUCLEAN; |
| } |
| |
| iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); |
| |
| /* Here we use super block generation + 1 to handle log tree */ |
| if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { |
| inode_item_err(leaf, slot, |
| "invalid inode generation: has %llu expect (0, %llu]", |
| btrfs_inode_generation(leaf, iitem), |
| super_gen + 1); |
| return -EUCLEAN; |
| } |
| /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ |
| if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { |
| inode_item_err(leaf, slot, |
| "invalid inode transid: has %llu expect [0, %llu]", |
| btrfs_inode_transid(leaf, iitem), super_gen + 1); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * For size and nbytes it's better not to be too strict, as for dir |
| * item its size/nbytes can easily get wrong, but doesn't affect |
| * anything in the fs. So here we skip the check. |
| */ |
| mode = btrfs_inode_mode(leaf, iitem); |
| if (unlikely(mode & ~valid_mask)) { |
| inode_item_err(leaf, slot, |
| "unknown mode bit detected: 0x%x", |
| mode & ~valid_mask); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * S_IFMT is not bit mapped so we can't completely rely on |
| * is_power_of_2/has_single_bit_set, but it can save us from checking |
| * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS |
| */ |
| if (!has_single_bit_set(mode & S_IFMT)) { |
| if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { |
| inode_item_err(leaf, slot, |
| "invalid mode: has 0%o expect valid S_IF* bit(s)", |
| mode & S_IFMT); |
| return -EUCLEAN; |
| } |
| } |
| if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { |
| inode_item_err(leaf, slot, |
| "invalid nlink: has %u expect no more than 1 for dir", |
| btrfs_inode_nlink(leaf, iitem)); |
| return -EUCLEAN; |
| } |
| btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); |
| if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { |
| inode_item_err(leaf, slot, |
| "unknown incompat flags detected: 0x%x", flags); |
| return -EUCLEAN; |
| } |
| if (unlikely(!sb_rdonly(fs_info->sb) && |
| (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { |
| inode_item_err(leaf, slot, |
| "unknown ro-compat flags detected on writeable mount: 0x%x", |
| ro_flags); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, |
| int slot) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_root_item ri = { 0 }; |
| const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | |
| BTRFS_ROOT_SUBVOL_DEAD; |
| int ret; |
| |
| ret = check_root_key(leaf, key, slot); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && |
| btrfs_item_size(leaf, slot) != |
| btrfs_legacy_root_item_size())) { |
| generic_err(leaf, slot, |
| "invalid root item size, have %u expect %zu or %u", |
| btrfs_item_size(leaf, slot), sizeof(ri), |
| btrfs_legacy_root_item_size()); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * For legacy root item, the members starting at generation_v2 will be |
| * all filled with 0. |
| * And since we allow geneartion_v2 as 0, it will still pass the check. |
| */ |
| read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), |
| btrfs_item_size(leaf, slot)); |
| |
| /* Generation related */ |
| if (unlikely(btrfs_root_generation(&ri) > |
| btrfs_super_generation(fs_info->super_copy) + 1)) { |
| generic_err(leaf, slot, |
| "invalid root generation, have %llu expect (0, %llu]", |
| btrfs_root_generation(&ri), |
| btrfs_super_generation(fs_info->super_copy) + 1); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_root_generation_v2(&ri) > |
| btrfs_super_generation(fs_info->super_copy) + 1)) { |
| generic_err(leaf, slot, |
| "invalid root v2 generation, have %llu expect (0, %llu]", |
| btrfs_root_generation_v2(&ri), |
| btrfs_super_generation(fs_info->super_copy) + 1); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_root_last_snapshot(&ri) > |
| btrfs_super_generation(fs_info->super_copy) + 1)) { |
| generic_err(leaf, slot, |
| "invalid root last_snapshot, have %llu expect (0, %llu]", |
| btrfs_root_last_snapshot(&ri), |
| btrfs_super_generation(fs_info->super_copy) + 1); |
| return -EUCLEAN; |
| } |
| |
| /* Alignment and level check */ |
| if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { |
| generic_err(leaf, slot, |
| "invalid root bytenr, have %llu expect to be aligned to %u", |
| btrfs_root_bytenr(&ri), fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { |
| generic_err(leaf, slot, |
| "invalid root level, have %u expect [0, %u]", |
| btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); |
| return -EUCLEAN; |
| } |
| if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { |
| generic_err(leaf, slot, |
| "invalid root level, have %u expect [0, %u]", |
| btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); |
| return -EUCLEAN; |
| } |
| |
| /* Flags check */ |
| if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { |
| generic_err(leaf, slot, |
| "invalid root flags, have 0x%llx expect mask 0x%llx", |
| btrfs_root_flags(&ri), valid_root_flags); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| __printf(3,4) |
| __cold |
| static void extent_err(const struct extent_buffer *eb, int slot, |
| const char *fmt, ...) |
| { |
| struct btrfs_key key; |
| struct va_format vaf; |
| va_list args; |
| u64 bytenr; |
| u64 len; |
| |
| btrfs_item_key_to_cpu(eb, &key, slot); |
| bytenr = key.objectid; |
| if (key.type == BTRFS_METADATA_ITEM_KEY || |
| key.type == BTRFS_TREE_BLOCK_REF_KEY || |
| key.type == BTRFS_SHARED_BLOCK_REF_KEY) |
| len = eb->fs_info->nodesize; |
| else |
| len = key.offset; |
| va_start(args, fmt); |
| |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| |
| dump_page(folio_page(eb->folios[0], 0), "eb page dump"); |
| btrfs_crit(eb->fs_info, |
| "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| eb->start, slot, bytenr, len, &vaf); |
| va_end(args); |
| } |
| |
| static bool is_valid_dref_root(u64 rootid) |
| { |
| /* |
| * The following tree root objectids are allowed to have a data backref: |
| * - subvolume trees |
| * - data reloc tree |
| * - tree root |
| * For v1 space cache |
| */ |
| return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID || |
| rootid == BTRFS_ROOT_TREE_OBJECTID; |
| } |
| |
| static int check_extent_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot, |
| struct btrfs_key *prev_key) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_extent_item *ei; |
| bool is_tree_block = false; |
| unsigned long ptr; /* Current pointer inside inline refs */ |
| unsigned long end; /* Extent item end */ |
| const u32 item_size = btrfs_item_size(leaf, slot); |
| u8 last_type = 0; |
| u64 last_seq = U64_MAX; |
| u64 flags; |
| u64 generation; |
| u64 total_refs; /* Total refs in btrfs_extent_item */ |
| u64 inline_refs = 0; /* found total inline refs */ |
| |
| if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && |
| !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { |
| generic_err(leaf, slot, |
| "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); |
| return -EUCLEAN; |
| } |
| /* key->objectid is the bytenr for both key types */ |
| if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { |
| generic_err(leaf, slot, |
| "invalid key objectid, have %llu expect to be aligned to %u", |
| key->objectid, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| |
| /* key->offset is tree level for METADATA_ITEM_KEY */ |
| if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && |
| key->offset >= BTRFS_MAX_LEVEL)) { |
| extent_err(leaf, slot, |
| "invalid tree level, have %llu expect [0, %u]", |
| key->offset, BTRFS_MAX_LEVEL - 1); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * EXTENT/METADATA_ITEM consists of: |
| * 1) One btrfs_extent_item |
| * Records the total refs, type and generation of the extent. |
| * |
| * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) |
| * Records the first key and level of the tree block. |
| * |
| * 2) Zero or more btrfs_extent_inline_ref(s) |
| * Each inline ref has one btrfs_extent_inline_ref shows: |
| * 2.1) The ref type, one of the 4 |
| * TREE_BLOCK_REF Tree block only |
| * SHARED_BLOCK_REF Tree block only |
| * EXTENT_DATA_REF Data only |
| * SHARED_DATA_REF Data only |
| * 2.2) Ref type specific data |
| * Either using btrfs_extent_inline_ref::offset, or specific |
| * data structure. |
| * |
| * All above inline items should follow the order: |
| * |
| * - All btrfs_extent_inline_ref::type should be in an ascending |
| * order |
| * |
| * - Within the same type, the items should follow a descending |
| * order by their sequence number. The sequence number is |
| * determined by: |
| * * btrfs_extent_inline_ref::offset for all types other than |
| * EXTENT_DATA_REF |
| * * hash_extent_data_ref() for EXTENT_DATA_REF |
| */ |
| if (unlikely(item_size < sizeof(*ei))) { |
| extent_err(leaf, slot, |
| "invalid item size, have %u expect [%zu, %u)", |
| item_size, sizeof(*ei), |
| BTRFS_LEAF_DATA_SIZE(fs_info)); |
| return -EUCLEAN; |
| } |
| end = item_size + btrfs_item_ptr_offset(leaf, slot); |
| |
| /* Checks against extent_item */ |
| ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); |
| flags = btrfs_extent_flags(leaf, ei); |
| total_refs = btrfs_extent_refs(leaf, ei); |
| generation = btrfs_extent_generation(leaf, ei); |
| if (unlikely(generation > |
| btrfs_super_generation(fs_info->super_copy) + 1)) { |
| extent_err(leaf, slot, |
| "invalid generation, have %llu expect (0, %llu]", |
| generation, |
| btrfs_super_generation(fs_info->super_copy) + 1); |
| return -EUCLEAN; |
| } |
| if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | |
| BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { |
| extent_err(leaf, slot, |
| "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", |
| flags, BTRFS_EXTENT_FLAG_DATA | |
| BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| return -EUCLEAN; |
| } |
| is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); |
| if (is_tree_block) { |
| if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && |
| key->offset != fs_info->nodesize)) { |
| extent_err(leaf, slot, |
| "invalid extent length, have %llu expect %u", |
| key->offset, fs_info->nodesize); |
| return -EUCLEAN; |
| } |
| } else { |
| if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { |
| extent_err(leaf, slot, |
| "invalid key type, have %u expect %u for data backref", |
| key->type, BTRFS_EXTENT_ITEM_KEY); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid extent length, have %llu expect aligned to %u", |
| key->offset, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { |
| extent_err(leaf, slot, |
| "invalid extent flag, data has full backref set"); |
| return -EUCLEAN; |
| } |
| } |
| ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); |
| |
| /* Check the special case of btrfs_tree_block_info */ |
| if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { |
| struct btrfs_tree_block_info *info; |
| |
| info = (struct btrfs_tree_block_info *)ptr; |
| if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { |
| extent_err(leaf, slot, |
| "invalid tree block info level, have %u expect [0, %u]", |
| btrfs_tree_block_level(leaf, info), |
| BTRFS_MAX_LEVEL - 1); |
| return -EUCLEAN; |
| } |
| ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); |
| } |
| |
| /* Check inline refs */ |
| while (ptr < end) { |
| struct btrfs_extent_inline_ref *iref; |
| struct btrfs_extent_data_ref *dref; |
| struct btrfs_shared_data_ref *sref; |
| u64 seq; |
| u64 dref_root; |
| u64 dref_objectid; |
| u64 dref_offset; |
| u64 inline_offset; |
| u8 inline_type; |
| |
| if (unlikely(ptr + sizeof(*iref) > end)) { |
| extent_err(leaf, slot, |
| "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", |
| ptr, sizeof(*iref), end); |
| return -EUCLEAN; |
| } |
| iref = (struct btrfs_extent_inline_ref *)ptr; |
| inline_type = btrfs_extent_inline_ref_type(leaf, iref); |
| inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); |
| seq = inline_offset; |
| if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { |
| extent_err(leaf, slot, |
| "inline ref item overflows extent item, ptr %lu iref size %u end %lu", |
| ptr, btrfs_extent_inline_ref_size(inline_type), end); |
| return -EUCLEAN; |
| } |
| |
| switch (inline_type) { |
| /* inline_offset is subvolid of the owner, no need to check */ |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| inline_refs++; |
| break; |
| /* Contains parent bytenr */ |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| if (unlikely(!IS_ALIGNED(inline_offset, |
| fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid tree parent bytenr, have %llu expect aligned to %u", |
| inline_offset, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| inline_refs++; |
| break; |
| /* |
| * Contains owner subvolid, owner key objectid, adjusted offset. |
| * The only obvious corruption can happen in that offset. |
| */ |
| case BTRFS_EXTENT_DATA_REF_KEY: |
| dref = (struct btrfs_extent_data_ref *)(&iref->offset); |
| dref_root = btrfs_extent_data_ref_root(leaf, dref); |
| dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref); |
| dref_offset = btrfs_extent_data_ref_offset(leaf, dref); |
| seq = hash_extent_data_ref( |
| btrfs_extent_data_ref_root(leaf, dref), |
| btrfs_extent_data_ref_objectid(leaf, dref), |
| btrfs_extent_data_ref_offset(leaf, dref)); |
| if (unlikely(!is_valid_dref_root(dref_root))) { |
| extent_err(leaf, slot, |
| "invalid data ref root value %llu", |
| dref_root); |
| return -EUCLEAN; |
| } |
| if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID || |
| dref_objectid > BTRFS_LAST_FREE_OBJECTID)) { |
| extent_err(leaf, slot, |
| "invalid data ref objectid value %llu", |
| dref_root); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(dref_offset, |
| fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid data ref offset, have %llu expect aligned to %u", |
| dref_offset, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| inline_refs += btrfs_extent_data_ref_count(leaf, dref); |
| break; |
| /* Contains parent bytenr and ref count */ |
| case BTRFS_SHARED_DATA_REF_KEY: |
| sref = (struct btrfs_shared_data_ref *)(iref + 1); |
| if (unlikely(!IS_ALIGNED(inline_offset, |
| fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid data parent bytenr, have %llu expect aligned to %u", |
| inline_offset, fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| inline_refs += btrfs_shared_data_ref_count(leaf, sref); |
| break; |
| case BTRFS_EXTENT_OWNER_REF_KEY: |
| WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); |
| break; |
| default: |
| extent_err(leaf, slot, "unknown inline ref type: %u", |
| inline_type); |
| return -EUCLEAN; |
| } |
| if (inline_type < last_type) { |
| extent_err(leaf, slot, |
| "inline ref out-of-order: has type %u, prev type %u", |
| inline_type, last_type); |
| return -EUCLEAN; |
| } |
| /* Type changed, allow the sequence starts from U64_MAX again. */ |
| if (inline_type > last_type) |
| last_seq = U64_MAX; |
| if (seq > last_seq) { |
| extent_err(leaf, slot, |
| "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", |
| inline_type, inline_offset, seq, |
| last_type, last_seq); |
| return -EUCLEAN; |
| } |
| last_type = inline_type; |
| last_seq = seq; |
| ptr += btrfs_extent_inline_ref_size(inline_type); |
| } |
| /* No padding is allowed */ |
| if (unlikely(ptr != end)) { |
| extent_err(leaf, slot, |
| "invalid extent item size, padding bytes found"); |
| return -EUCLEAN; |
| } |
| |
| /* Finally, check the inline refs against total refs */ |
| if (unlikely(inline_refs > total_refs)) { |
| extent_err(leaf, slot, |
| "invalid extent refs, have %llu expect >= inline %llu", |
| total_refs, inline_refs); |
| return -EUCLEAN; |
| } |
| |
| if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || |
| (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { |
| u64 prev_end = prev_key->objectid; |
| |
| if (prev_key->type == BTRFS_METADATA_ITEM_KEY) |
| prev_end += fs_info->nodesize; |
| else |
| prev_end += prev_key->offset; |
| |
| if (unlikely(prev_end > key->objectid)) { |
| extent_err(leaf, slot, |
| "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", |
| prev_key->objectid, prev_key->type, |
| prev_key->offset, key->objectid, key->type, |
| key->offset); |
| return -EUCLEAN; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int check_simple_keyed_refs(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot) |
| { |
| u32 expect_item_size = 0; |
| |
| if (key->type == BTRFS_SHARED_DATA_REF_KEY) |
| expect_item_size = sizeof(struct btrfs_shared_data_ref); |
| |
| if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { |
| generic_err(leaf, slot, |
| "invalid item size, have %u expect %u for key type %u", |
| btrfs_item_size(leaf, slot), |
| expect_item_size, key->type); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { |
| generic_err(leaf, slot, |
| "invalid key objectid for shared block ref, have %llu expect aligned to %u", |
| key->objectid, leaf->fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && |
| !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid tree parent bytenr, have %llu expect aligned to %u", |
| key->offset, leaf->fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| static int check_extent_data_ref(struct extent_buffer *leaf, |
| struct btrfs_key *key, int slot) |
| { |
| struct btrfs_extent_data_ref *dref; |
| unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); |
| const unsigned long end = ptr + btrfs_item_size(leaf, slot); |
| |
| if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { |
| generic_err(leaf, slot, |
| "invalid item size, have %u expect aligned to %zu for key type %u", |
| btrfs_item_size(leaf, slot), |
| sizeof(*dref), key->type); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { |
| generic_err(leaf, slot, |
| "invalid key objectid for shared block ref, have %llu expect aligned to %u", |
| key->objectid, leaf->fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| for (; ptr < end; ptr += sizeof(*dref)) { |
| u64 root; |
| u64 objectid; |
| u64 offset; |
| |
| /* |
| * We cannot check the extent_data_ref hash due to possible |
| * overflow from the leaf due to hash collisions. |
| */ |
| dref = (struct btrfs_extent_data_ref *)ptr; |
| root = btrfs_extent_data_ref_root(leaf, dref); |
| objectid = btrfs_extent_data_ref_objectid(leaf, dref); |
| offset = btrfs_extent_data_ref_offset(leaf, dref); |
| if (unlikely(!is_valid_dref_root(root))) { |
| extent_err(leaf, slot, |
| "invalid extent data backref root value %llu", |
| root); |
| return -EUCLEAN; |
| } |
| if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID || |
| objectid > BTRFS_LAST_FREE_OBJECTID)) { |
| extent_err(leaf, slot, |
| "invalid extent data backref objectid value %llu", |
| root); |
| return -EUCLEAN; |
| } |
| if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { |
| extent_err(leaf, slot, |
| "invalid extent data backref offset, have %llu expect aligned to %u", |
| offset, leaf->fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| } |
| return 0; |
| } |
| |
| #define inode_ref_err(eb, slot, fmt, args...) \ |
| inode_item_err(eb, slot, fmt, ##args) |
| static int check_inode_ref(struct extent_buffer *leaf, |
| struct btrfs_key *key, struct btrfs_key *prev_key, |
| int slot) |
| { |
| struct btrfs_inode_ref *iref; |
| unsigned long ptr; |
| unsigned long end; |
| |
| if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) |
| return -EUCLEAN; |
| /* namelen can't be 0, so item_size == sizeof() is also invalid */ |
| if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { |
| inode_ref_err(leaf, slot, |
| "invalid item size, have %u expect (%zu, %u)", |
| btrfs_item_size(leaf, slot), |
| sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); |
| return -EUCLEAN; |
| } |
| |
| ptr = btrfs_item_ptr_offset(leaf, slot); |
| end = ptr + btrfs_item_size(leaf, slot); |
| while (ptr < end) { |
| u16 namelen; |
| |
| if (unlikely(ptr + sizeof(iref) > end)) { |
| inode_ref_err(leaf, slot, |
| "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", |
| ptr, end, sizeof(iref)); |
| return -EUCLEAN; |
| } |
| |
| iref = (struct btrfs_inode_ref *)ptr; |
| namelen = btrfs_inode_ref_name_len(leaf, iref); |
| if (unlikely(ptr + sizeof(*iref) + namelen > end)) { |
| inode_ref_err(leaf, slot, |
| "inode ref overflow, ptr %lu end %lu namelen %u", |
| ptr, end, namelen); |
| return -EUCLEAN; |
| } |
| |
| /* |
| * NOTE: In theory we should record all found index numbers |
| * to find any duplicated indexes, but that will be too time |
| * consuming for inodes with too many hard links. |
| */ |
| ptr += sizeof(*iref) + namelen; |
| } |
| return 0; |
| } |
| |
| static int check_raid_stripe_extent(const struct extent_buffer *leaf, |
| const struct btrfs_key *key, int slot) |
| { |
| if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { |
| generic_err(leaf, slot, |
| "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", |
| key->objectid, leaf->fs_info->sectorsize); |
| return -EUCLEAN; |
| } |
| |
| if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { |
| generic_err(leaf, slot, |
| "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); |
| return -EUCLEAN; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Common point to switch the item-specific validation. |
| */ |
| static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, |
| struct btrfs_key *key, |
| int slot, |
| struct btrfs_key *prev_key) |
| { |
| int ret = 0; |
| struct btrfs_chunk *chunk; |
| |
| switch (key->type) { |
| case BTRFS_EXTENT_DATA_KEY: |
| ret = check_extent_data_item(leaf, key, slot, prev_key); |
| break; |
| case BTRFS_EXTENT_CSUM_KEY: |
| ret = check_csum_item(leaf, key, slot, prev_key); |
| break; |
| case BTRFS_DIR_ITEM_KEY: |
| case BTRFS_DIR_INDEX_KEY: |
| case BTRFS_XATTR_ITEM_KEY: |
| ret = check_dir_item(leaf, key, prev_key, slot); |
| break; |
| case BTRFS_INODE_REF_KEY: |
| ret = check_inode_ref(leaf, key, prev_key, slot); |
| break; |
| case BTRFS_BLOCK_GROUP_ITEM_KEY: |
| ret = check_block_group_item(leaf, key, slot); |
| break; |
| case BTRFS_CHUNK_ITEM_KEY: |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| ret = check_leaf_chunk_item(leaf, chunk, key, slot); |
| break; |
| case BTRFS_DEV_ITEM_KEY: |
| ret = check_dev_item(leaf, key, slot); |
| break; |
| case BTRFS_INODE_ITEM_KEY: |
| ret = check_inode_item(leaf, key, slot); |
| break; |
| case BTRFS_ROOT_ITEM_KEY: |
| ret = check_root_item(leaf, key, slot); |
| break; |
| case BTRFS_EXTENT_ITEM_KEY: |
| case BTRFS_METADATA_ITEM_KEY: |
| ret = check_extent_item(leaf, key, slot, prev_key); |
| break; |
| case BTRFS_TREE_BLOCK_REF_KEY: |
| case BTRFS_SHARED_DATA_REF_KEY: |
| case BTRFS_SHARED_BLOCK_REF_KEY: |
| ret = check_simple_keyed_refs(leaf, key, slot); |
| break; |
| case BTRFS_EXTENT_DATA_REF_KEY: |
| ret = check_extent_data_ref(leaf, key, slot); |
| break; |
| case BTRFS_RAID_STRIPE_KEY: |
| ret = check_raid_stripe_extent(leaf, key, slot); |
| break; |
| } |
| |
| if (ret) |
| return BTRFS_TREE_BLOCK_INVALID_ITEM; |
| return BTRFS_TREE_BLOCK_CLEAN; |
| } |
| |
| enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| /* No valid key type is 0, so all key should be larger than this key */ |
| struct btrfs_key prev_key = {0, 0, 0}; |
| struct btrfs_key key; |
| u32 nritems = btrfs_header_nritems(leaf); |
| int slot; |
| |
| if (unlikely(btrfs_header_level(leaf) != 0)) { |
| generic_err(leaf, 0, |
| "invalid level for leaf, have %d expect 0", |
| btrfs_header_level(leaf)); |
| return BTRFS_TREE_BLOCK_INVALID_LEVEL; |
| } |
| |
| if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { |
| generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); |
| return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; |
| } |
| |
| /* |
| * Extent buffers from a relocation tree have a owner field that |
| * corresponds to the subvolume tree they are based on. So just from an |
| * extent buffer alone we can not find out what is the id of the |
| * corresponding subvolume tree, so we can not figure out if the extent |
| * buffer corresponds to the root of the relocation tree or not. So |
| * skip this check for relocation trees. |
| */ |
| if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { |
| u64 owner = btrfs_header_owner(leaf); |
| |
| /* These trees must never be empty */ |
| if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || |
| owner == BTRFS_CHUNK_TREE_OBJECTID || |
| owner == BTRFS_DEV_TREE_OBJECTID || |
| owner == BTRFS_FS_TREE_OBJECTID || |
| owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { |
| generic_err(leaf, 0, |
| "invalid root, root %llu must never be empty", |
| owner); |
| return BTRFS_TREE_BLOCK_INVALID_NRITEMS; |
| } |
| |
| /* Unknown tree */ |
| if (unlikely(owner == 0)) { |
| generic_err(leaf, 0, |
| "invalid owner, root 0 is not defined"); |
| return BTRFS_TREE_BLOCK_INVALID_OWNER; |
| } |
| |
| /* EXTENT_TREE_V2 can have empty extent trees. */ |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) |
| return BTRFS_TREE_BLOCK_CLEAN; |
| |
| if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { |
| generic_err(leaf, 0, |
| "invalid root, root %llu must never be empty", |
| owner); |
| return BTRFS_TREE_BLOCK_INVALID_NRITEMS; |
| } |
| |
| return BTRFS_TREE_BLOCK_CLEAN; |
| } |
| |
| if (unlikely(nritems == 0)) |
| return BTRFS_TREE_BLOCK_CLEAN; |
| |
| /* |
| * Check the following things to make sure this is a good leaf, and |
| * leaf users won't need to bother with similar sanity checks: |
| * |
| * 1) key ordering |
| * 2) item offset and size |
| * No overlap, no hole, all inside the leaf. |
| * 3) item content |
| * If possible, do comprehensive sanity check. |
| * NOTE: All checks must only rely on the item data itself. |
| */ |
| for (slot = 0; slot < nritems; slot++) { |
| u32 item_end_expected; |
| u64 item_data_end; |
| enum btrfs_tree_block_status ret; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| |
| /* Make sure the keys are in the right order */ |
| if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { |
| generic_err(leaf, slot, |
| "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", |
| prev_key.objectid, prev_key.type, |
| prev_key.offset, key.objectid, key.type, |
| key.offset); |
| return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; |
| } |
| |
| item_data_end = (u64)btrfs_item_offset(leaf, slot) + |
| btrfs_item_size(leaf, slot); |
| /* |
| * Make sure the offset and ends are right, remember that the |
| * item data starts at the end of the leaf and grows towards the |
| * front. |
| */ |
| if (slot == 0) |
| item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); |
| else |
| item_end_expected = btrfs_item_offset(leaf, |
| slot - 1); |
| if (unlikely(item_data_end != item_end_expected)) { |
| generic_err(leaf, slot, |
| "unexpected item end, have %llu expect %u", |
| item_data_end, item_end_expected); |
| return BTRFS_TREE_BLOCK_INVALID_OFFSETS; |
| } |
| |
| /* |
| * Check to make sure that we don't point outside of the leaf, |
| * just in case all the items are consistent to each other, but |
| * all point outside of the leaf. |
| */ |
| if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { |
| generic_err(leaf, slot, |
| "slot end outside of leaf, have %llu expect range [0, %u]", |
| item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); |
| return BTRFS_TREE_BLOCK_INVALID_OFFSETS; |
| } |
| |
| /* Also check if the item pointer overlaps with btrfs item. */ |
| if (unlikely(btrfs_item_ptr_offset(leaf, slot) < |
| btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { |
| generic_err(leaf, slot, |
| "slot overlaps with its data, item end %lu data start %lu", |
| btrfs_item_nr_offset(leaf, slot) + |
| sizeof(struct btrfs_item), |
| btrfs_item_ptr_offset(leaf, slot)); |
| return BTRFS_TREE_BLOCK_INVALID_OFFSETS; |
| } |
| |
| /* Check if the item size and content meet other criteria. */ |
| ret = check_leaf_item(leaf, &key, slot, &prev_key); |
| if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) |
| return ret; |
| |
| prev_key.objectid = key.objectid; |
| prev_key.type = key.type; |
| prev_key.offset = key.offset; |
| } |
| |
| return BTRFS_TREE_BLOCK_CLEAN; |
| } |
| |
| int btrfs_check_leaf(struct extent_buffer *leaf) |
| { |
| enum btrfs_tree_block_status ret; |
| |
| ret = __btrfs_check_leaf(leaf); |
| if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) |
| return -EUCLEAN; |
| return 0; |
| } |
| ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); |
| |
| enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) |
| { |
| struct btrfs_fs_info *fs_info = node->fs_info; |
| unsigned long nr = btrfs_header_nritems(node); |
| struct btrfs_key key, next_key; |
| int slot; |
| int level = btrfs_header_level(node); |
| u64 bytenr; |
| |
| if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { |
| generic_err(node, 0, "invalid flag for node, WRITTEN not set"); |
| return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; |
| } |
| |
| if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { |
| generic_err(node, 0, |
| "invalid level for node, have %d expect [1, %d]", |
| level, BTRFS_MAX_LEVEL - 1); |
| return BTRFS_TREE_BLOCK_INVALID_LEVEL; |
| } |
| if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { |
| btrfs_crit(fs_info, |
| "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", |
| btrfs_header_owner(node), node->start, |
| nr == 0 ? "small" : "large", nr, |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| return BTRFS_TREE_BLOCK_INVALID_NRITEMS; |
| } |
| |
| for (slot = 0; slot < nr - 1; slot++) { |
| bytenr = btrfs_node_blockptr(node, slot); |
| btrfs_node_key_to_cpu(node, &key, slot); |
| btrfs_node_key_to_cpu(node, &next_key, slot + 1); |
| |
| if (unlikely(!bytenr)) { |
| generic_err(node, slot, |
| "invalid NULL node pointer"); |
| return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; |
| } |
| if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { |
| generic_err(node, slot, |
| "unaligned pointer, have %llu should be aligned to %u", |
| bytenr, fs_info->sectorsize); |
| return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; |
| } |
| |
| if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { |
| generic_err(node, slot, |
| "bad key order, current (%llu %u %llu) next (%llu %u %llu)", |
| key.objectid, key.type, key.offset, |
| next_key.objectid, next_key.type, |
| next_key.offset); |
| return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; |
| } |
| } |
| return BTRFS_TREE_BLOCK_CLEAN; |
| } |
| |
| int btrfs_check_node(struct extent_buffer *node) |
| { |
| enum btrfs_tree_block_status ret; |
| |
| ret = __btrfs_check_node(node); |
| if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) |
| return -EUCLEAN; |
| return 0; |
| } |
| ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); |
| |
| int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) |
| { |
| const bool is_subvol = is_fstree(root_owner); |
| const u64 eb_owner = btrfs_header_owner(eb); |
| |
| /* |
| * Skip dummy fs, as selftests don't create unique ebs for each dummy |
| * root. |
| */ |
| if (btrfs_is_testing(eb->fs_info)) |
| return 0; |
| /* |
| * There are several call sites (backref walking, qgroup, and data |
| * reloc) passing 0 as @root_owner, as they are not holding the |
| * tree root. In that case, we can not do a reliable ownership check, |
| * so just exit. |
| */ |
| if (root_owner == 0) |
| return 0; |
| /* |
| * These trees use key.offset as their owner, our callers don't have |
| * the extra capacity to pass key.offset here. So we just skip them. |
| */ |
| if (root_owner == BTRFS_TREE_LOG_OBJECTID || |
| root_owner == BTRFS_TREE_RELOC_OBJECTID) |
| return 0; |
| |
| if (!is_subvol) { |
| /* For non-subvolume trees, the eb owner should match root owner */ |
| if (unlikely(root_owner != eb_owner)) { |
| btrfs_crit(eb->fs_info, |
| "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| root_owner, btrfs_header_bytenr(eb), eb_owner, |
| root_owner); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| /* |
| * For subvolume trees, owners can mismatch, but they should all belong |
| * to subvolume trees. |
| */ |
| if (unlikely(is_subvol != is_fstree(eb_owner))) { |
| btrfs_crit(eb->fs_info, |
| "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", |
| root_owner, btrfs_header_bytenr(eb), eb_owner, |
| BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); |
| return -EUCLEAN; |
| } |
| return 0; |
| } |
| |
| int btrfs_verify_level_key(struct extent_buffer *eb, int level, |
| struct btrfs_key *first_key, u64 parent_transid) |
| { |
| struct btrfs_fs_info *fs_info = eb->fs_info; |
| int found_level; |
| struct btrfs_key found_key; |
| int ret; |
| |
| found_level = btrfs_header_level(eb); |
| if (found_level != level) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: tree level check failed\n"); |
| btrfs_err(fs_info, |
| "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", |
| eb->start, level, found_level); |
| return -EIO; |
| } |
| |
| if (!first_key) |
| return 0; |
| |
| /* |
| * For live tree block (new tree blocks in current transaction), |
| * we need proper lock context to avoid race, which is impossible here. |
| * So we only checks tree blocks which is read from disk, whose |
| * generation <= fs_info->last_trans_committed. |
| */ |
| if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) |
| return 0; |
| |
| /* We have @first_key, so this @eb must have at least one item */ |
| if (btrfs_header_nritems(eb) == 0) { |
| btrfs_err(fs_info, |
| "invalid tree nritems, bytenr=%llu nritems=0 expect >0", |
| eb->start); |
| WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); |
| return -EUCLEAN; |
| } |
| |
| if (found_level) |
| btrfs_node_key_to_cpu(eb, &found_key, 0); |
| else |
| btrfs_item_key_to_cpu(eb, &found_key, 0); |
| ret = btrfs_comp_cpu_keys(first_key, &found_key); |
| |
| if (ret) { |
| WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), |
| KERN_ERR "BTRFS: tree first key check failed\n"); |
| btrfs_err(fs_info, |
| "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", |
| eb->start, parent_transid, first_key->objectid, |
| first_key->type, first_key->offset, |
| found_key.objectid, found_key.type, |
| found_key.offset); |
| } |
| return ret; |
| } |