blob: 047c581457e34510236133a6ff4ff292a6c06385 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* NXP C45 PHY driver
* Copyright (C) 2021 NXP
* Author: Radu Pirea <radu-nicolae.pirea@oss.nxp.com>
*/
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/ethtool_netlink.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/processor.h>
#include <linux/property.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/net_tstamp.h>
#define PHY_ID_TJA_1103 0x001BB010
#define PMAPMD_B100T1_PMAPMD_CTL 0x0834
#define B100T1_PMAPMD_CONFIG_EN BIT(15)
#define B100T1_PMAPMD_MASTER BIT(14)
#define MASTER_MODE (B100T1_PMAPMD_CONFIG_EN | \
B100T1_PMAPMD_MASTER)
#define SLAVE_MODE (B100T1_PMAPMD_CONFIG_EN)
#define VEND1_DEVICE_CONTROL 0x0040
#define DEVICE_CONTROL_RESET BIT(15)
#define DEVICE_CONTROL_CONFIG_GLOBAL_EN BIT(14)
#define DEVICE_CONTROL_CONFIG_ALL_EN BIT(13)
#define VEND1_PHY_IRQ_ACK 0x80A0
#define VEND1_PHY_IRQ_EN 0x80A1
#define VEND1_PHY_IRQ_STATUS 0x80A2
#define PHY_IRQ_LINK_EVENT BIT(1)
#define VEND1_PHY_CONTROL 0x8100
#define PHY_CONFIG_EN BIT(14)
#define PHY_START_OP BIT(0)
#define VEND1_PHY_CONFIG 0x8108
#define PHY_CONFIG_AUTO BIT(0)
#define VEND1_SIGNAL_QUALITY 0x8320
#define SQI_VALID BIT(14)
#define SQI_MASK GENMASK(2, 0)
#define MAX_SQI SQI_MASK
#define VEND1_CABLE_TEST 0x8330
#define CABLE_TEST_ENABLE BIT(15)
#define CABLE_TEST_START BIT(14)
#define CABLE_TEST_VALID BIT(13)
#define CABLE_TEST_OK 0x00
#define CABLE_TEST_SHORTED 0x01
#define CABLE_TEST_OPEN 0x02
#define CABLE_TEST_UNKNOWN 0x07
#define VEND1_PORT_CONTROL 0x8040
#define PORT_CONTROL_EN BIT(14)
#define VEND1_PORT_ABILITIES 0x8046
#define PTP_ABILITY BIT(3)
#define VEND1_PORT_INFRA_CONTROL 0xAC00
#define PORT_INFRA_CONTROL_EN BIT(14)
#define VEND1_RXID 0xAFCC
#define VEND1_TXID 0xAFCD
#define ID_ENABLE BIT(15)
#define VEND1_ABILITIES 0xAFC4
#define RGMII_ID_ABILITY BIT(15)
#define RGMII_ABILITY BIT(14)
#define RMII_ABILITY BIT(10)
#define REVMII_ABILITY BIT(9)
#define MII_ABILITY BIT(8)
#define SGMII_ABILITY BIT(0)
#define VEND1_MII_BASIC_CONFIG 0xAFC6
#define MII_BASIC_CONFIG_REV BIT(8)
#define MII_BASIC_CONFIG_SGMII 0x9
#define MII_BASIC_CONFIG_RGMII 0x7
#define MII_BASIC_CONFIG_RMII 0x5
#define MII_BASIC_CONFIG_MII 0x4
#define VEND1_SYMBOL_ERROR_COUNTER 0x8350
#define VEND1_LINK_DROP_COUNTER 0x8352
#define VEND1_LINK_LOSSES_AND_FAILURES 0x8353
#define VEND1_R_GOOD_FRAME_CNT 0xA950
#define VEND1_R_BAD_FRAME_CNT 0xA952
#define VEND1_R_RXER_FRAME_CNT 0xA954
#define VEND1_RX_PREAMBLE_COUNT 0xAFCE
#define VEND1_TX_PREAMBLE_COUNT 0xAFCF
#define VEND1_RX_IPG_LENGTH 0xAFD0
#define VEND1_TX_IPG_LENGTH 0xAFD1
#define COUNTER_EN BIT(15)
#define VEND1_PTP_CONFIG 0x1102
#define EXT_TRG_EDGE BIT(1)
#define PPS_OUT_POL BIT(2)
#define PPS_OUT_EN BIT(3)
#define VEND1_LTC_LOAD_CTRL 0x1105
#define READ_LTC BIT(2)
#define LOAD_LTC BIT(0)
#define VEND1_LTC_WR_NSEC_0 0x1106
#define VEND1_LTC_WR_NSEC_1 0x1107
#define VEND1_LTC_WR_SEC_0 0x1108
#define VEND1_LTC_WR_SEC_1 0x1109
#define VEND1_LTC_RD_NSEC_0 0x110A
#define VEND1_LTC_RD_NSEC_1 0x110B
#define VEND1_LTC_RD_SEC_0 0x110C
#define VEND1_LTC_RD_SEC_1 0x110D
#define VEND1_RATE_ADJ_SUBNS_0 0x110F
#define VEND1_RATE_ADJ_SUBNS_1 0x1110
#define CLK_RATE_ADJ_LD BIT(15)
#define CLK_RATE_ADJ_DIR BIT(14)
#define VEND1_HW_LTC_LOCK_CTRL 0x1115
#define HW_LTC_LOCK_EN BIT(0)
#define VEND1_PTP_IRQ_EN 0x1131
#define VEND1_PTP_IRQ_STATUS 0x1132
#define PTP_IRQ_EGR_TS BIT(0)
#define VEND1_RX_TS_INSRT_CTRL 0x114D
#define RX_TS_INSRT_MODE2 0x02
#define VEND1_EGR_RING_DATA_0 0x114E
#define VEND1_EGR_RING_DATA_1_SEQ_ID 0x114F
#define VEND1_EGR_RING_DATA_2_NSEC_15_0 0x1150
#define VEND1_EGR_RING_DATA_3 0x1151
#define VEND1_EGR_RING_CTRL 0x1154
#define VEND1_EXT_TRG_TS_DATA_0 0x1121
#define VEND1_EXT_TRG_TS_DATA_1 0x1122
#define VEND1_EXT_TRG_TS_DATA_2 0x1123
#define VEND1_EXT_TRG_TS_DATA_3 0x1124
#define VEND1_EXT_TRG_TS_DATA_4 0x1125
#define VEND1_EXT_TRG_TS_CTRL 0x1126
#define RING_DATA_0_DOMAIN_NUMBER GENMASK(7, 0)
#define RING_DATA_0_MSG_TYPE GENMASK(11, 8)
#define RING_DATA_0_SEC_4_2 GENMASK(14, 2)
#define RING_DATA_0_TS_VALID BIT(15)
#define RING_DATA_3_NSEC_29_16 GENMASK(13, 0)
#define RING_DATA_3_SEC_1_0 GENMASK(15, 14)
#define RING_DATA_5_SEC_16_5 GENMASK(15, 4)
#define RING_DONE BIT(0)
#define TS_SEC_MASK GENMASK(1, 0)
#define VEND1_PORT_FUNC_ENABLES 0x8048
#define PTP_ENABLE BIT(3)
#define VEND1_PORT_PTP_CONTROL 0x9000
#define PORT_PTP_CONTROL_BYPASS BIT(11)
#define VEND1_PTP_CLK_PERIOD 0x1104
#define PTP_CLK_PERIOD_100BT1 15ULL
#define VEND1_EVENT_MSG_FILT 0x1148
#define EVENT_MSG_FILT_ALL 0x0F
#define EVENT_MSG_FILT_NONE 0x00
#define VEND1_TX_PIPE_DLY_NS 0x1149
#define VEND1_TX_PIPEDLY_SUBNS 0x114A
#define VEND1_RX_PIPE_DLY_NS 0x114B
#define VEND1_RX_PIPEDLY_SUBNS 0x114C
#define VEND1_GPIO_FUNC_CONFIG_BASE 0x2C40
#define GPIO_FUNC_EN BIT(15)
#define GPIO_FUNC_PTP BIT(6)
#define GPIO_SIGNAL_PTP_TRIGGER 0x01
#define GPIO_SIGNAL_PPS_OUT 0x12
#define GPIO_DISABLE 0
#define GPIO_PPS_OUT_CFG (GPIO_FUNC_EN | GPIO_FUNC_PTP | \
GPIO_SIGNAL_PPS_OUT)
#define GPIO_EXTTS_OUT_CFG (GPIO_FUNC_EN | GPIO_FUNC_PTP | \
GPIO_SIGNAL_PTP_TRIGGER)
#define RGMII_PERIOD_PS 8000U
#define PS_PER_DEGREE div_u64(RGMII_PERIOD_PS, 360)
#define MIN_ID_PS 1644U
#define MAX_ID_PS 2260U
#define DEFAULT_ID_PS 2000U
#define PPM_TO_SUBNS_INC(ppb) div_u64(GENMASK(31, 0) * (ppb) * \
PTP_CLK_PERIOD_100BT1, NSEC_PER_SEC)
#define NXP_C45_SKB_CB(skb) ((struct nxp_c45_skb_cb *)(skb)->cb)
struct nxp_c45_skb_cb {
struct ptp_header *header;
unsigned int type;
};
struct nxp_c45_hwts {
u32 nsec;
u32 sec;
u8 domain_number;
u16 sequence_id;
u8 msg_type;
};
struct nxp_c45_phy {
struct phy_device *phydev;
struct mii_timestamper mii_ts;
struct ptp_clock *ptp_clock;
struct ptp_clock_info caps;
struct sk_buff_head tx_queue;
struct sk_buff_head rx_queue;
/* used to access the PTP registers atomic */
struct mutex ptp_lock;
int hwts_tx;
int hwts_rx;
u32 tx_delay;
u32 rx_delay;
struct timespec64 extts_ts;
int extts_index;
bool extts;
};
struct nxp_c45_phy_stats {
const char *name;
u8 mmd;
u16 reg;
u8 off;
u16 mask;
};
static bool nxp_c45_poll_txts(struct phy_device *phydev)
{
return phydev->irq <= 0;
}
static int _nxp_c45_ptp_gettimex64(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_LOAD_CTRL,
READ_LTC);
ts->tv_nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_LTC_RD_NSEC_0);
ts->tv_nsec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_LTC_RD_NSEC_1) << 16;
ts->tv_sec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_LTC_RD_SEC_0);
ts->tv_sec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_LTC_RD_SEC_1) << 16;
return 0;
}
static int nxp_c45_ptp_gettimex64(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
mutex_lock(&priv->ptp_lock);
_nxp_c45_ptp_gettimex64(ptp, ts, sts);
mutex_unlock(&priv->ptp_lock);
return 0;
}
static int _nxp_c45_ptp_settime64(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_NSEC_0,
ts->tv_nsec);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_NSEC_1,
ts->tv_nsec >> 16);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_SEC_0,
ts->tv_sec);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_WR_SEC_1,
ts->tv_sec >> 16);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_LTC_LOAD_CTRL,
LOAD_LTC);
return 0;
}
static int nxp_c45_ptp_settime64(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
mutex_lock(&priv->ptp_lock);
_nxp_c45_ptp_settime64(ptp, ts);
mutex_unlock(&priv->ptp_lock);
return 0;
}
static int nxp_c45_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
u64 subns_inc_val;
bool inc;
mutex_lock(&priv->ptp_lock);
inc = ppb >= 0;
ppb = abs(ppb);
subns_inc_val = PPM_TO_SUBNS_INC(ppb);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_RATE_ADJ_SUBNS_0,
subns_inc_val);
subns_inc_val >>= 16;
subns_inc_val |= CLK_RATE_ADJ_LD;
if (inc)
subns_inc_val |= CLK_RATE_ADJ_DIR;
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_RATE_ADJ_SUBNS_1,
subns_inc_val);
mutex_unlock(&priv->ptp_lock);
return 0;
}
static int nxp_c45_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
struct timespec64 now, then;
mutex_lock(&priv->ptp_lock);
then = ns_to_timespec64(delta);
_nxp_c45_ptp_gettimex64(ptp, &now, NULL);
now = timespec64_add(now, then);
_nxp_c45_ptp_settime64(ptp, &now);
mutex_unlock(&priv->ptp_lock);
return 0;
}
static void nxp_c45_reconstruct_ts(struct timespec64 *ts,
struct nxp_c45_hwts *hwts)
{
ts->tv_nsec = hwts->nsec;
if ((ts->tv_sec & TS_SEC_MASK) < (hwts->sec & TS_SEC_MASK))
ts->tv_sec -= TS_SEC_MASK + 1;
ts->tv_sec &= ~TS_SEC_MASK;
ts->tv_sec |= hwts->sec & TS_SEC_MASK;
}
static bool nxp_c45_match_ts(struct ptp_header *header,
struct nxp_c45_hwts *hwts,
unsigned int type)
{
return ntohs(header->sequence_id) == hwts->sequence_id &&
ptp_get_msgtype(header, type) == hwts->msg_type &&
header->domain_number == hwts->domain_number;
}
static void nxp_c45_get_extts(struct nxp_c45_phy *priv,
struct timespec64 *extts)
{
extts->tv_nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EXT_TRG_TS_DATA_0);
extts->tv_nsec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EXT_TRG_TS_DATA_1) << 16;
extts->tv_sec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EXT_TRG_TS_DATA_2);
extts->tv_sec |= phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EXT_TRG_TS_DATA_3) << 16;
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EXT_TRG_TS_CTRL,
RING_DONE);
}
static bool nxp_c45_get_hwtxts(struct nxp_c45_phy *priv,
struct nxp_c45_hwts *hwts)
{
bool valid;
u16 reg;
mutex_lock(&priv->ptp_lock);
phy_write_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_CTRL,
RING_DONE);
reg = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_DATA_0);
valid = !!(reg & RING_DATA_0_TS_VALID);
if (!valid)
goto nxp_c45_get_hwtxts_out;
hwts->domain_number = reg;
hwts->msg_type = (reg & RING_DATA_0_MSG_TYPE) >> 8;
hwts->sec = (reg & RING_DATA_0_SEC_4_2) >> 10;
hwts->sequence_id = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EGR_RING_DATA_1_SEQ_ID);
hwts->nsec = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_EGR_RING_DATA_2_NSEC_15_0);
reg = phy_read_mmd(priv->phydev, MDIO_MMD_VEND1, VEND1_EGR_RING_DATA_3);
hwts->nsec |= (reg & RING_DATA_3_NSEC_29_16) << 16;
hwts->sec |= (reg & RING_DATA_3_SEC_1_0) >> 14;
nxp_c45_get_hwtxts_out:
mutex_unlock(&priv->ptp_lock);
return valid;
}
static void nxp_c45_process_txts(struct nxp_c45_phy *priv,
struct nxp_c45_hwts *txts)
{
struct sk_buff *skb, *tmp, *skb_match = NULL;
struct skb_shared_hwtstamps shhwtstamps;
struct timespec64 ts;
unsigned long flags;
bool ts_match;
s64 ts_ns;
spin_lock_irqsave(&priv->tx_queue.lock, flags);
skb_queue_walk_safe(&priv->tx_queue, skb, tmp) {
ts_match = nxp_c45_match_ts(NXP_C45_SKB_CB(skb)->header, txts,
NXP_C45_SKB_CB(skb)->type);
if (!ts_match)
continue;
skb_match = skb;
__skb_unlink(skb, &priv->tx_queue);
break;
}
spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
if (skb_match) {
nxp_c45_ptp_gettimex64(&priv->caps, &ts, NULL);
nxp_c45_reconstruct_ts(&ts, txts);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
ts_ns = timespec64_to_ns(&ts);
shhwtstamps.hwtstamp = ns_to_ktime(ts_ns);
skb_complete_tx_timestamp(skb_match, &shhwtstamps);
} else {
phydev_warn(priv->phydev,
"the tx timestamp doesn't match with any skb\n");
}
}
static long nxp_c45_do_aux_work(struct ptp_clock_info *ptp)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
bool poll_txts = nxp_c45_poll_txts(priv->phydev);
struct skb_shared_hwtstamps *shhwtstamps_rx;
struct ptp_clock_event event;
struct nxp_c45_hwts hwts;
bool reschedule = false;
struct timespec64 ts;
struct sk_buff *skb;
bool txts_valid;
u32 ts_raw;
while (!skb_queue_empty_lockless(&priv->tx_queue) && poll_txts) {
txts_valid = nxp_c45_get_hwtxts(priv, &hwts);
if (unlikely(!txts_valid)) {
/* Still more skbs in the queue */
reschedule = true;
break;
}
nxp_c45_process_txts(priv, &hwts);
}
while ((skb = skb_dequeue(&priv->rx_queue)) != NULL) {
nxp_c45_ptp_gettimex64(&priv->caps, &ts, NULL);
ts_raw = __be32_to_cpu(NXP_C45_SKB_CB(skb)->header->reserved2);
hwts.sec = ts_raw >> 30;
hwts.nsec = ts_raw & GENMASK(29, 0);
nxp_c45_reconstruct_ts(&ts, &hwts);
shhwtstamps_rx = skb_hwtstamps(skb);
shhwtstamps_rx->hwtstamp = ns_to_ktime(timespec64_to_ns(&ts));
NXP_C45_SKB_CB(skb)->header->reserved2 = 0;
netif_rx(skb);
}
if (priv->extts) {
nxp_c45_get_extts(priv, &ts);
if (timespec64_compare(&ts, &priv->extts_ts) != 0) {
priv->extts_ts = ts;
event.index = priv->extts_index;
event.type = PTP_CLOCK_EXTTS;
event.timestamp = ns_to_ktime(timespec64_to_ns(&ts));
ptp_clock_event(priv->ptp_clock, &event);
}
reschedule = true;
}
return reschedule ? 1 : -1;
}
static void nxp_c45_gpio_config(struct nxp_c45_phy *priv,
int pin, u16 pin_cfg)
{
struct phy_device *phydev = priv->phydev;
phy_write_mmd(phydev, MDIO_MMD_VEND1,
VEND1_GPIO_FUNC_CONFIG_BASE + pin, pin_cfg);
}
static int nxp_c45_perout_enable(struct nxp_c45_phy *priv,
struct ptp_perout_request *perout, int on)
{
struct phy_device *phydev = priv->phydev;
int pin;
if (perout->flags & ~PTP_PEROUT_PHASE)
return -EOPNOTSUPP;
pin = ptp_find_pin(priv->ptp_clock, PTP_PF_PEROUT, perout->index);
if (pin < 0)
return pin;
if (!on) {
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG,
PPS_OUT_EN);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG,
PPS_OUT_POL);
nxp_c45_gpio_config(priv, pin, GPIO_DISABLE);
return 0;
}
/* The PPS signal is fixed to 1 second and is always generated when the
* seconds counter is incremented. The start time is not configurable.
* If the clock is adjusted, the PPS signal is automatically readjusted.
*/
if (perout->period.sec != 1 || perout->period.nsec != 0) {
phydev_warn(phydev, "The period can be set only to 1 second.");
return -EINVAL;
}
if (!(perout->flags & PTP_PEROUT_PHASE)) {
if (perout->start.sec != 0 || perout->start.nsec != 0) {
phydev_warn(phydev, "The start time is not configurable. Should be set to 0 seconds and 0 nanoseconds.");
return -EINVAL;
}
} else {
if (perout->phase.nsec != 0 &&
perout->phase.nsec != (NSEC_PER_SEC >> 1)) {
phydev_warn(phydev, "The phase can be set only to 0 or 500000000 nanoseconds.");
return -EINVAL;
}
if (perout->phase.nsec == 0)
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PTP_CONFIG, PPS_OUT_POL);
else
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PTP_CONFIG, PPS_OUT_POL);
}
nxp_c45_gpio_config(priv, pin, GPIO_PPS_OUT_CFG);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CONFIG, PPS_OUT_EN);
return 0;
}
static int nxp_c45_extts_enable(struct nxp_c45_phy *priv,
struct ptp_extts_request *extts, int on)
{
int pin;
if (extts->flags & ~(PTP_ENABLE_FEATURE |
PTP_RISING_EDGE |
PTP_FALLING_EDGE |
PTP_STRICT_FLAGS))
return -EOPNOTSUPP;
/* Sampling on both edges is not supported */
if ((extts->flags & PTP_RISING_EDGE) &&
(extts->flags & PTP_FALLING_EDGE))
return -EOPNOTSUPP;
pin = ptp_find_pin(priv->ptp_clock, PTP_PF_EXTTS, extts->index);
if (pin < 0)
return pin;
if (!on) {
nxp_c45_gpio_config(priv, pin, GPIO_DISABLE);
priv->extts = false;
return 0;
}
if (extts->flags & PTP_RISING_EDGE)
phy_clear_bits_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_PTP_CONFIG, EXT_TRG_EDGE);
if (extts->flags & PTP_FALLING_EDGE)
phy_set_bits_mmd(priv->phydev, MDIO_MMD_VEND1,
VEND1_PTP_CONFIG, EXT_TRG_EDGE);
nxp_c45_gpio_config(priv, pin, GPIO_EXTTS_OUT_CFG);
priv->extts = true;
priv->extts_index = extts->index;
ptp_schedule_worker(priv->ptp_clock, 0);
return 0;
}
static int nxp_c45_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *req, int on)
{
struct nxp_c45_phy *priv = container_of(ptp, struct nxp_c45_phy, caps);
switch (req->type) {
case PTP_CLK_REQ_EXTTS:
return nxp_c45_extts_enable(priv, &req->extts, on);
case PTP_CLK_REQ_PEROUT:
return nxp_c45_perout_enable(priv, &req->perout, on);
default:
return -EOPNOTSUPP;
}
}
static struct ptp_pin_desc nxp_c45_ptp_pins[] = {
{ "nxp_c45_gpio0", 0, PTP_PF_NONE},
{ "nxp_c45_gpio1", 1, PTP_PF_NONE},
{ "nxp_c45_gpio2", 2, PTP_PF_NONE},
{ "nxp_c45_gpio3", 3, PTP_PF_NONE},
{ "nxp_c45_gpio4", 4, PTP_PF_NONE},
{ "nxp_c45_gpio5", 5, PTP_PF_NONE},
{ "nxp_c45_gpio6", 6, PTP_PF_NONE},
{ "nxp_c45_gpio7", 7, PTP_PF_NONE},
{ "nxp_c45_gpio8", 8, PTP_PF_NONE},
{ "nxp_c45_gpio9", 9, PTP_PF_NONE},
{ "nxp_c45_gpio10", 10, PTP_PF_NONE},
{ "nxp_c45_gpio11", 11, PTP_PF_NONE},
};
static int nxp_c45_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
if (pin >= ARRAY_SIZE(nxp_c45_ptp_pins))
return -EINVAL;
switch (func) {
case PTP_PF_NONE:
case PTP_PF_PEROUT:
case PTP_PF_EXTTS:
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int nxp_c45_init_ptp_clock(struct nxp_c45_phy *priv)
{
priv->caps = (struct ptp_clock_info) {
.owner = THIS_MODULE,
.name = "NXP C45 PHC",
.max_adj = 16666666,
.adjfine = nxp_c45_ptp_adjfine,
.adjtime = nxp_c45_ptp_adjtime,
.gettimex64 = nxp_c45_ptp_gettimex64,
.settime64 = nxp_c45_ptp_settime64,
.enable = nxp_c45_ptp_enable,
.verify = nxp_c45_ptp_verify_pin,
.do_aux_work = nxp_c45_do_aux_work,
.pin_config = nxp_c45_ptp_pins,
.n_pins = ARRAY_SIZE(nxp_c45_ptp_pins),
.n_ext_ts = 1,
.n_per_out = 1,
};
priv->ptp_clock = ptp_clock_register(&priv->caps,
&priv->phydev->mdio.dev);
if (IS_ERR(priv->ptp_clock))
return PTR_ERR(priv->ptp_clock);
if (!priv->ptp_clock)
return -ENOMEM;
return 0;
}
static void nxp_c45_txtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
mii_ts);
switch (priv->hwts_tx) {
case HWTSTAMP_TX_ON:
NXP_C45_SKB_CB(skb)->type = type;
NXP_C45_SKB_CB(skb)->header = ptp_parse_header(skb, type);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&priv->tx_queue, skb);
if (nxp_c45_poll_txts(priv->phydev))
ptp_schedule_worker(priv->ptp_clock, 0);
break;
case HWTSTAMP_TX_OFF:
default:
kfree_skb(skb);
break;
}
}
static bool nxp_c45_rxtstamp(struct mii_timestamper *mii_ts,
struct sk_buff *skb, int type)
{
struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
mii_ts);
struct ptp_header *header = ptp_parse_header(skb, type);
if (!header)
return false;
if (!priv->hwts_rx)
return false;
NXP_C45_SKB_CB(skb)->header = header;
skb_queue_tail(&priv->rx_queue, skb);
ptp_schedule_worker(priv->ptp_clock, 0);
return true;
}
static int nxp_c45_hwtstamp(struct mii_timestamper *mii_ts,
struct ifreq *ifreq)
{
struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
mii_ts);
struct phy_device *phydev = priv->phydev;
struct hwtstamp_config cfg;
if (copy_from_user(&cfg, ifreq->ifr_data, sizeof(cfg)))
return -EFAULT;
if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ON)
return -ERANGE;
priv->hwts_tx = cfg.tx_type;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->hwts_rx = 0;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
priv->hwts_rx = 1;
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
break;
default:
return -ERANGE;
}
if (priv->hwts_rx || priv->hwts_tx) {
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_EVENT_MSG_FILT,
EVENT_MSG_FILT_ALL);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PORT_PTP_CONTROL,
PORT_PTP_CONTROL_BYPASS);
} else {
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_EVENT_MSG_FILT,
EVENT_MSG_FILT_NONE);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_PTP_CONTROL,
PORT_PTP_CONTROL_BYPASS);
}
if (nxp_c45_poll_txts(priv->phydev))
goto nxp_c45_no_ptp_irq;
if (priv->hwts_tx)
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PTP_IRQ_EN, PTP_IRQ_EGR_TS);
else
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PTP_IRQ_EN, PTP_IRQ_EGR_TS);
nxp_c45_no_ptp_irq:
return copy_to_user(ifreq->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int nxp_c45_ts_info(struct mii_timestamper *mii_ts,
struct ethtool_ts_info *ts_info)
{
struct nxp_c45_phy *priv = container_of(mii_ts, struct nxp_c45_phy,
mii_ts);
ts_info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
ts_info->phc_index = ptp_clock_index(priv->ptp_clock);
ts_info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT);
return 0;
}
static const struct nxp_c45_phy_stats nxp_c45_hw_stats[] = {
{ "phy_symbol_error_cnt", MDIO_MMD_VEND1,
VEND1_SYMBOL_ERROR_COUNTER, 0, GENMASK(15, 0) },
{ "phy_link_status_drop_cnt", MDIO_MMD_VEND1,
VEND1_LINK_DROP_COUNTER, 8, GENMASK(13, 8) },
{ "phy_link_availability_drop_cnt", MDIO_MMD_VEND1,
VEND1_LINK_DROP_COUNTER, 0, GENMASK(5, 0) },
{ "phy_link_loss_cnt", MDIO_MMD_VEND1,
VEND1_LINK_LOSSES_AND_FAILURES, 10, GENMASK(15, 10) },
{ "phy_link_failure_cnt", MDIO_MMD_VEND1,
VEND1_LINK_LOSSES_AND_FAILURES, 0, GENMASK(9, 0) },
{ "r_good_frame_cnt", MDIO_MMD_VEND1,
VEND1_R_GOOD_FRAME_CNT, 0, GENMASK(15, 0) },
{ "r_bad_frame_cnt", MDIO_MMD_VEND1,
VEND1_R_BAD_FRAME_CNT, 0, GENMASK(15, 0) },
{ "r_rxer_frame_cnt", MDIO_MMD_VEND1,
VEND1_R_RXER_FRAME_CNT, 0, GENMASK(15, 0) },
{ "rx_preamble_count", MDIO_MMD_VEND1,
VEND1_RX_PREAMBLE_COUNT, 0, GENMASK(5, 0) },
{ "tx_preamble_count", MDIO_MMD_VEND1,
VEND1_TX_PREAMBLE_COUNT, 0, GENMASK(5, 0) },
{ "rx_ipg_length", MDIO_MMD_VEND1,
VEND1_RX_IPG_LENGTH, 0, GENMASK(8, 0) },
{ "tx_ipg_length", MDIO_MMD_VEND1,
VEND1_TX_IPG_LENGTH, 0, GENMASK(8, 0) },
};
static int nxp_c45_get_sset_count(struct phy_device *phydev)
{
return ARRAY_SIZE(nxp_c45_hw_stats);
}
static void nxp_c45_get_strings(struct phy_device *phydev, u8 *data)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(nxp_c45_hw_stats); i++) {
strncpy(data + i * ETH_GSTRING_LEN,
nxp_c45_hw_stats[i].name, ETH_GSTRING_LEN);
}
}
static void nxp_c45_get_stats(struct phy_device *phydev,
struct ethtool_stats *stats, u64 *data)
{
size_t i;
int ret;
for (i = 0; i < ARRAY_SIZE(nxp_c45_hw_stats); i++) {
ret = phy_read_mmd(phydev, nxp_c45_hw_stats[i].mmd,
nxp_c45_hw_stats[i].reg);
if (ret < 0) {
data[i] = U64_MAX;
} else {
data[i] = ret & nxp_c45_hw_stats[i].mask;
data[i] >>= nxp_c45_hw_stats[i].off;
}
}
}
static int nxp_c45_config_enable(struct phy_device *phydev)
{
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_DEVICE_CONTROL,
DEVICE_CONTROL_CONFIG_GLOBAL_EN |
DEVICE_CONTROL_CONFIG_ALL_EN);
usleep_range(400, 450);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_CONTROL,
PORT_CONTROL_EN);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONTROL,
PHY_CONFIG_EN);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_INFRA_CONTROL,
PORT_INFRA_CONTROL_EN);
return 0;
}
static int nxp_c45_start_op(struct phy_device *phydev)
{
return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONTROL,
PHY_START_OP);
}
static int nxp_c45_config_intr(struct phy_device *phydev)
{
if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
return phy_set_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PHY_IRQ_EN, PHY_IRQ_LINK_EVENT);
else
return phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PHY_IRQ_EN, PHY_IRQ_LINK_EVENT);
}
static irqreturn_t nxp_c45_handle_interrupt(struct phy_device *phydev)
{
struct nxp_c45_phy *priv = phydev->priv;
irqreturn_t ret = IRQ_NONE;
struct nxp_c45_hwts hwts;
int irq;
irq = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_IRQ_STATUS);
if (irq & PHY_IRQ_LINK_EVENT) {
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_IRQ_ACK,
PHY_IRQ_LINK_EVENT);
phy_trigger_machine(phydev);
ret = IRQ_HANDLED;
}
/* There is no need for ACK.
* The irq signal will be asserted until the EGR TS FIFO will be
* emptied.
*/
irq = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_IRQ_STATUS);
if (irq & PTP_IRQ_EGR_TS) {
while (nxp_c45_get_hwtxts(priv, &hwts))
nxp_c45_process_txts(priv, &hwts);
ret = IRQ_HANDLED;
}
return ret;
}
static int nxp_c45_soft_reset(struct phy_device *phydev)
{
int ret;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_DEVICE_CONTROL,
DEVICE_CONTROL_RESET);
if (ret)
return ret;
return phy_read_mmd_poll_timeout(phydev, MDIO_MMD_VEND1,
VEND1_DEVICE_CONTROL, ret,
!(ret & DEVICE_CONTROL_RESET), 20000,
240000, false);
}
static int nxp_c45_cable_test_start(struct phy_device *phydev)
{
return phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST,
CABLE_TEST_ENABLE | CABLE_TEST_START);
}
static int nxp_c45_cable_test_get_status(struct phy_device *phydev,
bool *finished)
{
int ret;
u8 cable_test_result;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST);
if (!(ret & CABLE_TEST_VALID)) {
*finished = false;
return 0;
}
*finished = true;
cable_test_result = ret & GENMASK(2, 0);
switch (cable_test_result) {
case CABLE_TEST_OK:
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_OK);
break;
case CABLE_TEST_SHORTED:
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT);
break;
case CABLE_TEST_OPEN:
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_OPEN);
break;
default:
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC);
}
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_CABLE_TEST,
CABLE_TEST_ENABLE);
return nxp_c45_start_op(phydev);
}
static int nxp_c45_setup_master_slave(struct phy_device *phydev)
{
switch (phydev->master_slave_set) {
case MASTER_SLAVE_CFG_MASTER_FORCE:
case MASTER_SLAVE_CFG_MASTER_PREFERRED:
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL,
MASTER_MODE);
break;
case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
case MASTER_SLAVE_CFG_SLAVE_FORCE:
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL,
SLAVE_MODE);
break;
case MASTER_SLAVE_CFG_UNKNOWN:
case MASTER_SLAVE_CFG_UNSUPPORTED:
return 0;
default:
phydev_warn(phydev, "Unsupported Master/Slave mode\n");
return -EOPNOTSUPP;
}
return 0;
}
static int nxp_c45_read_master_slave(struct phy_device *phydev)
{
int reg;
phydev->master_slave_get = MASTER_SLAVE_CFG_UNKNOWN;
phydev->master_slave_state = MASTER_SLAVE_STATE_UNKNOWN;
reg = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, PMAPMD_B100T1_PMAPMD_CTL);
if (reg < 0)
return reg;
if (reg & B100T1_PMAPMD_MASTER) {
phydev->master_slave_get = MASTER_SLAVE_CFG_MASTER_FORCE;
phydev->master_slave_state = MASTER_SLAVE_STATE_MASTER;
} else {
phydev->master_slave_get = MASTER_SLAVE_CFG_SLAVE_FORCE;
phydev->master_slave_state = MASTER_SLAVE_STATE_SLAVE;
}
return 0;
}
static int nxp_c45_config_aneg(struct phy_device *phydev)
{
return nxp_c45_setup_master_slave(phydev);
}
static int nxp_c45_read_status(struct phy_device *phydev)
{
int ret;
ret = genphy_c45_read_status(phydev);
if (ret)
return ret;
ret = nxp_c45_read_master_slave(phydev);
if (ret)
return ret;
return 0;
}
static int nxp_c45_get_sqi(struct phy_device *phydev)
{
int reg;
reg = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_SIGNAL_QUALITY);
if (!(reg & SQI_VALID))
return -EINVAL;
reg &= SQI_MASK;
return reg;
}
static int nxp_c45_get_sqi_max(struct phy_device *phydev)
{
return MAX_SQI;
}
static int nxp_c45_check_delay(struct phy_device *phydev, u32 delay)
{
if (delay < MIN_ID_PS) {
phydev_err(phydev, "delay value smaller than %u\n", MIN_ID_PS);
return -EINVAL;
}
if (delay > MAX_ID_PS) {
phydev_err(phydev, "delay value higher than %u\n", MAX_ID_PS);
return -EINVAL;
}
return 0;
}
static u64 nxp_c45_get_phase_shift(u64 phase_offset_raw)
{
/* The delay in degree phase is 73.8 + phase_offset_raw * 0.9.
* To avoid floating point operations we'll multiply by 10
* and get 1 decimal point precision.
*/
phase_offset_raw *= 10;
phase_offset_raw -= 738;
return div_u64(phase_offset_raw, 9);
}
static void nxp_c45_disable_delays(struct phy_device *phydev)
{
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID, ID_ENABLE);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID, ID_ENABLE);
}
static void nxp_c45_set_delays(struct phy_device *phydev)
{
struct nxp_c45_phy *priv = phydev->priv;
u64 tx_delay = priv->tx_delay;
u64 rx_delay = priv->rx_delay;
u64 degree;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
degree = div_u64(tx_delay, PS_PER_DEGREE);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID,
ID_ENABLE | nxp_c45_get_phase_shift(degree));
} else {
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TXID,
ID_ENABLE);
}
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
degree = div_u64(rx_delay, PS_PER_DEGREE);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID,
ID_ENABLE | nxp_c45_get_phase_shift(degree));
} else {
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RXID,
ID_ENABLE);
}
}
static int nxp_c45_get_delays(struct phy_device *phydev)
{
struct nxp_c45_phy *priv = phydev->priv;
int ret;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) {
ret = device_property_read_u32(&phydev->mdio.dev,
"tx-internal-delay-ps",
&priv->tx_delay);
if (ret)
priv->tx_delay = DEFAULT_ID_PS;
ret = nxp_c45_check_delay(phydev, priv->tx_delay);
if (ret) {
phydev_err(phydev,
"tx-internal-delay-ps invalid value\n");
return ret;
}
}
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) {
ret = device_property_read_u32(&phydev->mdio.dev,
"rx-internal-delay-ps",
&priv->rx_delay);
if (ret)
priv->rx_delay = DEFAULT_ID_PS;
ret = nxp_c45_check_delay(phydev, priv->rx_delay);
if (ret) {
phydev_err(phydev,
"rx-internal-delay-ps invalid value\n");
return ret;
}
}
return 0;
}
static int nxp_c45_set_phy_mode(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_VEND1, VEND1_ABILITIES);
phydev_dbg(phydev, "Clause 45 managed PHY abilities 0x%x\n", ret);
switch (phydev->interface) {
case PHY_INTERFACE_MODE_RGMII:
if (!(ret & RGMII_ABILITY)) {
phydev_err(phydev, "rgmii mode not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_RGMII);
nxp_c45_disable_delays(phydev);
break;
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_RGMII_RXID:
if (!(ret & RGMII_ID_ABILITY)) {
phydev_err(phydev, "rgmii-id, rgmii-txid, rgmii-rxid modes are not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_RGMII);
ret = nxp_c45_get_delays(phydev);
if (ret)
return ret;
nxp_c45_set_delays(phydev);
break;
case PHY_INTERFACE_MODE_MII:
if (!(ret & MII_ABILITY)) {
phydev_err(phydev, "mii mode not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_MII);
break;
case PHY_INTERFACE_MODE_REVMII:
if (!(ret & REVMII_ABILITY)) {
phydev_err(phydev, "rev-mii mode not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_MII | MII_BASIC_CONFIG_REV);
break;
case PHY_INTERFACE_MODE_RMII:
if (!(ret & RMII_ABILITY)) {
phydev_err(phydev, "rmii mode not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_RMII);
break;
case PHY_INTERFACE_MODE_SGMII:
if (!(ret & SGMII_ABILITY)) {
phydev_err(phydev, "sgmii mode not supported\n");
return -EINVAL;
}
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_MII_BASIC_CONFIG,
MII_BASIC_CONFIG_SGMII);
break;
case PHY_INTERFACE_MODE_INTERNAL:
break;
default:
return -EINVAL;
}
return 0;
}
static int nxp_c45_config_init(struct phy_device *phydev)
{
int ret;
ret = nxp_c45_config_enable(phydev);
if (ret) {
phydev_err(phydev, "Failed to enable config\n");
return ret;
}
/* Bug workaround for SJA1110 rev B: enable write access
* to MDIO_MMD_PMAPMD
*/
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x01F8, 1);
phy_write_mmd(phydev, MDIO_MMD_VEND1, 0x01F9, 2);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PHY_CONFIG,
PHY_CONFIG_AUTO);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_LINK_DROP_COUNTER,
COUNTER_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_PREAMBLE_COUNT,
COUNTER_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TX_PREAMBLE_COUNT,
COUNTER_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_IPG_LENGTH,
COUNTER_EN);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_TX_IPG_LENGTH,
COUNTER_EN);
ret = nxp_c45_set_phy_mode(phydev);
if (ret)
return ret;
phydev->autoneg = AUTONEG_DISABLE;
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_PTP_CLK_PERIOD,
PTP_CLK_PERIOD_100BT1);
phy_clear_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_HW_LTC_LOCK_CTRL,
HW_LTC_LOCK_EN);
phy_write_mmd(phydev, MDIO_MMD_VEND1, VEND1_RX_TS_INSRT_CTRL,
RX_TS_INSRT_MODE2);
phy_set_bits_mmd(phydev, MDIO_MMD_VEND1, VEND1_PORT_FUNC_ENABLES,
PTP_ENABLE);
return nxp_c45_start_op(phydev);
}
static int nxp_c45_probe(struct phy_device *phydev)
{
struct nxp_c45_phy *priv;
int ptp_ability;
int ret = 0;
priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
skb_queue_head_init(&priv->tx_queue);
skb_queue_head_init(&priv->rx_queue);
priv->phydev = phydev;
phydev->priv = priv;
mutex_init(&priv->ptp_lock);
ptp_ability = phy_read_mmd(phydev, MDIO_MMD_VEND1,
VEND1_PORT_ABILITIES);
ptp_ability = !!(ptp_ability & PTP_ABILITY);
if (!ptp_ability) {
phydev_dbg(phydev, "the phy does not support PTP");
goto no_ptp_support;
}
if (IS_ENABLED(CONFIG_PTP_1588_CLOCK) &&
IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) {
priv->mii_ts.rxtstamp = nxp_c45_rxtstamp;
priv->mii_ts.txtstamp = nxp_c45_txtstamp;
priv->mii_ts.hwtstamp = nxp_c45_hwtstamp;
priv->mii_ts.ts_info = nxp_c45_ts_info;
phydev->mii_ts = &priv->mii_ts;
ret = nxp_c45_init_ptp_clock(priv);
} else {
phydev_dbg(phydev, "PTP support not enabled even if the phy supports it");
}
no_ptp_support:
return ret;
}
static struct phy_driver nxp_c45_driver[] = {
{
PHY_ID_MATCH_MODEL(PHY_ID_TJA_1103),
.name = "NXP C45 TJA1103",
.features = PHY_BASIC_T1_FEATURES,
.probe = nxp_c45_probe,
.soft_reset = nxp_c45_soft_reset,
.config_aneg = nxp_c45_config_aneg,
.config_init = nxp_c45_config_init,
.config_intr = nxp_c45_config_intr,
.handle_interrupt = nxp_c45_handle_interrupt,
.read_status = nxp_c45_read_status,
.suspend = genphy_c45_pma_suspend,
.resume = genphy_c45_pma_resume,
.get_sset_count = nxp_c45_get_sset_count,
.get_strings = nxp_c45_get_strings,
.get_stats = nxp_c45_get_stats,
.cable_test_start = nxp_c45_cable_test_start,
.cable_test_get_status = nxp_c45_cable_test_get_status,
.set_loopback = genphy_c45_loopback,
.get_sqi = nxp_c45_get_sqi,
.get_sqi_max = nxp_c45_get_sqi_max,
},
};
module_phy_driver(nxp_c45_driver);
static struct mdio_device_id __maybe_unused nxp_c45_tbl[] = {
{ PHY_ID_MATCH_MODEL(PHY_ID_TJA_1103) },
{ /*sentinel*/ },
};
MODULE_DEVICE_TABLE(mdio, nxp_c45_tbl);
MODULE_AUTHOR("Radu Pirea <radu-nicolae.pirea@oss.nxp.com>");
MODULE_DESCRIPTION("NXP C45 PHY driver");
MODULE_LICENSE("GPL v2");