| /* |
| * Kernel probes (kprobes) for SuperH |
| * |
| * Copyright (C) 2007 Chris Smith <chris.smith@st.com> |
| * Copyright (C) 2006 Lineo Solutions, Inc. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| */ |
| #include <linux/kprobes.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/preempt.h> |
| #include <linux/kdebug.h> |
| #include <asm/cacheflush.h> |
| #include <asm/uaccess.h> |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| static struct kprobe saved_current_opcode; |
| static struct kprobe saved_next_opcode; |
| static struct kprobe saved_next_opcode2; |
| |
| #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) |
| #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) |
| #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) |
| #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) |
| #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) |
| #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) |
| |
| #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) |
| #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) |
| |
| #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) |
| #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) |
| |
| #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) |
| #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) |
| |
| int __kprobes arch_prepare_kprobe(struct kprobe *p) |
| { |
| kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr); |
| |
| if (OPCODE_RTE(opcode)) |
| return -EFAULT; /* Bad breakpoint */ |
| |
| p->opcode = opcode; |
| |
| return 0; |
| } |
| |
| void __kprobes arch_copy_kprobe(struct kprobe *p) |
| { |
| memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); |
| p->opcode = *p->addr; |
| } |
| |
| void __kprobes arch_arm_kprobe(struct kprobe *p) |
| { |
| *p->addr = BREAKPOINT_INSTRUCTION; |
| flush_icache_range((unsigned long)p->addr, |
| (unsigned long)p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| void __kprobes arch_disarm_kprobe(struct kprobe *p) |
| { |
| *p->addr = p->opcode; |
| flush_icache_range((unsigned long)p->addr, |
| (unsigned long)p->addr + sizeof(kprobe_opcode_t)); |
| } |
| |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p) |
| { |
| if (*p->addr == BREAKPOINT_INSTRUCTION) |
| return 1; |
| |
| return 0; |
| } |
| |
| /** |
| * If an illegal slot instruction exception occurs for an address |
| * containing a kprobe, remove the probe. |
| * |
| * Returns 0 if the exception was handled successfully, 1 otherwise. |
| */ |
| int __kprobes kprobe_handle_illslot(unsigned long pc) |
| { |
| struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); |
| |
| if (p != NULL) { |
| printk("Warning: removing kprobe from delay slot: 0x%.8x\n", |
| (unsigned int)pc + 2); |
| unregister_kprobe(p); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| void __kprobes arch_remove_kprobe(struct kprobe *p) |
| { |
| if (saved_next_opcode.addr != 0x0) { |
| arch_disarm_kprobe(p); |
| arch_disarm_kprobe(&saved_next_opcode); |
| saved_next_opcode.addr = 0x0; |
| saved_next_opcode.opcode = 0x0; |
| |
| if (saved_next_opcode2.addr != 0x0) { |
| arch_disarm_kprobe(&saved_next_opcode2); |
| saved_next_opcode2.addr = 0x0; |
| saved_next_opcode2.opcode = 0x0; |
| } |
| } |
| } |
| |
| static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| } |
| |
| static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| } |
| |
| static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __get_cpu_var(current_kprobe) = p; |
| } |
| |
| /* |
| * Singlestep is implemented by disabling the current kprobe and setting one |
| * on the next instruction, following branches. Two probes are set if the |
| * branch is conditional. |
| */ |
| static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) |
| { |
| kprobe_opcode_t *addr = NULL; |
| saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc); |
| addr = saved_current_opcode.addr; |
| |
| if (p != NULL) { |
| arch_disarm_kprobe(p); |
| |
| if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { |
| unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); |
| saved_next_opcode.addr = |
| (kprobe_opcode_t *) regs->regs[reg_nr]; |
| } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { |
| unsigned long disp = (p->opcode & 0x0FFF); |
| saved_next_opcode.addr = |
| (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); |
| |
| } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { |
| unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); |
| saved_next_opcode.addr = |
| (kprobe_opcode_t *) (regs->pc + 4 + |
| regs->regs[reg_nr]); |
| |
| } else if (OPCODE_RTS(p->opcode)) { |
| saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr; |
| |
| } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { |
| unsigned long disp = (p->opcode & 0x00FF); |
| /* case 1 */ |
| saved_next_opcode.addr = p->addr + 1; |
| /* case 2 */ |
| saved_next_opcode2.addr = |
| (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); |
| saved_next_opcode2.opcode = *(saved_next_opcode2.addr); |
| arch_arm_kprobe(&saved_next_opcode2); |
| |
| } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { |
| unsigned long disp = (p->opcode & 0x00FF); |
| /* case 1 */ |
| saved_next_opcode.addr = p->addr + 2; |
| /* case 2 */ |
| saved_next_opcode2.addr = |
| (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); |
| saved_next_opcode2.opcode = *(saved_next_opcode2.addr); |
| arch_arm_kprobe(&saved_next_opcode2); |
| |
| } else { |
| saved_next_opcode.addr = p->addr + 1; |
| } |
| |
| saved_next_opcode.opcode = *(saved_next_opcode.addr); |
| arch_arm_kprobe(&saved_next_opcode); |
| } |
| } |
| |
| /* Called with kretprobe_lock held */ |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, |
| struct pt_regs *regs) |
| { |
| ri->ret_addr = (kprobe_opcode_t *) regs->pr; |
| |
| /* Replace the return addr with trampoline addr */ |
| regs->pr = (unsigned long)kretprobe_trampoline; |
| } |
| |
| static int __kprobes kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *p; |
| int ret = 0; |
| kprobe_opcode_t *addr = NULL; |
| struct kprobe_ctlblk *kcb; |
| |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing |
| */ |
| preempt_disable(); |
| kcb = get_kprobe_ctlblk(); |
| |
| addr = (kprobe_opcode_t *) (regs->pc); |
| |
| /* Check we're not actually recursing */ |
| if (kprobe_running()) { |
| p = get_kprobe(addr); |
| if (p) { |
| if (kcb->kprobe_status == KPROBE_HIT_SS && |
| *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { |
| goto no_kprobe; |
| } |
| /* We have reentered the kprobe_handler(), since |
| * another probe was hit while within the handler. |
| * We here save the original kprobes variables and |
| * just single step on the instruction of the new probe |
| * without calling any user handlers. |
| */ |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kprobes_inc_nmissed_count(p); |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_REENTER; |
| return 1; |
| } else { |
| p = __get_cpu_var(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) { |
| goto ss_probe; |
| } |
| } |
| goto no_kprobe; |
| } |
| |
| p = get_kprobe(addr); |
| if (!p) { |
| /* Not one of ours: let kernel handle it */ |
| goto no_kprobe; |
| } |
| |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| if (p->pre_handler && p->pre_handler(p, regs)) |
| /* handler has already set things up, so skip ss setup */ |
| return 1; |
| |
| ss_probe: |
| prepare_singlestep(p, regs); |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| |
| no_kprobe: |
| preempt_enable_no_resched(); |
| return ret; |
| } |
| |
| /* |
| * For function-return probes, init_kprobes() establishes a probepoint |
| * here. When a retprobed function returns, this probe is hit and |
| * trampoline_probe_handler() runs, calling the kretprobe's handler. |
| */ |
| void kretprobe_trampoline_holder(void) |
| { |
| asm volatile ("kretprobe_trampoline: \n" "nop\n"); |
| } |
| |
| /* |
| * Called when we hit the probe point at kretprobe_trampoline |
| */ |
| int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *node, *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because an multiple functions in the call path |
| * have a return probe installed on them, and/or more then one return |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always inserted at the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the first instance's ret_addr will point to the |
| * real return address, and all the rest will point to |
| * kretprobe_trampoline |
| */ |
| hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| if (ri->rp && ri->rp->handler) { |
| __get_cpu_var(current_kprobe) = &ri->rp->kp; |
| ri->rp->handler(ri, regs); |
| __get_cpu_var(current_kprobe) = NULL; |
| } |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| |
| regs->pc = orig_ret_address; |
| kretprobe_hash_unlock(current, &flags); |
| |
| preempt_enable_no_resched(); |
| |
| hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| |
| return orig_ret_address; |
| } |
| |
| static inline int post_kprobe_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| kprobe_opcode_t *addr = NULL; |
| struct kprobe *p = NULL; |
| |
| if (!cur) |
| return 0; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| if (saved_next_opcode.addr != 0x0) { |
| arch_disarm_kprobe(&saved_next_opcode); |
| saved_next_opcode.addr = 0x0; |
| saved_next_opcode.opcode = 0x0; |
| |
| addr = saved_current_opcode.addr; |
| saved_current_opcode.addr = 0x0; |
| |
| p = get_kprobe(addr); |
| arch_arm_kprobe(p); |
| |
| if (saved_next_opcode2.addr != 0x0) { |
| arch_disarm_kprobe(&saved_next_opcode2); |
| saved_next_opcode2.addr = 0x0; |
| saved_next_opcode2.opcode = 0x0; |
| } |
| } |
| |
| /*Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| |
| out: |
| preempt_enable_no_resched(); |
| |
| return 1; |
| } |
| |
| static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| const struct exception_table_entry *entry; |
| |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SS: |
| case KPROBE_REENTER: |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe, point the pc back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->pc = (unsigned long)cur->addr; |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| break; |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SSDONE: |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accounting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if ((entry = search_exception_tables(regs->pc)) != NULL) { |
| regs->pc = entry->fixup; |
| return 1; |
| } |
| |
| /* |
| * fixup_exception() could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Wrapper routine to for handling exceptions. |
| */ |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct kprobe *p = NULL; |
| struct die_args *args = (struct die_args *)data; |
| int ret = NOTIFY_DONE; |
| kprobe_opcode_t *addr = NULL; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| addr = (kprobe_opcode_t *) (args->regs->pc); |
| if (val == DIE_TRAP) { |
| if (!kprobe_running()) { |
| if (kprobe_handler(args->regs)) { |
| ret = NOTIFY_STOP; |
| } else { |
| /* Not a kprobe trap */ |
| force_sig(SIGTRAP, current); |
| } |
| } else { |
| p = get_kprobe(addr); |
| if ((kcb->kprobe_status == KPROBE_HIT_SS) || |
| (kcb->kprobe_status == KPROBE_REENTER)) { |
| if (post_kprobe_handler(args->regs)) |
| ret = NOTIFY_STOP; |
| } else { |
| if (kprobe_handler(args->regs)) { |
| ret = NOTIFY_STOP; |
| } else { |
| p = __get_cpu_var(current_kprobe); |
| if (p->break_handler |
| && p->break_handler(p, args->regs)) |
| ret = NOTIFY_STOP; |
| } |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| kcb->jprobe_saved_regs = *regs; |
| kcb->jprobe_saved_r15 = regs->regs[15]; |
| addr = kcb->jprobe_saved_r15; |
| |
| /* |
| * TBD: As Linus pointed out, gcc assumes that the callee |
| * owns the argument space and could overwrite it, e.g. |
| * tailcall optimization. So, to be absolutely safe |
| * we also save and restore enough stack bytes to cover |
| * the argument area. |
| */ |
| memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, |
| MIN_STACK_SIZE(addr)); |
| |
| regs->pc = (unsigned long)(jp->entry); |
| |
| return 1; |
| } |
| |
| void __kprobes jprobe_return(void) |
| { |
| __asm("trapa #-1\n\t" "jprobe_return_end:\n\t" "nop\n\t"); |
| |
| } |
| |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| u8 *addr = (u8 *) regs->pc; |
| unsigned long stack_addr = kcb->jprobe_saved_r15; |
| |
| if ((addr >= (u8 *) jprobe_return) |
| && (addr <= (u8 *) jprobe_return_end)) { |
| *regs = kcb->jprobe_saved_regs; |
| |
| memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, |
| MIN_STACK_SIZE(stack_addr)); |
| |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| return 1; |
| } |
| return 0; |
| } |
| |
| static struct kprobe trampoline_p = { |
| .addr = (kprobe_opcode_t *) &kretprobe_trampoline, |
| .pre_handler = trampoline_probe_handler |
| }; |
| |
| int __init arch_init_kprobes(void) |
| { |
| saved_next_opcode.addr = 0x0; |
| saved_next_opcode.opcode = 0x0; |
| |
| saved_current_opcode.addr = 0x0; |
| saved_current_opcode.opcode = 0x0; |
| |
| saved_next_opcode2.addr = 0x0; |
| saved_next_opcode2.opcode = 0x0; |
| |
| return register_kprobe(&trampoline_p); |
| } |