| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2010, 2014 The Linux Foundation. All rights reserved. */ |
| |
| #include <linux/console.h> |
| #include <linux/init.h> |
| #include <linux/kfifo.h> |
| #include <linux/moduleparam.h> |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/dcc.h> |
| #include <asm/processor.h> |
| |
| #include "hvc_console.h" |
| |
| /* |
| * Disable DCC driver at runtime. Want driver enabled for GKI, but some devices |
| * do not support the registers and crash when driver pokes the registers |
| */ |
| static bool enable; |
| module_param(enable, bool, 0444); |
| |
| /* DCC Status Bits */ |
| #define DCC_STATUS_RX (1 << 30) |
| #define DCC_STATUS_TX (1 << 29) |
| |
| static void dcc_uart_console_putchar(struct uart_port *port, int ch) |
| { |
| while (__dcc_getstatus() & DCC_STATUS_TX) |
| cpu_relax(); |
| |
| __dcc_putchar(ch); |
| } |
| |
| static void dcc_early_write(struct console *con, const char *s, unsigned n) |
| { |
| struct earlycon_device *dev = con->data; |
| |
| uart_console_write(&dev->port, s, n, dcc_uart_console_putchar); |
| } |
| |
| static int __init dcc_early_console_setup(struct earlycon_device *device, |
| const char *opt) |
| { |
| device->con->write = dcc_early_write; |
| |
| return 0; |
| } |
| |
| EARLYCON_DECLARE(dcc, dcc_early_console_setup); |
| |
| static int hvc_dcc_put_chars(uint32_t vt, const char *buf, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| while (__dcc_getstatus() & DCC_STATUS_TX) |
| cpu_relax(); |
| |
| __dcc_putchar(buf[i]); |
| } |
| |
| return count; |
| } |
| |
| static int hvc_dcc_get_chars(uint32_t vt, char *buf, int count) |
| { |
| int i; |
| |
| for (i = 0; i < count; ++i) |
| if (__dcc_getstatus() & DCC_STATUS_RX) |
| buf[i] = __dcc_getchar(); |
| else |
| break; |
| |
| return i; |
| } |
| |
| /* |
| * Check if the DCC is enabled. If CONFIG_HVC_DCC_SERIALIZE_SMP is enabled, |
| * then we assume then this function will be called first on core 0. That |
| * way, dcc_core0_available will be true only if it's available on core 0. |
| */ |
| static bool hvc_dcc_check(void) |
| { |
| unsigned long time = jiffies + (HZ / 10); |
| |
| #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP |
| static bool dcc_core0_available; |
| |
| /* |
| * If we're not on core 0, but we previously confirmed that DCC is |
| * active, then just return true. |
| */ |
| if (smp_processor_id() && dcc_core0_available) |
| return true; |
| #endif |
| |
| /* Write a test character to check if it is handled */ |
| __dcc_putchar('\n'); |
| |
| while (time_is_after_jiffies(time)) { |
| if (!(__dcc_getstatus() & DCC_STATUS_TX)) { |
| #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP |
| dcc_core0_available = true; |
| #endif |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_HVC_DCC_SERIALIZE_SMP |
| |
| static void dcc_put_work_fn(struct work_struct *work); |
| static void dcc_get_work_fn(struct work_struct *work); |
| static DECLARE_WORK(dcc_pwork, dcc_put_work_fn); |
| static DECLARE_WORK(dcc_gwork, dcc_get_work_fn); |
| static DEFINE_SPINLOCK(dcc_lock); |
| static DEFINE_KFIFO(inbuf, unsigned char, 128); |
| static DEFINE_KFIFO(outbuf, unsigned char, 1024); |
| |
| /* |
| * Workqueue function that writes the output FIFO to the DCC on core 0. |
| */ |
| static void dcc_put_work_fn(struct work_struct *work) |
| { |
| unsigned char ch; |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&dcc_lock, irqflags); |
| |
| /* While there's data in the output FIFO, write it to the DCC */ |
| while (kfifo_get(&outbuf, &ch)) |
| hvc_dcc_put_chars(0, &ch, 1); |
| |
| /* While we're at it, check for any input characters */ |
| while (!kfifo_is_full(&inbuf)) { |
| if (!hvc_dcc_get_chars(0, &ch, 1)) |
| break; |
| kfifo_put(&inbuf, ch); |
| } |
| |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| } |
| |
| /* |
| * Workqueue function that reads characters from DCC and puts them into the |
| * input FIFO. |
| */ |
| static void dcc_get_work_fn(struct work_struct *work) |
| { |
| unsigned char ch; |
| unsigned long irqflags; |
| |
| /* |
| * Read characters from DCC and put them into the input FIFO, as |
| * long as there is room and we have characters to read. |
| */ |
| spin_lock_irqsave(&dcc_lock, irqflags); |
| |
| while (!kfifo_is_full(&inbuf)) { |
| if (!hvc_dcc_get_chars(0, &ch, 1)) |
| break; |
| kfifo_put(&inbuf, ch); |
| } |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| } |
| |
| /* |
| * Write characters directly to the DCC if we're on core 0 and the FIFO |
| * is empty, or write them to the FIFO if we're not. |
| */ |
| static int hvc_dcc0_put_chars(uint32_t vt, const char *buf, |
| int count) |
| { |
| int len; |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&dcc_lock, irqflags); |
| if (smp_processor_id() || (!kfifo_is_empty(&outbuf))) { |
| len = kfifo_in(&outbuf, buf, count); |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| /* |
| * We just push data to the output FIFO, so schedule the |
| * workqueue that will actually write that data to DCC. |
| */ |
| schedule_work_on(0, &dcc_pwork); |
| return len; |
| } |
| |
| /* |
| * If we're already on core 0, and the FIFO is empty, then just |
| * write the data to DCC. |
| */ |
| len = hvc_dcc_put_chars(vt, buf, count); |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| |
| return len; |
| } |
| |
| /* |
| * Read characters directly from the DCC if we're on core 0 and the FIFO |
| * is empty, or read them from the FIFO if we're not. |
| */ |
| static int hvc_dcc0_get_chars(uint32_t vt, char *buf, int count) |
| { |
| int len; |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&dcc_lock, irqflags); |
| |
| if (smp_processor_id() || (!kfifo_is_empty(&inbuf))) { |
| len = kfifo_out(&inbuf, buf, count); |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| |
| /* |
| * If the FIFO was empty, there may be characters in the DCC |
| * that we haven't read yet. Schedule a workqueue to fill |
| * the input FIFO, so that the next time this function is |
| * called, we'll have data. |
| */ |
| if (!len) |
| schedule_work_on(0, &dcc_gwork); |
| |
| return len; |
| } |
| |
| /* |
| * If we're already on core 0, and the FIFO is empty, then just |
| * read the data from DCC. |
| */ |
| len = hvc_dcc_get_chars(vt, buf, count); |
| spin_unlock_irqrestore(&dcc_lock, irqflags); |
| |
| return len; |
| } |
| |
| static const struct hv_ops hvc_dcc_get_put_ops = { |
| .get_chars = hvc_dcc0_get_chars, |
| .put_chars = hvc_dcc0_put_chars, |
| }; |
| |
| #else |
| |
| static const struct hv_ops hvc_dcc_get_put_ops = { |
| .get_chars = hvc_dcc_get_chars, |
| .put_chars = hvc_dcc_put_chars, |
| }; |
| |
| #endif |
| |
| static int __init hvc_dcc_console_init(void) |
| { |
| int ret; |
| |
| if (!enable || !hvc_dcc_check()) |
| return -ENODEV; |
| |
| /* Returns -1 if error */ |
| ret = hvc_instantiate(0, 0, &hvc_dcc_get_put_ops); |
| |
| return ret < 0 ? -ENODEV : 0; |
| } |
| console_initcall(hvc_dcc_console_init); |
| |
| static int __init hvc_dcc_init(void) |
| { |
| struct hvc_struct *p; |
| |
| if (!enable || !hvc_dcc_check()) |
| return -ENODEV; |
| |
| p = hvc_alloc(0, 0, &hvc_dcc_get_put_ops, 128); |
| |
| return PTR_ERR_OR_ZERO(p); |
| } |
| device_initcall(hvc_dcc_init); |